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Abstract—The inference of disease transmission networks is an important problem in epidemiology. One popular approach for building

transmission networks is to reconstruct a phylogenetic tree using sequences from disease strains sampled from infected hosts and

infer transmissions based on this tree. However, most existing phylogenetic approaches for transmission network inference are highly

computationally intensive and cannot take within-host strain diversity into account. Here, we introduce a new phylogenetic approach for

inferring transmission networks, TNet, that addresses these limitations. TNet uses multiple strain sequences from each sampled host

to infer transmissions and is simpler and more accurate than existing approaches. Furthermore, TNet is highly scalable and able to

distinguish between ambiguous and unambiguous transmission inferences. We evaluated TNet on a large collection of 560 simulated

transmission networks of various sizes and diverse host, sequence, and transmission characteristics, as well as on 10 real transmission

datasets with known transmission histories. Our results show that TNet outperforms two other recently developed methods,

phyloscanner and SharpTNI, that also consider within-host strain diversity. We also applied TNet to a large collection of SARS-CoV-2

genomes sampled from infected individuals in many countries around the world, demonstrating how our inference framework can be

adapted to accurately infer geographical transmission networks. TNet is freely available from https://compbio.engr.uconn.edu/software/

TNet/.

Index Terms—Disease transmission networks, epidemiology, algorithms, HCV, COVID-19, geographical transmission networks
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1 INTRODUCTION

THE accurate inference of disease transmission networks is
fundamental to understanding and containing the spread

of infectious diseases [3], [16], [27]. A key challengewith infer-
ring transmission networks, particularly those of rapidly
evolving RNA and retroviruses [11], is that they exist in the
host as “clouds” of closely related sequences. These variants
are referred to as quasispecies [8], [9], [23], [24], [36], and the
resulting genetic diversity of the strains circulating within a
host has important implications for efficiency of transmission,
disease progression, drug/vaccine resistance, etc. [2], [10],
[14], [19], [26]. The availability of quasispecies, or sequences
from multiple strains per infected host, also has direct rele-
vance for inferring transmission networks and has the poten-
tial to make such inference easier and far more accurate [33],
[37]. Yet,while the advent of next-generation sequencing tech-
nologies has revolutionized the study of quasispecies, most
existing transmission network inference methods are unable
tomake use ofmultiple distinct strain sequences per host.

Existing methods for inferring transmission networks
can be classified into two categories: Those based on con-
structing and analyzing sequence similarity or relatedness
graphs, and those based on constructing and analyzing

phylogenetic trees for the infecting strains. Many methods
based on sequence similarity or relatedness graph analysis
exist and several recently developed methods in this cate-
gory are also able to take into account multiple distinct
strain sequences per host [15], [22], [32]. However, similar-
ity/relatedness based methods can suffer from a lack of res-
olution and are often unable to infer transmission directions
or complete transmission histories. Phylogeny-based meth-
ods [7], [18], [21], [27], [37] attempt to overcome these limita-
tions by constructing and analyzing phylogenies of the
infecting strains. We refer to these strain phylogenies as
transmission phylogenies. These phylogeny-based methods
infer transmission networks by computing a host assign-
ment for each node of the transmission phylogeny, where
this phylogeny is either first constructed independently or
is co-estimated along with the host assignment. Leaves of
the transmission phylogeny are labelled by the host from
which they are sampled, and an ancestral host assignment
is then inferred for each node/edge of the phylogeny. This
ancestral host assignment defines the transmission network,
where a transmission event is inferred along any edge con-
necting two nodes labeled with different hosts. If the phy-
logeny is rooted then the direction of transmission is also
easily inferred. This is illustrated in Fig. 1.

Several sophisticated phylogeny-based methods have
been developed over the last few years. These include
BEASTlier [18], SCOTTI [5], phybreak [21], TransPhylo [7],
phyloscanner [37], Nextstrain/Augur [17], and BadTrIP [4].
Among these, only SCOTTI [5], BadTrIP [4], and phyloscan-
ner [37] can explicitly consider multiple strain sequences
per host. BEASTlier [18] also allows for the presence of
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multiple sequences per host, but requires that all sequences
from the same host be clustered together on the phylogeny,
a precondition that is often violated in practice. Among the
methods that explicitly consider multiple strain sequences
per host, SCOTTI, BadTrIP, and BEASTlier are model-based
and highly computationally intensive, relying on the use of
Markov Chain Monte Carlo (MCMC) algorithms for infer-
ence. These methods also require several difficult-to-esti-
mate epidemiological parameters, such as infection times,
and make several strong assumptions about pathogen evo-
lution and the underlying transmission network. Thus, phy-
loscanner[37] is the only previous method that is able to
take advantage of multiple sequences per host and that is
also computationally efficient, easy to use, and scalable to
large datasets.

In this work, we introduce a new phylogenetic app-
roach, TNet, for inferring transmission networks. TNet
uses multiple strain sequences from each sampled host to
infer transmissions and is simpler and more accurate
than existing approaches. TNet uses an extended version
of the classical Sankoff algorithm [29] from the phyloge-
netics literature for ancestral host assignment, where the
extension makes it possible to efficiently compute support
values for individual transmission edges based on a sam-
pling of optimal host assignments where the number of
back-transmissions (or reinfections by descendant disease
strains) is minimized. TNet is parameter-free and highly
scalable and can be easily applied within seconds to data-
sets with hundreds of strain sequences and hosts. In
recent independent work, Sashittal et al. [30] developed a
new method called SharpTNI that is based on similar
ideas to TNet. SharpTNI is based on an NP-hard problem
formulation that seeks to find parsimonious ancestral
host assignments minimizing the number of co-transmis-
sions [30]. The authors provide an efficient heuristic for
this problem that is based on uniform sampling of parsi-
monious ancestral host assignments (not necessarily mini-
mizing co-transmissions) and subsequently filtering them
to only keep those assignments among the samples that
minimize co-transmissions [30]. Thus, both TNet and
SharpTNI are based on the idea of parsimonious ancestral
host assignments and on aggregating across the diversity
of possible solutions obtained through some kind of
sampling of optimal solutions. The primary distinction

between the two methods is the strategy employed for
sampling of the optimal solutions, with SharpTNI mini-
mizing co-transmissions and TNet minimizing back-
transmissions.

We evaluated TNet, SharpTNI, and phyloscanner on a
large collection of 560 simulated transmission networks of
various sizes and representing a wide range of host,
sequence, and transmission characteristics, as well as on 10
real transmission datasets with known transmission histo-
ries. We found that both TNet and SharpTNI significantly
outperformed phyloscanner under all tested conditions and
all datasets, yielding more accurate transmission networks
for both simulated and real datasets. Between TNet and
SharpTNI, we found that both methods performed similarly
on the real datasets but that TNet clearly showed better
accuracy on the simulated datasets. Furthermore, we show
how our transmission network inference framework can be
adapted to infer disease transmission across geographical
regions, with different countries or geographical regions
acting as “hosts”. To demonstrate the feasibility and evalu-
ate the performance of our framework in this setting, we
applied our method to a large collection of SARS-CoV-2
genomes sampled from infected individuals in many coun-
tries around the world and inferred the international
COVID-19 transmission network. Using available epidemio-
logical ground truth data, we found that the COVID-19
transmission network inferred using our framework was
significantly more accurate than the corresponding network
inferred by the popular Nextstrain tool [17]. SharpTNI
could not be applied to this large COVID-19 dataset due to
lack of scalability (manifested as runtime errors). TNet is
freely available open-source from https://compbio.engr.
uconn.edu/software/TNet/.

A preliminary version of this work appeared in the pro-
ceedings of ISBRA 2020 [6]. The current manuscript substan-
tially expands upon the preliminary version and includes
many additional technical and algorithmic details, several
additional figures/tables to better explain the algorithm and
results, and more detailed analysis of experimental results.
Importantly, we also newly demonstrate how our inference
framework can be adapted to infer disease transmission
across geographical regions, and apply our method to a large
collection of SARS-CoV-2 genomes sampled from infected
individuals in many countries around the world to infer the
global COVID-19 transmission network as well as a US state-
level transmission network (Section 6).

The remainder of this manuscript is organized as follows.
The next section provides basic definitions and preliminaries.
Section 3 describes our core algorithmic framework. Section 4
describes the simulated datasets, real HCV dataset, and
experimental methodology. Experimental results appear in
Section 5. Section 6 describes the application of our method to
large-scale COVID-19 data and includes the results of this
analysis. Section 7 gives concluding remarks.

2 BASIC DEFINITIONS AND PRELIMINARIES

Given a rooted tree T , we denote its node set, edge set, and
leaf set by V ðT Þ, EðT Þ, and LeðT Þ respectively. The root
node of T is denoted by rtðT Þ, the parent of a node v 2 V ðT Þ
by paT ðvÞ, its set of children by ChT ðvÞ, and the (maximal)

Fig. 1. Phylogeny-based transmission network inference. The figure
shows a simple example with three infected individuals A, B, and C, rep-
resented here by the three different colors, where A has three viral var-
iants while B and C have two each. The tree on the left depicts the
transmission phylogeny for the seven sampled strains, with each of
these strains colored by the host from which it was sampled. The tree in
the middle shows a hypothetical assignment of hosts to ancestral nodes
of the transmission phylogeny. This ancestral host assignment can then
be used to infer the transmission network shown on the right, with A
responsible for transmission to both B and C.
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subtree of T rooted at v by T ðvÞ. The set of internal nodes of T ,
denoted IðT Þ, is defined to be V ðT Þ n LeðT Þ. A rooted tree is
binary if all of its internal nodes have exactly two children. In
thiswork, the term tree refers to a rooted binary tree.

2.1 Problem Formulation

Let T denote the transmission phylogeny constructed from
the genetic sequences of the infecting strains (i.e., patho-
gens) sampled from the infected hosts under consideration.
Note that such trees can be easily constructed using stan-
dard phylogenetic methods such as RAxML [34]. These
trees can also be rooted relatively accurately using either
standard phylogenetic rooting techniques or by using a
related sequence from a previous outbreak of the same dis-
ease as an outgroup. Let H ¼ fh1; h2; . . . ; hng denote the set
of n hosts under consideration. We assume that each leaf of
T is labeled with the host from H from which the corre-
sponding strain sequence was obtained. Fig. 1 shows an
example of such a tree and its leaf labeling, where the label-
ing is depicted using the different colors.

Observe that each internal node of T represents an ances-
tral strain sequence that existed in some infected host. More-
over, each internal node (or bifurcation) represents either
intra-host diversification and evolution of that ancestral strain
or a transmission event where that ancestral strain is transmit-
ted from one host to another along one of the child edges.
Thus, eachnode of T is associatedwith an infectedhost. Given
t 2 V ðT Þ, we denote the host associated with node t by hðtÞ.
Note that internal nodesmay represent strains from hosts that
do not appear inH, i.e., strains from unsampled hosts, and so
there may be t 2 IðT Þ for which hðtÞ 62 H. Given an ancestral
host assignment for T , i.e., given hðtÞ for each t 2 IðT Þ, the
implied transmission network can be easily inferred as fol-
lows: A transmission edge is inferred from host x to host y if
there is an edge ðpaðtÞ; tÞ 2 EðT Þ, where hðpaðtÞÞ ¼ x and
hðtÞ ¼ y. Note that each transmission edge in the recon-
structed transmission network may represent either direct
transmission or indirect transmission through one or more
unsampled hosts. Thus, to reconstruct transmission networks
it suffices to compute hðtÞ for each t 2 IðT Þ.

TNet (along with SharpTNI) is based on finding ancestral
host assignments that minimize the number of inter-host
transmission events on T . The utility of such parsimonious
ancestral host assignment for transmission network infer-
ence when multiple strain sequences per host are available
was first systematically demonstrated by Romero-Severson
et al. [27] and later developed further by Wymant et al. [37]
in their phyloscanner method. The basic computational
problem under this formulation can be stated as follows:

Problem 1 (Optimal ancestral host assignment). Given a
transmission phylogeny T on strain sequences sampled from a
set H ¼ fh1; h2; . . . ; hng of n infected hosts, compute hðtÞ for
each t 2 IðT Þ such that the number of edges ðt0; t00Þ 2 E for
which hðt0Þ 6¼ hðt00Þ is minimized.

Problem 1 is equivalent to thewell-known small parsimony
problem in phylogenetics and can be solved efficiently using
the classical Fitch [13] and Sankoff [29] algorithms. In TNet,we
solve a modified version of the problem above that considers
all possible optimal ancestral host assignments and samples
greedily among them to minimize the number of back-

transmissions (or reinfections by descendant disease strains).
To accomplish this goal efficiently, TNet uses an extended ver-
sion of Sankoff’s algorithm. For completeness, a brief descrip-
tion of Sankoff’s algorithm appears below.We later show how
to extend that algorithm to perform our special sampling.

2.2 Computing an Optimal Ancestral Host
Assignment

Sankoff’s algorithm uses a simple bottom-up dynamic pro-
gramming approach. Given a node t 2 V ðT Þ and a host hi 2
H, we define the cost Cðt; hiÞ to be the minimum number of
inter-host transmission events required on subtree T ðtÞ
under the constraint that hðtÞ ¼ hi. Let CðtÞ denote the vec-
tor hCðt; hiÞ; Cðt; h2Þ; . . . ; Cðt; hnÞi. The Sankoff algorithm
performs a post-order traversal of T and computes CðtÞ at
each t 2 V ðT Þ using the following recurrence relations.

If t 2 LeðT Þ, then the dynamic programming table can be
initialised as follows:

Cðt; hiÞ ¼ 0; if hðtÞ ¼ hi;
1; otherwise:

�
(1)

If t 2 IðT Þ, and t0 and t00 denote the two children of t, then

Cðt; hiÞ ¼ min
j2f1;...;ng

Cðt0; hjÞ þ pðhi; hjÞ
� �

þ min
j2f1;...;ng

Cðt00; hjÞ þ pðhi; hjÞ
� �

;
(2)

where pðhi; hjÞ ¼ 0 if i ¼ j, and pðhi; hjÞ ¼ 1 if i 6¼ j.
This recurrence relation is guaranteed to compute each cost

Cðt; hiÞ correctly (follows from the correctness of Sankoff’s
algorithm). The minimum number of inter-host transmission
events required by any ancestral host assignment on T is
given by minifCðrtðT Þ; hiÞg, and an actual optimal ancestral
host assignment can be easily obtained by backtracking. We
point out that the greedy algorithm of Fitch [13] can also
be used to compute minimum number of inter-host trans-
mission events required by any ancestral host assignment
on T ; however, Fitch’s algorithm cannot be extended to
keep track of all possible optimal ancestral host assign-
ments. We therefore use (an extension of) Sankoff’s algo-
rithm as the basis for TNet.

It is easy to see that the time complexity of the above
algorithm is Oðmn2Þ, where m ¼ LeðT Þ, i.e., the total num-
ber of strain sequences sampled from all hosts, and n ¼ jHj,
i.e., the number of infected hosts in the analysis. In fact, by
exploiting the fact that pð�; �Þ is always either 2, 1 or 0, the
algorithm can be implemented to run in OðmnÞ time (details
are straightforward and therefore omitted.)

3 ALGORITHMIC DETAILS

A key methodological and algorithmic innovation responsi-
ble for the improved accuracy of TNet (and also of
SharpTNI) is the explicit and principled consideration of
variability in optimal ancestral host assignments. More pre-
cisely, TNet recognizes that there are often a very large
number of distinct optimal ancestral host assignments and
it samples the space of all optimal ancestral host assignments
in a manner that preferentially preserves optimal ancestral
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host assignments (described in detail below). TNet then
aggregates across these samples to compute a support value
for each edge in the final transmission network. This approach
is illustrated in Fig. 2. Thus, the core computational problem
solved by TNet can be formulated as follows:

Definition 3.1 (Back-Transmission). Given a transmission
phylogeny T on strain sequences sampled from a set H ¼
fh1; h2; . . . ; hng of n infected hosts and an ancestral host
assignment A for T , we say that a host hi has a back-transmis-
sion in A if and only if there exist nodes v and v0 in V ðT Þ such
that (i) v0 is a descendant of v in T , (ii) hðvÞ ¼ hðv0Þ under A,
and (iii) there exists node v00 along the v� v0 path for which
hðv00Þ 6¼ hðvÞ. The total number of back-transmissions implied
by A on T equals the number of hosts with back-transmissions.

Problem 2 (Minimum back-transmission sampling).
Given a transmission phylogeny T on strain sequences sampled
from a set H ¼ fh1; h2; . . . ; hng of n infected hosts, let O denote

the set containing all distinct optimal ancestral host assignments for
T . Further, let O0 denote the subset of O that implies the fewest
back-transmissions in the resulting transmission network. Compute
an optimal ancestral host assignment fromO0 such that each element
ofO0 has an equal probability of being computed.

Fig. 3 shows an example of minimum back-transmission
sampling. Observe that the actual number of optimal ancestral
host assignments (both O and O0) can grow exponentially in
the number of hosts n. Thus, by solving the sampling problem
above instead, TNet seeks to efficiently account for the diver-
sity within optimal ancestral host assignments with minimum
back-transmissions, without explicitly having to enumerate
them all.

Note that SharpTNI, developed independently and con-
temporaneously to TNet, performs a similar sampling
among all optimal ancestral host assignments, but employs
a different optimality objective. Specifically, SharpTNI seeks
to sample optimal ancestral host assignments that minimize
the number of co-transmissions, i.e., minimize the number of
inter-host edges in the transmission network.

3.1 Minimum Back-Transmission Sampling of
Optimal Host Assignments

TNet approximatesminimumback-transmission sampling by
combining uniform sampling of ancestral host assignments
with a greedy procedure to assign specific hosts to internal
nodes. This is accomplished by suitably extending and modi-
fying Sankoff’s algorithm. Note that Sankoff’s algorithm com-
putes, at each node t 2 V ðT Þ and for each host hi 2 H, the
minimum number of inter-host transmission events required
on subtree T ðtÞ under the constraint that hðtÞ ¼ hi, denoted
Cðt; hiÞ. To perform our minimum back-transmission sam-
pling, we must keep track of the number of optimal ancestral
host assignments associated with each subproblem Cðt; hiÞ
considered in the dynamic programming algorithm. We
therefore define the following: For any t 2 V ðT Þ and hi 2 H,
letNðt; hiÞ denote the number of distinct optimal host assign-
ments for the subtree T ðtÞ under the constraint that hðtÞ ¼ hi.
EachNð�; �Þ can be computed during the same post-order tra-
versal used to compute theCð�; �Þ values as shown below.

If t 2 LeðT Þ, then the dynamic programming table for
Nð�; �Þ can be initialised as follows:

Fig. 2. Accounting for multiple optima in transmission network inference. The tree on the left depicts the transmission phylogeny for the seven strains
sampled from three infected individuals A, B, and C, represented here by the three different colors. This tree admits two distinct optimal ancestral
host assignments as shown in the figure. These two optimal ancestral host assignments can then be together used to infer a transmission network,
as shown on the right, in which each edge has a support value. The support value of a transmission edge is defined to be the percentage of optimal
ancestral host assignments that imply that transmission edge.

Fig. 3.Minimizing back-transmissions in transmission network inference.
The tree on the left depicts the transmission phylogeny for six strains
sampled from two infected individuals A and B, represented by the two
different colors. Two possible optimal host assignments for this trans-
mission phylogeny are shown on the right. The optimal host assignment
shown on top invokes a back-transmission (transmission from B to A
and later back from A to B). The optimal host assignment shown at the
bottom does not invoke any back-transmissions and would be a mini-
mum back-transmission host assignment.
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Nðt; hiÞ ¼ 1; if hðtÞ ¼ hi;
0; otherwise:

�
(3)

If t 2 IðT Þ, and t0 and t00 denote the two children of t, then
Nðt; hiÞ can be computed based on optimal host assign-
ments at t0 and t00 and their corresponding Nð�; �Þ values. Let
X0 � H denote the host assignments for t0 that are optimal
given a host assignment of hi at t. Likewise, let X00 � H
denote the host assignments for t00 that are optimal given a
host assignment of hi at t. More precisely, X0 ¼ fhj 2 H j
Cðt0; hjÞ þ pðhi; hjÞ is minimizedg, and X00 ¼ fhj 2 H jCðt00;
hjÞ þ pðhi; hjÞ is minimizedg. Then,Nðt; hiÞ can be computed
as follows:

Nðt; hiÞ ¼
X
x2X0

Nðt0; xÞ
 !

�
X
x2X00

Nðt00; xÞ
 !

: (4)

Observe that the total number of distinct ancestral host
assignments for T is given by

P
x2X NðrtðtÞ; xÞ, where X ¼

argminy2HfCðrtðT Þ; yÞg.
This yields the following theorem.

Theorem 3.1. Given a transmission phylogeny T on m strain
sequences sampled from a set H ¼ fh1; h2; . . . ; hng of n
infected hosts, the number Nðt; hiÞ for each t 2 V ðGÞ and hi 2
H can be correctly computed in Oðmn2Þ time.

Proof. From the correctness of Sankoff’s algorithm (described
in Section 2), we already know that all costs Cð�; �Þ can be
correctly computed in Oðmn2Þ time. Once all costs Cð�; �Þ
have been computed, theNð�; �Þ numbers can be computed
by executing a post-order traversal of T and applying
Equations (3) and (4) at each node of T .

Correctness. It suffices to prove the correctness of
Equations (3) and (4). This is easy to see for (3), where
the number of optimal assignments at a leaf is either 1 or
0 depending on whether the specific host under consider-
ation is the true host or not. We therefore focus on estab-
lishing the correctness of Equation (4).

Let t be any node in IðT Þ and hi be some host from H.
Let t0 and t00 denote the two children of t. Using an induc-
tion hypothesis, let us assume that the numbers Nðt0; hjÞ
and Nðt00; hjÞ have been computed correctly for each hj 2
H. As in Equation (4), let X0 ¼ fhj 2 H jCðt0; hjÞ þ pðhi;
hjÞ is minimizedg, and X00 ¼ fhj 2 H jCðt00; hjÞ þ pðhi; hjÞ
isminimizedg. By definition, any host from X0 assigned
to t0 and from X00 assigned to t00 yields an optimal host
assignment for the subproblem associated with Nðt; hiÞ.
Observe that the total number of optimal host assign-
ments for the subtree T ðt0Þ, under the constraint that t is
assigned host hi, is given by

P
x2X0 Nðt0; xÞ. Likewise, the

total number of optimal host assignments for the subtree
T ðt00Þ, under the constraint that t is assigned host hi, is
given by

P
x2X00 Nðt00; xÞ. Since these optimal host assign-

ments for t0 and t00 are independent of each other (they
depend only on the host assignment at t), the number
Nðt; hiÞ must equal the product of the two sums. Thus,
Equation (4) correctly computes Nðt; hiÞ. Induction on
the nodes of T completes this proof.

Time Complexity. Observe that there are a total of
OðmnÞ Nð�; �Þ numbers to be computed. Each of these

numbers is computed by directly applying either Equa-
tions (3) or (4). Equation (3) can be applied in Oð1Þ time,
while Equation (4) can be applied in OðnÞ time. Thus,
computing all Nð�; �Þ requires a total of Oðmn2Þ time. tu
After all Nð�; �Þ numbers have been computed, we per-

form our greedy sampling procedure using probabilistic
backtracking. The basic idea is to perform a pre-order tra-
versal of T and make a final host assignment at the current
node based on the number of optimal ancestral host assign-
ments available for each optimal choice at that node, while
preferentially preserving the parent host assignment. This is
described in detail in Procedure GreedyProbabilisticBacktrack-
ing below. This procedure assumes that all costs Cð�; �Þ and
numbersNð�; �Þ have already been computed.

Procedure. GreedyProbabilisticBacktracking

1: Let a ¼ minifCðrtðT Þ; hiÞg.
2: for each t 2 IðT Þ in a pre-order traversal of T do
3: if t ¼ rtðT Þ then
4: LetX ¼ fhi 2 H jCðrtðT Þ; hiÞ ¼ ag.
5: For each hi 2 X, assign hðtÞ ¼ hi with probability

Nðt;hiÞP
hj2X Nðt;hjÞ

.

6: if t 6¼ rtðT Þ then
7: Let X ¼ fhi 2 H jCðt; hiÞ þ pðhðpaðtÞÞ; hiÞ is minimizedg.
8: if hðpaðtÞÞ 2 X then
9: Assign hðtÞ ¼ hðpaðtÞÞ.
10: if hðpaðtÞÞ 62 X then
11: For each hi 2 X, assign hðtÞ ¼ hi with probability

Nðt;hiÞP
hj2X Nðt;hjÞ

.

The procedure above preferentially assigns each internal
node the same host assignment as that node’s parent, if such
an assignment is optimal. This strategy is based on the follow-
ing straightforward observation: If the host assignment of an
internal node t could be the same as that of its parent (while
remaining optimal), i.e., hðtÞ ¼ hðpaðtÞÞ is optimal, then
assigning a different optimal mapping hðtÞ 6¼ hðpaðtÞÞ can
result in a transmission edge back to hðpaðtÞÞ, effectively
implying a reinfection of host hðpaðtÞÞ by a descendant dis-
ease strain. Thus, the goal of TNet’s sampling strategy is to
strike a balance between sampling the diversity of optimal
ancestral host assignments but avoiding sampling solutions
with unnecessary back-transmissions.

3.2 Aggregation Across Multiple Optima

As illustrated in Fig. 2, aggregating across the sampled opti-
mal ancestral host assignments can be used to improve
transmission network inference by distinguishing between
high-support and low-support transmission edges. Specifi-
cally, each directed edge in the transmission network can be
assigned a support value based on the percentage of sam-
pled optimal ancestral host assignments that imply that
transmission edge. For example, in Fig. 2, the first sampled
optimal host assignment (shown on the top) implies the two
transmission edges ðA ! BÞ and ðA ! CÞ, and the second
sampled optimal host assignment (shown at the bottom)
implies the two transmission edges ðA ! BÞ and ðC ! AÞ.

234 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022



By aggregating over these two transmission networks, an
edge-weighted transmission network can be inferred, as
shown on the right of the figure. This aggregated transmis-
sion network contains three directed edges, ðA ! BÞ, ðA !
CÞ, and ðC ! AÞ, where the weight of each edge captures
the percentage of sampled optimal ancestral host assign-
ments that support that edge. Since ðA ! BÞ is inferred by
both sampled ancestral host assignments, and ðA ! CÞ and
ðC ! AÞ are each inferred by one of the two sampled ances-
tral host assignments, there support values are 100, 50, and
50 percent, respectively. By executing TNet multiple times
on the same transmission phylogeny (100 times per tree in
our experimental study), these support values for edges can
be estimated very accurately.

3.3 Accounting for Phylogenetic Inference Error

In addition to capturing the uncertainty of minimum back-
transmission ancestral host assignments, which we show
how to handle above, a second key source of inference
uncertainty is phylogenetic error, i.e., errors in the inferred
transmission phylogeny. Phyloscanner [37] accounts for
such phylogenetic error by aggregating results across multi-
ple transmission phylogenies (e.g., derived from different
genomic regions of the samples strains, bootstrap replicates,
etc.). We employ the same approach with TNet, aggregating
the transmission network across multiple transmission phy-
logenies, in addition to the aggregation across multiple opti-
mal ancestral host assignments per transmission phylogeny.

4 DATASETS AND EVALUATION METHODOLOGY

Simulated Datasets. To evaluate the performance of TNet,
SharpTNI, and phyloscanner, we generated a number of
simulated viral transmission data sets across a variety of
parameters. These datasets were generated using FAVITES
[25], which can simultaneous simulate transmission net-
works, phylogenetic trees, and sequences. The simulated
contact networks consisted of 1000 individuals, with each
individual connected to other individuals through 100 out-
going edges preferentially attached to high-degree nodes
using the Barabasi-Albert model [1]. On these contact net-
works, we simulated datasets with (i) four types of trans-
mission networks using both Susceptible-Exposed-Infected-
Recovered (SEIR) and Susceptible-Infected-Recovered (SIR)
[20] models with two different infection rates for each, (ii)
number of viruses sampled per host (5, 10, and 20), (iii)
three different nucleotide sequence lengths (1000nt, 500nt,
and 250nt), and (iv) three different rates of with-in host
sequence evolution (normal, half, and double). This resulted
in 560 different transmission network datasets representing
28 different parameter combinations. Further details on the
construction and specific parameters used for these simu-
lated datasets appear in [33].

These 560 simulated datasets had between 35 and 1400
sequences (i.e., leaves in the corresponding transmission
phylogeny), with an average of 287.44 leaves. The maxi-
mum number of hosts per tree was 75, with an average of
26.72.

Data From Real HCV Outbreaks. We also evaluated the
accuracies of TNet, SharpTNI, and phyloscanner on real
datasets of HCV outbreaks made available by the CDC [32].

This collection consists 10 different datasets, each represent-
ing a separate HCV outbreak. Each of these outbreak data
sets contains between 2 and 19 infected hosts and a few
dozen to a few hundred strain sequences. The approximate
transmission network is known for each of these datasets
through CDC’s monitoring and epidemiological efforts. In
each of the 10 cases, this estimated transmission network
consists of a single known host infecting all the other hosts
in that network.

Evaluating Transmission Network Inference Accuracy. For all
simulated and real datasets, we constructed transmission
phylogenies using RAxML and used RAxML’s own bal-
anced rooting procedure to root them [34]. Note that TNet,
SharpTNI, and phyloscanner all require rooted transmission
phylogenies. To account for phylogenetic uncertainty and
error, we computed 100 bootstrap replicates for each simu-
lated and real dataset. For SharpTNI we used the efficient
heuristic implementation for evaluation (not the exponen-
tial-time exact solution). All TNet results were based on
aggregating across 100 sampled optimal host assignments
per transmission phylogeny, and all SharpTNI results were
aggregated across that subset of 100 samples that had mini-
mum co-transmission cost, per transmission phylogeny.
Results for all methods were aggregated across the different
bootstrap replicates to account for phylogenetic uncertainty
and yield edge-weighted transmission networks. To
convert such edge-weighted transmission networks into
unweighted transmission networks, we used the same 0.5
(or 50 percent) tree-support threshold used by phyloscanner
in [37]. Thus, all directed edges with an edge-weight of at
least 0.5 (or 50 percent) tree-support were retained in the
final inferred transmission network and other edges were
deleted. For a fair evaluation, none of the methods were
provided with any epidemiological information such as
sampling times or infection times. Finally, since both TNet
and SharpTNI build upon uniform sampling procedures for
optimal ancestral host assignments (minimizing the total
number of inter-host transmissions), we also report results
for uniform random sampling of optimal ancestral host
assignments, as implemented in TNet, as a baseline.

To evaluate the accuracies of these final inferred trans-
mission networks, we computed precision (i.e., the fraction
of inferred edges in the transmission network that are also
in the true network), recall (i.e., the fraction of true transmis-
sion network edges that are also in the inferred network),
and F1 scores (i.e., harmonic mean of precision and recall).

Fig. 4. Accuracy of methods using single samples. This figure plots pre-
cision, recall, and F1 scores for the different methods without any aggre-
gation of results across multiple samples or bootstrap replicates.
Results are averaged across the 560 simulated datasets.
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5 EXPERIMENTAL RESULTS

5.1 Simulated Data Results

Accuracy of Single Samples. We first considered the impact
of inferring the transmission network using only a single
optimal solution, i.e., without any aggregation across sam-
ples or bootstrap replicates. Fig. 4 shows the results of this
analysis. As the figure shows, TNet has by far the best over-
all accuracy, with precision, recall, and F1 scores of 0.72,
0.75, and 0.73, respectively. Phyloscanner showed the great-
est precision at 0.828 but had significantly lower recall and
F1 at 0.522 and 0.626, respectively. SharpTNI performed
slightly better than a random optimal solution (uniform
sampling), with precision, recall, and F1 scores of 0.68, 0.71,
and 0.694, respectively, compared to 0.67, 0.71, and 0.687,
respectively, for a randomly sampled optimal solution.

Impact of SamplingMultiple Optimal Solutions. For improved
accuracy, both TNet and SharpTNI rely on aggregation across
multiple samples per transmission phylogeny. Note that,
when aggregating across multiple optimal ancestral host
assignments, the final transmission network is obtained by
applying a cutoff for the edge support values. For example, in
Fig. 2, at a cutoff threshold of 100 percent, only a single trans-
mission from ðA ! BÞwould be inferred, while with a cutoff
threshold of 50 percent, all three transmission edges shown in
the figure would be inferred. We studied the impact of multi-
ple sample aggregation by considering two natural sampling
cutoff thresholds: 50 and 100 percent. As Fig. 5 shows, results
improve as multiple optimal are considered. Specifically, for
the 50 percent sampling cutoff threshold, we found that the
overall accuracy of all methods improves as multiple samples
are considered. For TNet, precision, recall, and F1 score all
increase to 0.73, 0.75, and 0.74, respectively. For SharpTNI,
precision and F1 score increase significantly to 0.76 and 0.72,
respectively, while recall decreases slightly to 0.706. Surpris-
ingly, we found that uniform random sampling outperformed
SharpTNI,with precision, recall, and F1 score of 0.77, 0.70, and
0.73, respectively.

The figure also shows the clear tradeoff between precision
and recall as the sampling cutoff threshold is increased. Spe-
cifically, for the 100 percent sampling cutoff threshold, the
precision of all methods increases significantly, but overall F1
score falls to 0.65 and 0.64 for SharpTNI and random sam-
pling, respectively. Surprisingly, recall only decreases slightly
for TNet, and its overall F1 score remains 0.74 even for the 100
percent sampling cutoff threshold.

Accuracy on Multiple Bootstrapped Transmission Phylogenies.
To further improve inference accuracy, results can be aggre-
gated across the different bootstrap replicates to account for
phylogenetic uncertainty. We therefore ran phyloscanner,
TNet, and SharpTNI with 100 transmission phylogeny esti-
mates (bootstrap replicates) per dataset. (We tested for the
impact of using varying numbers of bootstrap replicates, try-
ing 25, 50, and 100, but found that results were roughly identi-
cal in each case. We therefore report results for only the 100
bootstrap analyses.) As Fig. 6 shows, for the 50 percent sam-
pling cutoff threshold, the accuracies of all methods improve
over the corresponding single-tree results, with particularly
notable improvements in precision. For the 100 percent sam-
pling cutoff threshold, the precision of all methods improves
further, but for phyloscanner and SharpTNI this comes at the
expense of large reductions in recall. TNet continues to be
best performing method overall for both sampling cutoff
thresholds, with precision, recall, and F1 score of 0.79, 0.73,
and 0.76, respectively, at the 50 percent sampling cutoff
threshold, and 0.82, 0.71, and 0.754, respectively at the 100 per-
cent sampling cutoff threshold.

Precision-Recall Characteristics of SharpTNI and TNet. The
results above shed light on the differences between the sam-
pling strategies (i.e, objective functions) used by SharpTNI
and TNet, revealing that SharpTNI tends to have higher
precision but much lower recall. Thus, depending on use
case, either SharpTNI or TNet may be the method of choice.
We also note that random sampling shows similar accuracy
and precision-recall characteristics as SharpTNI, suggesting
that SharpTNI may not offer much improvement over the
much simpler random sampling strategy.

Impact of Transmission Network Parameters. To study the
impact of transmission network simulation parameters on
relative inference accuracy, we separately partitioned the
560 datasets by transmission network model, mutation
rates, number of viruses sampled per host, and sequence
length. As expected, we found that the accuracies of all
methods increased as sequence length was increased, and
that the accuracies of all methods except phyloscanner
increased as the number of viruses sampled per host
increased. Overall, we found that the relative accuracies of
the methods were not significantly impacted by mutation
rates, number of viruses sampled per host, and sequence

Fig. 5. Accuracy of methods using multiple samples on a single trans-
mission phylogeny. This figure plots average precision, recall, and F1
scores for random sampling, sharpTNI, and TNet when 100 samples are
used on a single transmission phylogeny. Values reported are averaged
across all 560 simulated datasets, and results are shown for both 50 and
100 percent sampling cutoff thresholds.

Fig. 6. Transmission network inference accuracy when multiple trans-
mission phylogenies are used. This figure plots average precision, recall,
and F1 scores for phyloscanner, random sampling, sharpTNI, and TNet
when 100 bootstrap replicate transmission phylogenies are used for
transmission network inference. Values reported are averaged across all
560 simulated datasets, and results are shown for both 50 and 100 per-
cent sampling cutoff thresholds.
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length, i.e., while the accuracies of all methods increased or
decreased as these parameters were changed, the relative
accuracies of the four methods generally remained the same
(results not shown). However, we found that the transmis-
sion network model, i.e., SIR or SEIR, had an impact on the
relative accuracies of the methods. Specifically, as Table 1
shows, we found that (1) sharpTNI shows a slightly higher
F1 score than TNet on the SIR datasets when the 50 percent
sampling cutoff threshold is used, and (2) TNet performs
substantially better than all other methods under the SEIR
model, at both the 50 and 100 percent sampling cutoff
thresholds. Notably, TNet clearly remains the most accurate
method even for SIR datasets when the 100 percent sam-
pling cutoff threshold is used.

To understand why TNet shows substantially better accu-
racy than the other methods on SEIR datasets, we analyzed
the SIR and SEIR datasets further. We observed that the key
difference between them is that the basic reproduction num-
ber, which captures the average number of other individuals
infected by any infected individual, and referred to as R0,
averaged 1.71 for the SIR datasets but 3.58 for the SEIR data-
sets. This helps explain the substantially improved perfor-
mance of TNet on SEIR datasets, since transmission networks
with higherR0 maybenefit fromTNet’s host assignment strat-
egy, which preferentially propagates parent host assignments
to their children. This analysis suggests that TNet may be
especially effective at inferring transmission networks for dis-
eases that spread primarily through super-spreader events [35].

5.2 HCV Dataset Results

We applied TNet, SharpTNI, and phyloscanner to the 10
real HCV datasets using 100 bootstrap replicates per data-
set. We found that both TNet and SharpTNI performed
almost identically on these datasets, and that both dramati-
cally outperformed phyloscanner on the real datasets in
terms of both precision and recall (and, consequently, F1
scores). Fig. 7 shows these results averaged across the 10
real datasets. As the figure shows, both TNet and SharpTNI
have identical F1 scores for the 50 and 100 percent sampling
cutoff thresholds, with both methods showing F1 scores of
0.57 and 0.56, respectively. In contrast, phyloscanner shows
much lower precision and recall, with an F1 score of only
0.22. Random sampling had slightly worse performance
than TNet and SharpTNI at both the 50 and 100 percent
sampling cutoff thresholds. At the 100 percent sampling
cutoff threshold, we observe the same precision-recall char-
acteristics seen in the simulated datasets, with SharpTNI
showing higher precision but lower recall.

6 COVID-19 ANALYSIS

The ongoing COVID-19 pandemic has resulted in the avail-
ability of completely sequenced SARS-CoV-2 genomes from
thousands of infected individuals across dozens of countries;
see, e.g., the GISAID resource [12]. Among a multitude of
other uses, this rich dataset allows for the estimation of a
global transmission network of the spread of COVID-19. For
example, the popular Nextstrain tool (https://nextstrain.
org/) computes and provides a regularly updated SARS-
CoV-2 phylogeny and associated transmission network
between geographical regions [17]. To evaluate the ability of
TNet to infer such geographical spread/transmission net-
works, we applied TNet, along with the random sampling
algorithm implemented in TNet, to a large collection of SARS-
CoV-2 genomes. For this analysis, countries serve as hosts
and the sampled SARS-CoV-2 genomes (only one genome per
infected individual) from the infected individuals in each
country serve as the sampled strains for that country/host.
We also repeated the analysis at the state level for SARS-CoV-
2 strains from USA. We compared the resulting transmission
networks against those inferred by thewidely usedNextstrain
tool, evaluating inference accuracy using the available epide-
miological information about country of exposure for each
SARS-CoV-2 genome used in the analysis. SharpTNI could
not be used for this analysis since it was not able to scale to
this large dataset and resulted in runtime errors.

6.1 Description of the Dataset

We downloaded all complete, high-coverage SARS-CoV-2
genomes available through GISAID [12] on June 12, 2020.
Each of these sequences had between 29000 and 31000 base
pairs. We then removed sequences from all countries with

TABLE 1
Transmission Network Inference Accuracy Under SIR and SEIR Models

Phyloscanner Random sampling SharpTNI TNet

SIR model at 50% sampling threshold 0.642 0.715 0.727 0.713
SEIR model at 50% sampling threshold 0.684 0.76 0.772 0.806

SIR model at 100% sampling threshold 0.642 0.636 0.65 0.706
SEIR model at 100% sampling threshold 0.684 0.625 0.661 0.802

The table shows average F1 scores for phyloscanner, random sampling, sharpTNI, and TNet when 100 bootstrap replicate transmission phylogenies are used for
transmission network inference. Average F1 scores are reported separately for the 280 datasets smulated under the SIR model and the 280 datasets simulated
under the SEIR model. Results are shown for both 50 and 100 percent sampling cutoff thresholds.

Fig. 7. Transmission network inference accuracy across the 10 real HCV
datasets. This figure plots average precision, recall, and F1 scores for
phyloscanner, random sampling, sharpTNI, and TNet on the 10 real
HCV datasets with known transmission histories. Results are shown for
both 50 and 100 percent sampling cutoff thresholds.
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fewer than 10 sequences. We then removed duplicate sequen-
ces within each country, but keeping at least 10 sequences per
country (i.e., if removing duplicates for a country resulted in
fewer then 10 sequences for that country, then we allowed
some duplicates to remain). Since some countries had a very
large number of sequences in the dataset, we then down-sam-
pled sequences from such countries to create amore equitable
distribution of sequences per country. Specifically, if a country
hadmore than 100 sequences,we randomly chose 100 sequen-
ces for that country. This resulted in a dataset of 2123 SARS-
CoV-2 strain sequences from across 59 countries.

We aligned the 2123 sequences using Clustal Omega[31]
and reconstructed maximum likelihood phylogenies using
RAxML [34] under the GTRGAMMA model. In all, we con-
structed one maximum likelihood phylogeny along with 10
bootstrap replicates. The resulting 11 phylogenies were
rooted and dated using TreeTime [28], which is also used
by the Nextstrain pipeline.

This dataset of 2123 SARS-CoV-2 sequences, including
sequence alignment, metadata, and reconstructed phyloge-
netic trees, is freely available from: https://compbio.engr.
uconn.edu/global_covid-19_dataset/.

6.2 Geographical Transmission Network Inference

We applied TNet, random sampling, and the Nextstrain/
Augur tool to this dataset to infer international (country-
to-country) transmission networks. Observe that such
geographical transmission networks are distinct from usual dis-
ease transmission networks in that (i) most pairs of coun-
tries or geographical regions can be expected to be
connected through transmission edges, and (ii) transmis-
sions between pairs of counties likely occur in both direc-
tions. Thus, the information of interest in geographical
transmission networks is not merely the presence of edges
between pairs of countries/regions, but the magnitude and
time periods of transmission. Accordingly, in our inferred
transmission networks, each transmission edge between an
ordered pair of countries ðA;BÞ is labeled with the follow-
ing additional information:

1) The number of separate transmission events from A
to B.

2) The number of such separate transmissions occur-
ring during each month (December 2019 through
May 2020).

This information can be directly obtained from the opti-
mal host assignments computed by each method by assign-
ing a date to each internal node of the phylogenetic trees
used for the inference (which we obtained using TreeTime,
as described above) and then counting the number of edges
ðpaðxÞ; xÞ in the host-assigned phylogeny for which paðxÞ is
assigned host A and x is assigned host B.

For TNet and random sampling, we inferred the geo-
graphical transmission network by applying those methods
to the 10 bootstrap replicate phylogenies, computing 100
samples for each. This resulted in 1000 optimal host assign-
ments for each of these two methods. To compute a single
geographical transmission network from these 1000 host
assignments, we averaged the numbers of inferred trans-
mission events between ordered pair of countries for
each time period over all 1000 host assignments. Since

Nextstrain/augur is not based on sampling, we computed
the geographical transmission network for Nextstrain by
using the maximum likelihood phylogeny from RAxML.

6.3 Evaluation of Geographical Transmission
Networks

We performed two kinds of comparisons between the geo-
graphical transmission networks inferred by the three dif-
ferent methods. First, we used the available “ground-truth”
data available for each strain included in the analysis. Spe-
cifically, we used the known country/region of exposure,
likely inferred through contact tracing, available in the
metadata for each SARS-CoV-2 sequence. This allowed us
to use the host assignment for the parent of each leaf node
in the host-assigned phylogenies and infer the accuracy of
those assignments for each method by comparing to the
known country/region of exposure for that leaf. For TNet
and random sampling, which use multiple trees and sam-
ples, we used the most frequently assigned host for each
parent node as its final assignment. Note that for 17 of the
2123 sequences the country of exposure was a country that
was not included in our analysis.

Second, we performed a systematic comparison of the
geographical transmission networks inferred by the three
methods by identifying, for each method, the top five most
frequent spreader countries for each time period (month)
and the top five receiving countries for each time period.
We also repeated this comparative analysis with respect to
United States of America (USA) by identifying the top five
spreaders to USA and top five recipients from USA during
each time period.

6.4 Results

Overall Accuracies of the Methods Based on Ground-Truth. By
comparing the international transmission networks inferred
by the three methods against the known country of expo-
sure available for each SARS-CoV-2 sequence, we found
that TNet significantly outperformed Nextstrain and that
random sampling dramatically outperformed both Next-
strain and TNet. Specifically, Nextstrain, TNet, and random
sampling were able to correctly determine the country of
exposure correctly for 67, 71, and 85 percent of the sequen-
ces, respectively. These results are shown in Fig. 8.

It is worth noting that the superiority of random sam-
pling over TNet is not surprising for this application. This is
because, for geographical transmission networks, there is
no expectation that back-transmissions should be rare. In
fact, back-transmissions are expected to occur freely and
frequently. Thus, random sampling is expected to outper-
form TNet for geographical transmission network inference.
Surprisingly, TNet still outperforms Nextstrain in this anal-
ysis. These results suggest that our random sampling frame-
work may prove highly useful for estimating geographical
transmission networks as well as for estimating other trans-
mission networks in other settings where back-transmis-
sions can occur freely.

Comparison of Inferred International Transmission Networks.
To systematically compare the international transmission
networks inferred by the three methods, we computed, for
each method, the top five most frequent spreader countries
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for each time period (month) and the top five receiving
countries for each time period. Figs. 9 and 10 show the
results of this analysis. As the figures show, there is both
agreement and disagreement between the transmission net-
works inferred by the three methods. Considering spreader
countries (Fig. 9), we find that there is agreement among all
methods that China was the primary spreader during
December 2019 and January 2020, but that it ceases to be
among the top five spreaders February 2020 onward. On
the other hand, while Nextstrain infers that the majority of
spread from China occurred in January 2020, TNet and ran-
dom sampling both infer that the majority of the spread
from China occurred in December 2019. All methods also
agree that February 2020 was the most active month for the
spread of COVID-19, and that international spread was
essentially over by April 2020. For most months, there is
considerable variation in the top spreader countries identi-
fied by the three methods; for instance, for December 2019,
only one country is common among the top five inferred by
Nextrain and either of other two methods, and only two are
in common between TNet and random sampling. Notably,
both TNet and random sampling identity USA as an early
and important contributor to the spread of COVID-19, while
Nextstrain does not includeUSA in its top five list untilMarch
2020. Considering receiver countries (Fig. 10), we find that
there is generallymore agreement between the threemethods.
For instance, all methods agree that generally Asian countries
and Australia acted as major recipients during December

2019 and January 2020, and that European countries became
the major receivers during February and March 2020. The
methods also mostly agree that USA was a major recipient
during all months fromDecember 2019 toMarch 2020.

To further analyse the differences between these trans-
mission networks, we used USA as the “base” country and
identified the top five spreaders to USA and top five recipi-
ents from USA during each time period. These results are
shown in Supplementary Figs. S1 and S2, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2021.3096455.
Considering spreader countries (Supplementary Fig. S1,
available online), we find that there is generally good agree-
ment between the top five lists of TNet and random sampling
for the months December 2019 through February 2020, but
that they have significant differences from the top five lists
inferred by Nextstrain for the same periods. However, all
methods agree that China was the primary spreader to USA
in December 2019 and January 2020 and that France was the
primary spreader in March 2020. Considering receiver coun-
tries (Supplementary Fig. S2, available online), we find con-
siderable agreement between between the top five lists of
TNet and random sampling for the months December 2019
through March 2020. However, as with spreader countries,
there are considerable differences between the top five coun-
tries for each period inferred byNextstrain and those inferred
by TNet or random sampling. However, all methods identify
Canada and France as major receivers of COVID-19 from
USA. Notably, TNet and random sampling also identity
China as a major recipient of infections from USA during
December 2919 and January 2020, and identify Taiwan as one
of the top receivers of infections fromUSA.

State-Level Analysis.We also repeated the above analysis to
infer the state-level transmission network within USA. We
downloaded available SARS-CoV-2 sequences from USA in
July 2020 using the same process as described above, and this
resulted in a dataset of 1801 SARS-CoV-2 sequences from 30
states, with each state represented by between 10 and 100
sequences.We applied the threemethods to this dataset, com-
puting a sequence alignment and phylogenetic trees using the
same methods described before, and obtained the geographi-
cal (state-to-state) transmission network implied by each

Fig. 8. Accuracy of Nextstrain, TNet, and random sampling on the
COVID-19 dataset based on the known country of exposure available
for each SARS-CoV-2 sequence.

Fig. 9. Top five spreader countries inferred by Nextstrain, TNet, and Random Sampling during each month from December 2019 through April 2020.
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method.We compared the transmission networks inferred by
the three methods against the known state of exposure avail-
able for each SARS-CoV-2 sequence. (Note that for 10 of the
1801 sequences the state of exposure was a country or state
that was not included in our analysis.) As before, we found
that TNet significantly outperformedNextstrain and that ran-
dom sampling dramatically outperformed both Nextstrain

and TNet. Specifically, Nextstrain, TNet, and random sam-
pling were able to correctly determine the state of exposure
correctly for 65, 73, and 86 percent of the sequences,
respectively.

As before, we also compared the state-level transmission
networks inferred by the three method by inferring the top
five most frequent spreader and receiver states for each time

Fig. 10. Top five receiver countries inferred by Nextstrain, TNet, and Random Sampling during each month from December 2019 through April 2020.

Fig. 11. Top five spreader states in USA inferred by Nextstrain, TNet, and Random Sampling during each month from Dec. 2019 through June 2020.

Fig. 12. Top five receiver states in USA inferred by Nextstrain, TNet, and Random Sampling during each month from Dec. 2019 through June 2020.
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period (month). These results are shown in Figs. 11 and 12.
As these figures show, TNet and random sampling gen-
erally agree in their lists of top spreaders and receivers,
but that those lists differ significantly from those inferred
by Nextstrain. For instance, Nextstrain infers Virginia and
Pennsylvania as the top two spreader states during February
2020, but these states do not feature in the top five spreader
lists for TNet and random sampling during any time period.
All methods agree that the months of February and March
2020 had, by far, the most spread of COVID-19, and that the
top spreader states inMarchwereNewYork andCalifornia.

Running Time and Scalability. A key strength of TNet (and
also the implementation of the random sampling method in
TNet) is that it is extremely fast and highly scalable. For
example, each run of TNet on the global COVID-19 dataset
with 2123 sequences required only 1.2 seconds using a sin-
gle core on a commodity desktop computer with a 3.00 GHz
6-core Intel i5-8500 CPU and 16 GB of RAM. Thus, the entire
TNet (and also random sampling) analysis consisting of
1000 runs (computing 100 sample host assignments for each
of the 10 bootstrap phylogenies) took less than 20 minutes.

7 DISCUSSION

In this paper, we introduced TNet, a newmethod for transmis-
sion network inference when multiple strain sequences are
sampled from the infected hosts. TNet has two distinguishing
features: First, it systematically accounts for variability among
different optimal solutions to efficiently compute support val-
ues for individual transmission edges and improve transmis-
sion inference accuracy, and second, its objective function
seeks to find those optimal host assignments thatminimize the
number of back-transmissions. TNet is based on a relatively
simple parsimony-based formulation and is parameter-free
and highly scalable. It can be easily applied within seconds to
datasets with many hundreds of strain sequences and hosts.
As our experimental results on both simulated and real data-
sets show, TNet is highly accurate and significantly outper-
forms phyloscanner. We find that TNet also outperforms
SharpTNI, a distinct but very similar method developed inde-
pendently and published recently. We also show how TNet as
well as the closely related random sampling method (also
implemented in TNet) can be used to infer geographical trans-
mission networks and our analysis using large-scale COVID-
19 data demonstrates how TNet and random sampling
both significantly outperform the popular Nextstrain/Augur
method.

Going forward, several aspects of TNet can be tested and
improved further. The simulated datasets used in our
experimental study assume that all infected hosts have been
sampled. It would be useful to test how accuracy decreases
as fewer and fewer infected hosts are sampled. Phyloscan-
ner employs a simple technique to estimate if an ancestral
host assignment may be to an unsampled host, and a similar
technique could be used in TNet. Currently, TNet does not
make use of branch lengths or of overall strain diversity
within hosts, and these could be used to further improve
the accuracy of ancestral host assignment and transmission
network inference. Likewise, it should be possible to easily
model contact-network information within the TNet frame-
work, simply by having different penalties (or costs) for

transmissions between connected hosts versus unconnected
hosts. Finally, the potential of random sampling for infer-
ring geographical transmission networks is worth investi-
gating and developing further.
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