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Convex Multi-View Clustering Via Robust Low
Rank Approximation with Application to

Multi-Omic Data
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Abstract—Recent advances in high throughput technologies have made large amounts of biomedical omics data accessible to the
scientific community. Single omic data clustering has proved its impact in the biomedical and biological research fields. Multi-omic data
clustering and multi-omic data integration techniques have shown improved clustering performance and biological insight. Cancer
subtype clustering is an important task in the medical field to be able to identify a suitable treatment procedure and prognosis for
cancer patients. State of the art multi-view clustering methods are based on non-convex objectives which only guarantee non-global
solutions that are high in computational complexity. Only a few convex multi-view methods are present. However, their models do not
take into account the intrinsic manifold structure of the data. In this paper, we introduce a convex graph regularized multi-view
clustering method that is robust to outliers. We compare our algorithm to state of the art convex and non-convex multi-view and single
view clustering methods, and show its superiority in clustering cancer subtypes on publicly available cancer genomic datasets from the
TCGA repository. We also show our method’s better ability to potentially discover cancer subtypes compared to other state of the art
multi-view methods.

Index Terms—Multi-view clustering, outlier robustness, convex optimization, multi-omic data, cancer subtype identification
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1 INTRODUCTION

R ECENT advances in high throughput sequencing tech-
nologies have made available large amounts of biomed-

ical data consisting of measurements of genomic features
across multiple omic scales forming multi-omic datasets
when combined. Multi-omic data have been recently used
to efficiently visualize and cluster cancer subtypes [4]. Clus-
tering for biomedical data is a useful pattern discovery
technique, which is the initial step taken in data exploration.
Clustering is especially of great use in the emerging field
of precision medicine in discovering cancer subtypes [21].
Separately clustering each omic dataset has the capability of
finding patterns in the data. However, using several omics
for integrative clustering on the same group of samples has
the potential to expose more detailed structures that are not
revealed by examining only a single omic measurement.
For example, it has been shown that cancer subtypes can
be better defined when integrating both DNA methyla-
tion and gene expression information [5], [37]. Cancer is a
group of diseases caused by DNA alterations that change
cell behaviour, which causes malignancy and uncontrolled
growth. General treatments for cancer are challenging to
develop due to the high genetic heterogeneity of this dis-
ease [2]. The field of cancer multi-omics aims to discover
potential subtypes and their affiliated molecular biomarkers
that can be used for more individualised treatment and
prognosis. Cancer multi-omic datasets consist of measuring
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different molecular parameters, which include multi-omic
data such as: RNA expression, microRNA expression, DNA
methylation and protein expression, etc. While inference
of cellular function or state from any one of these omics
is easy to carry out and dominates much of the research
reported in the literature, cellular regulation is complex
and combined analysis can reveal more information. For
example, genes that are transcribed (DNA to mRNA) are
not always translated into protein. The mRNA is held (for
example, in structures like P-bodies) and is translated only
when needed. Similarly, proteins may be synthesized at
different rates from the corresponding mRNA by different
numbers of ribosomes binding to them. Where disruptions
to such regulation is the cause of disease, analysis at only
one level can be misleading.

The machine learning community has become interested
in the problem of integrating information from different
data types to achieve a joint clustering solution, called multi-
view clustering. Multi-view clustering acts on multi-view
data, where multi-omic datasets are a specific type of this
general category of datasets. Multi-view clustering methods
found in the literature encompass: Canonical Correlation
Analysis (CCA) [6], Co-Training Expectation Maximization
(co-EM) [7], multi-view normalized cut [8], co-regularized
multi-view spectral clustering [9], multi-view neighbour-
hood preserving projections [10], CCA regularized with
common source graph [31], and Multi-view Non-Negative
Matrix Factorization (Multi-NMF) [11]. The CCA method
of [6] and multi-view spectral clustering of [9] showed
that finding a common latent representation between differ-
ent views can enhance clustering performance. Moreover,
Multi-NMF showed that learning a latent representation
for each view, by constraining these representations to be
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similar to a ’consensus’ representation, results in an im-
proved clustering performance. The problem with these
multi-view clustering methods is that they either work only
with data that have two views [6], [31], or they optimize
non-convex objective functions that can only be solved by
alternating optimization methods that converge to arbitrary
local minima [7], [9], [10], [11].

In contrast, convex methods are found in the literature for
the single-view case, where methods for subspace learning
make use of convex loss functions [12], [14], [15]. These pa-
pers exploit a convex regularizer that reduces rank in place
of constraining the dimension of the latent representation
with a hard lower bound. Moreover, some authors [16],
[17], [18] have approached the problem of multi-view sub-
space learning by formulating a convex loss function that
seeks to find a common latent representation which is then
subsequently used for clustering. [18] finds a shared latent
representation by minimizing a low rank regularized like-
lihood of a probabilistic model, which assumes a Gaussian
distribution for real valued data. [16] finds a common latent
representation by minimizing a regularized l2 norm squared
reconstruction error over the multiple views. Similarly, [17]
minimizes a regularized reconstruction loss over the data
views. Their reconstruction loss function is generic and
can be any convex loss function; however it can only take
into account two views. Both [18] and [16] are sentitive to
outliers as their loss functions minimize the l2 norm squared
and the Gaussian density function respectively, which are
known to be fragile to even one outlier [12], [13]. All the
previously mentioned convex multi-view methods do not
take into account the local geometric structure of the data;
a shortcoming that has been recently addressed by methods
involving graph regularizers.

Graph regularizers have recently emerged in both the
dimensionality reduction and data clustering areas of ap-
plied machine learning that encode the geometric structure
of the data in the form of a graph to be exploited by the
learning models as an injection of structural knowledge
[25], [27], [29], [30], [31], [32], [33], [34], [35], [38], [39].
More specifically, multi-view subspace learning methods of:
Graph regularized Multiset Canonical Correlation Analysis
(GrMCCA) [35], Graph Multi-view Canonical Correlation
Analysis (GMCCA) [34], Integrative Hypergraph regular-
ization Principal Component Analysis (IHPCA) [38], and
integrative Graph regularized Matrix Factorization Net-
work Analysis (iGMFNA) [39] (which is a network analysis
method that is a generalization of Graph Regularized NMF
(GNMF)) are all able to take into account more than two
views. They are all formulated as optimizing a non-convex
objective function. Both IHPCA and iGMFNA use a matrix
factorization model that is capable of finding a shared latent
representation for the multiple data views. However, their
models minimize an Euclidean distance measure which
does not take into account outliers in the data. Moreover,
both methods use an alternate iterative method to find the
solution to their non-convex optimization problem, which
leads to convergence to local optimal solutions. On the other
hand, although both GrMCCA and GMCCA have non-
convex objective functions they have closed form solutions
that are directly computed by eigendecompositions. In the
case of GMCCA [34] the graph regularization consists of a

common source graph, meaning that it cannot model the
graph of each view separately. This is a limitation as it can
only be used for applications where common source graphs
are available. Moreover, in the case of GrMCCA [35] each
view uses a separate graph regularizer. Furthermore, all pre-
viously mentioned multi-view subspace learning methods
are sensitive to even a small number of outliers. This is
mainly because they minimize loss functions that have a
quadratic term which will amplify the errors produced by
the outliers in the data [13].
a In addition to the previously mentioned multi-view
methods, there exist multi-omic methods that have been
specifically validated on cancer genomic datasets, such as:
Similarity Network Fusion (SNF) [26] and iCluster [40].
These are considered as benchmark methods for multi-omic
data integration [5]. SNF [26] integrates the different data
views by forming networks of samples for each of the
views and then fuses the different view-specific networks
into one network that will incorporate the complementary
structure of the different data views. Moreover, iCluster [40]
is a joint latent variable model for integrative clustering
that incorporates the different data views to find a shared
clustering result.
a In this paper we address the above limitations by in-
troducing Convex Graph regularized Robust Multi-view
Subspace Learning (CGRMSL) for the problem of multi-
view clustering. It is formulated with a convex objective
function, that separately takes into account the manifold
structure of each view of the data, is robust to outliers, and
finds a shared latent representation of the data. We show
that our method has superior clustering performance and is
able to better visualize the data than other convex and non-
convex multi and single view subspace learning methods.
We also show the ability of our model to detect potential
subtypes with higher confidence than other state of the
art multi-view methods. This is shown on genomic cancer
datasets from the Cancer Genome Atlas (TCGA) repository
[20].
a This paper is organized as follows: in Section 2, we will
introduce our method CGRMSL and show how it can be
solved using a first order optimization method. Moreover,
in the same section we will introduce CGMSL, a non-robust
version of our method, it will be used as a comparing
method to highlight the robustness of CGRMSL. In Section
3 we will show the time complexity of CGRMSL and the
hardware settings used in this paper. In Section 4, we will
show that our method is robust to outliers, by evaluating
it on two multi-view synthetic datasets that have injected
outliers. Our method will be compared to the non-robust
version, CGMSL, and GrMCCA [35], which is also consid-
ered as a benchmark method that is non-robust to outliers.
In Section 5, we will describe the multi and single view
methods that will be used to compare with CGRMSL, when
clustering the TCGA cancer genomic datasets. In Section 6,
we will compare the clustering and subtype identification
performance of our method to the competing methods on
the cancer genomic datasets. Our method will be compared
to both multi-view methods and single-view methods ap-
plied to each view separately. This section will highlight the
better clustering performance on the shared latent space of
CGRMSL. In Section 7, we will discuss the results shown in
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Section 6. Finally, we present our concluding remarks and
potential future work in Section 8.

2 MATERIAL AND METHODS

2.1 Convex Graph Regularized Robust Multi-View Sub-
space Learning

The algorithm we introduce in this paper is called Convex
Graph regularized Robust Multi-view Subspace Learning
(CGRMSL). It utilizes complementary information from
more than one view to find a common latent representation,
that will enhance clustering. The dataset to be considered
has V views, with each view being represented by a ma-
trix Mv ∈ Rpv×n, consisting of n samples arranged in
columns with each sample having pv features, expressed
as Mv = [M1

v ,M
2
v , ...,M

n
v ]. The objective of this method

is to decompose each view Mv as the sum of a low rank
matrix Lv that gives a low-dimensional representation for
the given view and a column sparse matrix Cv that has non-
zero columns in the samples that have high reconstruction
errors, and are thus treated as outliers. By modelling the
reconstruction matrix Cv to be column sparse our method
detects (thus is robust to) outlier samples. We make this
modelling assumption because in the case of omic data,
samples are more likely to be corrupt than a particular ge-
nomic feature across all data samples (the latter would have
required a row sparse C). The common latent representation
is found by constraining the low rank matrices Lv to be
similar to a shared matrix between all views, L∗. The graph
which has nodes corresponding to samples, is constructed
by first finding the K nearest neighbours of each sample,
measured in Euclidean distance. Then for each sample we
weight the edges to its K neighbours through the Gaussian
kernel functionW ij

v = exp(− ||M
i
v−M

j
v ||

2
2

2σ2 ). All edges to other
points that are not in theK nearest neighbours of the sample
are weighted as zero. The matrix that incorporates the
neighbourhood and similarity information for each view is
the affinity matrix Wv ∈ Rn × n . Then the graph Laplacian
matrix Φv ∈ Rn × n is defined as Φv = Dv −Wv , where Dv

is a diagonal matrix where each entry on its diagonal is the
row sum of the corresponding row in Wv , Dii

v =
∑
jW

ij
v .

The CGRMSL optimization problem is stated as follows:

min
Lv,L∗,Cv

V∑
v=1

(
||Lv||∗ + λv||Cv||1,2 + γv||Lv − L∗||2F

+ αtr(LvΦvLTv )
)
. s.t: Mv = Lv + Cv.

(1)

Where λv , γv , and α are real-valued regularization param-
eters. The first term in the objective function, ||Lv||∗, is the
nuclear norm of Lv which is the sum of its singular values.
It induces low rankness in the matrix Lv . Minimizing the
nuclear norm of a matrix is the closest convex surrogate of
the intractable and combinatorial rank minimization prob-
lem [22], [24]. The second term ||Cv||1,2 is the sum of the l2
norms of the columns of Cv . It will induce column sparse-
ness in the matrix Cv . The l1,2 norm is the nearest convex
surrogate to the number of non-zero columns in a matrix
[24]. From the constraint of Problem 1, Mv = Lv + Cv , we
note thatCv = Mv−Lv is the reconstruction error matrix for
the vth view. Therefore, CGRMSL aims to model the outliers

by inducing a column sparse structure to the reconstruction
error matrix Cv , so that they are filtered out from the low
rank matrix Lv . Both the nuclear norm and the l1,2 norm
have been used in the literature to induce low rankness and
column sparseness respectively [12], [24], [25]. Both these
norms have been used in our precursor work [33] to induce
the structures of the low rankness and column sparseness of
the single-view matrix decomposition (M = L + C), with
an additional graph regularizer (same as the fourth term of
Problem 1), to detect outliers and to improve the clustering
quality of the recovered subspace. It has been evaluated on
single-view data of single cell genomics and cancer genomic
datasets. Here, CGRMSL builds on and goes beyond our
previous work [33] in being able to model multiple data
views to find a shared latent space and is robust to outliers
in each view.

The third term of Problem 1 constrains the low rank
matrices of each view to be similar to a shared matrix
L∗. This term, for a specific view v can be rewritten as∑n
i=1 ||Liv − L∗i||22. This constrains each of the column

vectors of the low rank matrix of a view, Lv , to be as close
as possible in Euclidean distance to each corresponding
column vector of L∗. Summing this over all views (as in
Problem 1) will integrate the complementary information
for all the available views to extract the common latent rep-
resentation. To extract this we first compute the truncated
Singular Value Decomposition (SVD) of L∗, L∗ = UΣV T .
Then, the common low-dimensional latent representation
is the projection of L∗ onto its truncated column space U ,
i.e. Z = UTL∗. The fourth term is a graph regularizer on
the low rank matrices. It preserves the intrinsic manifold
information of the input data in the form of a graph. To
best interpret the function of the graph regularization term
for a specific view v, tr(LvΦvLTv ), we can rewrite it in the
following way:

tr(LvΦvLTv ) =
1

2

n∑
i,j=1

||Liv − Ljv||22Wij .

The graph regularization term can be better interpreted
now as 1

2

∑n
i,j=1 ||Liv − Ljv||22Wij . This function will impose

structure in the recovered low rank matrix Lv , in the sense
that if two points have high affinity in the original input
space the distance of the corresponding columns inLv needs
to be small. Problem 1 is a convex problem which can be
solved to find a stable global solution using the Alternat-
ing Direction Method of Multipliers (ADMM) optimization
method [23].

2.2 CGRMSL Algorithm

Here we use ADMM to optimize the objective function in
Problem 1. ADMM has been used in [25], [33] to optimize
problems in similar contexts of low rank and sparse matrix
decompositions with an additional graph regularizer. The
main difference between CGRMSL and our previous work
[33] is the summation of the graph regularized decomposi-
tion of the input matrix (M = L + C) over all the available
views, and the third term of Problem 1 that integrates
the subspaces recovered from the different views. To solve
CGRMSL using ADMM we need to introduce an auxiliary
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variable so that we can divide the objective function into
four separate blocks. We rewrite Problem 1 as follows:

min
Lv,Qv,L∗,Cv

V∑
v=1

(
||Lv||∗ + λv||Cv||1,2 + γv||Qv − L∗||2F

+ αtr(QvΦvQTv )
)
.

s.t: Mv = Lv + Cv , Lv = Qv.
(2)

Where Qv with v from 1 to V are the auxiliary variables.
Now we can define the augmented Lagrangian function of
Problem 2:
L(Lv, L

∗, Cv, Qv, Z1,v, Z2,v) =
V∑
v=1

(
||Lv||∗ + λv||Cv||1,2

+ γv||Qv − L∗||2F + αtr(QvΦvQTv ) + 〈Z1,v,Mv − Lv − Cv〉

+
p1
2
||Mv − Lv − Cv||2F + 〈Z2,v, Qv − Lv〉

+
p2
2
||Qv − Lv||2F

)
,

(3)
where 〈X,Y 〉 = Tr(XTY ) is the Frobenius inner product
between matrices X and Y . To minimize the augmented
Lagrangian with respect to each of the six variables, we use
ADMM [23]. The general form of the ADMM algorithm
to solve CGRMSL is shown in Algorithm 1, where Zk1,v
and Zk2,v are Lagrange multiplier matrices and k is the
iteration index. Steps 5 to 8 in Algorithm 1 have closed form
solutions, derivations of which are shown in Appendix A.
The ADMM algorithm has been proven to converge to a
global solution for convex objective functions [23].

Algorithm 1 ADMM Convex Graph Regularized Robust
Multi-View Subspace Learning (CGRMSL)

input: Mv ∈ Rpv×n, λv , α, γv , Φv ∀ v)
1) initialize L0

v, L
∗,0, C0

v , Q
0
v ∀ v to random matrices.

2) Z0
1,v = Mv − L0

v − C0
v , Z0

2,v = Q0
v − L0

v . p1 = 1 and
p2 = 1.

3) repeat following until convergence
4) for v=1 to v=V
5) Lk+1

v = argmin
Lv

L(Lv, L
∗,k, Ckv , Q

k
v , Z

k
1,v, Z

k
2,v)

6) Ck+1
v = argmin

Cv

L(Lk+1
v , L∗,k, Cv, Q

k
v , Z

k
1,v, Z

k
2,v)

7) Qk+1
v = argmin

Qv

L(Lk+1
v , L∗,k, Ck+1

v , Qv, Z
k
1,v, Z

k
2,v)

8) L∗,k+1 = argmin
L∗

L(Lk+1
v , L∗, Ck+1

v , Qk+1
v , Zk1,v, Z

k
2,v)

9) Zk+1
1,v = Zk1,v + p1(Mv − Lk+1

v − Ck+1
v )

10) Zk+1
2,v = Zk2,v + p2(Qk+1

v − Lk+1
v )

output: L̂v = Lk+1
v , Ĉv = Ck+1

v , L̂∗ = L∗,k+1 when k is last
iteration.

2.3 Non-Robust version of CGRMSL
Here we introduce a version of CGRMSL which is not
robust to outliers to evaluate the contribution of such ro-
bustness to the clustering task. We call this multi-view
subspace learning algorithm Convex Graph regularized
Multi-view Subspace Learning (CGMSL). In CGMSL the l1,2
norm for computing the reconstruction errors in Problem
1 is replaced by the standard Frobenius norm squared,

||Mv − Lv||2F . The squared term present in this reconstruc-
tion error amplifies the outlier samples giving them much
larger weight than non-outlier samples. This in turn skews
the low-dimensional subspace towards the outliers making
the CGMSL model sensitive to outliers. The optimization
problem of CGMSL is as follows:

min
Lv,L∗

V∑
v=1

(
||Lv||∗ + λv||Mv − Lv||2F + γv||Lv − L∗||2F

+ αtr(LvΦvLTv )
)
.

(4)

This objective function is also convex; thus a global solution
can be found using ADMM. To optimize Problem 4 with
ADMM, we need to separate the objective function into
three separate blocks by introducing auxiliary variables Qv
(with v from 1 to V ):

min
Lv,L∗,Qv

V∑
v=1

(
||Lv||∗ + λv||Mv −Qv||2F + γv||Qv − L∗||2F

+ αtr(QvΦvQTv )
)
. s.t: Lv = Qv.

(5)
Now we can define the augmented Lagrangian function of
Problem 5:

L(Lv, L
∗, Qv, Z1,v) =

V∑
v=1

(
||Lv||∗ + λv||Mv −Qv||2F

+ γv||Qv − L∗||2F + αtr(QvΦvQTv ) + 〈Z1,v, Qv − Lv〉

+
p1
2
||Qv − Lv||2F

)
.

(6)

We then minimize the augmented Lagrangian with respect
to the four variables separately. The ADMM algorithm for
CGMSL is shown in Algorithm 2. Steps 5 to 7 in Algorithm
2 have closed form solutions. Step 7 (Updating L∗) has the
same closed form solution as CGRMSL; steps 5 and 6 are
different and their derivations are shown in Appendix A.

Algorithm 2 ADMM Convex Graph Regularized Multi-
View Subspace Learning (CGMSL)

input: Mv ∈ Rpv×n, λv , α , γv , Φv ∀ v)
1) initialize L0

v, L
∗,0, Q0

v ∀ v to random matrices.
2) Z0

1,v = Q0
v − L0

v . p1 = 1.
3) repeat following until convergence
4) for v=1 to v=V
5) Lk+1

v = argmin
Lv

L(Lv, L
∗,k, Qkv , Z

k
1,v)

6) Qk+1
v = argmin

Qv

L(Lk+1
v , L∗,k, Qv, Z

k
1,v)

7) L∗,k+1 = argmin
L∗

L(Lk+1
v , L∗, Qk+1

v , Zk1,v)

8) Zk+1
1,v = Zk1,v + p1(Qk+1

v − Lk+1
v )

output: L̂v = Lk+1
v , L̂∗ = L∗,k+1 when k is last iteration.

2.4 Convergence of ADMM
In this section we discuss the convergence of Algorithm 1
and 2 which are multi-block ADMMs.

The general convergence results of ADMM are based on
a two-block ADMM structure. This is when the objective
function in question is composed of a summation of only
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two functions. Convergence in the two-block case is guar-
anteed, for any step-size p > 0, when both the functions in
the objective are convex [23]. In the three-block and multi-
block case of ADMM, convergence is not always guaranteed
even when the functions in the objective are convex, and in
some cases the algorithm diverges as shown by Chen et al.
in [44]. Moreover, Chen et al. in [44] also proved that the
presence of a mild condition guarantees the convergence of
the extension of ADMM to a multi-block form. The general
form of an optimization problem that is optimized by a N -
block ADMM is as follows:

min
{xi}∀ii=1

N∑
i=1

fi(xi)

subject to:
N∑
i=1

Aixi = b.

(7)

The condition proved by [44] is the following.
Condition 1 [44]: Convergence of multi-block ADMM
(Problem 7) is guaranteed when any two coefficient matri-
ces, Ai, are orthogonal to each other. Therefore, in the case
of CGRMSL and CGMSL, if we compare problems 2 and 5 to
the general multi-block ADMM form, we find that, for both
methods, all the coefficient matrices are equal to the identity
matrix, {Ai}∀ii=1 = I , therefore satisfying the condition for
multi-block ADMM to converge for any positive step-size
p > 0.

3 COMPUTATIONAL COMPLEXITY

The proposed method CGRMSL (Algorithm 1) is an iterative
algorithm that repeats until convergence. The computa-
tional complexity of each iteration of Algorithm 1 stems
from the following steps: 1) six different updates repeated
V times (for each different view present in the data): Lk+1

v ,
Ck+1
v , Qk+1

v , L∗,k+1,Zk+1
1,v ,Zk+1

2,v . 2) After each iteration the
algorithm computes the objective function of Problem 2
to check for convergence. We will break down the time
complexity for both steps: 1) The time complexity of each
of the six updates is shown as follows:

i Lk+1
v Update: Computation of one SVD and matrix

multiplication of USV T , with additional matrix addi-
tions, subtractions, and multiplication by constants. SVD
complexity is O(p2n), matrix multiplication of USV T is
O(p2n + n2p), additional matrix arithmetics is O(pn).
The overall complexity after dropping lower order terms
is O(p2n+ n2p).

ii Ck+1
v Update: Computation of n l2 norm computations

of p-dimensional vectors and additional matrix arith-
metics, both with a complexity of O(pn). This gives an
overall complexity of O(pn).

iii Qk+1
v Update: Computation of matrix arithmetics and

inverse of diagonal matrix. The overall complexity is
O(pn+ n2).

iv L∗,k+1
v Update: Computation of matrix addition and

multiplication by constant giving a total complexity of
O(pn).

v Zk+1
1,v , Zk+1

2,v Update: Computation of matrix arith-
metics including addition, subtraction, and multiplica-
tion by constant. This gives an overall complexity of
O(pn).

2) The time complexity of computing the objective func-
tion is broken down as follows:

i ||Lv||∗ nuclear norm of Lv : Computing the SVD and
sum of n singular values (because p � n). This gives
a total complexity of O(p2n).

ii ||Cv||1,2 l1,2 norm of Cv : Computing the square of every
element of a p × n matrix, sum of n l2 norms of p-
dimensional vectors. This gives an overall complexity
of O(pn).

iii ||Qv − L∗||2F : Computing the subtraction of two p × n
matrices and sum of the squared elements. The total
complexity is (pn).

iv tr(QvΦvQTv ): multiplication of p × n, n × n, and n × p
matrices with trace of result (sum of p diagonal elements
of resulting matrix).The total complexity isO(pn2+np2).

Let I denote the number of iterations needed for CGRMSL
to converge. Then the total complexity of the CGRMSL
algorithm is the sum of V times the complexity of the up-
dates added with the complexity of computing the objective
function. The overall computational complexity expression
of CGRMSL is denoted as follows:
O
(
I
(
V (p2n+ n2p)

))
.

The hardware settings for this paper are: Intel Core i7-6700,
3.4 GHz (4 cores), 8 GB RAM.

4 SIMULATION STUDY

4.1 Data Simulation

In this section we evaluate our model CGRMSL on two
synthetic datasets by comparing against GrMCCA [35] and
CGMSL. The first synthetic dataset is generated by a mixture
of Gaussians (convex shapes). The second synthetic dataset
comprises of a mixture of non-convex shapes, namely a
mixture of ‘moons’. We will show that our model is capable
of finding a shared latent space that takes into account all
complementary information from the different data views.
Furthermore, we will show that our model is robust to
outliers by finding a shared latent space that is not affected
by their presence.

The first synthetic dataset comprises two 3-dimensional
views, Mv (v = 1, 2), with each view containing three
different classes generated by a mixture of three Gaussian
densities: p(Mv)=

∑3
i=1

1
3N (µiv,Σ

i
v), where µiv and Σiv are

the mean vector and covariance matrix of the ith Gaussian in
the vth view. We generate 500 samples from each Gaussian.
For the 1st view the three classes C1, C2, and C3 have the
parameters set as follows: µ1

1 = (1 2)T , µ2
1 = (1 4)T and

µ3
1 = (6 6)T . For the 2nd view the three classes C1, C2,

and C3 are parametrized by: µ1
2 = (1 2), µ2

2 = (6 6)T and
µ3

2 = (1 4)T . For both views all covariance matrices are set
to the identity matrix, and the third dimension is generated
by concatenating to the samples from the 2-dimensional
Gaussians a standard uniform random variable in the in-
terval (0,0.5). The two views constructed as described will
have complementary information to be able to separate the
three different classes. Furthermore, for both views we inject
two outliers deeper in the third dimension with coordinate
vectors: (2 4 1.5)T and (3 4 -1.5)T . Figure 1 shows the input
dataset structure of both views generated from a mixture of
bivariate Gaussian densities.
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Fig. 1. Synthetic example to compare the three algorithms: CGRMSL, CGMSL and GrMCCA. For each method the shared latent space and the
reconstruction error for each sample are shown. We can see that CGRMSL shows robustness to outliers as expected, whereas CGMSL and
GrMCCA have resulted in skewed shared latent representations to accommodate the outliers. The robustness of CGRMSL is clearly seen in its
reconstruction error plot, it shows that the outliers have much larger reconstruction errors compared to the uncorrupted samples.

The second dataset is also composed of two 3-dimensional
views with each view having a mixture of three classes with
each class containing 500 samples. Each view is generated
as follows. First, three 2-dimensional ‘moons’ are generated.
Then, the third dimension is formed by concatenating to the
samples from the 2-dimensional ‘moons’ a standard uniform
random variable in the interval (0,0.5). The two views are
constructed to have complementary information to separate
all the three classes as done for the first synthetic dataset.
For this dataset, fractions of the entire 1500 samples of the
dataset are corrupted to generate the outliers. The fraction
of outliers generated are : 0.1 %, 1%, 3 %, 5%, 7%, 10%, 12 %,
15%. The outlier samples are generated by following a ”salt
and pepper” corruption model.

4.2 Experimental setting and results
We first construct a K Nearest Neighbour graph for each
view. Then, we compute the Gaussian kernel function Wv

for each view by setting σ as the squared mean of the
Euclidean distances between the K nearest neighbours of
all samples. Finally, the graph Laplacian matrices Φ1 and Φ2

are constructed from their correspondingWv as described in
section 2.1. The shared latent space for both CGRMSL and
CGMSL is found by computing Z as explained in section
2.1. For GrMCCA the shared latent space is computed as

described in [35], where Yshared is computed as Yshared =
Y1 + Y2, and Yv = PTv Mv is the projection of Mv onto
the eigenvectors solving the eigendecompositon problem
formulated in [35]. The reconstruction error of each sample
is computed to show how the outliers affect each method.
For CGRMSL and CGMSL the reconstruction error for each
sample is computed by the l2 norm of the error between
the ith sample M i

v of the vth view and its reconstruction
from the shared latent space L̂∗,i: eiv = ||M i

v − L̂∗,i||2 for
i = 1, 2..., n. However, for GrMCCA finding the reconstruc-
tions of the shared latent space in the original data space
is not feasible. This is because it does not solve directly for
a shared latent representation; instead it first solves for the
projection vectors Pv of each view, then sums the projections
of each view to create a shared latent representation. Hence,
finding the reconstruction errors to investigate outliers can
only be achieved by investigating reconstruction errors of
each projected view. For GrMCCA the reconstruction for the
vth view is computed by Rv = PvYv and the reconstruction
error for the vth view is expressed by eiv = ||M i

v − Riv||2.
Both synthetic datasets have been constructed to have three
classes with information in both views to be able to separate
all three classes. However, each view alone has two out
of the three classes with significant overlap and the third
class being separate from the first two, as shown in Figure
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1 (Input Data). Therefore, if the method used is capable of
integrating the complementary information in both views
then the three classes should be all separated from each
other in the shared latent space.

For the Gaussian mixture dataset Figure 1 shows the
shared lower dimensional latent space of the synthetic data
and the reconstruction error of each sample on the 1st

view for CGRMSL, CGMSL and GrMCCA (the 2nd view
leads to the same conclusion, so only one is shown for
simplicity). From Figure 1 we can see that the shared latent
space of CGRMSL effectively separates the three different
classes present in the two views, whereas the shared latent
space from GrMCCA shows less separability. We can also
see for CGRMSL that the outliers have considerably higher
reconstruction errors compared to all other samples. This
indicates that the subspace of the shared latent space is
not skewed to accommodate the outliers, thus proving the
robustness of our method to outliers. On the other hand,
for GrMCCA and CGMSL the reconstruction error of the
outliers are in the range of the main samples, showing
that the outliers have skewed the shared latent subspace
to accommodate them.
a For the mixture of ‘moons’ dataset we evaluate each
method’s ability to separate clusters in the recovered latent
space, and the ability to detect the injected outliers by
inspecting the reconstruction errors. This is done for the
different outlier fractions mentioned in Section 4.1. The first
step to evaluate the ability of a method to separate the
three different classes is to compute cluster assignments,
by using k-means clustering on the extracted shared latent
representation. Then, to evaluate the obtained clusters the
silhouette score is computed, which is the mean of the
silhouette values of each sample. The silhouette value of
each sample is a measure of how similar a sample is to
its own cluster compared to the other clusters. For the ith

sample, the smallest average distance of the ith sample to all
points in any other cluster is denoted as ai, and the average
dissimilarity between the ith sample to all other data points
in the same cluster is denoted as bi. The silhouette value
for the ith sample is defined as si = (ai − bi)/(max(ai, bi)).
The silhouette ranges from -1 to 1. The silhouette score of
a dataset is the average of the silhouette values of all the
samples in it. A silhouette score close to 1 indicates that
clusters are well separated. Figure 2 (a) shows the errorbar
of the silhouette scores of 50 runs of k-means computed on
the shared latent spaces extracted from CGRMSL, CGMSL
and GrMCCA. It is seen in the figure that CGRMSL has
the highest silhouette scores for all fractions of outliers
compared to the other two non-robust methods.
a The outlier detection performance is assessed by the
False Negative Rate (FNR) which computes the number of
outliers that have reconstruction errors overlapping with the
reconstruction errors of the uncorrupted samples. Therefore,
the reconstruction error threshold that is chosen to compute
the FNR is the maximum of the reconstruction errors of the
uncorrupted samples. Figure 2 (b) shows the FNR for all the
three methods for the different outlier fractions. It is seen
from Figure 2 (b) that CGRMSL has the best outlier detection
performance with FNR starting at zero and remaining close
to zero. Moreover, CGMSL and GrMCCA have an increasing
overall trend of FNR when a greater fraction of outliers are

injected.

(a) Silhouette Scores

(b) False Negative Rate

Fig. 2. Performance of the three different algorithms on the mixture of
‘moons’ dataset. (a) Silhouette score of clusters computed on the shared
latent representation of each method is displayed. (b) Shows the ability
of detecting all the injected outliers by inspecting the reconstruction
errors.

5 COMPARISONS

We compare CGRMSL to other convex and non-convex
methods, both single and multi-view. The non-convex
methods have analytical solutions that are computed
by eigendecompositions. Another set of methods that
we compare against are the benchmark multi-omic data
clustering methods of SNF [26] and iCluster [40].

Single-view Subspace Learning (SSL) (convex) The
aim of single view subspace learning is to find a low-
dimensional latent representation of the input dataset by
taking into account only one view. We will compare against
SSL in [14], which finds a sparse low-dimensional latent
representation by minimizing a convex objective function.

Single-view Subspace Learning (non-convex) These
methods act on a single view and their objective functions
are non-convex but have closed form solutions based
on eigendecompositions. These are Principal Component
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Analysis (PCA) [28] and Graph-Laplacian PCA (GPCA) [27].

Multi-view Subspace Learning (convex) The aim of
these methods is to find a common low-dimensional latent
representation by using information from multiple views.
The methods we compare against are the following convex
methods: LRA Cluster from [18], Convex multi-view
subspace learning (CMSL) from [17].

Multi-view Subspace Learning (non-convex) These
methods are non-convex multi-view methods but have
closed form solutions. They are multi-view clustering via
canonical correlation analysis (CCA) [6] and GrMCCA [34].

Convex Graph regularized Robust Single-view Subspace
Learning (CGRSSL) This method is a single view subspace
learning counterpart of our proposed method CGRMSL. It
uses the L̂v found from Algorithm 1 and from there finds
the latent representation of the vth view by projecting L̂v
onto its truncated column space: Zv = UTv L̂v , with the SVD
of L̂v being, L̂v = UvΣvV

T
v .

Convex Graph regularized Multi-view Subspace Learning
(CGMSL) This is the non-robust version of CGRMSL
described in section 2.3. It replaces the robust l2,1 norm of
CGRMSL with the standard Frobenius norm squared for
the reconstruction error.

Benchmark Multi-Omic Data Clustering Methods
SNF [26] and iCluster [40] are multi-omic data integration
and data clustering methods. SNF fuses the different
similarity networks of the available data views into a
consensus kernel, then spectral clustering is performed on
the consensus kernel to find cluster assignments. iCluster is
a joint latent variable model that finds a shared clustering
result among the data views.

6 EXPERIMENTAL RESULTS RELEVANT TO CAN-
CER

In this section we validate our method against the other
state of the art multi-view and single view methods de-
scribed in section 5. To evaluate our method we conduct
experiments on five different TCGA cancer data types
[20]: breast cancer (BRCA), esophageal cancer (ESCA), en-
dometrioid cancer (UCEC), kidney renal clear cell carcinoma
(KRCCC), and lung squamous cell carcinoma (LSCC). For
BRCA, ESCA, and UCEC pre-processed data are gathered
from the UCSC Xena browser [36]. For KRCCC and LSCC
the pre-processed data are provided by Wang et al. [26].

We first validate the clustering performance by finding
a clustering assignment on the projection of the samples
on the obtained low-dimensional subspace for each of the
benchmark multi-view and single view methods. Subse-
quently, the clustering assignments are compared to the
given subtype labels from the TCGA clinical data for three
of the five cancer types: BRCA, ESCA, and UCEC (Section
6.2). For the remaining LSCC and KRCCC cohorts, cancer
subtype labels are not present; therefore the objective is
to find clusters that can be potential subtypes. Potential
subtypes are discovered by performing a survival analysis

and comparing how significantly survival times differ be-
tween samples in each cluster (Section 6.3). In Section 6.3 we
compare only against the benchmark multi-view methods.
Table 1 summarizes the different datasets used in this study.

Patients features per view views subtype labels subtypes
BRCA 292 250 2 YES 3
ESCA 194 300 2 YES 2
UCEC 112 1000 2 YES 2

KRCCC 122 329 3 NO to be found
LSCC 106 352 3 NO to be found

TABLE 1
Summary of the five TCGA cancer datasets used in this paper.

Features in the case of the five TCGA datasets are: mR-
NAs for gene expression, DNA methylation sites for DNA
methylation, and miRNAs for miRNA expression. BRCA,
ESCA, and UCEC have two different views that consist of
measurements at two different omic scales: gene expression
(transcriptome) and DNA methylation (epigenome). KR-
CCC and LSCC have three views spanning two different
omic scales: gene expression (transcriptome), DNA methy-
lation (epigenome), and miRNA expression (transcriptome).
In Table 1 the column ‘features per view’ describes the
number of features retained per view for a specific cancer
type. When considering gene expression and DNA methyla-
tion the number of sequenced features is considerably large
(>20000). Thus it is necessary to reduce the dimensionality
of the data to lower the computation time of our proposed
methods (CGRMSL and CGMSL), and to get more stable
results. Therefore, each view of the datasets present in Table
1 is filtered to retain the most variable genes across sam-
ples. This is a commonly used pre-processing procedure for
machine learning algorithms applied to genomic datasets
[45] to choose the most informative features. The number
of features to retain is chosen from a trade-off between the
time of computation and the fraction of the total variance
explained by the chosen features. Note that choosing a
number of features greater than 10000 does not change the
conclusion deduced from the results; it only increases the
time needed for computation. Moreover, for KRCCC and
LSCC cancer types, the miRNA expression view has a small
number of sequenced features. Thus, the number of features
per view is chosen to be the smallest between the number
of features of all views, because our method needs to have
the same number of features for all the views.

6.1 Parameter settings
We would like to remind the reader that, from the CGRMSL
objective function in Problem 1 in Section 2.1, the graph
regularizer on the low rank matrix Lv is constructed based
on the original data matrix Mv . Therefore, it is essential that
the noise present in the original data is filtered out before
constructing the similarity matrices Wv . The parameter K ,
the number of nearest neighbours used in constructing the
kernel matrices {Wv}∀v , is important in filtering out the
noise in Mv . Choosing a large value of K will fit any noise
or outliers present in the data, therefore K should be a
moderately small fraction of the size of the data. In such
case it can model the local structure of the data without
capturing the noise present in Mv . Thus, for our proposed
method, CGRMSL, we need to tuneK . To find the best value
ofK , a grid search for all values ofK in the range of [1, total
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number of samples] is conducted. As shown in Figure 3

Fig. 3. Change in Purity (%) versus change in K: number of nearest
neighbours in kernel {Wv}∀v construction.

the mean clustering purity of k-means on the shared latent
space Z is recorded for the three cancer types that have
given class labels. From Figure 3, it is evident that if K is too
large the algorithm fails to capture the local structure of the
data and fits redundant noise, thus missing the difference
between distinct classes. Therefore, we found empirically
that for all the cancer genomic datasets used in our study a
K in the range of [2, 20] is sufficient to find an optimal per-
formance of CGRMSL. Moreover, we set σ, the width of the
Gaussian function used to construct the Gaussian kernels
{Wv}∀v , to a fixed value which is the squared mean of the
Euclidean distances between the K nearest neighbours of
all samples. In addition, the other parameters of CGRMSL
found in its objective function (in Problem 1) are also tuned
using grid search to obtain the best performance. We found
empirically for all of the datasets used in this study that α
should be set in the range of [0.1, 100], γv in the range of
[0.1, 8] for all v, and λv ∀v = λ with λ chosen in the range
of [0.1, 10]. The effect of these parameters on the clustering
performance is found in Appendix C.
a We also tuned parameters for all other competing methods
by conducting a parameter search. Afterwards, the values
with the best performance are recorded in the following sec-
tions. For all comparative methods with graph regularizers
the value of K is chosen to be the one that gives the best
cluster evaluation criterion or p-value, in the range [1, total
number of samples]. For GPCA α is chosen in the range
[0.01, 2]. η for GrMCCA is chosen in the range [0.5e-4, 1e-
2]. α for SSL and CMSL is chosen in the range [1, 100]. For
CGMSL the optimal α, γv of CGRMSL are used and then λ
is tuned again in the range [0.1, 10].

The cancer genomic datasets used in this study all have
gold standards, this makes it possible to evaluate clustering
performance or p-value when tuning the parameters. In case
the gold standard is not available the tuning process is more
challenging. To tune the parameters to suitable values we
need to measure different metrics, other than accuracies, to
evaluate the parameters chosen. For our method, CGRMSL,
the two factors that are affected from the regularization
parameters are the ranks of Lv and the number of outliers

(a) BRCA (b) ESCA

(c) UCEC

Fig. 4. Visualization of CGRMSL for BRCA, ESCA and UCEC. Differ-
ent subtypes are labelled by: green, red, and yellow ’o’. Misclassified
samples by k-means on the CGRMSL subspace are labelled by a black
‘+’. Misclassified samples by k-means on the original space is labelled
by a black ‘x’. Samples that are both misclassified by k-means on the
original space and the CGRMSL subspace are labelled by a blue ‘?’.

detected in each view. Outliers are defined as samples that
have reconstruction errors (l2 norms of columns of Cv)
higher than a specific threshold. Therefore, we can only use
both factors to tune the regularization parameters: λ (using
λv∀v = λ), α, and γv . The tuning process consists of solving
CGRMSL for values of λ,α, and γv in a specific grid space,
and looking for stable regions for the ranks of Lv . We then
refine the search space of the parameters to the stable region
and record the number of outliers detected in each view. A
suitable value of the parameters needs to be chosen in such
a way that the number of detected outliers in each view are
less than or equal to an expected fraction of outliers. From
our studies, we suggest to expect a fraction of outliers that
is less than 15 % of the data. This is a suggested procedure
to use when tuning parameters in complete absence of gold
standards. However, our method’s optimal parameters are
detected when gold standards are present.

6.2 Clustering

Here we compare the proposed CGRMSL method against
the benchmark single and multi-view methods described
in Section 5. For the benchmark subspace methods we
compute the clustering performance on their learned low-
dimensional representations. The clustering performance is
evaluated on the three TCGA cancer types with available
subtype labels. The problem that will be investigated here
is cancer subtype clustering. For BRCA the three most
common breast cancer subtypes are: Luminal, Basal, and
Her2-enriched. For ESCA the subtypes are: Adenocarci-
noma and squamous cell carcinoma. For UCEC the subtypes
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are: Serous and Endometrioid. For each of the cancer types
we first find the common samples between the different
views, the three cancer datasets that have labelled subtypes
comprise of: n =292, 194, 112 common patients for BRCA,
ESCA, and UCEC respectively. After finding the common
samples between views, for each view of the cancer types,
we only retain the most variable genes across samples. The
third column in Table 1 records the number of features
retained per view for all the investigated cancer types.
a For our method and all of the benchmark methods de-
scribed above, we evaluate the clustering performance by
measuring cluster purity, Normalized Mutual Information
(NMI) [43], and Adjusted Rand Index (ARI) [42]. They have
been used before in [19], [38], [41] to measure the perfor-
mance of their multi-view clustering methods for cancer
subtype clustering. These evaluation metrics measure the
similarity between the predicted cluster labels and the true
class labels.
Cluster purity is a measure of how much the clusters contain
a single class. It is calculated by counting the number of
data points from the most common class in each cluster,
and averaging over all clusters:

Purity =
1

N

C∑
i=1

maxj |wi ∩ tj |,

where wi is the ith cluster, tj is the jth class, C is the number
of clusters and N is the number of data points.
NMI, is defined as:

NMI = 2
I(W,T )

H(W ) +H(T )
,

where I(W,T ) is the mutual information between the pre-
dicted cluster labels W and the true class labels T . H(W )
and H(T ) are the entropy of predicted clusters and true
class labels respectively.
ARI is the corrected-for-chance version of the Rand index. It
is defined by:

ARI =

∑C
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where ni,j is the number of times a sample labelled i in
the predicted cluster labels W co-occurs with label j in the
true class labels T . ai is the sum of co-occurrences of cluster
label i with all the class labels, ai =

∑
j ni,j . bj is the sum

of co-occurrences of class label j with all the cluster labels,
bj =

∑
i ni,j .

(n
2

)
is the number of unordered pairs in a set

of n elements.
Clustering is performed by k-means which is run 50 times

on the latent representation of each method, the average
of each evaluation metric measured on all the 50 runs are
reported in Tables 2 and 3. The evaluation metrics of our
method (CGRMSL) against all the benchmark single view
methods are shown in Table 2. We can see from Table 2
that CGRMSL has superior clustering metrics compared to
all the benchmark single view methods applied to each
view separately. It is also seen from Table 3 that CGRMSL
gives a better clustering performance compared to all other
benchmark multi-view methods.

Another result worth highlighting is the capability of our
method to visualize the three cancer types. We can see from
Figure 4 that CGRMSL tightly places the different subtypes
in distinct regions of the two-dimensional latent space.
Moreover, Figure 4 also shows the misclassified samples
when clustering on the CGRMSL subspace, and misclas-
sified samples by k-means on the original space before
dimensionality reduction.

6.3 Subtype Identification and Survival Analysis

(a) KRCCC, p-value = 3.13e-4

(b) LSCC, p-value = 3.27e-5

Fig. 5. Kaplan-Meier survival curves for KRCCC and LSCC. It shows dis-
tinct survival times of the subtypes identified by our method (CGRMSL).

Different cancer subtypes are expected to have significantly
different survival times [4]. Here we apply our model to
identify potential cancer subtypes by performing a survival
analysis on the obtained clusters. This is performed on kid-
ney renal clear cell carcinoma (KRCCC) and lung squamous
cell carcinoma (LSCC). To measure how significantly the
methods have identified different subtypes the Cox survival
p-value is used. This is computed using the Cox Wald test
to measure whether the subtypes have significantly different
survival times. A lower Cox p-value indicates that survival
profiles among subtypes are more significantly different.
Consequently potential subtypes might be discovered using
our multi-view clustering method.
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Criterion k-means v1 k-means v2 PCA v1 PCA v2 GPCA v1 GPCA v2 SSL v1 SSL v2 CGRSSL v1 CGRSSL v2 CGRMSL
BRCA purity 89.14±1.62 84.49 ±5.84 88.36 79.18±0.52 88.03±0.28 73.47 ±0.43 88.60 ±1.22 80.84 ±0.07 96.92 91.79±3.78 97.26

NMI 57.30 ±8.5 38.37 ±8.95 51.44 ±0.25 24.6 ±0.52 60.60 ±0.11 50 ±0.19 62.88 ±0.9 48.77 84.12 82.05 88.50
ARI 42.31 ±13.81 21.34 ±15.18 38.8 ±0.77 19.46 ±2.18 51.53 ±0.30 42 ±0.55 54.27 38.40 89.42 49.27 91.20

ESCA purity 93.68 ±0.22 91.18 ±0.28 93.75 ±0.17 91.25 ±0.26 93.50±0.25 90.72 93.30 90.21 96.90 93.81 97.94
NMI 68.80 ±1.13 61.86 ±1.16 66.51 ±0.85 61.97 ±1.26 67.52 ±0.83 59.32 67.91 ±0.66 62.29 81.12 72.25 85.88
ARI 76.52 ±0.49 67.82 ±0.88 75.47 ±0.86 67.79 ±0.68 75.36 ±0.81 66.16 74.47 ±0.75 67.85 87.94 76.66 91.88

UCEC purity 86.89±1.6 85.71 86.53±1.48 85.71 87.32±2.17 85.71 88.39 85.71 91.96 87.21 ±0.026 96.43
NMI 28.56 ±15.9 25.29 ±2.82 29.69 ±14.69 27.08 ±0.39 25.63 ±17.58 23.09 ±16.20 47.91 28.16 ±6.20 56.63 27.90 ±0.4 70.52 ±1.75
ARI 31.33 ±22.63 16.87 ±5.52 20.91 ±19.40 19.29 ±0.70 17.35 +- 22.45 19.38 ±18.36 53.26 20.90 ±11.39 64.83 20.63 ±0.73 79.78 ±1.78

TABLE 2
Cluster purity (average ±std) for single view subspace learning methods, k-means on original space, and CGRMSL. Readings with absent error

bars have a std of zero for all 50 k-means runs. v1 is the gene expression view and v2 is the DNA methylation view.

Criterion CMSL LRA Cluster CCA GrMCCA CGMSL iCluster SNF CGRMSL
BRCA purity 88.36 88.36 88.35 96.92 97.05 ±0.17 84.59 88.36 97.26

NMI 51.26 55.60 ±0.43 50.22 ±0.91 86.25 87.12 ±1.12 51.54 69.41 88.50
ARI 38.57 42.20 ±0.24 33.85 ±1.4 90.15 90.76 ±0.52 60.43 73.24 91.20

ESCA purity 95.36 95.88 94.85 95.36 95.57 ±0.24 96.91 97.42 97.94
NMI 69.5 ±0.85 76.96 73.22 62.10 ±1.22 75.70 ±0.91 81.11 83.42 85.88
ARI 77.69 ±0.92 77.47 ±0.94 80.34 64.09 ±1.63 83.15 ±0.95 87.95 89.90 91.88

UCEC purity 85.94 85.71 90.58±0.44 92.36 ±3.65 95.39 ±0.85 90.18 89.29 96.43
NMI 43.29 ±2.12 40.68 ±0.71 52.92 ±1.12 32.77±28.58 53.23 ±6.01 51.94 49.85 70.52 ±1.75
ARI 46.36 ±3.3 42.31 ±1.13 60.27 ±1.49 48.83 ±33.46 63.50 ±8.38 58.80 55.97 79.78 ±1.78

TABLE 3
Cluster purity for the benchmark multi-view subspace learning methods and our method (CGRMSL).

LRA Cluster GrMCCA CGMSL iCluster SNF CGRSSL v1 CGRSSL v2 CGRSSL v3 CGRMSL
KRCCC 1.47e-2 1.2e-3 9.48e-04 1.2e-1 8e-3 4.30e-4 6.30e-2 2.36e-2 3.13e-4
LSCC 8.21e-4 2.71e-4 4.46e-5 6.9e-2 1e-3 5.1e-3 4.62e-2 1.1e-3 3.27e-5

TABLE 4
Cox-Wald test p-value for all different multi-view methods. Parameters for each method are tuned and the best p-value is reported.

After projecting the samples onto the subspace given by
CGRMSL we perform k-means clustering 50 times and
report the lowest Cox Wald test p-value. The lowest p-
value over the parameters of each method is reported.
Here we partition into three clusters as it gives the best
clustering result when compared to partitioning into two,
four, and five clusters. The way in which we determine
the optimal number of clusters for both LSCC and KRCCC
cancer datasets is by inspecting the silhouette score of the
samples in the low dimensional representation found by
CGRMSL. Figure B.1 in Appendix B shows the silhouette
scores computed on the shared latent space extracted from
CGRMSL by using different values ofK nearest neighbours;
in the predefined range of [2,20]. This is repeated for: two,
three, four, and five clusters. From the Figure we can see
that the highest mean silhouette score is achieved for three
clusters.
a We compare our method to other state of the art multi-
view methods that can take into account more than two
views; these results are shown in Table 4. It it seen from
Table 4 that our method, CGRMSL, scores a more significant
p-value compared to the other multi-view methods and
the single-view version of our algorithm CGRSSL (for each
view). Moreover, the table shows that the outlier sensitive
version of our algorithm, CGMSL, performs better than the
other multi-view clustering methods. In addition, to show

the distinct survival curves between identified subtypes,
we show in Figure 5 the Kaplan-Meier survival curves
for both cancer types using the subtypes identified by our
method. From Figure 5 (a) and (b) it is evident that for both
cancer types the three identified subtypes have significantly
different survival profiles, a property that was not labelled
in the datasets.

7 DISCUSSION

The results comparing CGRMSL to the single-view methods
in Table 2 show that our method is successful in integrating
different views by taking into account the complementary
information present in each view. It is also worth noting
from CGRSSL (the single view counterpart of our method)
that the 1st view has a higher clustering effect than the
2nd view, for each of the three datasets. This implies that
the gene expression view has more subtype separability
information than the DNA methylation view, for the three
cancer genomic datasets: BRCA, ESCA, and UCEC. The
benchmark SNF method in [26] analysed the same TCGA
breast cancer genomic dataset, BRCA. The authors of the
paper show in their study a similar conclusion, that for the
BRCA cohort the gene expression view by itself has a lower
p-value (more significant clustering results) compared to the
DNA methylation and miRNA expression views.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

The results in Table 3 and 4 show that our method,
CGRMSL, is better able to integrate the complementary
information present in the different omic views than the
other benchmark multi-view clustering methods. CGRMSL
uses a variety of different algorithmic features, which gives
it the capability of performing better than the benchmark
multi-view clustering methods used in this study. CGRMSL
performs better because it: 1) uses and integrates the sam-
ple similarity information of each view (in the form of
graph regularizers, similar to SNF and GrMCCA); 2) it
is a subspace learning method where the resulting rep-
resentation is a shared low-dimensional representation of
the different views (similar to GrMCCA and CMSL); 3) it
does not assume a simple Gaussian distribution noise like
iCluster, GrMCCA, and CGMSL, which makes CGRMSL
more robust to outliers; 4) it is not an early integration
method like LRACluster, where the different views will be
treated as one, which by doing this the structural diversities
between different views are ignored; 5) it is formulated as
a convex optimization problem that has all the previous
features. In summary, CGRMSL blends in its framework the
different algorithmic features of the benchmark methods,
while including a model robust to outliers. This makes it a
better multi-view clustering algorithm than the benchmark
methods.

8 CONCLUSION

In this paper we propose an efficient convex multi-view
clustering method that learns a common latent representa-
tion which takes into account the complementary informa-
tion found in the separate views of the data. Moreover, it is
robust to outliers in the data and takes into account its in-
trinsic manifold structure in each view. We have shown that
our method CGRMSL is superior to state of the art convex
and non-convex multi-view and single view methods found
in the literature. Furthermore, we have shown that CGRMSL
takes advantage of learning a shared latent representation,
through the matrix L∗, as compared to the single view
version of our method. We have shown better clustering
performance on the important biomedical problem of cancer
subtype clustering. Finally, we have shown the ability of our
method to potentially discover new subtypes.
a One limitation to take into account for our method is
that the different views of the input data need to be fil-
tered to have the same number of features before applying
CGRMSL. In the case of genomic data this can be done
with a feature filtering pre-processing step, which is quite
common in the literature as many genes that are sequenced
are not involved in the specific biological function that is
being investigated.
a Novel multi-omic single-cell datasets have started to
emerge in the life-sciences community, they have a much
higher resolution of biological information compared to tra-
ditional bulk sequencing techniques. Therefore, a promising
future work direction is to investigate these new multi-omic
datasets with CGRMSL, for subtype identification and even
rare cell type identification. Our method will extend nicely
to single-cell datasets as in our model we extract a low-rank
approximation of the data, which is known to be beneficial
with single-cell data as it can act as an imputation for the

dropped-out measurements present in such data. Another
direction of future work will be to extend CGRMSL by
injecting biological prior knowledge extracted from inter-
action networks in the form of a graph between genes.
A graph regularizer based on these biological interaction
networks can be added to the CGRMSL model. In this
case, not only can we include in our method information
in different genomic views but also incorporate prior gene
regulatory knowledge. This could potentially aid in drug
target discovery for complex diseases.
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