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Abstract—Accurate and rapid diagnosis of coronavirus disease 2019 (COVID-19) from chest CTscans is of great importance and

urgency during the worldwide outbreak. However, radiologists have to distinguish COVID-19 pneumonia from other pneumonia in a

large number of CTscans, which is tedious and inefficient. Thus, it is urgently and clinically needed to develop an efficient and accurate

diagnostic tool to help radiologists to fulfill the difficult task. In this study, we proposed a deep supervised autoencoder (DSAE)

framework to automatically identify COVID-19 using multi-view features extracted from CT images. To fully explore features

characterizing CT images from different frequency domains, DSAE was proposed to learn the latent representation by multi-task

learning. The proposal was designed to both encode valuable information from different frequency features and construct a compact

class structure for separability. To achieve this, we designed a multi-task loss function, which consists of a supervised loss and a

reconstruction loss. Our proposed method was evaluated on a newly collected dataset of 787 subjects including COVID-19 pneumonia

patients, other pneumonia patients, and normal subjects without abnormal CT findings. Extensive experimental results demonstrated

that our proposed method achieved encouraging diagnostic performance and may have potential clinical application for the diagnosis

of COVID-19.

Index Terms—COVID-19, deep supervised autoencoder, multi-view features, multi-task learning
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1 INTRODUCTION

SINCE the coronavirus disease 2019 (COVID-19) caused by
severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) was first reported in December 2019, in Wuhan,
China [1], it has brought tremendous panic all around the
world. The challenges related to the shortage of medical
resources and staffs in the global medical system posed by

COVID-19 remain intractable. As of January 29, over one
hundred million cases were confirmed in the world [2].
Given the facts that COVID-19 is highly contagious and no
effective vaccine is routinely used in clinical practice, strict
prevention and early diagnosis remain the most effective
way to fight the outbreak of COVID-19.

Reverse-transcription polymerase chain reaction (RT-
PCR) has become standard of care in the diagnosis of
COVID-19 [3]. However, its inherent disadvantage, that is
false negative, can limit the clinical applicability to early
diagnose the disease [4], [5]. A delayed diagnosis can
increase the risk of viral transmission, which is not condu-
cive to the epidemic prevention and control. Therefore, a
more sensitive diagnostic tool is urgently needed. Com-
puted tomography (CT) has played a vital role in the screen-
ing, diagnosis and evaluation of treatment response of
COVID-19 [6], [7], [8]. More importantly, previous studies
have reported that some patients have typical chest CT scan
findings and symptoms for COVID-19 but their initial RT-
PCR results are negative [5], [9], [10]. In this context, CT
was considered as a clinical diagnostic tool in China and
helped us to screen out and isolate suspected cases. In this
way, a lot of cases were timely diagnosed and the spread of
virus had been substantially avoided. Although CT has
high sensitivity, it has pitfalls such as a relatively low speci-
ficity. The typical imaging findings of COVID-19 pneumo-
nia are bilateral and peripheral ground-glass and
consolidative opacities [6], [11]. However, other lung dis-
eases may also present the aforementioned imaging mani-
festations [9], [12]. Moreover, accurately differentiating
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COVID-19 pneumonia from other pneumonia in a large
number of CT examinations is a tedious and inefficient
work, which could compromise the accuracy. In this con-
text, it is urgently and clinically needed to find an efficient
and accurate diagnostic tool to help the radiologists to fulfill
this difficult task.

With the state-of-the-art data analysis strategy, artificial
intelligence (AI) technologies, especially convolutional neu-
ral networks (CNNs), have achieved remarkable success in
medical imaging analysis. Numerous studies have shown
great potential in automatic diagnosis of COVID-19 from
medical images [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24]. According to the difference of inputs and
screening classifiers, we categorize pioneering methods
used for classifying COVID-19 into four classes. The first
class is the feature engineering-based approaches that man-
ually annotate the infection areas, quantify radiomic fea-
tures, and then train machine learning classifiers based on
the features [17], [18]. A preliminary study conducted by
Fang et al. reported that some image biomarkers had strong
predictive power for screening out COVID-19 pneumonia
from CT images [17]. Subsequently, they built a radiomic
signature by combining clinical features and radiomic fea-
tures to improve the diagnostic performance [18]. However,
the number of data samples used in their studies is rela-
tively small, which requires further validation by larger pro-
spective multicenter studies.

The second class is the transfer learning-based methods
that take a series of CT slices as input, employ the state-of-
the-art pre-trained models as backbones to generate features
and perform slice-wise decisions [19], [20], [25]. Li et al. used
the segmented lung regions as input and employed Rest-
Net50 architecture, which won the first place in multi-intel-
ligence tasks [26], as the backbone to extract features for
differentiating COVID-19 pneumonia from community
acquired pneumonia and other lung diseases [19]. Similarly,
Bai el al. used EfficientNet architecture, which achieved
state-of-the-art accuracy on ImageNet and CIFAR-100 data-
sets [27], to distinguish COVID-19 from other pneumonia
with CT images [20]. Their high predictive performance
partially benefited from carefully preprocessed and selected
data, such as manual corrections and annotations.

The third class is the 3D CNNs-based methods that
directly take 3D CT images as input and train their pro-
posed 3D CNNs to identify COVID-19 pneumonia [21],
[22], [28], [29]. Wang et al. applied a 3D connected compo-
nent algorithm [30] for lesion localization in an unsuper-
vised manner, and then took 3D CT images with the
corresponding 3D lesion masks into a CNN model to gener-
ate the probabilities of COVID-19 positive and COVID-19
negative [21]. Although it is no longer required to manually
annotate the COVID-19 lesions on CT images, the segmenta-
tions they gained are still imperfect. To improve the accu-
racy of automatic identification of infected regions, Ouyang
et al. used an established segmentation model to automati-
cally extract the lung regions with infection lesions and put
them into a dual-sampling attention network to focus on
diagnosing COVID-19 pneumonia [22]. This work can avoid
errors that may be caused by intermediate processes, but
the reliability of their network needs to be trained with a
large amount of data.

The forth class is the representation learning-based meth-
ods that learn latent representation from CT images to diag-
nose COVID-19 pneumonia [23], [24]. Kang et al. explored
multiple features from infected lesions and designed a
multi-view representation-based framework for diagnosis
of COVID-19 [23]. Han et al. employed an attention-based
deep multiple instance learning to obtain bag representa-
tions and transformed them into final prediction by using
two fully connected layers [24]. Since they are highly predic-
tive and well interpretable, representation learning-based
approaches have great potential in diagnosing COVID-19.
Although significant advancements have achieved, the
diagnostic methods remain underexplored.

In this study, we proposed a classification framework
towards identify COVID-19 pneumonia rapidly and accu-
rately from other pneumonia and normal subjects. It is
worth noting that automatic and accurate segmentation of
COVID-19 or other pneumonia lesions from CT images is
extremely challenging due to complex and changeable man-
ifestations of pneumonia lesions. Since there is a large con-
trast difference between the lesion and the normal tissue in
the lungs, we employed a morphological technique to detect
lesions as an alternative for segmentation of lesions. To fur-
ther demonstrate the superiority of the alternative, we took
subjects without abnormal CT findings as normal group
into consideration for the triple classification task. Thus, we
only performed lung parenchyma segmentation from 3D
CT images using a pre-trained 3D U-Net model [31]. Then,
the lung parenchyma was texturized by using 3D wavelet
transform to capture multiple different frequency subbands.
We extracted the multiple features including gray features
and texture features from the subbands with different fre-
quencies, which were considered as a multi-view feature
set. Based on multi-view learning and supervised autoen-
coder [32], we designed a deep supervised autoencoder
(DSAE) to map the original features into a latent space, aim-
ing to learn informative and structured representations. A
series of experiments on a newly collected dataset from
multiple institutions were conducted to evaluate our pro-
posed method, and the results showed that our method
could achieve encouraging diagnostic performance. Our
main contributions are summarised as follows:

1) We employed a morphological technique, namely
3D wavelet transform, to decompose the original
image with its lung mask into multiple frequency
subbands, and then the features extracted from the
subbands constituted a multi-view features set for
diagnosis of COVID-19.

2) We proposed a DSAE network to map the original
features into a latent space to learn the latent
representation.

3) We developed a multi-task loss function to make the
latent representations more informative and
structured.

4) We evaluated the performance of the proposed
DSAE on a newly collected dataset from multiple
institutions and provided clinical insights for diag-
nosis of COVID-19.

The remainder of this paper is organized as follows.
Materials and methods are introduced in Section 2.
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Experiments and results are presented in Section 3. A dis-
cussion of our works is provided in Section 4. Finally, a brief
conclusion to this study is provided in Section 5.

2 MATERIALS AND METHODS

This retrospective study was approved by our Medical Ethi-
cal Committee (Approved Number.2020024), which waived
the requirement of informed consent of patients.

2.1 Dataset

In this study, we retrospectively included three groups.
First, 317 confirmed COVID-19 cases were collected from
nine institutions in Hunan Province, China (152 women,
165 men; mean age, 45.33 years � 19.41 [SD]; age range, 1-84
years), named as COVID-19 group. The inclusion criteria
for COVID-19 group were : 1) patients were confirmed as
COVID-19; 2) patients underwent CT scanning before or
upon admission; and 3) patients had abnormal CT findings.
Second, 248 cases of non-COVID-19 pneumonia were also
collected from our institution (103 women, 145 men; mean
age, 49.32 years � 19.49 [SD]; age range, 0-90 years), named
as non-COVID-19 group. The inclusion criteria for non-
COVID-19 group were: 1) patients were identified as com-
munity acquired pneumonia (CAP); and 2) patients had
imaging manifestations showing viral pneumonia but with-
out accurate diagnosis. Lastly, 222 cases without abnormal
imaging findings were retrieved from the picture archiving
and communication system (PACS) as a comparison (114
women, 108 men; mean age, 27.18 years � 18.90 [SD]; age
range, 0-57 years), named as normal group. The CT images
of all included cases were retrieved from PACS and anony-
mized for further investigation. Note that we only included
cases who had CT images with slice less than 5mm and
non-contrast enhanced CT images. For patients had multi-
ple CT scans, we only included the first CT scan images.
Finally, a total of 787 subjects were used in this study.
According to the data collection dates, we divided all

subjects into a primary cohort of 529 cases and a validation
cohort of 258 cases. The gender, age, and institution distri-
butions of the two cohorts are presented in Table 1.

2.2 Data Preprocessing

In this study, all CT images of each patient were first recon-
structed into a three-dimensional image using dcm2nii
package [33]. Then, each image was preprocessed with an
U-Net model [31], which is widely used in medical image
segmentation [34], [35], [36], to extract the lung paren-
chyma. To overcome the difference between the varying
thickness of samples, the volumetric data of lung paren-
chyma were resampled to 1mm� 1mm� 1mm voxel reso-
lution by the B-spline interpolation. After that, each
segmented volume was texturized by using 3D wavelet
transform (3D-WT) to capture eight different frequency sub-
bands (Fig. 1A). Each frequency subband was treated as a
view image. The 3D-WT provides a spatial and frequency
representation of the original signal. For a wavelet decom-
position, the 3D-WT can be denoted by a tensor product

V 3 ¼ ðLx �HxÞ � ðLy �HyÞ � ðLz �HzÞ
¼ LxLyLz � LxHyLz �HxLyLz �HxHyLz

� LxLyHz � LxHyHz �HxLyHz �HxHyHz;

(1)

where � and � represent a space direct sum and a convolu-
tion operation, respectively. Lg and Hg represent the low-
and high-pass filters along the g-axis, where g 2 fx; y; zg.

2.3 Multi-View Feature Extraction

Gray features, with a total of 18 features, mainly consist of
the first-order statistics which describe the distribution of
voxels within the volume of interest (VOI), such as entropy,
energy, maximum, mean, and so on. Texture features are
extracted from gray level co-occurrence matrix (GLCM, 24
features), gray level dependence matrix (GLDM, 14 fea-
tures), gray level run length matrix (GLRLM, 16 features),

TABLE 1
Clinical Characteristics of Patients in the Primary and Validation Cohorts

Note that data are presented as mean � SD, or n [%].
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gray level size zone matrix (GLSZM, 16 features) and neigh-
boring gray tone difference matrix (NGTDM, 5 features).
Thus, there are 93 radiomics features extracted from each
subband. A total of 744 radiomic features were extracted
from eight frequency subbands for each subject and
designed as multi-view features in this study.

2.4 Deep Supervised Autoencoder and
Representation Learning

The presence of heterogeneity in multiple frequency sub-
bands may provide additional information for the diagnosis
of COVID-19, and a multi-view learning-based approach
[37], [38] was used in this study. To effectively exploit these
features from multiple frequency subbands, a DSAE was
proposed to learn the latent representation by multi-task
learning.

2.4.1 Deep Supervised Autoencoder

Autoencoder is an artificial neural network designed to
learn latent data representations in an unsupervised man-
ner, which can optimally reconstruct the original data [39].
Therefore, autoencoder has been demonstrated the capacity
of reducing dimensionality [40], [41] and mining latent
fetures [42]. To learn latent representations with class struc-
ture, we proposed a DSAE framework for this diagnostic
task. The structure of our proposed DSAE shown in Fig. 1C
consists of three components: a) an encoder, which learns
the latent representations from the original input; b) a
decoder, which reconstructs the input from the latent repre-
sentations; and c) a supervisor, which structures the latent
representations and discriminates disease types. For our set-
tings, the encoder has three hidden layers with 256, 128, and
16 neurons, respectively, and the last hidden layer serves as
the representation layer. On the contrary, the decoder is
regarded as the reverse operation of the encoder. It has two
hidden layers with 128 and 256 neurons, and the output of
the decoder has the same size as the input layer of the
encoder. The supervisor is behind the representation layer
followed by a batch normalization layer, a dropout layer

with a drop rate of 0.5, and a classification output layer.
More formally, we defined the following notations. Let the
training samples be fxxn; yyngNn¼1, where xxn ¼ fxnjxn 2 R1�Mg
is a multi-view feature set (N and M represent the number
of samples and multi-view features, respectively.) and yyn ¼
fynjyn 2 f0; 1; 2ggNn¼1 is the corresponding label set. Gener-
ally, yn ¼ 0 indicates the non-COVID-19 patient, yn ¼ 1 indi-
cates the COVID-19 patient, and yn ¼ 2 indicates the normal
subject.

2.4.2 Representation Learning for Multi-View Features

To discover latent high-level representation for each subject,
the multi-view features were used as input and encoded
into a low-dimensional space. Then, the latent representa-
tion was reconstructed to the original dimension of the
input. The reconstruction error was minimized through
back propagation to learn two stable mappings, that is,
feð�; uueÞ in encoding path and fdð�; uudÞ in decoding path,
where uue and uud indicate the parameters of the two paths.
Let TTn denote the learned latent representation and x̂̂xn be
the decoded output. Thus, they can be formulated as

TTn ¼ feðxxn; uueÞ; (2)

x̂̂xn ¼ fdðTTn; uudÞ: (3)

Our proposed aotoencoder learns the latent representa-
tion by minimizing the mean squared error (MSE) loss func-
tion between the inputs and outputs. The reconstruction
loss is defined as

‘rðxxn; x̂̂xnÞ ¼ 1

N

XN
n¼1

kfdðTTn; uudÞ � xxnk22: (4)

2.4.3 Structure for Latent Representation

To make the learned latent representation of these different
pneumonia diseases well structured, a supervised block
was introduced in the representation layer. The advantage

Fig. 1. Overview of the proposed diagnostic framework. 3D U-Net model is first used to segment the lung parenchyma first from chest CT images,
and then 3D-WT is used to decompose each segmented volume into 8 different frequency subbands, as shown in A); B) the features extracted from
multiple frequency subbands are considered as multi-view feature set; and C) shows that deep supervised autoencoder we proposed jointly optimize
the supervised loss and reconstruction loss to learn the informative and structured latent representation.
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is that it enables the network to better learn latent represen-
tations associated with pneumonia diseases. Batch normali-
zation [43] and dropout [44] strategies were introduced into
the supervised block to reduce overfitting issues. And the
softmax layer was used to predict the subject class. The out-
put probability can be computed as

ŷðiÞn ¼ ezziPK
k¼1 e

zzk
; (5)

where ŷðiÞn denotes the probability of nth sample for class i. zz
is the output vector in last fully connected layer and K is
the number of classes. For this supervised task, we mini-
mized the cross-entropy loss function defined as (6) to
enforce the compactness for the same type of disease and to
present boundaries between COVID-19 pneumonia and
others.

‘cðyn; ŷnÞ ¼ � 1

N

XN
n¼1

XK
i¼1

yðiÞn logŷðiÞn : (6)

To take informativeness and separability into consider-
ation, two tasks are jointly trained with the following multi-
task loss:

‘joint ¼ 1

N

XN
n¼1

�
XK
i¼1

yðiÞn logŷðiÞn þ �kfdðTTn; uudÞ � xxnk22
" #

;

(7)

where � is a balance factor between the two tasks. In this
study, the supervised loss is served as a major task to distin-
guish COVID-19 pneumonia from others, and the recon-
struction loss is used as an auxiliary task to learn latent
representation.

3 EXPERIMENTS AND RESULTS

3.1 Experimental Settings

We conducted multiple experiments on the CT images to
evaluate the proposed pipeline. Since the original features
extracted from multi-view CT images are quite different, a
preprocessing step of standardized features is essential for
training the model. Thus, the widely used z-score standardi-
zation was employed and computed as

x̂ðiÞ ¼ xðiÞ � mðiÞ

dðiÞ
; i ¼ 1; 2; . . . ; L; (8)

where x̂ðiÞ is the standardization feature of feature xðiÞ and L
denotes the number of features. mðiÞ and dðiÞ are mean value
and standard deviation of the feature xðiÞ, respectively. For
the training procedure, Adam [45] was used as an optimizer
with an initial learning of 0.001, which was reduced by half
after each 20 epochs. The batch size was set to 8, and the
maximum number of epochs was set to 500. To avoid the
overfitting problem, we used an early stopping strategy that
the training would be terminated if the validation loss does
not decrease within 50 epochs. Furthermore, we used a 5-
fold cross-validation technique on the primary cohort to
determine the factor � in (7) from the range [0,1] with an
interval of 0.05. We found that the overall accuracy was the

best when � = 0.75. Hence, � was fixed at 0.75 in the follow-
ing experiments.

To clarify and compare the fairness, we used the stan-
dardized data as input for all experimental methods. We
compared the proposed method with radiomics-based
methods and a deep neural network (DNN). The radiomisc-
based methods first used the minimum redundancy maxi-
mum relevance (mRMR) [46] algorithm to select features,
and then the selected features were entered into the logistic
regression (LR) [47], random forest (RF) [48] and support
vector machine (SVM) [49] classifier to separately build a
radiomic signature for the diagnosis task. The DNN is the
remaining parts of the proposed DSAE excluding the
decoder. For each of these methods, we performed ten
experiments on CT images and reported the mean and stan-
dard deviation. Diagnostic performance was evaluated
using overall accuracy in a triple classification task. Further-
more, we used a one-vs-rest strategy, treating each class as
a positive in turn and the rest as negatives, to evaluate the
performance with respect to accuracy (ACC), sensitivity
(SEN), specificity (SPE) and F1-score (F1) metrics, which
can be formulated as

ACC ¼ 1

b

Xb
i¼1

TPi þ TNi

TPi þ FPi þ FNi þ TNi
; (9)

SEN ¼ 1

b

Xb
i¼1

TPi

TPi þ FNi
; (10)

SPE ¼ 1

b

Xb
i¼1

TNi

TNi þ FPi
; (11)

F1 ¼ 1

b

Xb
i¼1

2TPi

2TPi þ FPi þ FNi
; (12)

where TPi, FPi, FNi, and TNi denote the number of true
positives, false positives, false negatives and true negatives
at ith experiment, respectively. b indicates the number of
experiments, which is equal to 10 in this study.

3.2 Diagnostic Power of Different Frequency
Features

To investigate the diagnostic power of different frequency
features, we first used a visualization technique called t-dis-
tributed stochastic neighbor embedding (t-SNE) [50]. Fig. 2
shows different distributions of the 8 types of original fea-
tures and their fused multi-view features. For quantitative
analysis, we conducted five-fold cross-validation experi-
ments on the primary cohort for each type of features.
Table 2 shows the overall accuracy of the triple classification
task. Tables 3, 4, 5, and 6 show the diagnostic performance
of one-vs-rest in terms of mean accuracy, sensitivity, speci-
ficity and F1-score, respectively. We can first observe that
different frequency features have large performance gaps
for all methods. For example, the features extracted from
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high-frequency subbands have better predictive performan-
ces than those extracted from low-frequency subbands for
COVID-19 patients. However, low-frequency subbands
have a strong predictive power for normal subjects. As
expected, the high-pass filter can detect lesions with large
gradient changes, while the low-pass filter can detect nor-
mal tissues with smooth gradient changes. Noteworthily,
the features from different frequency subbands have differ-
ent diagnostic power and they can be regarded as multiple
views to complement each other for enhancing diagnostic
power. As shown in Tables 2, 3, 4, 5, and 6, the approaches
using multi-view features (i.e., eight different frequency fea-
tures) have better predictive performance than those using
individual type of features.

To further demonstrate the strong diagnostic power of
multi-view features, we conducted experiments to explore
the overall accuracy of our proposed model under different
combinations of feature views. For simplicity, we randomly
removed the feature views one by one and performed 10
five-fold cross-validation experiments on the primary
cohort. Fig. 3 reveals the performance trend of our proposed
method as the number of feature views removed varies
from 0 to 7. We can see the overall accuracy becomes signifi-
cantly lower as the number of feature views removed
increases, which strongly supports the need to combine fea-
ture views of eight different frequencies. Fig. 4 shows the
performance trends of our proposed method and the com-
paraed methods across different frequency features. It

reveals that the performance of the methods using multi-
view features is better than that using individual frequency
features.

3.3 Efficacy and Discovery of Latent
Representations

To demonstrate the effectiveness of latent representations,
we visualized the learned features in representation layer
and original multi-view features in both primary and vali-
dation cohorts. Fig. 5 shows the distributions of the original
multi-view features and the latent representations and viv-
idly illustrates that the latent representations are more infor-
mative and structured compared to the original multi-view
features. More specifically, the visualization results in
Fig. 5a) show that the underlying class structure is not well
revealed for the original multi-view features, while Fig. 5b)
indicates that the latent representations learned from origi-
nal multi-view features and classes are more informative
and well-structured. As expected, Fig. 5c) and Fig. 5d) also
illustrate a similar situation in the validation cohort. As
shown in Tables 2, 3, 4, 5, and 6, we can also observe that
the performance with latent representations is better than
that without latent representations. For example, the DSAE
achieved an overall accuracy of 86.44 percent, which is 3.10
percent higher than the DNN without learning latent
representations.

In addition, we discovered the following two phenomena
from Fig. 5. One is that there is a certain margin between the
COVID-19 patients and the others in the original multi-view
features (Fig. 5a) and Fig. 5c)). This indicates that the feature
extraction method we designed is beneficial to distinguish-
ing COVID-19 patients from others. The other is that the
learned latent representations have an internal class struc-
ture in COVID-19 patients (Fig. 5b) and Fig. 5d)). This
means that COVID-19 patients can be further classified into
multiple sub-clusters using our proposed method. We will
further discuss this in Section 4.

3.4 Comparison With Other Methods

Fig. 4 and Table 2 show the overall accuracy of the triple
classification task of the proposed method and compared
methods. Obviously, the proposed method achieved the
best overall accuracy up to 84.66 percent by multi-view
features learning. Compared to the radiomics-based
methods, our latent representation-based approach
improved the overall accuracy by 2.28	5.93 percent in
multi-view features learning. To further demonstrate the
effectiveness of our proposed method, we used the DNN
model for different frequency features and multi-view

Fig. 2. Visualization of 8 original features and multi-view features using t-
SNE technique, which is particularly suitable for visualization of high-
dimensional data. Green, red and black represent COVID-19, non-
COVID-19 and normal cases, respectively.

TABLE 2
Mean Overall Accuracy of the Proposed Method and Compared Methods of the Triple Classification Task on the Primary Cohort

Methods Multi-view LLL LLH LHL LHH HLL HLH HHL HHH

LR 80.51�0.63 75.41�0.79 73.72�0.91 77.79�0.49 74.14�0.81 74.24�0.86 74.14�0.52 75.90�0.64 74.46�1.26
RF 84.16�0.98 75.01�1.01 80.47�0.79 76.59�0.95 78.94�0.87 74.23�1.04 79.04�0.67 79.36�0.81 78.22�0.61
SVM 81.06�1.21 75.67�0.75 75.46�1.14 77.19�0.77 74.80�0.91 75.11�1.01 74.56�0.68 75.88�1.57 74.48�1.22
DNN 83.34�0.93 75.93�1.01 79.28�0.85 77.77�1.23 77.43�1.00 77.62�1.21 78.86�0.96 78.65�1.26 77.58�1.03
DSAE 86.44�0.70 78.99�1.20 81.19�0.55 81.10�0.91 80.58�0.74 80.59�0.89 81.15�1.08 81.64�0.84 80.62�0.86

Note that LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH represent different frequency features extracted from the multiple frequency subbands.
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features to directly learn the mapping from the original
features to the class labels. The experimental results
show that the performance of DNN model is comparable
to that of radiomics-based methods, but much worse
than that of our proposed DSAE model. This indicates
that the DSAE model can achieve a better predictive per-
formance by multi-task learning.

Tables 3, 4, 5, and 6 also show the performance of the
proposed method and comparison methods on the three
diagnostic tasks. Compared with other methods, our pro-
posed method overall achieved the best performance in
each diagnostic task across different frequency features and
multi-view features. More precisely, when identifying
COVID-19 from others, our proposed method achieved the
best performance in multi-view features learning, with an

accuracy of 94.61 percent, a sensitivity of 91.22 percent, a
specificity of 97.00 percent, and a F1-score of 93.24 percent.
When distinguishing non-COVID-19 from others, the pro-
posed method achieved the best performance in multi-view
features learning, with an accuracy of 87.60 percent, a sensi-
tivity of 80.32 percent, a specificity of 91.06 percent and a
F1-score of 80.51 percent. Similarly, it achieved the best
diagnostic performance, an accuracy of 93.38 percent, a sen-
sitivity of 85.63 percent, a specificity of 92.04 percent and a
F1-score of 82.17 percent, in distinguishing normal subjects
from COVID-19 and non-COVID-19 patients. As seen from
the performance differences of three diagnostic tasks, our
proposed model has the strongest ability to identify
COVID-19 subjects, followed by normal and non-COVID-19
subjects.

TABLE 3
Mean Accuracy of the Proposed Method and Compared Methods Based on the Primary Cohort

Method Class Multi-view LLL LLH LHL LHH HLL HLH HHL HHH

LR COVID-19 89.62�1.55 82.74�0.94 84.52�0.58 86.24�0.63 86.34�1.07 84.27�0.83 87.07�0.45 86.71�0.62 87.41�0.71
Non-COVID-19 84.24�1.41 81.13�0.79 78.79�1.33 81.98�0.43 78.58�0.64 80.26�0.76 78.75�0.67 81.10�0.58 78.62�1.00
Normal 88.19�1.18 86.94�0.47 84.14�0.71 87.36�0.67 83.35�0.72 83.94�0.76 82.46�0.45 83.99�0.75 82.89�1.01

RF COVID-19 93.95�0.47 82.51�0.98 92.19�0.64 87.09�0.61 91.98�0.67 85.63�0.94 92.27�0.55 91.91�0.54 91.55�0.53
Non-COVID-19 86.26�1.22 80.47�1.01 82.93�0.73 80.33�0.68 81.49�0.80 79.81�1.19 81.83�0.61 82.27�0.78 82.08�0.60
Normal 88.83�1.45 87.04�0.75 85.82�0.51 85.77�0.83 84.41�0.59 83.03�0.84 83.97�0.79 84.54�0.89 82.82�0.88

SVM COVID-19 90.63�2.01 83.33�0.77 87.20�0.69 86.69�0.63 87.92�0.85 86.09�0.89 88.94�0.50 88.22�1.01 88.09�0.95
Non-COVID-19 84.44�1.27 80.76�0.96 78.81�1.22 81.16�0.62 78.36�0.62 79.47�1.07 77.47�0.60 79.94�1.26 78.17�1.34
Normal 88.30�1.32 87.26�0.50 84.92�1.09 86.53�0.76 83.33�0.89 84.65�0.62 82.71�0.60 83.60�1.17 82.71�0.76

DNN COVID-19 93.74�0.51 83.53�0.69 89.99�0.44 87.73�1.12 90.30�0.88 87.03�0.88 91.74�0.59 90.58�0.91 90.43�0.71
Non-COVID-19 85.23�0.92 80.60�0.77 81.98�0.46 81.68�0.72 79.96�0.96 80.45�1.01 80.79�0.79 81.23�1.10 80.18�0.88
Normal 88.16�0.62 88.14�0.91 85.03�0.60 85.82�0.97 82.74�1.12 84.88�1.01 83.12�0.94 83.16�1.23 83.29�0.77

DSAE COVID-19 94.61�0.44 85.65�0.92 91.70�0.52 89.90�0.52 92.34�0.44 90.51�0.45 92.61�0.42 92.82�0.57 93.46�0.38
Non-COVID-19 87.60�0.61 82.91�0.90 83.95�0.71 83.80�0.94 81.87�1.10 82.99�0.68 82.80�0.65 83.25�0.76 83.67�0.59
Normal 90.38�0.58 89.77�0.40 87.52�0.80 88.15�0.67 86.09�1.24 86.81�0.67 86.26�0.59 86.20�0.73 85.82�0.66

Note that LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH represent different frequency features extracted from the multiple frequency subbands.

TABLE 4
Mean Sensitivity of the Proposed Method and Compared Methods Based on the Primary Cohort

Method Class Multi-view LLL LLH LHL LHH HLL HLH HHL HHH

LR COVID-19 87.33�1.86 78.50�1.65 79.52�1.69 84.03�0.87 84.90�1.45 83.22�1.04 86.32�0.42 84.57�1.35 85.24�1.25
Non-COVID-19 73.29�2.67 65.77�2.05 65.53�1.77 68.59�0.93 66.53�1.36 67.07�2.32 66.86�1.39 70.83�1.36 67.53�2.35
Normal 80.79�3.01 83.00�2.08 75.15�1.93 79.70�1.75 66.92�2.16 69.47�1.75 64.07�1.10 68.82�2.26 66.54�1.74

RF COVID-19 89.86�0.74 79.03�1.33 88.84�0.80 82.87�0.61 88.30�0.85 82.62�1.44 89.24�1.04 88.94�0.71 87.41�0.90
Non-COVID-19 79.37�2.05 65.64�2.28 73.64�1.87 71.63�2.50 71.87�2.20 67.62�2.29 72.32�2.03 73.85�1.04 73.17�1.04
Normal 82.99�3.10 80.52�2.17 76.08�1.53 73.52�2.84 73.18�2.15 69.22�1.94 71.71�1.40 71.63�2.63 70.47�1.66

SVM COVID-19 86.67�2.26 77.63�1.29 80.11�1.39 82.00�0.95 85.03�1.37 82.58�1.38 86.55�1.03 82.37�0.99 84.09�1.17
Non-COVID-19 75.27�2.96 67.21�1.73 71.20�1.89 68.99�1.41 74.43�2.39 71.85�1.59 76.66�1.88 75.42�2.03 71.40�2.74
Normal 81.99�3.14 83.65�1.23 74.08�2.77 80.10�2.09 59.49�2.17 67.85�2.20 53.51�1.60 66.69�3.62 63.70�2.56

DNN COVID-19 89.85�0.41 79.46�1.42 84.61�0.81 84.06�2.24 84.95�1.38 85.20�1.44 87.53�0.91 84.64�1.46 85.81�1.18
Non-COVID-19 74.35�2.09 65.61�2.72 71.10�1.88 68.91�1.78 65.43�3.03 62.84�2.61 68.04�3.00 67.74�1.11 67.98�2.38
Normal 85.11�2.48 84.16�2.26 78.12�1.50 78.49�1.89 77.50�2.36 78.82�2.92 74.52�3.11 78.39�2.83 74.10�2.27

DSAE COVID-19 91.22�1.02 79.21�1.97 88.82�1.06 85.04�1.32 89.52�0.78 87.14�1.31 89.78�1.09 88.26�1.48 89.56�0.92
Non-COVID-19 80.32�1.77 72.55�3.58 75.27�2.24 76.07�2.20 75.91�2.89 74.91�2.33 76.27�2.77 77.88�2.45 78.18�2.72
Normal 85.63�1.84 87.22�1.60 77.58�3.58 80.34�2.52 70.37�3.28 75.27�3.08 71.69�2.64 73.49�2.46 72.39�1.99

Note that LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH represent different frequency features extracted from the multiple frequency subbands.
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3.5 Independent Validation

To further validate our proposed method, we performed
independent validation experiments based on the validation
cohort presented in Table 1. More specifically, we used the
primary cohort as training data to obtain more generalized
models and used validation cohort to evaluate the perfor-
mance. Fig. 6A) shows the confusion matrix of our proposed
method, and Fig. 6B) shows the overall accuracy of our pro-
posed method and the compared methods of the triple clas-
sification task on the validation cohort. It was observed that
our proposed method achieves the best overall accuracy
with a value of 89.53 percent in independent validation
cohort. Although our proposed DSAE achieves promising
performance, there are still 10 COVID-19 cases, 14 non-
COVID-19 cases and 3 normal cases that are misdiagnosed.

We will further discuss the underlying reason of misclassifi-
cation in the next section. Moreover, Table 7 presents the
corresponding diagnostic performance in terms of accuracy,
sensitivity, specificity and F1-score under the one-vs-rest
strategy. As shown in Table 7, our proposed method has a
consistent pattern across the three binary classification tasks
and achieves the best diagnostic performance compared
with other methods. Although the diagnostic performance
of our proposed method is similar to that of the RF-based
approach on the primary cohort, our proposed DSAE model
performs better on the validation cohort. For example, the
accuracy of our proposed DSAE model is 1.55, 7.76, and
6.20 percent higher in distinguishing each category
than that of the RF-based approach, respectively. Moreover,
the radiomics-based methods are less sensitive in

TABLE 5
Mean Specificity of the Proposed Method and Compared Methods Based on the Primary Cohort

Method Class Multi-view LLL LLH LHL LHH HLL HLH HHL HHH

LR COVID-19 91.22�1.78 85.86�1.59 88.14�0.94 87.86�0.72 87.41�1.23 85.09�0.82 87.72�0.92 88.21�0.99 89.00�0.93
Non-COVID-19 89.63�1.14 88.63�0.85 85.21�1.32 88.51�0.58 84.43�0.96 86.74�0.52 84.54�0.63 86.16�0.83 84.12�0.84
Normal 90.85�1.34 88.48�1.02 87.52�0.69 90.20�0.59 89.32�0.94 89.27�0.99 89.03�0.75 89.48�0.99 88.86�1.03

RF COVID-19 96.88�0.56 84.92�1.21 94.62�0.83 90.17�0.92 94.60�0.82 87.74�1.11 94.43�0.41 94.03�0.74 94.47�1.05
Non-COVID-19 89.68�1.12 87.62�0.73 87.46�0.68 84.74�0.92 86.17�0.92 85.68�0.98 86.51�0.98 86.39�0.95 86.52�0.81
Normal 91.09�1.10 89.53�0.77 89.40�0.40 90.27�0.96 88.54�0.70 88.00�1.25 88.54�1.10 89.35�0.50 87.37�0.97

SVM COVID-19 93.39�2.43 87.46�1.56 92.27�0.72 90.03�1.05 89.98�1.22 88.66�0.97 90.72�6.23 92.40�1.31 91.02�1.34
Non-COVID-19 88.96�0.99 87.37�1.02 82.60�1.22 87.15�0.85 80.39�0.89 83.26�1.19 78.03�0.76 82.27�1.33 81.60�1.50
Normal 90.64�1.39 88.68�0.79 88.97�1.02 88.92�0.52 91.91�0.89 90.80�0.62 93.17�0.98 89.76�0.76 89.57�0.95

DNN COVID-19 96.51�0.86 86.48�1.25 93.07�0.70 90.41�1.51 94.17�1.07 88.41�1.40 94.77�0.93 94.75�0.82 93.71�0.99
Non-COVID-19 90.47�1.14 87.78�1.86 87.33�0.74 87.36�1.25 86.97�1.17 88.98�1.17 86.98�0.87 87.84�1.39 86.15�0.96
Normal 89.24�0.87 89.63�0.99 87.41�0.98 88.47�1.11 84.76�1.48 87.08�1.28 86.02�1.24 84.84�0.73 86.45�0.89

DSAE COVID-19 97.00�0.73 90.18�1.72 93.75�0.46 93.34�1.02 94.33�0.38 92.88�0.64 94.59�0.75 95.98�0.98 96.21�0.99
Non-COVID-19 91.06�0.77 87.83�1.72 88.08�1.10 87.47�1.64 84.75�1.69 86.76�1.44 85.76�1.06 85.73�1.39 86.26�0.99
Normal 92.04�0.84 90.71�0.48 90.93�1.07 90.96�0.90 91.56�1.64 90.86�0.96 91.19�1.10 90.61�0.95 90.50�1.01

Note that LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH represent different frequency features extracted from the multiple frequency subbands.

TABLE 6
Mean F1-Score of the Proposed Method and Compared Methods Based on the Primary Cohort

Method Class Multi-view LLL LLH LHL LHH HLL HLH HHL HHH

LR COVID-19 87.32�1.96 78.84�1.07 80.88�0.83 83.40�0.72 83.68�1.29 81.35�0.95 84.59�0.49 83.98�0.76 84.78�0.85
Non-COVID-19 74.91�2.27 69.07�1.53 66.30�1.94 70.30�0.78 66.44�0.92 68.47�1.52 66.82�1.05 70.60�0.98 66.84�1.63
Normal 77.88�2.31 76.73�0.77 71.03�1.54 76.54�1.41 67.51�1.61 69.12�1.32 65.35�0.82 68.92�1.71 66.93�1.67

RF COVID-19 92.39�0.60 78.77�1.17 90.33�0.78 84.05�0.76 90.03�0.86 82.55�1.19 90.42�0.73 90.00�0.69 89.45�0.65
Non-COVID-19 78.72�1.84 68.26�1.86 73.41�1.20 69.97�1.23 71.31�1.38 68.14�1.93 71.71�1.23 72.68�1.14 72.35�0.93
Normal 79.43�2.70 76.38�1.47 73.53�1.14 72.73�1.81 70.84�1.32 67.79�1.25 69.97�1.20 70.60�1.97 68.02�1.49

SVM COVID-19 88.34�2.47 79.24�0.89 83.77�0.96 83.52�0.72 85.31�1.03 82.99�1.06 86.57�0.68 85.15�1.21 85.28�1.11
Non-COVID-19 75.54�2.19 69.10�1.60 68.30�1.59 70.07�1.05 68.80�1.13 69.12�1.47 68.55�1.15 70.62�1.71 67.75�2.05
Normal 78.36�2.36 77.33�0.68 71.56�2.46 75.45�1.67 64.64�2.00 69.52�1.48 61.42�0.82 67.51�3.19 65.50�1.91

DNN COVID-19 92.15�0.54 79.79�0.83 87.39�0.52 84.92�1.46 87.80�1.16 84.37�1.03 89.70�0.73 88.03�1.22 88.05�0.81
Non-COVID-19 76.25�1.52 68.27�1.61 71.68�0.97 70.61�0.99 67.46�2.08 67.06�1.89 69.22�2.05 69.62�1.60 68.60�1.51
Normal 78.99�1.30 78.75�1.62 73.00�0.91 74.20�1.51 70.17�1.74 73.05�1.76 69.59�1.75 70.78�2.30 69.67�1.51

DSAE COVID-19 93.24�0.56 81.87�1.09 89.76�0.67 87.36�0.63 90.55�0.57 88.27�0.64 90.86�0.59 90.93�0.78 91.82�0.42
Non-COVID-19 80.51�1.06 73.00�1.65 75.07�1.24 75.03�1.30 72.81�1.65 73.78�1.07 73.79�1.30 74.80�1.18 75.31�1.24
Normal 82.17�1.08 81.61�0.88 76.16�1.74 77.89�1.39 72.31�2.25 74.62�1.44 72.89�1.24 73.37�1.48 72.53�1.16

Note that LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH represent different frequency features extracted from the multiple frequency subbands.
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distinguishing normal subjects from other patients, while
our proposed method and DNN-based method are more
sensitive.

To further prove the diagnosis power of the purposed
methods, other radiomics features such as shape-based
features (14 features), and gray and texture features (93
features, named as original features) extracted directly
from original images were also used to distinguish the
COVID-19 pneumonia from others using the proposed

DSAE method. As shown in Table 8, the DSAE method
using shape features achieves the lowest overall accuracy
with an value of 46.51 percent, which means that only
using shape-based features are difficult to screen out
COVID-19 pneumonia from others. The method using
gray and texture features achieves a moderate perfor-
mance with an overall accuracy of 77.13 percent. How-
ever, the method using our designed multi-view features
achieves encouraging performance with an overall accu-
racy of 89.53 percent. This demonstrates that the multi-
view feature we designed has a strong diagnostic power
for distinguishing the COVID-19 pneumonia from others.
Moreover, we implemented multiple works [19], [20],
[23], [25] to compare the performance. The comparison
performance is shown in Table 8. We found that the
representation learning-based method [23] performed
better than the transfer learning-based methods [19],

Fig. 4. Overall accuracy for multi-view features and different frequency
features across different methods.

Fig. 5. Visualization of the original multi-view features and the latent rep-
resentations in the primary cohort and validation cohort. For the primary
cohort, the class structure of the original multi-view features in a) is poor,
while the structure of the learned latent representations in b) is much
better and consistent with classes. A similar situation is observed in the
validation cohort, as shown in c) and d). Green, red and black represent
COVID-19, non-COVID-19 and normal cases, respectively. Numerical
symbol (n/m) around the purple circle indicates that n is the number of
severe cases and m is the number of non-server cases.

Fig. 6. Diagnostic performance of triple classification task on the validation cohort. A) is the confusion matrix of the proposed method; and B) is the
overall accuracy of the proposed method and compared methods.

Fig. 3. Overall accuracy of the proposed method (DSAE) with the num-
ber of feature views removed. The order of randomly removing feature
views one by one is HLL, LLL, LHH, HHH, LHL, HLH, and LLH.
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[20], [25]. More precisely, the overall accuracy of the lit-
erature [23] is 10.85 percent higher than that of the litera-
ture [25], which suggests that the radiomic features have
a strong predictive power for identifying COVID-19.
However, our proposed method is based on multi-view
representation learning and achieves better performance
compared with these methods.

4 DISCUSSION

The COVID-19 pandemic has infected more than 14 million
patients worldwide and quickly become a major global
health threat [2]. Computer-aided diagnosis systems are
playing an increasingly important role in the diagnosis and
monitoring of COVID-19, which can reduce the burden of
radiologists and help them make clinical decisions. In this
study, we proposed an efficient and accurate diagnosis sys-
tem for automatically differentiating COVID-19 pneumonia
from other pneumonia and normal subjects. Compared
with previous studies [17], [18], [20], [51] which require
manual or semi-automatic lesions annotation from CT
images, our proposed method only needs an easy-to-imple-
ment preprocessing step, that is, the use of AI model to
automatically segment the lung regions from CT images. It
also does not require select key slices to represent a full 3D
CT scan, but only uses 3D-WT technique to decompose the
3D lung images into multiple frequency subbands for
exploiting multi-view features. More importantly, com-
pared to the CNN-based methods, our proposed method
can achieve promising performance on a limited amount of
data.

Leveraging the complementarity of multiple views,
multi-view representation learning is capable of learning
more informative and compact representations for improv-
ing predictive performance as proved in this study (see
Table 2 and Fig. 5). Moreover, visualization of latent repre-
sentations in Fig. 5b) and Fig. 5d) has revealed an internal
class structure in COVID-19 subjects. We further

retrospectively investigated severity of COVID-19 (non-
severe and severe) based on clinical assessment criteria. Sta-
tistical results presented in Fig. 5b) and Fig. 5d) show that
non-severe and severe are not completely separated, but
there are three types of structures with a high, medium, and
low presence probability of severe subjects. The reason for
this difference may be that the severity assessment criteria
are not fully derived from CT imaging. In fact, CT evalua-
tion has little reference value in clinical classification [52].

Automatically identifying patients with abnormal CT
findings and further screening out COVID-19 pneumonia
from other pneumonia is urgently needed in the clinical
practice. Inspired by the clinical requirements, we proposed
a classification system to address the task. Despite the
promising performance, 14 cases with non-COVID-19 pneu-
monia were identified as normal cases (see Fig. 6A)). After
carefully reviewed the misdiagnosed cases by radiologists,
9 cases had small and low-density lesions, which were too
subtle to detect. This circumstance was also presented in
COVID-19 group. Among 10 misdiagnosed cases character-
ized by our system in COVID-19 group, 4 cases with small
and low-density lesions were identified as normal cases.
This means that the sensitivity of our system requires fur-
ther improvement. Other 6 misdiagnosed cases in COVID-
19 group had non-typical imaging manifestations due to the
potential of a relatively later stage of the disease. Although
we only used the first CT scans of each case, the interval
time varied between onset of symptoms and first CT scans.
We stated it as one of our limitations. Three cases with nor-
mal CT findings were misdiagnosed as non-COVID-19
pneumonia. All the 3 failure cases had false lesions due to
the relatively higher density of the posterior lung. It is
worth noting that none failure cases in normal and non-
COVID-19 group were identified as COVID-19 pneumonia,
indicating a substantial inherent difference between
COVID-19 group and other two groups. In clinical practice,
it is easy to identify normal and abnormal lung CT findings.

TABLE 8
Diagnostic Performance on the Validation Cohort When Distin-

guishing COVID-19 From Other Subjects

TABLE 7
Diagnostic Performance of the Proposed Method and

Compared Methods on the Validation Cohort

Method Class ACC(%) SEN(%) SPE(%) F1(%)

LR COVID-19 92.25 96.94 89.38 90.48
Non-COVID-19 86.82 87.01 86.74 79.76
Normal 83.72 57.83 96.00 69.57

RF COVID-19 94.57 96.94 93.14 93.14
Non-COVID-19 83.33 76.62 86.18 73.29
Normal 85.66 68.67 93.71 75.50

SVM COVID-19 92.64 92.86 92.50 80.55
Non-COVID-19 85.66 88.31 84.53 78.61
Normal 82.95 59.04 94.29 69.01

DNN COVID-19 95.74 88.78 100.00 94.05
Non-COVID-19 87.21 75.32 92.26 77.85
Normal 89.92 93.98 88.00 85.71

DSAE COVID-19 96.12 89.80 100.00 94.62
Non-COVID-19 91.09 81.82 95.03 84.56
Normal 91.86 96.39 89.71 88.40
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Therefore, we further investigated the binary classification,
that is, differentiating COVID-19 pneumonia from non-
COVID-19 pneumonia. On independent validation cohort,
the diagnostic results showed that only two cases with small
and low-density lesions from COVID-19 group were identi-
fied as non-COVID-19 cases, and three cases in non-
COVID-19 group were identified as COVID-19 cases (see
Fig. 7A)). Specifically, our proposed DSAE achieved encour-
aging predictive performance with an accuracy of 97.14 per-
cent, a sensitivity of 96.10 percent, a specificity of 97.37
percent and an F1-score of 96.73 percent (see Fig. 7B)). As
expected, the performance of binary classification task out-
performed that of triple classification task. Actually, the tri-
ple classification task is naturally more difficult than the
binary classification task.

Training a deep learning model with high generaliza-
tion, especially in multiple classification tasks, may
require the use of more samples. One of the biggest
advantages of using deep learning approach is the ability
to automatically learn the latent features associated with
pneumonia diseases. However, it still lacks interpretabil-
ity and can’t extract quantitative features as the same as
radiomic features. Therefore, we used radiomic features
from the multiple frequency subbands as the multi-view
features for the diagnosis of COVID-19 in this study.
Moreover, we further investigated whether our approach
was influenced by age. Considering the size and imbal-
ance of samples, we divided the validation cohort into
three groups based on age. Table 9 shows the diagnostic
performance based on three age groups. We found that
our proposed method yielded consistently good perfor-
mance across age groups and was more sensitive to

COVID-19 over the age of 40. Therefore, our model is
not affected by age differences when distinguishing
COVID-19 from non-COVID-19 pneumonia.

Our study still comprises some limitations. First, only
radiomic features are used, the deep learning features may
have the potential to identify COVID-19 pneumonia. Next
work will collect more data and use the CNN-based meth-
ods to automatically learn the latent features associated
with pneumonia diseases. Second, we only included the
first CT scans, thus the longitudinal CT changes were not
investigated. Whether our model has the same performance
in identifying different stages of COVID-19 pneumonia
from other pneumonia is unclear. Moreover, only early-
stage patients of the pandemic are considered in this study,
the patients infected with SARS-CoV-2 variants are further
investigated. Future work will focus on collecting more
data on patients after virus mutations to validate the perfor-
mance of the model. Third, our deep learning model only
integrated chest CT features without involving the clinical
information such as symptoms, exposure history, and so on.
A recent research has reported that combining CT imaging
and clinical information can improve the diagnostic perfor-
mance of AI model [51]. We will further validate it in future
work. Finally, the interpretability of the deep learning sys-
tem remains unclear, and the clinical meaning of the feature
learned by the system is difficult to explain. Actually, we
have investigated the visualization of the original multi-
view features and the latent representations in two cohorts
to mine the inherent mechanism. However, the further
investigation is needed in the future work.

5 CONCLUSION

In conclusion, we proposed an easy-to-use diagnostic
method based on multi-view representation learning,
which used 3D CT images to rapidly screen out COVID-19
from other pneumonia and normal subjects without abnor-
mal CT findings. Our proposed diagnostic model achieved
an overall accuracy of 89.54 percent in the triple classifica-
tion task. When only considering to distinguish COVID-19
from non-COVID-19 pneumonia, the model had a more
generalization performance with an accuracy of 97.14 per-
cent, a sensitivity of 96.10 percent, a specificity of 97.37

Fig. 7. Diagnostic performance of binary classification task (COVID-19 versus non-COVID-19) on the validation cohort. A) is the confusion matrix of
the proposed method; and B) is the diagnostic performance of the proposed method and compared methods.

TABLE 9
Diagnostic Performance of Different Age Groups of the Pro-
posed Method on the Validation Cohort When Distinguishing

COVID-19 From Non-COVID-19 Subjects

Age group ACC (%) SEN (%) SPE (%) F1 (%)

0-40 95.39 92.00 97.50 93.88
40-60 98.36 96.00 100.00 97.96
60-100 97.96 100.00 95.46 98.18
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percent and an F1-score of 96.73 percent. Comprehensive
results have demonstrated that our proposed method has
great potential in accurately and rapidly screening out
COVID-19 pneumonia, which is beneficial to fight the cur-
rent disease outbreak.
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