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PhenoGeneRanker: Gene and Phenotype
Prioritization Using Multiplex Heterogeneous
Networks

Cagatay Dursun™, Anne E. Kwitek™, and Serdar Bozdag

Abstract—Uncovering genotype-phenotype relationships is a fundamental challenge in genomics. Gene prioritization is an important
step for this endeavor to make a short manageable list from a list of thousands of genes coming from high-throughput studies. Network
propagation methods are promising and state of the art methods for gene prioritization based on the premise that functionally related
genes tend to be close to each other in the biological networks. Recently, we introduced PhenoGeneRanker, a network-propagation
algorithm for multiplex heterogeneous networks. PhenoGeneRanker allows multi-layer gene and phenotype networks. It also calculates
empirical p values of gene and phenotype ranks using random stratified sampling of seeds of genes and phenotypes based on their
connectivity degree in the network. In this study, we introduce the PhenoGeneRanker Bioconductor package and its application to
multi-omics rat genome datasets to rank hypertension disease-related genes and strains. We showed that PhenoGeneRanker
performed better to rank hypertension disease-related genes using multiplex gene networks than aggregated gene networks. We also
showed that PhenoGeneRanker performed better to rank hypertension disease-related strains using multiplex phenotype network than
single or aggregated phenotype networks. We performed a rigorous hyperparameter analysis and, finally showed that Gene Ontology

(GO) enrichment of statistically significant top-ranked genes resulted in hypertension disease-related GO terms.

Index Terms—Bioinformatics, genetic networks, complex networks, random walk with restart, hypertension, rat model

1 INTRODUCTION

DENTIFYING the causal relationship between a gene and
Icomplex trait is a challenging problem in functional geno-
mics as their relationship relies on complex and nonlinear
interactions of molecular entities [1]. The phenotypic out-
come of the genotypic effect is the result of biological activi-
ties that involve the coordinated expression and interaction
of proteins or nucleic acids [2]. There are multiple layers of
biological processes between genotypic effects to pheno-
typic outcomes, such as epigenome, transcriptome, prote-
ome, and metabolome that could alter the genotypic effects
in many ways.

To represent the multilayered molecular basis of complex
traits, biological networks have been utilized extensively
[3]. These networks also facilitate data integration, which is
a useful technique to capture the nonlinear interactions of
molecular variations from different layers of biological pro-
cesses while avoiding the limitations and biases of single
data types [4], [5]. Each interactome data type could
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represent a different aspect of the genotype-phenotype rela-
tionship. For instance, physical interactome data such as
protein-protein interactions (PPI) might have many non-
functional and missing true interactions, therefore they are
usually complemented by functional interactions [6]. Inte-
grative network models can incorporate datasets from
multiple modalities to provide a more comprehensive
framework to capture the underlying biology. Analysis of
such networks is a powerful approach to demystify the
complexity of multilayered molecular interactions and elu-
cidate the genotype-phenotype relationship.

Thousands of candidate genes are usually reported to be
potentially related to a complex trait by using high-through-
put experimental studies such as genome-wide association
studies (GWAS). Gene prioritization is essential to shorten a
list of thousands of candidate genes into a smaller most
probable gene list to facilitate experimental testing [7]. Net-
work propagation methods are promising and state of the
art methods for gene prioritization based on the premise
that functionally related genes tend to be close to each other
in biological networks such as co-expression, PPI and bio-
logical pathways [8].

A number of network propagation-based gene prioritiza-
tion algorithms were previously developed [9], [10], [11],
[12], [13], [14], [15], [16]. Among those, random walk with
restart (RWR) algorithms are known to utilize both underly-
ing global network topology and closeness to the known
nodes in the network with its restarting property [8].

Recently, a new random walk algorithm called Random
Walk with Restart on Multiplex Heterogeneous Networks
(RWR-MH) has been developed [17] as an extension to
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Step 2. Run RWR on Multiplex Heterogeneous Network

Fig. 1. Framework of PhenoGeneRanker. First, PhenoGeneRanker creates the transition matrix of multiplex heterogeneous network using L gene
layers and K phenotype layers. In the second step, PhenoGeneRanker ranks the genes and phenotypes using the provided seed genes and pheno-
types by running RWR on multiplex heterogeneous network of genes and phenotypes. Then, PhenoGeneRanker generates p values of the ranks by
using random gene and phenotype seeds generated via stratified random sampling based on the degree of gene and phenotype nodes.

RWR in heterogeneous networks [18]. RWR-MH performs
RWR on a multilayered gene network, which is connected
to a single-layer disease similarity network and ranks dis-
ease-associated genes based on a set of known disease-asso-
ciated genes.

Although RWR-MH can utilize multiple gene layers, it
can utilize only one layer of phenotype network. Further-
more, bias toward highly connected nodes in the network is
a known artifact of the RWR algorithm [8], [10].

To address these limitations, we recently developed Phe-
noGeneRanker, an RWR algorithm to rank genes and pheno-
types using multiple layers of both genes and phenotypes
(Fig. 1) [19]. PhenoGeneRanker generates empirical p values
for gene and phenotype rankings to account for the bias of
the RWR algorithm toward high-degree nodes. In this study,
we developed a Bioconductor package for PhenoGeneR-
anker, and to assess the performance of PhenoGeneRanker
we applied it to multidimensional rat (Rattus norvegicus)
datasets of genes and phenotypes to prioritize the hyperten-
sion disease-related rat genes. Also, we rigorously analyzed
the effects of its hyperparameters on gene and phenotype
prioritization performance.

PhenoGeneRanker Bioconductor package can be accessed
on https:/ /bioconductor.org/packages/PhenoGeneRanker/

2 METHODS

2.1 PhenoGeneRanker

PhenoGeneRanker is a computational tool that utilizes an
RWR algorithm on multiplex heterogeneous networks to rank
disease-specific genes and phenotypes. RWR is a type of net-
work propagation algorithm where the information from pre-
specified seed node(s) diffuses through the edges of the nodes
on the underlying network. RWR on a heterogeneous network
was developed to enable random walk by connecting two

types of networks, namely disease and protein networks, by
establishing bipartite relations between diseases and proteins
using disease-associated gene mutations [18].

Li and Patra proposed an RWR approach for heteroge-
neous networks where they connected a gene network to a
phenotype network with a bipartite network of genes and
phenotypes [20]. They represent gene, phenotype and bipar-
tite networks with adjacency matrices A, Ap and B, respec-
tively. The adjacency matrix of the heterogeneous network
is then represented as matrix A.

_[A¢ B
[ ]

B and its transpose B represents the bipartite connections
between gene-phenotype and phenotype-gene networks,
respectively. The matrix A is then normalized to create a
transition matrix (walk matrix) V.

2)

W |:WG WGP]

Wpe  Wp

In Eq. (2), Wi and Wp represent the transition matrices
within gene and phenotype networks, respectively, and Wp;
and Wgp represents transition matrices between phenotype
to gene and gene to phenotype networks, respectively.

The transition probability of a gene g; to a gene g; in the
network with n genes and m phenotypes can be calculated
using.

m
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In Eq. (3), A is the probability of jumping between gene
and phenotype networks with a default value of 0.5. Simi-
larly, the transition probability of a phenotype h; to a phe-
notype h; in the network is calculated by replacing the gene
adjacency matrix Ag with phenotype adjacency matrix Ap ,
and gene to phenotype bipartite connections B with pheno-
type to gene bipartite connections B’ in Eq. (3). The transi-
tion probability for a gene g; to a phenotype h; in the
network can be calculated using.

B NTBGL K
Wer (i, 7) = LLBW’Zf; 6 B2 @

0, otherwise

Equivalently, phenotype transition matrix Wp is created
using Eq. (4) by replacing the gene to phenotype bipartite
connections B with phenotype to gene bipartite connections
BT. Egs. (3) and (4) imply that higher values of \ increases
the utilization of bipartite relations instead of gene and phe-
notype networks.

RWR can run on the heterogeneous network of genes and
phenotypes utilizing the transition matrix W. Let py and p;
be state vectors that represent the probability distribution of
genes and phenotypes in the network at step 0 and ¢, respec-
tively, and r represents the restart probability of random
walk to specified seed nodes. p;,; is computed using.

pie1 = (L —1) Wp, +1po (5)

RWR-MH was developed to extend this approach by
combining multiple gene networks into a multiplex gene
network and utilizing the heterogeneous network consisting
of gene-disease connections and a single-layer disease net-
work [17]. They generated a multiplex gene network by
combining L undirected gene networks that share a set of n
genes. If a gene exists in only some of the gene layers, then
it is added to the multiplex gene network with nonzero
edge weights in these layers only, and with 0 edge weight
in the other layers. The single network of genes and pheno-
types is called as layer in the rest of the paper.

Multiplex gene network is represented as nL x nL size
square matrix as in Eq. (6) where n is the number of genes,
L is the number of gene layers and § is the jumping proba-
bility of random walk to other gene layers.

(1—8)A irsyid !
WI (1- 5)142 . (LSTQI
Anc = , : ,
! syt (1—25)AL

(6)

In Eq. (6), A’ represents the adjacency matrix of the i™
gene layer, and [ is the identity matrix. Main diagonal ele-
ments of Ay matrix represent transitions within a single
layer and other elements of the matrix represent the transi-
tions between different layers of the multiplex gene network.
The default value of § = 0.5, giving equal weight to either to
stay in the current gene layer or jump to another gene layer.

We extend RWR-MH algorithm by making it compatible
with multiplex phenotype networks. We create multiplex
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phenotype adjacency matrix, A;p represented in Eq. (7), by
combining K undirected weighted phenotype layers with m
phenotype nodes. Ay;p is mK x mK size square matrix, and ¢
is the jumping probability of random walk to other pheno-
type layers within the multiplex phenotype network

(1-2¢)A! (K—{DI (KC_I)[
(KEI) I (1 - ;)AQ cee (Kil) I
App = : .
wn! e (1-¢)A"

(7

In Eq. (7), A’. represents the adjacency matrix of the i
phenotype layer and I is the identity matrix. Like Ajzq,
diagonal elements of Aj;p matrix represent transitions
within the single phenotype layer and other elements of the
matrix represent the transitions between different layers of
the multiplex phenotype network. The default value of ¢ is
set to 0.5, giving equal weight to either to stay in the current
phenotype layer or jump to another phenotype layer. To
connect the multiplex gene and phenotype networks we
integrate B! (!+/) jdentical bipartite adjacency matrices.
Bipartite adjacency matrix Bygap, which has a size of nL x
mK is created as in Eq. (8). Within Bjgap bipartite matrix,
B bipartite matrix represents the connections for the i™
gene layer to the j™ phenotype layer.

BLEK

nxm

Bll

nxm

Buyour = : : (®)

L LK
BTI)%77?, anm

In PhenoGeneRanker, the column-normalized transition

matrix of multiplex heterogeneous network is encoded by a

matrix WP/L(’,rwGU'neRa'nkm‘ asin Eq (9)

Wi

Wacnp
9)
Wipnc ¢

WPhenoG eneRanker = WAIP

In Eq. (9), W) is the transition matrix of the multiplex
gene network, Wyp is the transition matrix of the multiplex
phenotype network, Wypy is the transition matrix of the
multiplex phenotype-multiplex gene bipartite network, and
Wcup is the transition matrix of the multiplex gene-multi-
plex phenotype bipartite network (i.e., the transpose of
Warpnic). Wae is calculated using Eq. (3) by replacing the
Ag with Aye and B with Bygap matrices. Equivalently,
Wp is calculated using the same equation by replacing the
Ag with Ayp and B with Bypy matrices. Wygup and
Wrpnic; are calculated using Eq. (4) by replacing the matrix
B with Bygup and Buypug, respectively. The whole algo-
rithm is shown in Algorithm 1.

2.2 Running RWR on PhenoGeneRanker Transition
Matrix

To apply RWR using Eq. (5) to PhenoGeneRanker transition

matrix we need to modify the vectors p;.1, p; and p in the

equation for multiplex heterogeneous network structure.

W bhenoGene Ranker 18 (ML + mK) x (nL + mK) square matrix, and
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the dimension of the state vectors is nL. + mK. Therefore, we
modify the state vectors to hold the state for n genes from
each L gene layer and m phenotypes from each K phenotype
layer.

Algorithm 1. PhenoGeneRanker algorithm for generat-
ing the final transition matrix and power-iterator compu-
tation of propagation scores.

Input: Multiple gene, phenotype networks, a bipartite con-
nection network.
L: number of gene layers, K: number of phenotype layers,
n: number of genes, m: number of phenotypes

1 Generate multiplex gene adjacency matrix Ay, (See Eq. 6)

2 Generate multiplex phenotype adjacency matrix App (See
Eq.7)

3 Generate bipartite adjacency matrix Byigmp (See Eq. 8)
4 fori=1:ndo
5 forj=1:mdo
6 if Gene i has edge(s) with Bphenotypes then
7 Wienp (i, j) = W
8 else ko1 B F)
9 W]\,j(;]\,jp(i, ]) =0
10 end
11  end
12 end

13 fori=1:mdo
14 forj=1:ndo
15 if Phenotype i has edge(s) with genes then

16 Wapna (i, j) = éi(#
17 else k=1 BB
18 Wurna (i, 7) =0

19 end

20 end

21 end

22 fori=1:ndo
23 forj=1:mdo
24 if Gene i has no edge with phenotypes then

75 W (i, §) = A\[c(

26 else 1 A“”(’“‘ k)
27 Wi (i, j) = gl
78 end Do Ana iy )
29 end

30 end

31 fori=1:mdo
32 forj=1:ndo
33 if Phenotype i has no edge with genes then

34 Wup(i, j) = 77§}{P(1 J)
35 else - AMP(I k)
37 end b1 AMP(L k)
38 end

39 end

40 Generate final transition matrix WeyenoGene Ranker (See Eq. (9))

41 Initialize py with gene and phenotype seed nodes (See Eq.
(10))

42 while not converged do

43 Pi+1 = (1 - T) WPhenoGeneRankerpL + TPo

44 end

45 Calculate p values (See Algorithm 2)

po state vector holds the initial states of the nodes, which
correspond to the seeds used for RWR. py is initialized using
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7, ¢ and n parameters to control the restart probabilities to
each gene, phenotype layer and multiplex network, respec-
tively. 7 is defined as 7 =[ 73 71| for gene layers
[17] where t; is n size vector for n genes. We introduced ¢ as
¢ =[¢ ¢x ] for restart probabilities to phenotype
layers where ¢, is m size vector for m phenotype nodes. By
default, we use equal restart probabilities to gene and phe-
notype layers using [z, ¢] vector. The importance of gene
and phenotype layers can be adjusted by modifying r and ¢
parameters.

The restart probability to multiplex gene and phenotype
networks can be set by 7. High n means that RWR will
restart more likely to phenotype multiplex network. Initial
state vector py is set by using.

Do = {(1—'7)100}

nvo

(10

In Eq. (10), ug and v, represent the probability distribu-
tions of genes and phenotypes, respectively, in p, after
applying [z, ¢] normalization;py = [t, ¢] - py, where “-” is
element-wise multiplication. Eq. (5) is run until p; reaches a
stationary state distribution. Then random walk scores of
genes and phenotypes are calculated by taking the geomet-
ric mean of L and K layer scores of genes and phenotypes,

respectively.

Algorithm 2. Calculation of Empirical p Values.

Input: Sample N random gene and phenotype seed sets
using stratified random sampling strategy based on node

degree.
1 foreach i € Genes U Phenotypes do
2 forj=1:Ndo
3 Initialize py with random seeds (See Eq. (10))
4 while not converged do
5 Pt+1 = (1 - T) WPh,ﬂnoGenﬂRu,n,kﬂ'r'pt + TPo
6 end
7 Calculate random rank rank;, ;
8 if rank; ; < (rank;, acua + offset) then
9 rankf(i, j) =1
10 else
11 rankf(i, j) =0
12 end
13  end N v
14 pvalue; = w
15 end

2.3 Empirical p Value Calculation

Network propagation-based gene prioritization methods
are known to be biased toward the high-degree nodes in the
network [10]. The rank of a node is determined by two crite-
ria: topology of the underlying network and closeness to the
seed nodes used for the information propagation. To assess
the degree bias of each node rank, PhenoGeneRanker
employs an empirical p value calculation based on random
seeds. A low p value suggests that the rank of the node is
due to its closeness to the seed nodes and its degree
together, whereas a high p value suggests that the rank of
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the node is due to its degree rather than its closeness to the
seed nodes.

PhenoGeneRanker randomly samples seed nodes using
stratified sampling based on the degree of the gene and the
phenotype nodes in the network and performs gene and
phenotype prioritization. The number of random seed
nodes is set same as the number of actual gene and pheno-
type seeds. This process is repeated N times where N =
1000 by default. The p values are calculated based on:

Z?:l rankf (i,7)

N 11

p value; =

In Eq. (11), rankf(i, j) is an indicator function, and
rankf(i, j) = 1 if rank of gene ¢ for 4™ iteration rank;; <
(rank;, aeua + offset), and 0 otherwise. rank;, geiuq is the
rank of gene i using actual seeds and we set offset to 100 and
5 for gene and phenotype p value calculations, respectively,
with the assumption that number of phenotype nodes is in
the order of 100. Adding an offset value to the comparison
ensures realistic p values particularly for the top-ranked
nodes; otherwise, it would be biased to get extremely low p
values for the top-ranked nodes. The calculation of p values
is shown in Algorithm 2.

2.4 Complete Multiplex Heterogeneous Network for
Rat Organism

To rank the rat genes to discover hypertension disease-

related genes, we applied PhenoGeneRanker on a previ-

ously created multiplex heterogeneous rat network [21].

Below we briefly describe the generation of this multiplex

heterogeneous network of rat genes and strains.

First, we created a three-layer gene interaction network,
namely co-expression, PPI and pathway layers. We utilized
the RNA-seq expression dataset from the Gene Expression
Omnibus (GEO) [22] database (GSE50027) to create a liver
gene co-expression layer from six Lyon Hypertensive (LH)
and six Lyon Normotensive (LN) rats [23]. We downloaded
rat PPI dataset from the STRING V11 database [62] and fil-
tered the dataset to use only physical interactions. We cre-
ated the pathway layer using the pathway annotation of
genes and the pathway ontology tree from the Rat Genome
Database (RGD) [24]. We calculated the semantic similarity
scores of genes using the ontologyX R package [25]. Ontol-
ogy-based semantic similarity measures the degree of relat-
edness between two entities by the similarity in meaning of
their annotations over a set of ontology terms by utilizing
the graph representation of the terms [26].

Next, we created a three-layer phenotype network for rat
strains, utilizing RGD annotation data of mammalian phe-
notype ontology (MPO) term-based similarity, disease
ontology (DO) term-based similarity and quantitative phe-
notype (QP) measurements-based similarity of strains [27].
All strain layers were created based on their similarity to
each other in the hypertension disease context. We com-
puted a vector of semantic similarity scores of each strain
that represents its similarity to the set of hypertension dis-
ease-related MPO terms (Supplementary Table 1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2021.3098278.)
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and DO terms (Supplementary Table 2, available online).
Then, we calculated the similarity of strains based on DO
and MPO by dot-product of those semantic similarity vec-
tors. We used the quantitative phenotype measurements,
namely systolic blood pressure, heart rate and heart weight
annotated to the samples for various strains in RGD to cre-
ate the QP measurements-based strain similarity layer by
calculating Euclidean distance of those measurements.

2.4.1 Gene-Strain Bipartite Layer

The gene-strain bipartite layer connects the multiplex gene
and strain networks based on their semantic similarity of
MPO annotations. To make the gene-strain bipartite layer
context specific, similar to MPO and DO-based strain simi-
larity layers, we calculated a semantic similarity vector for
each gene and strain that represents their similarity to the
set of hypertension disease-related MPO terms. In order to
include more genes into the bipartite layer, we downloaded
MPO annotations of mouse orthologs of rat genes from
Mouse Genome Informatics [28].

All the layers were composed of undirected and
weighted edges. Edge weights for all networks were scaled
to [0.001, 1] interval.

2.5 Seeds and Restart Probabilities

Seeds are used as information sources for the RWR algo-
rithm. The RWR algorithm restarts to the seed genes and
strains at each restart based on the probability value set by
the parameter n, v and ¢. Lower n means RWR is more
likely to restart to gene seeds. We set 5 = 0.5 for our per-
formance analysis. 7 and ¢ vector parameters are used to
give different weights to individual gene and phenotype
layers, respectively. PhenoGeneRanker sets the default val-
ues to give equal weights to the individual layers.

2.6 Ranking Hypertension Disease-Related Genes
and Strains

To determine the ground truth hypertension disease-related
genes, we used the rat gene disease annotations in RGD. We
included hypertension disease-annotated genes with exper-
imental evidence codes only, then excluded the genes hav-
ing only expression-based experimental evidence codes
(Supplementary Table 3, available online). We used 167
hypertension disease-related rat genes in our experiments.
To evaluate the performance of PhenoGeneRanker, itera-
tively we used one hypertension disease-related gene as
seed gene with one fixed strain seed and measured the rank
of the remaining genes. To determine the fixed strain seed,
we selected strains that had DO and MPO annotations and
QP measurements at the same time to be able to utilize all
the phenotype layers effectively. Then, we ranked the
strains by their measurement values of systolic blood pres-
sure, heart rate, and heart weight, and picked the top strain
according to this rank as the seed strain for each run. We
used only statistically significant ranks based on their corre-
sponding empirical p value for the performance evaluations
of the ranks (p < 0.05).

To determine the set of hypertension disease-related
strains, we used the hypertension disease-related DO anno-
tations of strains in RGD. We labeled strains that are
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Fig. 2. Effects of different combinations of phenotype and gene layers on the CDF of hypertension disease-related strains ranks. A) Multiplex pheno-
type network vs aggregated phenotype network. B) Multiplex phenotype networks vs. phenotype network of single layer. Multiplex network of PPI,
PWY, EXPR were used in A and B. C) Multiplex gene network vs. aggregated gene network, multiplex network of MPO and QP were used in C. Mx:
Multiplex; Agg.: Aggregated.; PPI: Protein-protein Interaction; PWY: Pathway; EXPR: Co-expression.

annotated with these terms as hypertension disease-related
strains. There were 78 hypertension disease-related strains
in our experiments. Similar to evaluation of gene ranks, we
iterated the set of hypertension disease-related strains. At
each iteration we used one hypertension disease-related
strain as seed strain with one fixed gene seed and measured
the rank of the remaining strains. We selected the fixed
gene seed from the set of hypertension disease-related
genes having the most diverse and highest number of
experimental annotations. Since we used the DO annota-
tions to determine the set of hypertension disease-related
strains, we did not use the DO-based strain similarity layer
in the network combinations to rank the strains. To deter-
mine the statistically significant strain ranks, we used p <
0.1 as opposed to p < 0.05 threshold because the number of
statistically significant ranks at p < 0.05 was only 12.

3 RESULTS

We developed PhenoGeneRanker as a Bioconductor pack-
age to rank genes and phenotypes using the RWR algorithm
on a multiplex heterogeneous network of genes and pheno-
types. PhenoGeneRanker integrates multiplex gene and
phenotype networks and computes the empirical p values
of the ranks to prevent the bias inherent in RWR.

To evaluate the performance of PhenoGeneRanker, we
applied it to rat model organism datasets to rank the hyper-
tension disease-related rat genes and strains. To assess the
impact of multiplexity on the performance, we generated
different combinations of gene and phenotype networks.
We generated heterogeneous networks involving single
gene and phenotype layers, and multiplex and aggregated
gene and phenotype networks. We created aggregated net-
works by taking the union of the single layers and calculat-
ing the geometric means of weights of common edges
across layers. We conducted GO enrichment analyses for
the top- and bottom-ranked genes. Finally, we investigated
the effects of PhenoGeneRanker hyperparameters on the
gene and strain ranks. To measure the performance of
PhenoGeneRanker, we used cumulative distribution func-
tion (CDF) plots of statistically significant gene and pheno-
type ranks. For a fair comparison, we used the intersection

of the statistically significant gene and strain ranks in the
compared combinations when generating the CDF plots.
We used the Kolmogorov-Smirnov test implementation in R
[29] to generate p values for the comparisons of the CDFs.
To ensure statistical power in comparing CDFs, we only
plotted a pair of CDFs if they have rankings of at least 30
genes/phenotypes in common.

3.1 PhenoGeneRanker Was More Efficient on
Multiplex Phenotype Network Than on
Aggregated and Single Layer Phenotype
Networks on Strain Ranking

Unlike the previous RWR algorithms PhenoGeneRanker can
utilize a multiplex phenotype network as well as a multiplex
gene network. To evaluate the impact of phenotype network
multiplexity on the performance of PhenoGeneRanker based
on strain ranking, we used MPO and QP layers to create mul-
tiplex, single, and aggregated phenotype networks. Pheno-
GeneRanker performed significantly better on multiplex
phenotype network than on the aggregated phenotype net-
work on strain ranking (p < 0.001) (Fig. 2A). The perfor-
mance difference of PhenoGeneRanker on multiplex
phenotype network and network of single MPO layer was
even higher than the difference compared to aggregated net-
work (p < 0.001) (Fig. 2B). We could not compare the perfor-
mance of PhenoGeneRanker on multiplex network with
network of the single QP layer, as the number of common
strain ranks was only two between the two results. Fur-
ther, we analyzed the effect of the multiplex gene network
on the phenotype ranks by comparing it to the aggregated
gene network. We observed that usage of a multiplex gene
network slightly improved the hypertension disease-
related strain ranks, but the difference was not significant
(Fig. 20).

3.2 PhenoGeneRanker Was More Efficient on
Multiplex Gene Networks Than on Aggregated
Gene Networks on Gene Ranking

To evaluate the impact of gene network multiplexity on the

performance of PhenoGeneRanker based on gene rankings,

we compared the performance of PhenoGeneRanker on
different combinations of multiplex and aggregated gene
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hypertension disease-related gene ranks. For all configurations three phe-
notype layers are used as multiplex phenotype network. Mx: Multiplex;
Agg.: Aggregated. PPI: Protein-protein Interaction; PWY: Pathway; EXPR:
Co-expression.

networks We observed that PhenoGeneRanker performed
significantly better on each multiplex gene network than on
its aggregated counterpart (Fig. 3).

To assess the impact of individual gene layers on gene
ranking, we computed the performance of PhenoGeneRanker
when one or two of gene layers were eliminated (Fig. 4). For
these comparisons, we used the multiplex phenotype network
of three phenotype layers. We observed that the performance
of PhenoGeneRanker based on gene ranking slightly but sig-
nificantly dropped when co-expression (Fig. 4A) or PPI layer
(Fig. 4C) was not utilized (p < 0.001). On the other hand, we
did not observe a significant performance change when the
pathway layer was not utilized (Fig. 4B). PhenoGeneRanker
performed slightly better on multiplex network of PPI and
pathway for the lower gene ranks than on multiplex network
of three gene layers (Fig. 4A). Increased performance differ-
ence of PhenoGeneRanker utilizing multiplex gene network
and PPI network was evident except for the gene ranks lower
than 10 (Fig. 4D). Interestingly, PhenoGeneRanker utilizing
the single PPI layer performed better for the top 10 gene ranks.
PhenoGeneRanker performed better on the multiplex gene
network compared to single pathway network for the gene
ranks lower than 100 (Fig. 4E). Finally, PhenoGeneRanker per-
formed better on the multiplex gene network compared to the
single co-expression network for the gene ranks lower than 75
(Fig. 4F).

3.3 PhenoGeneRanker Top-Ranked Genes Were
Enriched in Hypertension Disease-Related GO
Terms

We performed a Gene Ontology (GO) enrichment analysis

on the top-ranked genes predicted by PhenoGeneRanker to
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assess their role in hypertension-related biological pro-
cesses. To do this, we used all the 167 hypertension disease-
related genes as gene seeds and all the hypertension dis-
ease-related strains as strain seeds. We ran PhenoGeneR-
anker using multiplex gene network of three gene layers
and multiplex phenotype network of three strain layers.
The 185 top-ranked significant genes identified by Pheno-
GeneRanker were submitted to the Multi-Ontology Enrich-
ment Tool (MOET) available at RGD'. GO: Biological
Processes (BP) enrichment analysis identified 824 terms
with Bonferroni Corrected enrichment p < 0.001 (Table 1).
In comparison, the 185 genes with the lowest ranking had
only two enriched terms with corrected p < 0.001. The
hypertension-related terms ‘blood circulation (GO:0008015)’
and ‘circulatory system process (GO:0003013)" were the top
two most significant GO:BP in the top-ranked genes,
whereas no hypertension- or cardiovascular-related terms
were enriched in the bottom-ranked genes.

Further, we performed a deeper analysis using the
enriched GO terms for hypertension disease-related genes.
We chose the enriched GO:BP terms at Bonferroni corrected
p value < 0.001 and compared their p values for the Pheno-
GeneRanker-ranked genes in different quartiles (Fig. 5). We
observed a high concordance in GO:BP terms between the
genes in the highest-ranked quartile and terms enriched in
established hypertension disease-related genes.

3.4 Hyperparameter Analysis

Hyperparameters of PhenoGeneRanker can be classified as
transition matrix-related hyperparameters and RWR-
related hyperparameters. Fig. 6 shows the effect of each
hyperparameter perturbation on the CDF of statistically sig-
nificant hypertension disease-related gene ranks. While one
parameter was being perturbed, other parameters were
fixed to their default values. We used the multiplex hetero-
geneous network of three gene layers and three phenotype
layers for the hyperparameter analysis.

3.4.1 Transition Matrix Hyperparameters

Transition matrix-related hyperparameters of PhenoGeneR-
anker are A\, § and ¢ with default value of 0.5.

Parameter A is the probability of jumping between multi-
plex networks of genes and phenotypes. By increasing A,
PhenoGeneRanker gives a higher weight to the bipartite
relations between genes and phenotypes. We observed the
highest and lowest gene ranking-based performance when
A = 0.9 and A = 0.1, respectively (p < 0.001) (Fig. 6A).
The performance of the high value of A indicates the high
contribution of the bipartite layer of genes and phenotypes
to hypertension disease-related gene ranks. We could not
analyze the effect of A\ on strain ranks as the numbers of
common strain ranks for the network combinations of dif-
ferent \ values were less than 30.

Parameter § is the inter-layer jump probability within the
multiplex gene network. High § means high likelihood to
jump to other gene layers within the multiplex gene net-
work. Gene ranking-based performance was significantly
better when § = 0.1 or § = 0.5 compared to § = 0.9

1. https:/ /rgd.mcw.edu/rgdweb/enrichment/start.html
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TABLE 1

Enriched GO: BP Terms in Top- and Bottom-Ranked Genes

From PhenoGeneRanker

GO:Biological Process (BP) Term

Genes (#) Corrected p

value

Top-Ranked Gene Enrichment
blood circulation (GO:0008015) 74 3.81E-62
circulatory system process (GO:0003013) 75 7.42E-62
regulation of biological quality 144  2.33E-57
(GO:0065008)
homeostatic process (GO:0042592) 107  1.55E-54
chemical homeostasis (GO:0048878) 89 6.01E-50
regulation of multicellular organismal 117 1.75E-47
process (GO:0051239)
response to oxygen-containing compound 106  4.61E-46
(GO:1901700)
regulation of system process (GO:0044057) 66  5.08E-46
cellular response to chemical stimulus 124 1.89E-45
(GO:0070887)
response to endogenous stimulus 97 9.45E-43
(GO:0009719)
Bottom-Ranked Gene Enrichment:
homophilic cell adhesion via plasma 12 2.01E-07
membrane adhesion molecules
(GO:0007156)
cell-cell adhesion via plasma-membrane 14 4.74E-07

adhesion molecules (GO:0098742)

“Top 10 enriched terms from 824 terms with Bonferroni corrected p<0.001.

(p < 0.01) (Fig. 6B). For the lower gene ranks, gene ranking-
based performance was slightly but insignificantly better
when § = 0.1 compared to § = 0.5 (p = 0.4). On the
other hand, strain ranking performance was significantly
better when § = 0.9 compared to § = 0.1 and § = 0.5
(p < 0.001) (Fig. 7A).

Parameter ¢ is the inter-layer jump probability within the
multiplex phenotype network. High ¢ means high likeli-
hood to jump to other phenotype layers within the multi-
plex phenotype network. There was no distinguishable
effect of different ¢ values on the performance of hyperten-
sion disease-related gene ranks (Fig. 6C). When ¢ = 0.1,
PhenoGeneRanker had a slightly but insignificantly higher
strain ranking-based performance than cases when ¢ = 0.5
and ¢ = 0.9 (Fig. 7B).

3.4.2 RWR Hyperparameters

RWR-related hyperparameters of PhenoGeneRanker with
default values are: r=0.7, n=0.5, t=(1/L,1/L,...1/L)
and¢p = (1/K,1/K,...,1/K).

The global restart probability for RWR, r, controls the
probability of jumping back to the seed nodes during the
random walk. Fig. 8 shows the effects of different r values
on the CDF of hypertension disease-related gene ranks. We
observed that PhenoGeneRanker had a significantly higher
gene ranking-based performance for » = 0.7 and » = 0.9
compared tor = 0.1 (p < 0.001). Overall, as the value of



2958

Fig. 5. Heatmap of the negative log of GO enrichment results for ranked
gene sets from different quartile intervals. PhenoGeneRanker ranked
genes using three-layer multiplex gene and phenotype networks with the
hypertension disease-related genes and strains as seeds. Reference
GO:BP terms are selected from the enriched terms for hypertension dis-
ease-related genes at Bonferroni corrected p < 0.001 significance level.

increased, the performance got better. Larger r values cause
RWR not to diffuse the information to the farther distances,
rather it keeps the diffusion close to the seed node. Better
performance of higher value of r indicates that the hyper-
tension disease-related genes were close to each other in the
network. We could not analyze the effect of r on strain ranks
as the numbers of common strain ranks for the network
combinations of different  values were less than 30.
Parameter 5 is the probability of restarting to a gene or
phenotype seed in the network. High value of n means a
high likelihood to restart to a phenotype seed.
PhenoGeneRanker’s gene ranking-based performance was
significantly better for n = 0.9 and n = 0.5 compared to
n = 0.1 (p < 0.001) (Fig. 6D). This result suggests that
strain network has more contribution on the ranks of hyper-
tension disease-related genes than the gene network. This
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could be due to the high number of hypertension disease-
related genes (161 out of 167) that have connections to all
the strains in the bipartite layer. Utilization of strain layers
has larger effect on hypertension disease-related gene ranks,
because of the existing bipartite relations between hyperten-
sion disease genes and strains. This result was consistent
with the perturbation of the A, for higher values of which
PhenoGeneRanker utilized the bipartite layer more and
achieved higher gene ranking-based performance (Fig. 6A).
We could not analyze the effect of 5 on strain ranks as the
numbers of common strain ranks for the network combina-
tions of different n values were less than 30.

Parameter v is the restart probability vector for gene
layers. Different weights to different gene layers can be
given by changing the specific values in 7. We observed that
the results from perturbation of r (Fig. 6E) were consistent
with the results generated by different multiplex gene net-
works combinations (Section 3.2). We observed that path-
way layer was contributing more to the strain ranks,
compared to the co-expression layer (Fig. 7C). All CDFs in
Fig. 7C were significantly different from each other at p <
0.001 level except for the CDFs for v = (1, 1, 1)/3 vs.
r = (0.1, 1, 1.9)/3.

Parameter ¢ is the restart probability vector for PhenoGe-
neRanker to different phenotype layers. Different weights to
different phenotype layers can be given by changing spe-
cific values in ¢. We observed that there was no discernable
effect of ¢ on the gene rank performance of PhenoGeneR-
anker (Fig. 6F). On the other hand, giving higher weight to
the QP layer generated significantly better strain ranks com-
pared to giving higher weight to the MPO layer (p < 0.001)
(Fig. 7D), indicating a larger contribution of quantitative
phenotype measurements on the strain ranks.

7 DISCUSSION

In this study we developed PhenoGeneRanker, a Biocon-
ductor package that ranks genes and phenotypes using the
RWR algorithm on a multiplex heterogeneous network of
genes and phenotypes. PhenoGeneRanker integrates multi-
plex gene and phenotype networks and computes the
empirical p values of the ranks to prevent the bias inherent
in RWR.

We applied PhenoGeneRanker on multidimensional rat
genotype and phenotype datasets to prioritize hypertension
disease-related rat genes and strains. To evaluate PhenoGe-
neRanker, we ran it using single gene and strain seeds, and
ranked the remaining hypertension disease-related genes
and strains. We plotted the rankings for each network/
hyperparameter combination using empirical CDFs.

We showed that PhenoGeneRanker performed better on
multiplex phenotype networks than on single and aggre-
gated phenotype networks and ranked more hypertension
disease-related strains in the lower ranks (Figs. 2A and 2B).
PhenoGeneRanker also performed slightly but insignif-
icantly better at ranking hypertension disease- related
strains while utilizing multiplex gene networks compared
to aggregated gene networks (Fig. 2C).

Furthermore, we compared the performance of Pheno-
GeneRanker using multiplex, aggregated and single gene
layer network combinations on ranking hypertension
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Fig. 6. Effect of different hyperparameters on the CDF of statistically significant hypertension disease-related gene ranks. Panels A-C show the
effects for transition matrix-related hyperparameters. Panels D-F show the effects for RWR related hyperparameters. All other parameters were fixed
at default values while a hyperparameter was perturbed. Multiplex and heterogeneous networks of three gene layers and three phenotype layers
were used. The order of gene layers for hyperparameter r was PPI, pathway and co-expression. The order of phenotype layers for hyperparameter ¢

was DO, MPO and QP

disease-related genes. Overall, we showed that PhenoGe-
neRanker utilizing multiplex gene networks performed bet-
ter in ranking hypertension disease-related genes than the
aggregated networks as multiplex networks preserve the
different topologies of individual layers [30] (Figs. 3 and 4).

We conducted a GO enrichment analysis of statistically sig-
nificant genes within top 200 ranked genes, after running Phe-
noGeneRanker with all hypertension disease-related genes
and strains as seeds. We then compared the overrepresented
terms in each quartile of the ranked list with that of known
hypertension-related genes. There was substantial enrich-
ment in GO:BP terms related to hypertension with the stron-
gest concordance in the highest ranked quartile, indicating
that PhenoGeneRanker predicted hypertension-related genes
with high confidence (Fig. 5). PhenoGeneRanker also identi-
fied genes that had not previously been annotated for hyper-
tension-related disease at RGD. For example, Ptgerl, ranked
10" by PhenoGeneRanker, has three publications indicating
its involvement in hypertension disease [31], [32], [33]. Other
examples include Gnag [34], [35], ranked 40" and Gnal1 [36],
ranked 42" by PhenoGeneRanker.

PhenoGeneRanker has several hyperparameters that
could be grouped into transition matrix- and RWR-related
hyperparameters. We analyzed the effects of hyperpara-
meters on gene and strain ranking-based performance. We
observed that perturbation of )\, the jumping probability
between multiplex gene and phenotype networks, and 7,
probability to restart to either a gene or phenotype seed
showed substantial performance differences. This indicates

that bipartite connections in heterogeneous networks have
huge impact on the rankings of genes and phenotypes. Fur-
thermore, perturbation of 7, the probability of restarting to
single gene layers, and ¢, the probability of restarting to sin-
gle phenotype layers showed some performance differences
in the gene and strain ranks. Those parameters can be tuned
to get higher performance using the labeled data as we did
in this study.

PhenoGeneRanker is a powerful network analysis tool as
it enables the early integration of multiple gene and pheno-
type datasets. It addresses the high-degree node bias by
generating empirical p values for the gene and phenotype
ranks. It has some limitations; it cannot utilize directed net-
works, which could provide more fine-grained information.
Moreover, available datasets might have patterns of missing
data [5] and usually they are not specific for a particular
complex trait in question [23]. Finally, it has recently been
shown that mutated genes can cause rewiring of molecular
interactions [37]. Since PhenoGeneRanker is an unsuper-
vised network propagation tool, it cannot handle the non-
condition specific datasets efficiently. Developing a super-
vised network propagation tool to prioritize genes and phe-
notypes could address those challenges.

In this study, we used PhenoGeneRanker for the prioritiza-
tion of hypertension disease-related genes and strains. There
are several other researches that investigate disease micro-
RNA or IncRNA associations [38], [39], [40], [41]. PhenoGe-
neRanker can directly be applied for these research problems
by utilizing relevant biological networks. Furthermore, it can
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also be utilized effectively with other research problems such
as drug-gene interaction studies where the researcher is inter-
ested in prioritizing both type of nodes simultaneously.
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