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Abstract

The rapid evolution of influenza viruses constantly leads to the emergence of novel 1

influenza strains that are capable of escaping from population immunity. The timely 2

determination of antigenic variants is critical to vaccine design. Empirical experimental 3

methods like hemagglutination inhibition (HI) assays are time-consuming and 4

labor-intensive, requiring live viruses. Recently, many computational models have been 5

developed to predict the antigenic variants without considerations of explicitly modeling 6

the interdependencies between the channels of feature maps. Moreover, the influenza 7

sequences consisting of similar distribution of residues will have high degrees of 8

similarity and will affect the prediction outcome. Consequently, it is challenging but 9

vital to determine the importance of different residue sites and enhance the predictive 10

performance of influenza antigenicity. We have proposed a 2D convolutional neural 11

network (CNN) model to infer influenza antigenic variants (IAV-CNN). Specifically, we 12

introduce a new distributed representation of amino acids, named ProtVec that can be 13

applied to a variety of downstream proteomic machine learning tasks. After splittings 14

and embeddings of influenza strains, a 2D squeeze-and-excitation CNN architecture is 15

constructed that enables networks to focus on informative residue features by fusing 16

both spatial and channel-wise information with local receptive fields at each layer. 17

Experimental results on three influenza datasets show IAV-CNN achieves 18

state-of-the-art performance combing the new distributed representation with our 19

proposed architecture. It outperforms both traditional machine algorithms with the 20

same feature representations and the majority of existing models in the independent 21

test data. Therefore we believe that our model can be served as a reliable and robust 22

tool for the prediction of antigenic variants. 23

Introduction 24

Seasonal influenza seriously threats public health and the global economy, causing up to 25

500,000 deaths and millions of cases of illness worldwide annually [1]. H1N1 and H3N2 26

are the principal subtypes of influenza A viruses circulating in humans [2] [3]. 27

Vaccination is the most effective way to prevent infection and severe outcomes caused 28

by influenza viruses [4]. The component of vaccines has to be updated regularly to 29

ensure its efficacy [5]. The influenza virus surface glycoproteins hemagglutinin (HA) is 30

the main target for host immunity [6]. However, the accumulation of mutations on HA 31
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proteins results in the emergence of novel antigenic variants that can not be effectively 32

inhibited by antibodies, posing great challenges for vaccine design [7]. Developing rapid 33

and robust methods to determine influenza antigenicity is critical to influenza vaccine 34

design and flu surveillance. 35

Hemagglutinin inhibition (HI) assay is the primary method to evaluate the 36

antigenicity of influenza viruses by measuring the ability of antisera to block the HA of 37

the antigen from agglutinating red blood cells [8]. Smith et al. created an antigenic map 38

using HI assay data and determined the antigenic evolution of influenza A H3N2 virus 39

from 1968 to 2003 [9]. Li et al. developed PREDAC-H1 that systematically depicted the 40

antigenic patterns and evolution of human influenza A H1N1 viruses [10]. By utilizing 41

1572 HA sequences and 197 pairs of HA sequences with HI assays data, Huang et al. 42

presented the entropy and likelihood ratio to model amino acid diversity and antigenic 43

variant score [11]. Ren et al. employed random forest regression and support vector 44

regression to identify antigenicity-associated sites on HA of A/H1N1 seasonal influenza 45

virus [12]. Richard Neher et al. showed a web-based application to interpret measured 46

antigenic data and predict the properties of viruses [13]. Harvery et al. analyzed the 47

sequence and 3-D structure information of HA, together with corresponding HI assay 48

data to identify the high- and low-impact amino acid substitutions that drive the 49

antigenic drift of influenza H1N1 viruses [14]. 50

Numerous studies have been conducted to timely predict the antigenic variants or 51

antigenicity of influenza viruses. Lee and Chen investigated 70 mouse monoclonal 52

antibody binding sites for predicting antigenic variants of influenza A/H3N2 with 83% 53

agreement [15]. Sun et al. provided a novel method for quantifying antigenic distance 54

and identifying antigenic variants using sequence alone [16]. Additionally, Yin et al. 55

presented a stacking model to predict antigenic variants of the H1N1 influenza virus 56

based on epidemics and pandemics [17]. A universal computational model was 57

integrated to predict the antigenic variants for all HA subtypes of influenza A viruses 58

through conserved antigenic structures [18]. Regarding the prediction models on 59

antigenicity, there are several different works to infer the influenza antigenicity with 60

computational models. Qiu et al. built the antigenicity prediction model for influenza 61

A/H3N2 viruses by incorporating the structural context of HA protein [19]. Moreover, 62

Yao et al. applied a joint random forest method to human H3N2 seasonal influenza data 63

for predicting antigenicity [20]. Zhou et al. presented a context-free encoding scheme of 64

protein sequences for predicting antigenicity of diverse influenza A viruses, which 65

encoded a protein sequence dataset into a numeric matrix and then fed the matrix into 66

a downstream machine learning model [21]. Wang et al. developed a novel low-rank 67

matrix complete model to infer antigenic distances between antigens and antisera [22]. 68

This model exploited the correlations of the viruses and vaccines in serological tests in 69

predicting influenza antigenicity. 70

Recently, deep neural networks have been successfully applied in a variety of areas 71

including bioinformatics. Convolutional neural network (CNN) is one of the most 72

popular approaches applied to solve bioinformatics problems, for example, classification 73

of efflux proteins from membrane [23], human leukocyte antigen class I-peptide binding 74

prediction [24], prediction of protein secondary structure [25] and prediction of 75

protein-protein interaction [26]. In this paper, we leverage deep learning techniques 76

from the natural language processing (NLP) domain to tackle the problem of antigenic 77

variants prediction of influenza A viruses. Specifically, a new distributed representation 78

amino acids, named ProtVec, is introduced that maps a 3-grams (three consecutive 79

amino acids) to a 100-dimensional vector space. We then propose an approach that 80

combines the 2D CNN model with squeeze-and-excitation mechanisms, named 81

IAV-CNN, for the task of antigenic variants prediction. Fig. 1 illustrates the flowchart 82

of our proposed model. The main contributions of this work are: 83
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Figure 1. The workflow of our proposed model for predicting influenza antigenic variants using two-dimensional convolutional
neural networks with squeeze-and-excitation modules.

• We propose a 2D convolutional neural network that leverages a new distributed 84

representation of amino acids for the prediction of antigenic variants of influenza 85

A viruses. The combination of squeeze-and-excitation units enables our models to 86

focus on informative residues features and improve the performance. 87

• Extensive experiments are conducted on three public influenza datasets to evaluate 88

the proposed model in comparison with the existing computational approaches. 89

• To the best of our knowledge, we perform the first attempt to predict influenza 90

antigenicity using CNN models with new distributed representation. We believe it 91

provides novel insights into the prediction of influenza antigenicity. 92

Materials and Methods 93

Dataset 94

In the experiment, we adopt antigenic data and sequence data of influenza subtypes 95

H1N1, H3N2 and H5N1. The antigenic data obtained by hemagglutination inhibition 96

(HI) assay is collected from reports of international organizations and published papers 97
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including World Health Organization (WHO), European Centre for Disease Prevention 98

and Control (ECDC), The Francis Crick Institute (FCI), Food and Drug 99

Administration (FDA). In total, 1562, 1249 and 666 distinct pairs of antigenic data are 100

collected for influenza A/H1N1, A/H3N2, and A/H5N1, respectively. Correspondingly, 101

the protein sequences of HA are derived from Influenza Virus Resource (IVR) [27] and 102

Global Initiative on Sharing All Influenza Data (GISAID) [28]. (The information of 103

sequences from GISAID can be found in the supplementary materials) The sequences 104

are selected by full-length strains with the human host and duplicate sequences are 105

eliminated from the collection. Finally, we end up with 294, 697 and 260 unique HA 106

sequences for subtypes H1N1, H3N2 and H5N1. 107

Preprocessing 108

The antigenic distance Dij between two strains is defined by Archetti-Horsfall 109

distance [29] as follows: 110

Dij =

√
Hii ×Hjj

Hij ×Hji
(1)

where the HI titer Hij is the maximum dilution of antisera raised in strain i to 111

inhibit cell agglutination caused by strain j. If the antigenic distance Dij is equal or 112

greater than 4, a threshold defined by Liao et al. [30], strain i and strain j are antigenic 113

distinct. Otherwise, the pair of strains are regarded as antigenic similar. For the 114

repetitive strain pairs where the HI titer is measured in multiple independent 115

institutions, we utilize the median titer value to calculate the antigenic distance [31]. As 116

a result, 937, 606, 409 antigenic distinct pairs and 625, 643, 257 antigenic similar pairs 117

of A/H1N1, A/H3N2 and A/H5N1 strains are acquired. 118

For HA sequence data, we only keep the HA1 proteins for each subtype and the 119

signal peptide is removed from the collected HA1 sequences. As a result, we obtain the 120

HA1 sequences with the lengths of 327, 329 and 320 for H1N1, H3N2, and H5N1, 121

respectively. Multiple sequence alignment is performed using the software MAFFT [32] 122

on HA1 proteins for each subtype. Furthermore, the laboratory-generated reassortment 123

sequences and the sequences with a gap ratio greater than 10% are also eliminated by a 124

manual check. We finally obtain 294 unique sequences for H1N1, 697 for H3N2 and 260 125

for H5N1 in this study. The amino acid numbering of these protein sequences across 126

different subtypes is recommended by Burke and Smith [33]. 127

Feature generation 128

The representation of biological sequences is one of the most important problems 129

expressing the biological information with a discrete model or a vector that keeps key 130

pattern characteristics. This is because all the existing machine learning models are 131

only applicable to numerical vectors but not sequences as elucidated in a comprehensive 132

review [34]. Distributed representation has displayed significant success in NLP to train 133

word embeddings, the mapping of words to numerical vector space [35,36]. Recently, it 134

has been explored for bioinformatics applications such as protein classification [37] and 135

structure prediction [38]. To convert the protein sequence information into feature sets 136

that can be managed by neural networks, ProtVec is introduced to encode proteins 137

through distributed representation that each trigram (sequence of three amino acids) 138

protein is embedded in the size of 100-dimension vector [37]. 139

To preserve the sequence pattern information, we break protein sequences into 140

shifted overlapping residues in the window size of 3 (3-grams). The splittings and 141

embeddings are shown in Fig 2. Here we take subtype H1N1 as an example to describe 142

the process that a pair of influenza HA1 proteins are represented by 325 pairs of 143
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Figure 2. The procedure of splittings and embeddings of a pair of influenza H1N1
HA1 proteins. Each pair is embedded in a 325 ∗ 100 dimensional vector space to
represent the information of antigenic distance. Strain 1: A/California/07/2009, Strain
2: A/Ohio/9/2015.

trigrams. The subtraction of a pair of trigrams characterizes the distinction between 144

two strains at certain positions that can be denoted by a difference vector. The 145

difference vectors V = [v1, v2, ..., v325] are derived from ProtVec embeddings. For each 146

vector, i.e. v1 = ProtV ec(trigram1)− ProtV ec(trigram2), where ProtV ec(trigram) 147

is the distributed representation of a trigram in 100-dimension vector space, mapping 148

from ProtVec. Therefore, the antigenic relationship between two HA1 strains is 149

represented in a 325 ∗ 100 dimensional vector space. The trigram that contains ’-’ at any 150

positions will be assigned the ’unknown’ embedding from ProtVec. By formulating 151

sequence data into distributed numerical vectors, standard machine learning algorithms 152

can be readily applied. 153

CNN structure 154

Convolutional neural networks have been applied in many fields with impressive results, 155

especially in computer vision when the input is generally a 2D image. Much of the 156

recent fervor has been spurred by both accessibilities to large training datasets and 157

advances in cheap computing power to train deep neural networks in an affordable 158

amount of time. Although originally proposed for image classification [39] [40] [41], 159

CNN have been found work well for biological sequence data such as protein 160

classification [42] [23] [43] and prediction of protein function [44] [45]. Encouraged by 161

the successful application of CNN, we take advantage of the CNN architecture applied 162

to 2D image classification and conveniently generate similar 2D inputs of the 163

ProtVec-based matrix that explores the antigenic relationship between two influenza 164

strains. It is with this insight that we propose IAV-CNN that aims at the task of 165

predicting antigenic variants of influenza A virus with convolutional neural networks. 166

Regarding the way we construct IAV-CNN, we first follow the fundamental CNN 167

architecture. To enhance the representational power of the network and boost 168

meaningful sites of strains, while suppressing weak ones, the Squeeze-and-Excitation 169
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Figure 3. The schematic overview of squeeze-and-excitation unit with fundamental
CNN module.

(SE) block [46] is introduced in the CNN architecture. The SE block squeezes along the 170

spatial domain and reweights along the channels. The attention and gating mechanisms 171

are activated by modeling the interdependencies between the channels of feature maps. 172

The main idea is to add parameters to each channel of a convolutional block so that the 173

network can adaptively adjust the weighting of each feature map and emphasize useful 174

channels. Hence, we are capable of biasing the allocation of available computational 175

resources towards the most informative residues of strains through SE blocks. The 176

illustration of the SE block is shown in Fig 3. 177

We assume an input X ∈ RH′×W ′×K′
that passes through a transformation Ftr, a 178

convolutional operator, to generate output feature map U ∈ RH×W×K . Here H ′ and 179

W ′, H and W are the spatial height and width before and after transformation, with K ′ 180

and K being the input and output channels. The vector V = [v1, v2, ..., vK ] represents 181

the learned set of filter kernels, where vk stands for the parameters of the k-th filter. 182

The output is denoted as U = [u1, u2, ..., uk]. For each uk, it is formulated by 183

uk =
K∑

n=1

vnk ∗ xn (2)

where ∗ denotes convolution and uk ∈ RH×W . unk is a 2D spatial kernel denoting a 184

single channel of vk that acts on the corresponding channel of input X. To tackle the 185

issue of exploiting channel dependencies, we squeeze global spatial information into a 186

channel descriptor by using global average pooling to generate channel-wise statistics. 187

Consequently, a statistic z is obtained by squeezing U through its spatial dimensions 188

H ×W . The k-th element of z is formulated by 189

zk =
1

H ×W

H∑
i=1

W∑
j=1

uk(i, j) (3)

To capture channel-wise dependencies and make full use of information aggregated 190

in the squeeze operation, we employ a gating mechanism with a sigmoid activation. The 191
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equation is described below, where δ refers to the ReLU function [47], W1 ∈ RK
r ×K and 192

W2 ∈ RK×K
r . The gate mechanism consists of two full-connected (FC) layers around 193

the non-linearity, i.e. a ReLU and then follow by sigmoid activation, which returns to 194

the channel dimension of the transformation output U . The hyperparameter r is the 195

reduction ratio that allows us to adjust the computational cost and capacity of the SE 196

modules in the network [46]. 197

s = σ(W2δ(W1z)) (4)

The output of the SE module is finally obtained by rescaling U with the activation s 198

x̃k = Fscale(uk, sk) (5)

Where X̃ = [x̃1, x̃2, ..., x̃k] and Fscale(uk, sk) is the multiplication between the scalar sk 199

and the feature map uk. In this regard, the squeeze operator compresses global spatial 200

information into local descriptors and the excitation operator maps these specific 201

descriptors into a set of channel weights. Consequently, SE modules present a global 202

understanding of each channel by squeezing the feature maps to a single numeric value 203

and dynamically change it by adding a content-aware mechanism to weight each channel. 204

Algorithm 1 clarifies the detailed steps of our proposed model for predicting influenza 205

antigenic relationships using 2D convolutional neural networks based on ProtVec. 206

Algorithm 1 The IAV-CNN algorithm for predicting influenza antigenic variants
through ProtVec.

Require: A pair of influenza HA1 sequences a and b
Ensure: Antigenic relationship between a and b
1: Feature generation (Section 2.3)
2: n ← The length of HA1 protein
3: for i = 1 to n do
4: ai, bi ← Splittings for strains a and b
5: ProtVec(ai), ProtVec(bi) ← Embedding vectors for subsequences ai and bi
6: vi = ProtVec(ai) - ProtVec(bi) ← The difference vector for two subsequences ai

and bi
7: end for
8: V = [v1, ..., vn] ← The representation of two stains a and b
9: X, Y ← The training samples through feature space V

10: for i = 1 to epoch do
11: Do initialization
12: net = train(IAV-CNN, parameters)
13: for j = 1 to numbatches do
14: Xbatch = X[j : j + batchsize, :, :, :]
15: Ybatch = Y [j : j + batchsize]
16: scores = net(Xbatch)
17: loss = CrossEntropyLoss(scores, Ybatch)
18: optimizer.step()
19: Predictions = Output(scores)
20: end for
21: end for
22: return Predictions
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Experiments 207

Baseline Approaches 208

We set up two types of baselines to evaluate our model. The first baseline is we compare 209

our proposed model with several traditional machine learning algorithms using the same 210

feature space for the prediction tasks. The classifiers include logistic regression (LR), 211

K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), neural 212

network (NN) and CNN model without SE blocks. The second baseline is to apply 213

several art-of-the-state approaches. Liao et al. proposed a method by incorporating 214

scoring and regression methods to predict antigenic variants [30]. Yao et al. developed a 215

joint random forest regression algorithm, cooperatively consider top substitution 216

matrices that can improve the prediction performance [20]. Lee and Chen used the 217

number of amino acid changes located on the five epitope regions for the antigenic 218

variants prediction [15]. Lees et al. provided an update for the frequently referenced five 219

antigenic sites and increase additional assignments to establish five canonical 220

regions [48]. They constructed a range of linear models based on banded changes for the 221

prediction. Peng et al. built a universal model for the antigenic variation prediction of 222

influenza A virus H1N1, H3N2 and H5N1 using conserved antigenic structures [18]. We 223

will reconstruct these models to predict antigenic variants on three influenza datasets in 224

comparison with our proposed algorithm. 225

Implementation and evaluation 226

All the approaches are implemented with Scikit-learn [49] and PyTorch [50]. The 227

antigenic distinct is labeled as ’1’ and antigenic similar is ’0’ for the relationship of two 228

strains. The influenza datasets of each subtype are randomly divided into independent 229

training and testing set with a ratio of 0.8:0.2. We construct our model and evaluate the 230

training process on the training dataset and the independent testing dataset is used to 231

assess its capability in predicting relations of novel antigenic variants. For CNN-based 232

models, we apply several algorithms with a minimum batch size of 32 for optimization. 233

The one that achieves the best performance of the experimental results will be selected. 234

The drop-out (rate=0.5) strategy is carried out with the learning rate of 0.001 and all 235

the models are iterated for 100 training epochs. We adopt five different metrics 236

including accuracy, precision, recall, f-score and Matthews’s Correlation Coefficient 237

(MCC) to evaluate the predictive performance of the models. Accuracy describes the 238

proportion of true results among the total number of samples. Precision reveals the 239

proportion of predicted positives that are truly positive. Recall indicates the proportion 240

of actual positives correctly classified. The f-score is the harmonic mean of precision and 241

recall that maintains a balance between the two metrics [51]. MCC is used as a measure 242

of the quality of classifications in machine learning that is less influenced by imbalanced 243

test sets since it considers mutually accuracies and error rates on both classes [52]. 244

Results and discussion 245

The quality and reproducibility of the model is a crucial factor for the study. In the 246

experiments, we first investigated the effect of using different optimizers including 247

Adaptive Moment Estimation (Adam) [53], Adadelta [54], Adaptive Gradient Algorithm 248

(AdaGrad) [55], Root Mean Square Propagation (RMSProp) [56] and Stochastic 249

Gradient Descent (SGD) [57] on our model. Next, we described our model and how it 250

exerted a new distributed representation of amino acids to solve the problem of 251

antigenicity prediction over other traditional classifiers. Finally, the comparative 252
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performance between IAV-CNN and several recently developed state-of-the-art methods 253

is presented to further validate the ability of our model. 254

The performance of IAV-CNN with different optimizers 255

Table 1 shows the predictive performance of IAV-CNN with five different optimizers on 256

the testing data of three influenza subtypes. The best results for each dataset are 257

highlighted in bold. We can observe from the table that by using SGD optimizer, it 258

achieves the best performance of 0.856, 0.873, 0.861 0.867 and 0.656 in terms of 259

accuracy, precision, recall, F-score and MCC on H3N2 influenza data. Similarly, when 260

applied SGD optimizer in the other two datasets, our model also displays the best 261

performance in all of the metrics except recall. Therefore, we use SGD algorithm as the 262

optimizer on subsequent experiments in comparison with other approaches for 263

antigenicity prediction. However, varied performance is observed for different datasets, 264

for instance, H1N1 displays an overall more desirable outcome than the other two types, 265

This may largely owe to the inconsistent sample size that the model on H1N1 dataset 266

presents better predictive results compared with H3N2 and H5N1. 267

Comparative performance between IAV-CNN and traditional 268

classifiers on ProtVec-based features 269

We further examine the performance using several classical algorithms for predicting 270

antigenic variants with ProtVec-based features on three influenza datasets. Table 2 271

summarizes the comparative results of IAV-CNN and other traditional machine learning 272

methods including logistic regression, k-nearest neighbor, support vector machine, 273

random forest and neural network. For a fair comparison, we use the optimal 274

parameters for the classifiers in all experiments. Specifically, for all subtypes of 275

influenza data, it is observed that random forest and neural networks perform higher 276

accuracy than our proposed model on the training data, whereas IAV-CNN has 277

demonstrated better predictive results on the testing data. This is probably the 278

overfitting problem that the classic algorithms fit too well with the training data. It 279

then becomes difficult for the models to generalize to new samples that are not in the 280

Table 1. Performance comparison of IAV-CNN model with different optimizers on
H1N1, H3N2 and H5N1 datasets.

Dataset Optimizer Accuracy Precision Recall F-score MCC

H1N1

Adam 0.850 0.857 0.914 0.885 0.663
Adadelta 0.856 0.928 0.824 0.873 0.716
AdaGrad 0.885 0.896 0.915 0.906 0.759
RMSProp 0.872 0.871 0.933 0.901 0.725

SGD 0.917 0.928 0.915 0.924 0.806

H3N2

Adam 0.796 0.866 0.829 0.792 0.603
Adadelta 0.806 0.831 0.837 0.847 0.601
AdaGrad 0.828 0.851 0.859 0.855 0.622
RMSProp 0.792 0.846 0.824 0.793 0.598

SGD 0.856 0.873 0.861 0.867 0.656

H5N1

Adam 0.836 0.868 0.846 0.857 0.665
Adadelta 0.836 0.818 0.878 0.867 0.662
AdaGrad 0.843 0.880 0.846 0.863 0.681
RMSProp 0.851 0.882 0.889 0.870 0.701

SGD 0.881 0.908 0.885 0.896 0.756
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Table 2. Comparative performance between IAV-CNN and other machine learning methods using ProtVec features on training
and testing data of three influenza subtypes.

Subtype Model
Training data Testing data

Accuracy Precision Recall F-score MCC Accuracy Precision Recall F-score MCC

H1N1

LR 0.817 0.816 0.892 0.853 0.616 0.722 0.752 0.826 0.787 0.392
KNN 0.901 0.956 0.873 0.913 0.803 0.815 0.915 0.774 0.839 0.637
SVM 0.594 0.594 1.000 0.745 0.409 0.623 0.623 1.000 0.768 0.423
RF 0.987 0.993 0.985 0.989 0.974 0.863 0.884 0.897 0.891 0.706
NN 0.998 0.997 0.999 0.998 0.995 0.859 0.895 0.877 0.886 0.703

CNN 0.978 0.986 0.970 0.978 0.952 0.880 0.896 0.928 0.912 0.761
IAV-CNN 0.968 0.976 0.972 0.974 0.937 0.917 0.928 0.915 0.924 0.806

H3N2

LR 0.847 0.872 0.793 0.831 0.694 0.696 0.761 0.624 0.686 0.404
KNN 0.863 0.893 0.808 0.848 0.727 0.728 0.804 0.647 0.717 0.471
SVM 0.473 0.473 1.000 0.643 0.403 0.532 0.532 1.000 0.695 0.429
RF 0.962 0.968 0.951 0.959 0.924 0.776 0.824 0.737 0.778 0.557
NN 0.973 0.967 0.977 0.972 0.946 0.792 0.817 0.737 0.775 0.548

CNN 0.961 0.975 0.972 0.973 0.962 0.841 0.866 0.854 0.860 0.621
IAV-CNN 0.968 0.975 0.973 0.974 0.950 0.856 0.873 0.861 0.867 0.656

H5N1

LR 0.889 0.902 0.921 0.912 0.763 0.813 0.863 0.808 0.834 0.623
KNN 0.883 0.930 0.879 0.904 0.758 0.799 0.849 0.795 0.821 0.593
SVM 0.378 0.000 0.000 0.000 0.000 0.418 0.000 0.000 0.000 0.000
RF 0.976 0.991 0.970 0.980 0.949 0.828 0.867 0.833 0.850 0.651
NN 0.981 0.997 0.973 0.985 0.961 0.828 0.867 0.833 0.850 0.651

CNN 0.978 0.995 0.992 0.973 0.962 0.841 0.866 0.854 0.860 0.621
IAV-CNN 0.955 0.997 0.990 0.993 0.977 0.861 0.882 0.870 0.876 0.715

training set. Our proposal model overcomes this issue by applying the dropout 281

mechanism that randomly sets activations to zero during the training process to avoid 282

overfitting. We obtain the accuracy of 0.917, 0.856 and 0.881 for three subtypes. The 283

results are 5.4%, 6.4% and 5.3% higher than the best traditional classifiers, which only 284

achieve 0.863, 0.792 and 0.828, respectively. Besides, we have noticed that the simple 285

SVM algorithm is not suitable for the prediction of small-scale H5N1 data. The SVM 286

finds a maximum edge hyperplane for classification. Since there is no large number of 287

the iterative process, the prediction ability is limited and the accuracy is low. 288

Comparative performance between IAV-CNN and other 289

methods 290

To demonstrate the effectiveness of our model, we compared IAV-CNN with several 291

state-of-the-art methods on the prediction of influenza antigenicity on three datasets. 292

Cross-validation is often leveraged to examine a predictor for its capability in practical 293

applications. Here we adopt the 5-fold cross-validation in the training data that has 294

been utilized by many investigators to construct the predictive models and evaluate our 295

model on the remaining testing data. According to the experimental results in Table 1 296

and 2, SGD has been chosen as the best optimizer for our model. We still use the 297

default learning rate (0.001) with a dropout (0.5) mechanism in the experiments for 298

CNN based models. Furthermore, independent testing data is used to evaluate the 299

ability of our model to predict new sample data with robustness. Fig 4 shows the 300

performance comparison of IAV-CNN with other state-of-the-art methods on 301

independent testing data, as detailed below. 302

The x-axis represents the different methods we applied for the prediction and the 303
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Figure 4. The comparative performance between IAV-CNN and other state-of-the-art
methods for predicting influenza antigenic variants on independent testing data of three
influenza subtypes.

y-axis shows the values of all metrics. It is shown that our proposed model achieves a 304

remarkable higher performance than compared methods. In more detail, IAV-CNN can 305

obtain an accuracy of 0.920, 0.858 and 0.889 for independent H1N1, H3N2 and H5N1 306

testing data, respectively. The results are 13.9%, 6.5% and 6.7% higher than the best 307

performance of compared methods. Regarding other evaluation metrics, the results also 308

indicate that IAV-CNN outperforms the current state-of-the-art methods on all datasets. 309

Overall, it is demonstrated that IAV-CNN can accurately predict influenza antigenic 310

variants on selected subtypes with feasibility and robustness. It may also be applicable 311

to predict the antigenicity of a wide range of viruses and drive the development of 312

personalized medicine for infectious diseases. 313

Interpretation 314

The prediction of influenza antigenicity is critical for the study of viral evolution and 315

vaccine selection. Although many methods have been proposed to predict novel 316

influenza variants using diverse feature representations, i.g. epitope and 317

physicochemical properties, when establishing the machine learning models, the 318

correlation between features are never taken into consideration. Our proposed 319

IAV-CNN is an important type of 2D CNN model consisting of a convolutional kernel, 320

squeeze-and-excitation module and a full-connected layer. By utilizing IAV-CNN, we try 321

to capture meaningful residue sites and even hidden features by scanning the sequences 322

of pair of strains. The introduction of SE modules helps us to focus on the sites with 323
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different residues that are given larger weights in the training process. The results prove 324

that IAV-CNN can enhance the predictive performance over other existing machine 325

learning approaches by capturing important residue sites of the compared strains. As a 326

result, our proposed model can be served as a reliable tool for the prediction of 327

influenza antigenicity, which assists biologists to gain a better understanding of 328

influenza evolution and vaccine selection. 329

Conclusion 330

In this paper, we have described the feasibility of applying machine learning techniques 331

from NLP domain to solve bioinformatics problems, particularly, the antigenicity 332

prediction of influenza A viruses. We propose IAV-CNN to extract a vector space with 333

a distributed representation of amino acids through ProtVec and predict the influenza 334

antigenic variants, using a 2D CNN architecture with squeeze-and-excitation 335

mechanisms. Compared with other traditional machine learning algorithms, IAV-CNN 336

produces superior predictive efficacy with the same feature representations on three 337

different influenza datasets. Moreover, further experiments demonstrate our model 338

achieves state-of-the-art antigenicity prediction results on the majority of test sets over 339

existing models. We believe this framework is capable of making predictions for any 340

subtypes of influenza viruses with sufficient training data, and facilitate flu surveillance. 341

Supporting information 342

The codes and data to generate the IAV-CNN are publicly available at: 343

https://github.com/Rayin-saber/IAV-CNN 344
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