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A New Family of Similarity Measures for Scoring
Confidence of Protein Interactions using Gene

Ontology
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Abstract—The large-scale protein-protein interaction (PPI) data has the potential to play a significant role in the endeavor of
understanding cellular processes. However, the presence of a considerable fraction of false positives is a bottleneck in realizing this
potential. There have been continuous efforts to utilize complementary resources for scoring confidence of PPIs in a manner that false
positive interactions get a low confidence score. Gene Ontology (GO), a taxonomy of biological terms to represent the properties of
gene products and their relations, has been widely used for this purpose. We utilize GO to introduce a new set of specificity measures:
Relative Depth Specificity (RDS), Relative Node-based Specificity (RNS), and Relative Edge-based Specificity (RES), leading to a new
family of similarity measures. We use these similarity measures to obtain a confidence score for each PPI. We evaluate the new
measures using four different benchmarks. We show that all the three measures are quite effective. Notably, RNS and RES more
effectively distinguish true PPIs from false positives than the existing alternatives. RES also shows a robust set-discriminating power
and can be useful for protein functional clustering as well.

Index Terms—Protein-protein interaction, semantic similarity measures, gene ontology, specificity, information content,
set-discriminating power, KEGG pathways, ROC curve, Pfam.
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1 INTRODUCTION

A significant amount of protein-protein interaction (PPI)
data has become available due to high-throughput technolo-
gies. PPI data play a central role towards a systems-level
understanding of cellular processes with important appli-
cations in disease diagnosis and therapy. A considerable
fraction of interactions are false positives due to limitations
of experiments used in detecting protein interactions [1].
Hence, a ranking or a scoring mechanism distinguishing
between true and false interactions is important for any
downstream analysis. There have been continuous efforts
to utilize additional knowledge resources, such as Gene
Ontology (GO) [2], in scoring confidence of PPIs in a manner
that false positive interactions get a low confidence score
[3]. The primary objective of this work is to introduce a new
family of semantic similarity measures (SSMs) between gene
products using GO for scoring confidence of PPIs.

GO has been effectively utilized in predicting and val-
idating PPIs [4], [5], [6], and confidence scoring of PPIs
[7], [8], [9], [10], [11], [12] among other genomic applica-
tions such as predicting protein functions [13], [14], [15],
analyzing pathways [16] etc. It is a taxonomy of biological
terms to represent the properties of genes and gene products
(e.g., proteins) and is organized as a directed acyclic graph
(DAG) to describe the relationship among the terms. GO is
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made up of three independent ontologies: biological process
(BP), cellular component (CC), and molecular function (MF).
A section of GO DAG (Release March 2015) is shown in
the Supplementary Material. Terms closer to the root are
more generic in nature and specificity of terms gradually
increases as we move towards the leaves. The more specific
a term is, the more informative it is. Ontology-based SSM
is a quantitative function that measures the similarity be-
tween two terms based upon their relations over a set of
terms organized as an ontology. Formally, it is a function
of two ontology terms (or two sets of ontology terms) that
returns a real number indicating the closeness between the
terms in the context of semantic meaning [3]. Gene or gene
products in different model organisms are annotated to GO
terms based on various evidences and is available through
annotation corpora. An annotation corpus of a species (e.g.,
yeast) is an association between gene products of the species
and GO terms.

1.1 Motivation and Hypothesis

The notion of Information Content (IC) is widely used
in defining SSMs. It quantifies specificity of a term in an
ontology, i.e., how specific a term in an ontology is. The IC is
explained formally in section 2. The IC based SSMs assume
that the given ontology is complete and define specificity
of a term by considering the whole ontology. However, GO
is being updated regularly with the addition of new terms
and removal of old terms. Furthermore, when new infor-
mation of gene or gene product is discovered, annotation
data corresponding to the appropriate terms are updated
as well. Some proteins are annotated with a large number
of terms, while many proteins are annotated to one term
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only, i.e., annotations are not uniformly distributed among
the terms (annotation bias). Thus the continuous evolution
of the GO DAG, regular updates in annotation and non-
uniform distribution of terms (as well as annotations) over
the ontology are likely to impact confidence scores of several
PPIs with each update.

A GO term is more closely related to its ancestors and
descendants as the ontology is hierarchically organized. The
major part of contribution towards specificity of a term is
accumulated through the properties of its ancestors and
descendants. Therefore for quantifying specificity of a term
in an ontology like GO (which is very large, complex,
continuously evolving and not uniformly distributed), it is
safe to consider the properties of the subgraph consisting of
the term itself along with its ancestors and descendants only
instead of considering the whole ontology, to minimize the
impact of continuous evolution.

Our main hypothesis is that the explicit encoding of
the aforementioned unexplored subgraph-based specificity
notions into a new family of SSMs could be useful for
scoring confidence of PPIs.

1.2 Definition of the Problem and Contribution

The main problem of the current study is to define the
specificity of a GO term, based on the properties of the
subgraph consisting of the term itself along with its ances-
tors and descendants only, that could be useful for scoring
confidence of PPIs.

With the aforementioned unexplored notion of speci-
ficity, we introduce three simple yet effective specificity
measures: Relative Depth Specificity (RDS), Relative Node-
based Specificity (RNS), and Relative Edge-based Specificity
(RES). This new set of specificity measures led to a new
family of SSMs.

We compare the performance of the new SSMs with
six state-of-the-art SSMs proposed by Resnik [17], Lin [18],
Schlicker et al. [19], Jiang & Conrath [20], Wang et al. [21],
and Jain & Bader [22], referred to as Resnik, Lin, Rel, Jiang,
Wang, and TCSS, respectively, in the rest of the paper. Resnik
and TCSS have been considered to be the best SSMs for
scoring confidence of PPIs by several studies such as Guo
et al. [23], Xu et al. [24], Jain & Bader [22], and Pesquita
[25]. We use four different benchmarks to evaluate the
new SSMs. The four benchmarks are: 1) correlation with
reference dataset from HIPPIE database [26], 2) ROC curve
analysis with DIP database [27], 3) set-discriminating power
of KEGG pathways [28], and 4) correlation with protein fam-
ily (Pfam) using CESSM dataset [29]. The first benchmark is
for human PPIs only as HIPPIE is an integrated database
of human PPIs and the rest of the three benchmarks are
applied to both yeast (S. cerevisiae) and human (H. sapiens)
PPIs.

The rest of the paper is organized in the following
manner. A brief survey of the literature is presented in
section 2. The new family of SSMs is explained in section
3. Section 4 describes the experimental design, evaluation
metrics, datasets used, implementation and results. In sec-
tion 5, results are analyzed and discussed. Finally, section 6
introduces the conclusions and future work.

2 RELATED WORK

This section introduces a brief review of the literature on PPI
confidence scoring methods and GO-based SSMs. For an in-
depth review of the family of GO-based SSMs, we refer the
reader to the surveys by Pesquita et al. [3], Harispe et al. [30],
Mazandu et al. [31], and Pesquita et al. [25].

2.1 PPI Confidence Scoring Methods

Computational approaches for scoring confidence of PPIs
mainly differ in the selection of information used in the pre-
diction model. The common sources of this information are
three-dimensional protein structures [32], protein sequences
[33], gene expression profiles [34], phylogenetic trees [35],
[36], phylogenetic profiles [37], GO [7], [8], [9], [10], [11],
[12] etc. Some approaches utilize topology of interaction
network from already existing true PPIs [38], [39], [40].
Text mining on peer-reviewed literature is also used for
scoring confidence of PPIs [41]. A few approaches utilize
multiple sources of information [42], [43]. However, GO is
a very comprehensive resource for the properties of gene
products and their functional relationships across species. It
provides a promising way to infer functional information of
gene products. The idea of semantic similarity is a common
way to utilize GO for scoring confidence of PPIs. Semantic
similarity between two proteins (see section 2.3 ) involved in
a PPI may be treated as a confidence score of the interaction.
The current study is primarily focused on the SSMs by
exploiting GO for scoring confidence of PPIs.

2.2 GO-based SSMs

Ontology-based SSMs were originally introduced in the
fields of cognitive sciences by Tversky [44] and Natural
Language Processing (NLP) and Information Retrieval (IR)
by Rada et al. [45]. Since then a plethora of semantic simi-
larity measures based on WordNet (a large lexical database
of English) were developed such as the pioneering works
introduced by Resnik [17], Jiang & Conrath [20] and Lin
[18]. However, the first pioneering work was introduced by
Lord et al. [46], [47] in the field of biology and this work
has started the research on the development of GO-based
SSMs and their applications in genomics such as [19], [21],
[22], [48], [49], [50]. Here, we provide a brief overview of
different SSMs.

Existing SSMs are classified broadly into two categories:
edge- and node-based [3]. Edge-based measures are the natural
and direct way of defining SSMs. Rada et al. [45] introduced
a SSM of this kind in a lexical taxonomy, which was then
applied in GO by Nagar and Al-Mubaid [48]. Subsequently,
several edge-based SSMs have been developed and used in
GO [51], [52], [53], [54]. In the edge-based approach, shared
paths between two terms are primarily considered to com-
pute the similarity between them. It assumes that terms at
the same level have similar specificity and edges at the same
level represent same semantic distances between two terms
[3], which are seldom true in GO. Furthermore, an edge-
based approach does not account annotation information of
terms and entirely relies on the topological structure of the
GO DAG. Hence edge-based methods are more sensitive to
the intrinsic structure of the GO DAG.
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The most commonly used SSMs are node-based that
compute the similarity between two terms by comparing
their properties, common ancestors, or their descendants. As
mentioned earlier, majority of the node-based approaches
use the notion of information content (IC) to define the
specificity of a term. The IC of a term t is defined as

IC (t) = −ln p(t) (1)

where p(t) is the probability or frequency of occurrence
of t. Usually, the descendants of t are also considered for
computing IC (t). The probability of occurrence, p(t) of term
t in GO is defined as:

p(t) =
|{t} ∪Des(t)|

N
(2)

where Des(t) is the set of descendants of t and N is the
number of terms in the ontology. Since gene products are
annotated to terms in GO, p(t) is estimated as the frequency
of annotations of t, i.e.,

p(t) =
|Ant({t} ∪Des(t))|

M
(3)

where Ant(T ) is the set of annotations to the set of terms
T and M is the total number of annotations in the GO.
In words, it is the ratio of the number of annotations to
t and its descendants to the total number of annotations.
The aforementioned two definitions are commonly known
as an intrinsic and extrinsic way of defining the probability
function p(t), respectively.

The most commonly used node-based SSMs are Resnik
[17], Lin [18], and Jiang & Conrath [20], which were initially
developed for WordNet and subsequently applied to GO
by Lord et al. [46], [47]. Thereafter, a number of node-based
SSMs have been proposed in order to improve the existing
SSMs in different perspectives and applications [19], [55],
[56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66]. The
major drawbacks of IC based SSMs are already pointed out
in section 1.1. SSMs such as [21], [50], [67], [68] combine
both node- and edge-based approaches and are commonly
referred to as hybrid approaches. Recently, some complex
structural-based SSMs are also developed [22], [69], [70].

2.3 SSM between Two Sets of Terms

A gene product may be annotated with more than one term
in the same GO. Suppose, p1 and p2 are two gene products
annotated to the set of terms S and T , respectively. The
similarity between p1 and p2 are calculated as the similarity
between two sets S and T , i.e., SSM (p1, p2) = SSM (S, T ).
Therefore we need to combine GO terms of S and T .
Generally, the following three types of strategies used in
the literature:

Maximum (MAX) - In MAX strategy [71], similarity
between S and T is calculated as the maximum of the set
S × T .

SSMMAX (S, T ) = max
s∈S,t∈T

SSM (s, t) (4)

Average (Avg) - In ‘average’ strategy [46], [47], similarity
between S and T is calculated as the average of the set S×T .

SSM avg(S, T ) =

∑
s∈S,t∈T SSM (s, t)

m× n
(5)

where m = |S| and n = |T |.
Best-match average (BMA) - SSMs between two sets of

terms form a matrix. BMA [19], [72], [73] is defined as the
average of all maximum SSMs on each row and column of
the matrix.

SSMBMA(S, T ) =

∑m
i=1 max1≤j≤n SSM (si,tj)+

∑n
j=1 max1≤i≤m SSM (si,tj)

m+n

(6)

where si ∈ S and tj ∈ T .

2.4 SSMs used in Evaluation
Resnik - Resnik considers IC of the most informative common
ancestor (MICA) only [17]. The similarity between two terms
s and t in Resnik is defined as

SSMResnik (s, t) = max
c∈C

IC (c) = IC (MICA(s, t)) (7)

where C is the set of common ancestors of s and t, and IC
is the information content defined earlier. It is the IC of the
closest common ancestor or lowest common ancestor (LCA) of
s and t.

Lin and Jiang - Although Resnik is very effective for
computing information shared by two terms, it cannot dis-
tinguish between pairs of terms having the same MICA.
To overcome the problem, Lin and Jiang are developed by
considering ICs of both the terms along with their MICAs in
different ways [18], [20]. The similarity between two terms
is calculated by these two methods as

SSM Lin(s, t) =
2× IC (MICA(s, t))

IC (s) + IC (t)
, (8)

SSM Jiang(s, t) = 1− [IC (s)+ IC (t)−2× IC (MICA(s, t))].
(9)

Rel - Lin and Jiang overestimate when one term is
an ancestor of another. For example, when both the terms
are same, the similarity score will be 1, irrespective of
its specificity. Rel combines Resnik and Lin in order to
capture relevance information by multiplying one minus the
extrinsic probability of MICA to SSM Lin [19]. As per Rel, the
similarity between two terms is calculated as

SSMRel(s, t) =
2× IC (MICA(s, t))(1− p(MICA(s, t)))

IC (s) + IC (t)
.

(10)
Wang - Wang is a hybrid measure that combines both

edge- and node-based approaches [21]. Let Gt = (Vt, Et) be
a DAG for a term t in GO such that Vt is the set of ancestors
of t including t itself and Et is the set of edges connecting
terms in Gt. Terms closer to term t in Gt contribute more
of its semantics to the semantics of term t. The semantic
contribution of a term c to the semantics of term t in Gt is
denoted as S-value of c or SGt

(c) and defined as:{
SGt(t) = 1

SGt(c) = max{we × SGt(c
′) : c′ ∈ children of c} if c 6= t

(11)
where we (0 < we < 1) is semantic contribution factor for
edge e ∈ Et from term c′ to term c. For example, semantic
contribution factors (we) of is a and part of relationships
may be treated as 0.8 and 0.6, respectively. To compare
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semantics of two terms, a semantic value SV (t) is computed
as the aggregate contribution of the semantics of all the
terms in Gt to term t and defined as:

SV (t) =
∑
c∈Vt

SGt(c). (12)

Now, SSM between two terms s and t with respect to their
DAGs Gs = (Vs, Es) and Gt = (Vt, Et) is defined as:

SSMWang(s, t) =

∑
c∈Vs∩Vt

(SGs
(c) + SGt

(c))

SV (s) + SV (t)
. (13)

The numerator is the summation of S-values of common
terms between the two DAGs. S-values of common terms
between the two DAGs may not be same as the locations of
s and t may differ in GO.

TCSS - TCSS exploits the unequal depth of biological
knowledge representation in different branches of GO DAG
[22]. The objective of TCSS is to identify subsets of similar
GO terms (e.g., terms related to nucleus and terms related
to mitochondrion belong two different subsets) and score
PPIs higher if participating proteins belong to the same
subset compared to PPIs whose participating proteins be-
long to different subsets. The authors have introduced a
structural-based IC, referred to as topological information
content (ICT), to identify sub-graph root terms during pre-
processing stage.

ICT (t) = −ln
( |Child(t)|

N

)
(14)

where Child(t) is the set of children of t and N is the
number of terms in the ontology.

3 THE NEW GO-BASED SSMS

In this section, we introduce the new family of SSMs based
on the proposed set of specificity measures. To define speci-
ficity of a GO term we consider the properties of the sub-
graph consisting of the term itself along with its ancestors
and descendants only and ignore the rest of the ontology.
The new specificity models quantify how specific a term in
ontology is. The specificity of a parent (term) always will be
less than any of its children. RDS considers a specific path of
the aforementioned subgraph, while RNS and RES consider
the whole subgraph. However, RNS relies on the properties
of the nodes only, whereas RES considers the edges of the
subgraph as well.

3.1 Relative Depth Specificity (RDS)
Let dt,r and dl,t,r are length of the longest path from term
t to the root r and length of the longest path from any leaf
l to the root r via the term t, respectively. Then, RDS of a
term t in GO is defined as

RDS (t) =
dt,r
dl,t,r

=
dt,r

dl,t + dt,r
. (15)

In words, RDS (t) is the ratio between the length of the
longest path from the term t to the root and the length of
the longest path from any leaf to the root via the term t. This
is the simplest SSM that does not consider annotation infor-
mation. The specificity of the leaves and the root would be
highest (1) and lowest (0), respectively. When multiple paths
are present between two terms, we consider the longest one
as it is likely to be more informative than others.

3.2 Relative Node-based Specificity (RNS)

Let G1(V1, E1) be the subgraph consisting of the term t itself
along with its ancestors; and G2(V2, E2) be the subgraph
consisting of the term t itself along with its ancestors and
descendants. The RNS of a term t in GO is defined as

RNS (t) =
|Ant(V1)|+ |V1|
|Ant(V2)|+ |V2|

(16)

where Ant(T ) be the set of annotations to the set of terms T
as mentioned earlier. In words, it is the ratio of the sum of
nodes along with its annotations of the subgraph consisting
of the term t and its ancestors to the sum of nodes along with
its annotations of the subgraph consisting of t, its ancestors
and descendants. Thus, RNS of the leaves and the root
would be highest (1), and lowest (close to 0), respectively.

3.3 Relative Edge-based Specificity (RES)

We define the weight of an edge e(t1, t2) between terms t1
and t2 in GO as:

w(e) = |Ant({t1})|+ |Ant({t2})|. (17)

It is the summation of the number of annotations of terms
t1 and t2. The weight of a set of edges E is defined as:

W (E) =
∑

w(ei) : ei ∈ E. (18)

It is the summation of weights of all edges in the set of
edges E. Let G1(V1, E1) be the subgraph consisting of the
term t itself along with its ancestors and G2(V2, E2) be
the subgraph consisting of the term t itself along with its
ancestors and descendants as in RNS. The Relative Edge-
based Specificity of a term t in GO is defined as

RES (t) =
W (E1) + |E1|
W (E2) + |E2|

. (19)

In words, it is the ratio of the summation of weighted and
unweighted edges of the subgraph consisting of the term t
itself along with its ancestors to the summation of weighted
and unweighted edges of the subgraph consisting of t itself
along with its ancestors and descendants. Thus, specificity
of the leaves and the root would be highest (1), and lowest
(0), respectively.

The similarities between the two terms s and t are
calculated as:

SSMRDS (s, t) = max
c∈C

RDS (c) = RDS (MICA(s, t)), (20)

SSMRNS (s, t) = max
c∈C

RNS (c) = RNS (MICA(s, t)), (21)

SSMRES (s, t) = max
c∈C

RES (c) = RES (MICA(s, t)) (22)

where C is the set of common ancestors of s and t as
mentioned earlier.

We have chosen the MICA to define the shared speci-
ficity between the two terms similar to Resnik. It is note-
worthy to mention that the proposed specificity models are
different from IC models as they do not rely on probability
functions. Therefore we cannot directly apply the new speci-
ficity models to other IC-based similarity measures such as
Lin, Rel, and Jiang.
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4 EVALUATION

In this section, we detail the experimental design, evalua-
tion metrics, datasets used, implementation and results. As
already mentioned, six state-of-the-art SSMs are chosen as
baseline methods and four benchmarks are considered for
evaluation of the new SSMs.

4.1 Experimental Setup

Our experimental design for evaluation is based on the
following two assumptions. First, two proteins involved in
the same biological process(es) are more likely to interact
than proteins involved in different processes [5, p.953] and
[22]. Second, two proteins need to come in close proximity
(at least transiently) for interaction, hence co-localization
also provides evidence of interaction [74, p. 689] and [22].
However, if two proteins interact physically, there is no
guarantee that they share the same molecular function [75,
p. 27]. The ‘average’ strategy underestimates when two gene
products share many similar terms as it considers all possi-
ble term pairs of the two gene products [76]. By contrast,
the MAX strategy overestimates when two gene products
share few similar terms as it is indifferent to the number of
dissimilar terms between the gene products [76]. The BMA
strategy, which considers both similar and dissimilar terms
[76], does not suffer from the aforementioned limitations.
Further, in PPIs, proteins need to be in close proximity (share
similar CC terms) and participate in the same biological
process (share similar BP terms) once, among all possible
combinations, to become biologically relevant [22]. Hence
MAX and BMA are considered better strategies than the
‘average’ for scoring confidence of PPIs. In light of the
above discussion, we use BP and CC ontologies of GO along
with MAX and BMA strategies for performance evaluation.
We exclude electronically inferred annotations (IEA) of GO
terms which lack manual curation. We consider only those
protein pairs which are having both the proteins annotated
with at least one GO term other than the root in their
respective ontologies.

As mentioned earlier, the new SSMs are evaluated on
the four benchmarks: 1) correlation with reference dataset
from HIPPIE database, 2) ROC curve analysis in predicting
true PPIs from DIP database, 3) set-discriminating power of
KEGG pathways, and 4) correlation with Pfam on CESSM
dataset. Evaluation is done using both yeast (S. cerevisiae)
and human PPIs except for the first benchmark, as it con-
tains only human PPIs. We use Entrez and ORF gene ids for
human and yeast, respectively, except while comparing with
TCSS where UniProtKB and SGD gene ids were used for
human and yeast, respectively. We have not performed the
comparison with TCSS on the second and third benchmarks
(for human) as some UniProtKB ids (after mapping from
Entrez ids) were not found in the annotation.

4.2 Evaluation Metrics and Baselines

This section introduces how and why each benchmark is
used for evaluation. A brief outline and formulation of each
metrics used are presented here.

4.2.1 Correlation with Reference Dataset from HIPPIE
Database

The HIPPIE database [26] integrates most of the publicly
available PPI databases like BioGRID [77], DIP [78], HPRDS
[79], IntAct [80], MINT [81], BIND [82], MIPS [83]. It also
includes interactions from several manually selected stud-
ies. The HIPPIE score of a PPI is defined by considering
the following parameters: the number of studies where the
PPI was detected, the number and quality of the experi-
mental techniques used to detect the PPI, and the number
of non-human organisms where the PPI was reproduced.
The authors of HIPPIE showed that their scoring scheme of
interactions correlates with the quality of the experimental
characterization. We use a reference dataset from HIPPIE
database to evaluate different SSMs. Pearson correlation is
calculated between the HIPPIE score and PPI confidence
score obtained using an SSM.

4.2.2 ROC Curve Analysis

Similarity measures can be treated as binary classifiers to
classify a given PPI as positive or negative with a reasonable
cutoff similarity score. PPIs having similarity score greater
than the cutoff are treated as positive. Receiver operating
characteristic (ROC) curve analysis is used to evaluate the
performance of a binary classifier. ROC curve is a graph
plotting of true positive rate (TPR or sensitivity) against
false positive rate (FPR or 1-specificity) by varying discrim-
ination threshold or cutoff. The area under the ROC curve
(AUC) is the measure of discrimination, i.e., the ability of
the classifier to classify correctly. An AUC of 1 represents
perfect classifier. We utilize the core subsets of yeast and
human PPIs from the DIP database [27] to evaluate different
SSMs for AUCs.

4.2.3 Set-discriminating Power of KEGG Pathways

A biological pathway is a sequence of biochemical steps
to accomplish a specific biological process within a cell.
Therefore proteins involved in a pathway are more likely
to interact among themselves than the proteins belonging to
different pathways. Proteins within a pathway are likely to
be annotated with the same or similar terms in GO too and
should show high similarity scores. We consider three sets
of selected KEGG pathways [28] to evaluate different SSMs
for their discriminating power as discussed in the following
paragraph.

For each KEGG pathway, an intra-set average similarity
is calculated as the average of all pairwise similarities of
proteins within the pathway. An inter-set average similarity
for every two pathways is also calculated as the average of
all pairwise SSMs of proteins between the two pathways.
During calculation of inter-set average similarity, we do not
consider those pairs whose both the proteins are same.
A discriminating power (DP) of a pathway is defined in
[84] as the ratio between intra-set average similarity and the
average of all inter-set average similarities between the chosen
pathway and rest other pathways. Let P = {P1, P2, ..., Pn}
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be the set of KEGG pathways, each pathway Pk contains mk

number of proteins and pki denotes ith protein in Pk.

Intra set avg sim(Pk) =

∑mk

i=1

∑mk

j=1 SSM (pki , pkj )

m2
k

.

(23)

Inter set avg sim(Pk, Pl) =

∑mk

i=1

∑ml

j=1 SSM (pki , plj )

mk ×ml
.

(24)
DP(Pk) = Intra-set average similarity of Pk/

Avg. of all inter-set average similarities between Pk

and other pathways

=
(n− 1)× Intra set avg sim(Pk)∑n
i=1,i6=k Inter set avg sim(Pk, Pi)

. (25)

4.2.4 Correlation with Protein Family (Pfam)
A protein family (Pfam) is a group of proteins that are evo-
lutionarily related, i.e., they share a common evolutionary
ancestor. Proteins belonging to a family often show func-
tional similarity. The Jaccard index is used to calculate Pfam
similarity. The Jaccard index of two proteins is calculated
as the ratio of the number of protein families they share
to the total number of protein families they belong. We
utilize dataset of protein pairs used in CESSM [29]. For each
pair, Pfam similarity (Jaccard index) and similarity scores
of different SSMs are calculated and finally, the Pearson
correlation between the two scores is obtained.

4.3 Datasets
In this section, we describe the sources of different datasets
used in the evaluation and the corresponding preprocessing
steps. A summary of the datasets used is presented in Table
1.

4.3.1 Reference Dataset from HIPPIE Database
We download Human Integrated Protein-Protein Interac-
tion rEference (HIPPIE) dataset on 09.01.2015 [26]. We ex-
tract one reference dataset from HIPPIE consisting of PPIs
detected by four top-scored experimental techniques: far-
Western blotting, isothermal titration calorimetry, nuclear
magnetic resonance, and surface plasmon resonance exper-
iments as in [85]. The interaction detected by any of the
chosen four experimental techniques have a high probability
of being an actual interaction [85]. The number of PPIs
present in the reference datasets is shown in Table 1.

4.3.2 Datasets for ROC Curve Analysis
We download the core subsets of PPIs from the Database of
Interacting Proteins (DIP) [27] for S.cerevisiae and H.sapiens
on 29.10.2015. DIP is a database of experimentally detected
PPIs from various sources. We assume that these inter-
actions are real and treat them as positive instances of
interactions. DIP uses UniProt Ids for proteins. We map
UniProt Ids into Entrez and ORF gene Ids for human and
yeast, respectively. Table 1 shows the number of PPIs of DIP
dataset used in this study. As done in [22], an equal number
of negative PPI datasets are independently generated by
randomly choosing protein pairs annotated in BP and CC,
and are not present in the iRefWeb database [86] (version
date: 27.11.2015), a combined database of all known PPIs.

TABLE 1
Summary of Datasets used in Evaluation

Benchmark Species Ontology Number of PPIs or
datasets protein pairs or

length of pathways
HIPPIE Human BP 1748

CC 1757
DIP Yeast BP 4962

CC 4992
Human BP 4279

CC 4283
Pfam Yeast BP 366

CC 351
Human BP 1212

CC 1211
KEGG Yeast Set-1 - 11 - 14

Yeast Set-2 Specified in Table 2
Human - 11 - 16

4.3.3 KEGG Pathways

We extract two sets of KEGG pathways [28] of each
of the two organisms, S.cerevisiae and H.sapiens, using
org.Sc.sgd.db and org.Hs.eg.db packages with R 3.1.2 ver-
sion. The first set contains a number of genes between 11 to
14 and the second set 11 to 16. We choose the above ranges
so that each set contains the same (11) number of pathways
and takes a reasonable time to compute. The two sets have
three common pathways: Terpenoid backbone biosynthesis
(sec00900 and hsa00900), Riboflavin metabolism (sec00740
and hsa00740), and Pantothenate and CoA biosynthesis
(sec00770 and hsa00770). However, each of them is from dif-
ferent organisms and may not show similar results. Another
set of 11 yeast KEGG pathways (Table 2) with more diverse
functionality is also considered to get a broader insight into
the inter-set discriminating power.

4.3.4 CESSM Dataset for Correlation with Pfam

The Collaborative Evaluation of GO-based Semantic Simi-
larity Measures (CESSM) is an online tool for evaluation of
GO-based SSMs against sequence, Pfam and EC similarities
[29]. Since CESSM has been published around ten years
ago, it uses ten years old dataset (August 2008 GO and
GOA-UniProt). In the meanwhile, GO DAG, its annotation,
as well as Pfam have substantially changed. Moreover, we
use GO.db (version:3.1.2) and org.Hs.eg.db (version:3.1.2)
R packages that utilize March 2015 GO and annotations,
respectively, in the evaluation. Hence we could not use
CESSM automated tool. However, we utilize the dataset
of protein pairs used in CESSM to find correlation against
Pfam similarity only, since GO captures the functional as-
pect of gene or gene products primarily. All pairs of proteins
are mapped into Entrez and ORF gene Ids for human
and yeast, respectively. The dataset involves 13,430 protein
pairs of 1,039 proteins from various species. The authors
of CESSM reported that both proteins of each pair are
manually annotated to at least one term within all the three
GOs with a uniform IC of at least 0.5 and have at least one
EC class and one Pfam class. The number of protein pairs
used for this evaluation is shown in Table 1.
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TABLE 2
List of 11 Yeast Pathways with More Diverse Functionality used in the Study.

Category Subcategory Pathway Id Pathway Name No. of Genes
Metabolism Carbohydrate metabolism sce00040 Pentose and glucuronate 10

interconversions
Energy metabolism sec00920 Sulfur metabolism 15
Lipid metabolism sec00565 Ether lipid metabolism 5
Amino acid metabolism sec00360 Phenylalanine metabolism 9
Glycan biosynthesis sec00514 Other types of 13
and metabolism O-glycan biosynthesis
Metabolism of cofactors sec00750 Vitamin B6 metabolism 11
and vitamins
Metabolism of terpenoids sec00900 Terpenoid backbone 13
and polyketides biosynthesis
Metabolism of sec00410 beta-Alanine metabolism 8
other amino acids

Genetic Information Folding, sorting sec04122 Sulfur relay system 8
Processing and degradation

Replication and repair sec03450 Non-homologous 10
end-joining

Environmental Signal transduction sec04070 Phosphatidylinositol 15
Information Processing signaling system

4.4 Implementation
The new SSMs are implemented in the R programming
language [87]. We use GOSemSim R package (version:
1.26.0) [88] for implementations of Resnik, Lin, Rel, Jiang,
and Wang SSMs. For GO and corresponding annotations,
we use GO.db, org.Sc.sgd.db (for yeast), and org.Hs.eg.db
(for human) R packages (version:3.1.2, March, 2015 re-
lease) [89], [90], [91]. We maintain versions of all R pack-
ages so that they use same GO and corresponding anno-
tations. For TCSS, we use the implementation provided
by the authors with the default set of parameters. The
original implementation of TCSS uses MAX strategy only.
Therefore we modify it to include BMA strategy as well.
The implementation of TCSS needs the ontology and an-
notation as text files provided by Gene Ontology Con-
sortium. Therefore we use the released version of GO
(gene ontology.obo) dated Mar 13, 2015. The same released
version of GO is used in above R packages (version: 3.1.2)
and annotation for yeast (gene association.sgd) and human
(gene association.goa human) released on Mar 17, 2015. We
use ROC and ROCR R packages [92], [93] to plot the ROC
curve and to calculate the area under ROC curves (AUC).

4.5 Results
Performance, in terms of Pearson correlation, of different
SSMs with respect to the reference dataset from HIPPIE are
shown in Table 3 (See Supplementary Material for barplots).
The best correlations are shown in bold.

AUC obtained by different SSMs are tabulated in Table 4.
The corresponding ROC curves are provided in the Supple-
mentary Material. The best ROC scores are shown in bold.

As discussed earlier, the discriminating power quantifies
the ability of an SSM to distinguish among various function-
ally different sets of proteins (e.g., KEGG pathways). Fig
1 and 2 demonstrate the discriminating power of different
SSMs with BMA strategy against KEGG pathways in BP
and CC ontology, respectively. Instead of pathway names,
KEGG pathway identifiers are shown along the x-axis. The
discriminating power for the selected yeast KEGG pathways
(listed in Table 2) with more diverse functionality is shown

in Fig 3. The results with MAX strategy are quite similar and
kept in the Supplementary Material. The data tables are also
provided in the Supplementary Material.

Finally, Table 5 demonstrates the performance of dif-
ferent SSMs on Pfam (See Supplementary Material for
barplots). The best scores are shown in bold.

5 DISCUSSION

This section analyzes and discusses the results presented in
section 4.5. We have highlighted the key observations.

5.1 Correlation with Reference Dataset from HIPPIE
Database

RDS achieves the highest correlation in BP, while TCSS
shows the maximum correlation in CC. It may be noted that
RDS is the simplest SSM among the proposed measures and
does not even consider annotation information. Neverthe-
less, it shows good correlation. RNS and RES also perform
quite well in BP, while Resnik shows good performance in
both BP and CC.

All SSMs show greater correlations in BP. The average
correlation over all SSMs in BP is 0.311/0.259 (MAX/BMA),
whereas in CC it is 0.137/0.192 (MAX/BMA). However, all
measures show less overall correlation since correlation is
computed for positive PPIs only.

5.2 ROC Curve Analysis

RNS and RES, with both MAX and BMA strategies,
effectively classify true PPIs from false in both BP and
CC. Resnik-MAX and Rel-MAX too perform well compared
to others, while RDS shows competitive performance. Al-
though we could not compare TCSS for human, it performs
well with MAX strategy in yeast. All SSMs with MAX
strategy have quite similar AUCs in BP for both yeast
and human. However, with BMA strategy, AUCs achieved
by RES (yeast:0.893, human:0.898) and RNS (yeast:0.890,
human:0.903) are significantly higher than others. Further,
RES and RNS exhibit greater consistency, since they show
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TABLE 3
Pearson Correlation with Reference Dataset from HIPPIE Database

Ontology Strategy RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
BP MAX 0.358 0.313 0.346 0.342 0.329 0.277 0.277 0.272 0.286

BMA 0.342 0.332 0.310 0.270 0.238 0.220 0.218 0.211 0.193
CC MAX 0.204 0.130 0.129 0.232 0.231 0.064 0.100 0.064 0.082

BMA 0.254 0.227 0.198 0.232 0.230 0.148 0.164 0.118 0.158

TABLE 4
The area under ROC curves of different SSMs

Species Ontology Strategy RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
Yeast BP MAX 0.896 0.908 0.903 0.907 0.908 0.912 0.914 0.910 0.895

BMA 0.868 0.890 0.893 0.861 0.879 0.881 0.883 0.874 0.860
CC MAX 0.856 0.868 0.850 0.866 0.870 0.804 0.868 0.771 0.799

BMA 0.826 0.848 0.843 0.831 0.850 0.805 0.838 0.709 0.783
Human BP MAX 0.907 0.914 0.904 - 0.908 0.900 0.913 0.887 0.895

BMA 0.892 0.903 0.898 - 0.872 0.865 0.869 0.817 0.867
CC MAX 0.848 0.847 0.857 - 0.852 0.794 0.858 0.795 0.800

BMA 0.824 0.849 0.850 - 0.814 0.773 0.791 0.708 0.791
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Fig. 1. Inter-set discriminating power of different SSMs with BMA strategy in BP ontology. The y-axis is splitted to accommodate high DP
value.
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Fig. 2. Inter-set discriminating power of different SSMs with BMA strategy in CC ontology.
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Fig. 3. Inter-set discriminating power of different SSMs with BMA strategy for the selected 11 yeast KEGG pathways with more diverse
functionality.

TABLE 5
Correlation with Protein Family (Pfam) on CESSM dataset

Species Ontology Strategy RDS RNS RES TCSS Resnik Lin Rel Jiang Wang
Yeast BP MAX 0.280 0.324 0.283 0.290 0.304 0.308 0.314 0.268 0.302

BMA 0.306 0.347 0.310 0.279 0.307 0.296 0.299 0.272 0.264
CC MAX 0.240 0.202 0.252 0.259 0.243 0.156 0.183 0.123 0.139

BMA 0.218 0.204 0.233 0.204 0.225 0.226 0.225 0.205 0.201
Human BP MAX 0.158 0.157 0.160 0.258 0.300 0.152 0.156 0.143 0.156

BMA 0.231 0.290 0.308 0.347 0.302 0.263 0.262 0.258 0.293
CC MAX 0.308 0.233 0.390 0.314 0.307 0.193 0.223 0.159 0.198

BMA 0.356 0.383 0.471 0.437 0.347 0.349 0.365 0.269 0.349

less difference between MAX and BMA strategies in both
BP and CC (for both yeast and human).

All SSMs show higher AUCs in BP. The average AUCs
in BP are 0.906/0.877 (yeast:MAX/BMA) and 0.904/0.873
(human:MAX/BMA), whereas in CC these are 0.839/0.815
(yeast:MAX/BMA) and 0.831/0.800 (human:MAX/BMA).

5.3 Set-discriminating Power of KEGG Pathways
The discriminating power of RES is significantly higher
than other SSMs for all the 11 human KEGG pathways.
RES produces DP value greater than or equal to 1.81/1.99
(MAX/BMA) in BP, while the next minimum DP value is
1.17 (produced by RDS - MAX).

RES shows maximum functional discrimination
among the pathways. RES produces very high DP value
with 11.10/14.92 (MAX/BMA) for Non-homologous end-
joining (hsa03450) pathway. This is the only pathway that
belongs to the Genetic Information Processing category, while
rest fall in the same Metabolism category. So, the functional
characteristic of Non-homologous end-joining pathway is com-
pletely different from the rest. RES nicely captures this
functional discrimination by producing very high DP value.

All SSMs produce greater DP values in BP. Although
RES almost consistently produces higher DP values in both
BP and CC (with both MAX and BMA), it shows compara-
tively lower DP values in CC.

Overall discriminating power of all the SSMs are quite
similar and not so good for the first set of yeast KEGG

pathways. If we examine the functional categories of all the
11 pathways, we find that all belong to the same Metabolism
category with six pathways from two subcategories only.
Further, the selected first set of yeast pathways contain
merely 134 genes with 16 are shared. In contrast, the selected
human pathways include 150 genes with 11 are common
only. Hence the selected first set of yeast pathways are
functionally closer to each other and this fact is reflected
by low DP values.

To study further, we consider another set of 11 yeast
pathways with more diverse functionality, where three path-
ways (sec00514, sec00750, and sec00900) were taken from
the previous set. The pathways are listed in Table 2 and
corresponding discriminating power for BMA strategy is
shown in Fig 3 (See Supplementary Material for data table).

The discriminating power of all the SSMs is im-
proved significantly for the pathways with more diverse
functionality. In particular, DP values of RES and Jiang
are higher than other measures for almost all the path-
ways. RES and Jiang produce DP value greater than or
equal to 2/1.93 (MAX/BMA) and 1.84/2.07 (MAX/BMA),
respectively, in BP, while the next minimum DP value is
1.73 (produced by TCSS - BMA). The maximum DP value
(MAX/BMA:13.75/14.27 in BP) is again produced by RES
for the pathway sec03450 (Non-homologous end-joining).

RES can be used for functional clustering. It may be
noted that although Jiang produces competitive DP values
with RES for yeast pathways, it is unable to show good DP
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values for the human pathways. Therefore RES might be
used for functional clustering (e.g., to characterize protein
functional modules) as it shows consistently high discrimi-
nating power.

No SSM produces consistently good DP values in
CC, particularly for the yeast pathways. Guo et al. [23] ob-
served that all pairs of proteins involved in the same KEGG
pathway have significantly higher similarity scores than
randomly selected in BP, whereas similarity decreases ex-
ponentially as the distance between two proteins increases
within the same pathway in CC and MF. These findings
conform with current results as well.

5.4 Correlation with Pfam

Overall performances of TCSS, RES, and Resnik are well.
Particularly, TCSS - MAX, RES - BMA, and Resnik - MAX
perform well. Although RES does not show good correlation
with MAX strategy in human, it produces a good correlation
with BMA strategy. MAX strategy could overestimate while
computing the general measure of functional similarity [22]
and protein family captures a general aspect of protein
function. Thus, BMA might be a better choice than MAX
for Pfam similarity.

Further, it may be noted that correlation in CC is higher
than BP in human for all measures which are quite unex-
pected. Therefore it might be challenging to draw compara-
tive inference for the benchmark like Pfam that adopt a very
general aspect of protein function with Jaccard index.

6 CONCLUSIONS AND FUTURE WORK

The paper presents a new family of SSMs for scoring confi-
dence of PPIs utilizing GO. This new family of SSMs is based
on a new set of specificity measures namely, RDS, RNS and
RES. Specificity of a term is redefined by considering the
properties of its ancestors and descendants only along with
its own properties so that maximum unwanted noises could
be avoided. The evaluation shows that instead of simplicity,
they are quite effective. Particularly, RNS and RES more
effectively distinguish true interactions from false. RES can
be useful for protein functional clustering as well since it
shows a robust set-discriminating power over KEGG path-
ways. It also exhibits greater consistency and shows the best
performance in BP with BMA strategy. Similar to the earlier
studies, our evaluation also shows Resnik is one of the
best SSMs for scoring confidence of PPIs. TCSS with MAX
strategy and Rel also show competitive performance. Al-
though RDS is the simplest SSM that does not even consider
annotation information, it shows competitive performance
as well. For almost all the four benchmarks, each SSM shows
comparatively greater and consistent performances in BP.
Therefore we believe that BP is more suitable than CC for
scoring confidence of PPIs.

Although the newly developed SSMs are evaluated only
on GO for scoring confidence of PPIs, it is not limited to
any particular ontology. Therefore it would be worthy to
evaluate how these SSMs perform on other ontologies and
applications as future work.

AVAILABILTY OF DATA AND SCRIPT

An R script for the new SSMs along with the com-
plete datasets used in the evaluation is freely available at
https://github.com/msp-cse/NaiveSSMs.
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