
 Page 1 of 1

Federation University ResearchOnline
https://researchonline.federation.edu.au
Copyright Notice

This is the peer-reviewed version of the following article:

Ni, Z., Chen, H., Li, Z., Wang, X., Yan, N., Liu, W., & Xia, F. (2023). MSCET: A Multi-
Scenario Offloading Schedule for Biomedical Data Processing and Analysis in Cloud-Edge-
Terminal Collaborative Vehicular Networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 20(4), 2376–2386.

Available online: https://doi.org/10.1109/TCBB.2021.3131177

Copyright © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

CRICOS 00103D RTO 4909

See this record in Federation ResearchOnline at:
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/197008

https://researchonline.federation.edu.au/
https://doi.org/10.1109/TCBB.2021.3131177
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/167343
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/197008

1

MSCET: A Multi-Scenario Offloading Schedule for
Biomedical Data Processing and Analysis in

Cloud-Edge-Terminal Collaborative Vehicular Networks
Zhichen Ni, Honglong Chen, Senior Member, IEEE, Zhe Li, Xiaomeng Wang,

Na Yan, Weifeng Liu, Senior Member, IEEE, and Feng Xia, Senior Member, IEEE

Abstract—With the rapid development of Artificial Intelligence (AI) and Internet of Things (IoTs), an increasing number of computation
intensive or delay sensitive biomedical data processing and analysis tasks are produced in vehicles, bringing more and more
challenges to the biometric monitoring of drivers. Edge computing is a new paradigm to solve these challenges by offloading tasks from
the resource-limited vehicles to Edge Servers (ESs) in Road Side Units (RSUs). However, most of the traditional offloading schedules
for vehicular networks concentrate on the edge, while some tasks may be too complex for ESs to process. To this end, we consider a
collaborative vehicular network in which the cloud, edge and terminal can cooperate with each other to accomplish the tasks. The
vehicles can offload the computation intensive tasks to the cloud to save the resource of edge. We further construct the virtual resource
pool which can integrate the resource of multiple ESs since some regions may be covered by multiple RSUs. In this paper, we propose
a Multi-Scenario offloading schedule for biomedical data processing and analysis in Cloud-Edge-Terminal collaborative vehicular
networks called MSCET. The parameters of the proposed MSCET are optimized to maximize the system utility. We also conduct
extensive simulations to evaluate the proposed MSCET and the results illustrate that MSCET outperforms other existing schedules.

Index Terms—Biomedical Data Processing and Analysis, Cloud-Edge-Terminal Collaborative Vehicular Networks, Optimization,
Resource Allocation, Task Offloading.

F

1 INTRODUCTION

T HE rapid development of Artificial Intelligence (AI) [3],
[14] and Internet of Things (IoTs) [1], [4], [15] has paved

a way to realize modern applications in vehicles. For example,
on-board AI plays an important role in the analysis of driver
biomedical data [22], [29]. However, these applications are mostly
computation intensive or delay sensitive while the computation
resource of vehicles is relatively limited. This conflict may decline
the Quality of Service (QoS) and eventually restrict the develop-
ment of vehicular networks [19], [25]. Cloud computing can be
used in such kind of scenario [10], [23], in which vehicles can
offload tasks to resource-rich cloud servers via wireless network.
However, the latency for the cloud computing may be too long,
resulting in that some tasks cannot be accomplished in time.

Edge computing is a new paradigm and has attracted lots of
attentions from both the research and industrial community. In
contrast to cloud computing, edge computing brings computation
services from the remote cloud to the network edge, enabling
that some tasks can be quickly processed near the vehicles [12].
Recently, edge computing for vehicular networks has been studied,
and some research works [18], [21] have been proposed.

Most of the traditional vehicular networks concentrate on Edge
Servers (ESs) in Road Side Units (RSUs), while some tasks
may be too complex for ESs to process. A potential solution is
to combine cloud computing with edge computing, where the
vehicles can offload the complex and delay-tolerant tasks to Cloud

• Zhichen Ni, Honglong Chen, Zhe Li, Xiaomeng Wang, Na Yan and Weifeng
Liu are with College of Control Science and Engineering, China University
of Petroleum (East China), Qingdao 266580, P. R. China.

• Feng Xia is with the School of Science, Engineering and Information Tech-
nology, Federation University Australia, Ballarat, VIC 3353, Australia.

Corresponding author: Honglong Chen. Email: chenhl@upc.edu.cn.

Servers (CSs) [11]. Moreover, with the development of Network
Function Virtualization (NFV) technology, the construction of
virtual resource pool becomes feasible [13]. Some regions may
be covered by multiple RSUs in the vehicular networks [27]. In
such situation, the virtual resource pool can be utilized in the
offloading schedule to integrate the resource of multiple ESs. And
we further adopt Software Defined Network (SDN) to manage the
virtual resource pool to improve its performance.

In this paper, we concentrate on investigating the problem
of efficient and reliable multi-scenario offloading schedule for
biomedical data processing and analysis in Cloud-Edge-Terminal
collaborative vehicular networks. To this end, there are two chal-
lenges that need to be well addressed. The first one is the selection
of vehicles’ offloading targets, which can affect the optimization
of the QoS utility. For instance, it will cause the overload of RSU
if a numerous number of vehicles offload tasks to the same RSU,
which may result in the timeout of tasks [28]. Thus, we adopt
a matching method for the selection of each vehicle’s offloading
target and set a dynamic maximum connection limit for each RSU.
The second challenge is how to obtain the reasonable offloading
ratio and resource allocation to improve the system utility. To
address these challenges, we consider a Cloud-Edge-Terminal
collaborative vehicular network consisting of a CS, a set of RSUs,
each of which is equipped with an ES, and a set of vehicles.
Each vehicle has a computation task and can select servers to
offload the task to. By jointly optimizing the offloading targets
selection, offloading ratio and resource allocation, we obtain the
near-optimal schedule to maximize the system utility.

The main contributions of this paper are the following:

• We model the offloading decision and resource alloca-
tion for Cloud-Edge-Terminal collaborative vehicular net-

ar
X

iv
:2

20
3.

07
99

9v
1

 [
cs

.N
I]

 1
6

Fe
b

20
22

2

works, and consider both the profits and QoS in the system
utility;

• To improve the processing efficiency of tasks, we construct
the virtual resource pool to integrate the resource of multi-
ple ESs and further introduce the SDN for the centralized
management of the pool.

• We propose a Multi-Scenario offloading schedule for
biomedical data processing and analysis tasks in
Cloud-Edge-Terminal collaborative vehicular networks
(MSCET), which optimizes the resource allocation, of-
floading targets and offloading ratio to maximize the sys-
tem utility;

• We conduct extensive simulations to evaluate the perfor-
mance of the proposed MSCET and the results illustrate
that MSCET outperforms other existing schedules.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 presents the system model and problem
formulation. We propose the MSCET schedule with theoretical
analysis in Sections 4. In Section 5, we conduct the performance
evaluation. Finally, this paper is concluded in Section 6.

2 RELATED WORK

Edge computing has been well studied in recent years and many
research works have been proposed. Typically, some of them
focused on how to make the reasonable offloading selections of
servers [8], [35], while some others showed interest in optimizing
the offloading ratio and resource allocation to maximize the
system utility [30], [31]. Guo et al. [8] proposed a heuristic greedy
offloading scheme for the mobile edge computation offloading
problem in ultra-dense network and the schedule showed superior
performance by conducting computation offloading over multiple
mobile edge computing servers. For optimal service provisioning,
Yu et al. [31] formulated an optimization problem to minimize
the weighted sum of the service delay of all IoT devices and
energy consumption by jointly optimizing the UAV position, com-
munication and computing resource allocation, and task splitting
decisions. Then they developed an efficient algorithm based on the
successive convex approximation to obtain suboptimal solutions.

In order to address the conflict between the computation
intensive or delay sensitive applications and resources-constrained
vehicles, there are some research works on the combination of
edge computing and vehicular networks in recent years [6], [17],
[26]. Dai et al. [6] studied the resource allocation problem for
a multi-user multi-server vehicular edge computing system and
proposed a low-complexity algorithm to jointly optimize the
server selection, offloading ratio and computation resource. The
algorithm showed the superior performance in reducing the task
processing delay while avoiding server overload. Liu et al. [17]
considered the multiple vehicles’ computation offloading problem
in vehicular edge networks and formulated it as a multi-user com-
putation offloading game problem. Then a distributed algorithm
based on game theory was proposed to reduce the latency of the
computation offloading of vehicles.

Some research works [16], [33] have studied on the integration
of the SDN and vehicular edge computing networks. An SDN-
enabled network architecture that integrated different types of
access technologies was constructed in [16] to provide low-latency
and high-reliability communication in mobile edge computing
networks. Extensive numerical results showed that their proposed
architecture has a significant improvement in the quality of user

experience. Aiming to minimize the processing delay of the
computation task of vehicles, Zhang et al. [33] proposed an SDN
based load-balancing task offloading schedule in fiber-wireless
(FiWi) enhanced vehicular edge computing networks, where SDN
was introduced to provide supports for the centralized network
and vehicle information management.

The delay of task processing can be decreased greatly with
the assistance of edge computing, while some tasks may be too
complex for edge servers to process. A potential solution is to
combine the cloud computing with edge computing. Some works
have focused on the cooperation between cloud and edge in
recent years [24], [34]. Zhao et al. [34] presented a collaborative
approach based on mobile edge computing and cloud computing
in vehicular networks and further proposed a collaborative compu-
tation offloading and resource allocation optimization schedule to
improve the system utility. To tackle the Problem of edge server
overload, Shen et al. [24] proposed a dynamic task offloading
method with minority game in cloud-edge computing. However,
to simplify the model, they assumed that the tasks are offloaded
to either the cloud server or the edge servers, which degraded the
performance of cloud-edge cooperation networks.

The above works can improve the ability of the system for
completing the complex tasks by utilizing the cooperation of cloud
computing and edge computing. However, some of them only con-
sider a relatively simple case such as binary decision. Moreover,
they mainly focus on a single scenario and do not concentrate
on the influence of the complex communication environment in
vehicular networks. In this paper, we propose a multi-scenario of-
floading schedule for Cloud-Edge-Terminal cooperation vehicular
networks such that each vehicle can adaptively select its schedule
based on their environments.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Network Framework
As shown in Fig. 1, we consider a Cloud-Edge-Terminal collab-
orative vehicular network consisting of a Cloud Server (CS), a
set of Road Side Units (RSUs) M = {E1, E2, · · · , EM}, and a
set of vehicles N = {V1,V2, · · · ,VN} that represent the terminal
users. RSUs are randomly deployed in the area and each RSU is
equipped with a resource limited Edge Server (ES). The coverage
size of each RSU may be different due to the complex communi-
cation environment. Let r = {r1, r2, · · · , rM} denote the coverage
radius of each RSU. Some regions may be covered by multiple
RSUs as the RSUs are randomly distributed, and we define them
as the overlapping regions, such as region A shown in Fig. 1, and
other regions as the general regions. We use li = {0, 1} to represent
the region that vehicle Vi is located in, where li = 1 represents that
vehicle Vi is located in overlapping region, and li = 0 represents
that vehicle Vi is located in general region.

In general region, we simplify the model to consider a uni-
directional road, where MG RSUs are deployed along the road,
as shown in Fig. 2. While in overlapping region, we construct
the virtual resource pool to integrate computation resource of the
multiple distributed ESs using Network Function Virtualization
(NFV) technology to improve the processing efficiency of tasks,
and Software Defined Network (SDN) is adopted to provide
centralized management for the resource pool. There are three
parts in SDN architecture, i.e., control plane, data plane and
application plane, the main components and responsibilities of
which are as follows:

3

Cloud Server

RSU 1

RSU M

RSU 2

Region A

Fig. 1. Task offloading in Cloud-Edge-Terminal collaborative vehicular
networks.

Cloud Server

2r2

RSU 1 RSU 2

2r1 2rMG

CC

RSU MG

Fig. 2. Task offloading in general region.

• Control Plane: It is made up of an SDN controller and
RSU controllers, where SDN controller provides global
management based on the information of RSU controllers,
and RSU controllers are responsible for information col-
lection on the resource of ESs and the tasks of vehicles.
Moreover, they can also forward the offloading schedule
of SDN controller.

• Data Plane: Data plane is a physical hardware layer that
focuses on forwarding the data from RSUs and vehicles.
It can be managed by either SDN controller or RSU
controllers.

• Application Plane: It contains a series of hypervisors. In
our constructed virtual resource pool, the main hypervisors
consist of resource migration, OpenFlow management and
offloading decision.

3.2 Task Model

Each vehicle Vi is running on the road at a speed of vi and the safe
distance between two vehicles is L. Vehicle Vi has a computation
intensive or delay sensitive task that contains three characteristics
{Di,Ri,T max

i }, where Di (in bits) represents the size of task input
data, Ri (in CPU cycles/bit) is the number of CPU cycles required
to process 1-bit of the task, and T max

i denotes the maximum
tolerant delay to accomplish the task. Each task can be divided
into three parts, which can be processed in the terminal, ES and
CS in parallel. Let αi = {αi,e, αi,c} (0 ≤ αi,e + αi,c ≤ 1) denote the
offloading ratio of vehicle Vi, then Vi offloads αi,cDi part of its
task to the CS, offloads αi,eDi part of its task to the selected ES
and processes the rest of its task locally. We denote S i, j = {0, 1}
as the offloading decision of vehicle Vi on RSU, where S i, j = 1
if vehicle Vi selects RSU E j as its offloading target, and S i, j = 0
otherwise.

3.3 Communication Model
There are two communication scenarios in our network, i.e., cloud
communication and edge communication. For cloud communica-
tion, we assume that the data transmission rate is constant because
of the long-distance between the vehicles and cloud [26]. Let ρi,CS

denote the data transmission rate between vehicle Vi and CS. The
communication delay for cloud computing between vehicle Vi and
CS, denoted as T comm

i,CS , can be formulated as:

T comm
i,CS =

αi,cDi

ρi,CS
. (1)

For edge computing in general region, each vehicle can
establish a communication link with one of its nearby RSUs
using vehicle to infrastructure (V2I) technology. Assume that the
wireless channel is stable within a time slot (e.g., a few seconds),
while it may change in different slots because of the mobility of
vehicles [32]. According to Shannon Theory, the data transmission
rate between vehicle Vi and RSU E j, denoted as ρi, j, can be
expressed as:

ρi, j = B log

1 + PiGi, j

σ +
∑N

i′=1,i′,i Pi′Gi′, j

 , (2)

where σ is white noise of the channel. B, Pi and Gi, j are the
bandwidth, the transmission power of vehicle Vi and the channel
gain between vehicle Vi and RSU E j respectively. Based on above
analysis, the communication delay between vehicle Vi and RSU
E j for edge computing in general region, denoted as T comm

i, j , is:

T comm
i, j =

αi,eDi

ρi, j
. (3)

For edge computing in overlapping region, we denote ρi,P

as the data transmission rate between vehicle Vi and the virtual
resource pool, and T comm

i,P as the communication delay between
vehicle Vi and the virtual resource pool. The expressions of ρi,P

and T comm
i,P are similar to that of ρi, j and T comm

i, j , so we do not repeat
them again.

By following the works in [5], [9], we ignore the download
communication delay as the size of processed data is generally
much smaller than that of input data when there is no server
overload.

3.4 Computation Model
As vehicle Vi processes (1 − αi,e − αi,c)Di part of its task locally
and offloads the rest to the selected servers (i.e., ES and CS), we
consider three different cases of the computation delay for ease of
explanation.

3.4.1 Local Computing
Vehicle Vi processes (1 − αi,e − αi,c)Di part of its task locally
using its own resource. Different vehicles may have different
resource, and the amount of resource can be obtained by offline
measurement method [20]. Let fi,V (in CPU cycles/s) denote the
computation resource of vehicle Vi, thus the local computation
delay of Vi, denoted as T local

i , can be expressed as:

T local
i =

(
1 − αi,e − αi,c

)
DiRi

fi,V
. (4)

3.4.2 Edge Computing
For edge computing in general region, vehicle Vi offloads αi,eDi

part of its task to RSU E j. As each ES is resource limited, it is

4

necessary to allocate its computation resource. We denote fi, j (in
CPU cycles/s) as the allocated resource of RSU E j’s ES to vehicle
Vi. The computation delay for edge computing in general region
when vehicle Vi offloads task to RSU E j, denoted as T comp

i, j , can
be formulated as:

T comp
i, j =

αi,eDiRi

fi, j
, (5)

s.t. 0 ≤
N∑

i=1

S i, j fi, j ≤ F j ∀ j ∈ [1, · · · ,MG], (5a)

where F j is the total resource of ES in RSU E j.
For edge computing in overlapping region, vehicles do not

need to select the offloading target as the ESs of all the RSUs
are integrated as the virtual resource pool. We denote fi,P (in CPU
cycles/s) as the allocated resource from resource pool to vehicle Vi.
The computation delay for edge computing in overlapping region
of vehicle Vi, denoted as T comp

i,P , is:

T comp
i,P =

αi,eDiRi

fi,P
, (6)

s.t. 0 ≤
N∑

i=1

fi,P ≤ FP , (6a)

where FP is the total resource of the virtual resource pool.

3.4.3 Cloud Computing

As the CS is resource-rich, it does not need to consider the
resource allocation. We denote fi,CS (in CPU cycles/s) as the
resource CS provides for vehicle Vi, then the cloud computation
delay of vehicle Vi, denoted as T comp

i,CS , is:

T comp
i,CS =

αi,cDiRi

fi,CS
. (7)

3.5 Processing Delay

As mentioned above, each task is divided into three parts, which
will be processed in the terminal, ES and CS in parallel. Thus, the
task processing delay is dominated by the largest one of the local
computing delay, ES processing delay and CS processing delay.
Note that vehicle Vi will establish a communication link with CS
only when it finishes the communication with RSU, which means
that the processing delay of CS consists of three parts, i.e., the
computation delay, the communication delay between vehicle and
RSU and the communication delay between vehicle and CS. Based
on above analysis, the processing delay of vehicle Vi, denoted as
Ti, can be expressed as:

Ti =

 max
{
T local

i ,T ES
i,P ,T

CS
i,P

}
, if li = 1;∑M

j=1 S i, j max
{
T local

i ,T ES
i, j ,T

CS
i, j

}
, otherwise,

(8)

where T ES
i,P = T comm

i,P +T comp
i,P , TCS

i,P = T comm
i,P +T comm

i,CS +T comp
i,CS , T ES

i, j =

T move
i, j + T comm

i, j + T comp
i, j and TCS

i, j = T move
i, j + T comm

i, j + T comm
i,CS + T comp

i,CS .

T move
i, j is the time vehicle Vi moves to the coverage of RSU E j,

which can be formulated as:

T move
i, j =

[
x j − xi − r j

vi

]+
, (9)

where x j, xi represent the coordinates of RSU E j and vehicle Vi

respectively, and [·]+ denotes max{0, ·}.

3.6 System Utility

The objective of this paper is to maximize the system utility of
the platform. The platform rents servers to provide computation
resource and utilizes the resource to process the tasks from
vehicles. Apart from profits, QoS is also one of the important
indicators for the system utility. Therefore, we design the system
utility that considers both the profits and QoS.

For the Cloud-Edge-Terminal collaborative vehicular net-
works, the main factor that affects the QoS is the processing
delay. Generally, QoS should monotonically decrease with the
increase of the processing delay. According to [6], we choose the
logarithmic function as the QoS model. Thus, the QoS utility for
vehicle Vi, denoted as UQoS

i , is:

UQoS
i = βQ log

(
1 + ε − Ti

)
, (10)

where βQ is the weight of QoS, and ε is a known value that
guarantees UQoS

i > 0. Thus, the system utility for vehicle Vi,
denoted as Ui, is formulated as:

Ui = βP

(
cv(αi,e + αi,c)DiRi − cs(fi + fi,CS)

)
+ UQoS

i

= βP

(
cv(αi,e + αi,c)DiRi − cs(fi + fi,CS)

)
+ βQ log

(
1 + ε − Ti

)
,

(11)

where βP is the weight of profits, cv and cs represent the unit price
that system charges from vehicles for the task processing and the
unit price that the system rents the servers respectively, fi (in CPU
cycles/s) denotes the allocated computation resource to vehicle Vi

from ES or virtual resource pool, i.e.,

fi =

 fi,P, if li = 1;

fi, j, otherwise.
(12)

3.7 Problem Formulation

We formulate the offloading schedule as an optimization problem
and aim to maximize the system utility. Let S = {S i, j} denote the
selection decision on RSUs, α = {αc,αe} denote the offloading
ratio decision of the vehicles, f = { fi} denote the resource alloca-
tion decision for the vehicles. Then, we formulate the offloading
schedule problem as follows:

P1 : max
S,α, f

N∑
i=1

Ui , (13)

s.t. Ti ≤ T max
i ∀i ∈ [1, · · · ,N]; (13a)

0 ≤ αi,e + αi,c ≤ 1 ∀i ∈ [1, · · · ,N]; (13b)

0 ≤ αi,e ≤ 1 ∀i ∈ [1, · · · ,N]; (13c)

0 ≤ αi,c ≤ 1 ∀i ∈ [1, · · · ,N]; (13d)

S i, j = {0, 1} ∀i ∈ [1, · · · ,N], j ∈ [1, · · · ,MG]; (13e)
M∑
j=1

S i, j = 1 ∀i ∈ [1, · · · ,N]; (13f)

0 ≤
N∑

i=1

S i, j fi, j ≤ F j ∀ j ∈ [1, · · · ,MG]; (13g)

0 ≤
N∑

i=1

fi,P ≤ FP, (13h)

Constraint (13a) ensures that the task of vehicle Vi can be accom-
plished within the maximum tolerant delay T max

i . Then Constraints

5

TABLE 1
List of notations

Symbols Definitions
Sets:
M Set of RSUs.
N Set of vehicles.
r Set of RSUs’ radius.
Decision Variables:
αi Offloading ratio of vehicle Vi.
S i, j Offloading decision of vehicle Vi on RSU E j.
fi Allocated computation resource to vehicle Vi

from ES or virtual resource pool.
Functions:
T move

i, j The time vehicle Vi moves to the coverage of
RSU E j.

T local
i Local computing delay of vehicle Vi.

T comm
i,CS Communication delay for cloud computing

between vehicle Vi and CS.
T comm

i, j Communication delay for edge computing
between vehicle Vi and RSU E j.

T comm
i,P Communication delay for edge computing be-

tween vehicle Vi and the virtual resource pool.
T comp

i,CS Cloud computation delay of vehicle Vi.
T comp

i, j Computation delay for edge computing in
general region when vehicle Vi offloads task
to RSU E j.

T comp
i,P Computation delay for edge computing in

overlapping region of vehicle Vi.
Ti Processing delay of vehicle Vi.
UQoS

i QoS utility for vehicle Vi.
Ui System utility for vehicle Vi.
Parameters:
li The region that vehicle Vi is located in.
Di The size of task input data of vehicle Vi.
Ri The number of CPU cycles required to process

1-bit of the task of vehicle Vi.
T max

i The maximum tolerant delay to accomplish
the task of vehicle Vi.

ρi,CS Data transmission rate between vehicle Vi

and CS.
ρi, j Data transmission rate between vehicle Vi

and RSU E j.
ρi,P Data transmission rate between vehicle Vi

and the virtual resource pool.
fi,V Local computation resource of vehicle Vi.
fi,CS Allocated computation resource to vehicle Vi

from CS.
F j Total computation resource of ES in RSU E j.
FP Total computation resource of resource pool.
βP Weight of profits.
βQ Weight of QoS.
cv Unit price that system charges from vehicles

for the task processing.
cs Unit price that system rents the servers.
ε A known value that guarantees UQoS

i > 0.

(13b), (13c) and (13d) guarantee that vehicle Vi can only offload
a ratio of its task. Constraints (13e) and (13f) show that vehicle Vi

can select only one RSU as its offloading target. Constraints (13g)
and (13h) ensure that the allocated computation resource to the
vehicles is no more than the total resource. Moreover, Constraint
(13e) show that the offloading decisions (i.e., S) are binary, while
the objective function of Problem P1 is non-linear with respect to
S. Thus, Problem P1 is a mixed integer non-linear programming
problem, which is NP-hard [7].

For ease of reference, we list the frequently used notations in
TABLE 1.

4 THE PROPOSED MSCET SCHEDULE

In this section, we introduce the proposed multi-scenario offload-
ing schedule for biomedical data processing and analysis in the
Cloud-Edge-Terminal collaborative vehicular networks (MSCET).
As mentioned above, there are two different cases for the proposed
MSCET schedule (i.e., overlapping region and general region), we
will discuss each of them in details.

4.1 Decision in Overlapping Region
In overlapping region, the virtual resource pool is constructed
to integrate computation resource, and all vehicles in the region
offload tasks to the resource pool. Thus, S requires no considera-
tion. However, the remaining decision vectors (i.e., αc, αe and f)
of the optimization problem in Eq. (13) are highly coupled with
each other, which makes it more difficult to solve the problem.
Decoupling the vectors is one of the feasible solutions. Specially,
we can fix two of them as constants and then calculate the third
one. The two vectors we fixed can be updated based on the result
of calculation. The process can be repeated until convergence.

4.1.1 Optimization of Offloading Ratio for CS
As αc is relatively weakly correlated with other vectors, its value
will be firstly determined. Due to the assumption that αe and f are
constants, the delay of edge computing is also a constant. Thus, Ti

can be reformulated as:

Ti = max
{
T local

i ,T comm
i,P + T comm

i,CS + T comp
i,CS

}
. (14)

Since Ti is affected by but non-differentiable with respect to
αc, we first approximate Ti as:

Ti ≤ T local
i + T comm

i,P + T comm
i,CS + T comp

i,CS

=

(
1 − αi,e − αi,c

)
DiRi

fi,V
+
αi,eDi

ρi,P
+
αi,cDi

ρi,CS
+
αi,cDiRi

fi,CS

= αi,cωi,c + δi,c ,

(15)

where ωi,c =
Di

ρi,CS
+

DiRi

fi,CS
−

DiRi

fi,V
, δi,c =

αi,eDi

ρi,P
+

(1 − αi,e)DiRi

fi,V
.

Let Ti be the value of its upper bound, which represents the
worst case. By substituting Eq. (15) into Problem P1, it can be
reformulated as:

P2.1 : max
αc

N∑
i=1

βP

(
cv(αi,c + αi,e)DiRi − cs(fi,P + fi,CS)

)
+ βQ log

(
1 + ε − αi,cωi,c − δi,c

)
, (16)

s.t. αi,cωi,c + δi,c ≤ T max
i ∀i ∈ [1, · · · ,N]; (16a)

0 ≤ αi,c ≤ 1 − αi,e ∀i ∈ [1, · · · ,N]. (16b)

6

Lemma 1. Problem P2.1 is a convex optimization problem.

Proof. The second-order derivative of U(αc) with respect to αc is:

∂2U(αc)
∂α2

c
= −

βQωi,c
2(

1 + ε − αi,cωi,c − δi,c

)2
ln 2
≤ 0, (17)

Thus the objective function U(αc) is convex. Combining with
the linear convex Constraints (16a) and (16b), Problem P2.1 is a
convex optimization problem according to the definition of convex
optimization problem [2]. �

According to Lemma 1, Problem P2.1 is a convex optimization
problem. Here we use genetic algorithm to solve it.

4.1.2 Optimization of Computation Resource

After determination of αc, we need to update the values of αe
and f . Based on the above decoupling method, the formulation of
computation resource optimization under given αc and αe is:

P2.2 : max
f

N∑
i=1

βP

(
cv(αi,c + αi,e)DiRi − cs(fi,P + fi,CS)

)
+ βQ log

(
1 + ε − Ti

)
, (18)

s.t.
N∑

i=1

fi,P ≤ FP; (18a)

αi,eDi

ρi,P
+
αi,eDiRi

fi,P
≤ T max

i ∀i ∈ [1, · · · ,N]. (18b)

Note that the local computing delay and cloud computing delay
are all constants under given αc and αe, we update the Constraint
(13a) as Constraint (18b).

The objective function U(f) in Problem P2.2 is

convex since
∂2U(f)
∂ f 2 = −

2βQαi,eDiRi

f 3
i,P

(
1 + ε − αi,eDi

ρi,P
−

αi,eDiRi

fi,P

)
ln 2

−
βQ(αi,eDiRi)2

f 4
i,P

(
1 + ε − αi,eDi

ρi,P
−

αi,eDiRi

fi,P

)2
ln 2
≤ 0, and Constraints (18a)

and (18b) are linear convex. According to Lemma 1, Problem
P2.2 is a convex optimization problem and can be solved by
interior point method. The first step of interior point method is to
construct a penalty function, which can be expressed as:

ϕ
(

f , r(k)
)
= U

(
f
)

− r(k)
1

N∑
i=1

1
αi,eDi

ρi,P
+

αi,eDiRi

fi,P
− T max

i

− r(k)
2

1∑N
i=1 fi,P − FP

,

(19)

where r(k) are penalty factors and obey the law of decline, i.e.,
r(0) > r(1) > r(2) > · · · > r(k) > r(k+1) > · · · > 0 and lim

k→∞
r(k) = 0.

The second step is setting
∂ϕ

∂ f
= 0 to find the extreme point f ∗

of the penalty function. Then substitute f ∗ into the condition of
convergence ‖ f ∗(rk) − f ∗(rk−1) ‖ ≤ ε1, where ε1 is the threshold
that we set in advance. If f ∗ satisfies the above condition, the
process will be finished, and we can obtain f = f ∗. Otherwise, let
k = k + 1 and update r(k) continuously until satisfying the above
condition.

4.1.3 Optimization of Offloading Ratio for ES

Similar to the optimization of offloading ratio for CS, Ti can be
approximated as:

Ti ≤
T local

i + T comm
i,P + T comp

i,P + T comm
i,P + T comm

i,CS + T comp
i,CS

λ

=

(
1 − αi,e − αi,c

)
DiRi

λ fi,V
+
αi,eDi

λρi,P
+
αi,eDiRi

λ fi,P

+
αi,eDi

λρi,P
+
αi,cDi

λρi,CS
+
αi,cDiRi

λ fi,CS

= αi,eωi,e + δi,e ,

(20)

where ωi,e =
2Di

λρi,P
+

DiRi

λ fi,P
−

DiRi

λ fi,V
,

δi,e =
αi,cDi

λρi,CS
+

(1 − αi,c)DiRi

λ fi,V
+
αi,cDiRi

λ fi,CS
, and λ is a known value

to adjust the approximation degree. Then we can reformulate
Problem P1 as:

P2.3 : max
αe

N∑
i=1

βP

(
cv(αi,c + αi,e)DiRi − cs(fi,P + fi,CS)

)
+ βQ log

(
1 + ε − αi,eωi,e − δi,e

)
, (21)

s.t. 0 ≤ αe ≤ 1 − αc ∀i ∈ [1, · · · ,N]; (21a)

αi,eωi,e + δi,e ≤ T max
i ∀i ∈ [1, · · · ,N]. (21b)

The objective function U(αe) of Problem P2.3 is con-

vex since
∂2U(αe)
∂α2

e
= −

βQωi,e
2(

1 + ε − αi,eωi,e − δi,e

)2
ln 2
≤ 0, and Con-

straints (21a), (21b) are linear convex, thus the Problem P2.3
is a convex optimization problem according to Lemma 1. The
Lagrangian method [26] is adopted to solve this problem. The
Lagrangian function can be expressed as:

Li(αe, ζ, η, θ) = βP

(
cv(αi,c + αi,e)DiRi − cs(fi,P + fi,CS)

)
+ βQ log

(
1 + ε − αi,eωi,e − δi,e

)
+ ζi

(
αi,eωi,e + δi,e − T max

i

)
+ ηi

(
αi,e + αi,c − 1

)
+ θi

(
0 − αi,e

)
,

(22)

where ζ, η and θ are Lagrangian multipliers. According to KKT
condition [2], the following conditions must be satisfied:

ζi

(
αi,eωi,e + δi,e − T max

i

)
= 0;

ηi

(
αi,e + αi,c − 1

)
= 0;

θi

(
0 − αi,e

)
= 0;

ζi > 0, ηi ≥ 0, θi ≥ 0;
∂Li

∂αi,e
= 0.

(23)

As mentioned in Constraint (21a), we know that 0 ≤ αi,e ≤

1 − αi,c. Thus, it is simple to solve ηi(αi,e + αi,c − 1) = 0 and
θi(0 − αi,e) = 0. The related discussion is as follows:

Case 1: ηi > 0 and θi > 0. We get αi,e = 0 and αi,c = 1, i.e.,
vehicle Vi offloads the whole task to the CS.

Case 2: ηi > 0 and θi = 0. We get αi,e = 1 − αi,c, i.e., vehicle
Vi offloads the whole task to its selected ES and CS.

Case 3: ηi = 0 and θi > 0. We get αi,e = 0, i.e., vehicle Vi

7

offloads αi,cDi part of its task to the CS and processes the rest
locally.

Case 4: ηi = 0 and θi = 0. We cannot get the unique solution of
αi,e. Then it is necessary to utilize other conditions, since ζi > 0,
we can get:

αi,eωi,e + δi,e − T max
i = 0

⇒ αi,e =
T max

i − δi,e

ωi,e
. (24)

Then ζi can be calculated as:

∂Li

∂αi,e
= βPcvDiRi −

βQωi,e(
1 + ε − αi,eωi,e − δi,e

)
ln 2
+ ζiωi,e = 0

⇒ ζi =
βQ(

1 + ε − T max
i

)
ln 2
−
βPcvDiRi

ωi,e
(25)

And we can get αi as follows:

αi,e =

T max

i − δi,e

ωi,e
, if ηi = 0 and θi = 0;

1 − αi,c, if ηi > 0 and θi = 0;
0, otherwise.

(26)

4.2 Decision in general region
Different from overlapping region, each vehicle needs to select
one RSU as its offloading target in general region. Therefore, it
is necessary to calculate S. The matching method is adopted to
get the optimal selection. Determining the appropriate matching
weight between vehicles and RSUs is one of the challenges. The
processing delay for edge computing in general region includes the
moving time, which is affected by the distance between vehicles
and RSUs. Thus, we use the distance as the weight of matching
method.

The first step is to construct a weighted bipartite graph
G(U,V) to establish the relation between vehicles and RSUs.
The setU represents the vehicles in general region, and the setV
represents the RSUs along the unidirectional road.

The second step is to utilize Kuhn-Munkres algorithm to get
the minimum weight matching after which S can be obtained.
Specifically, S i, j = 1 if vehicle Vi selects RSU E j as its offloading
target, and S i, j = 0 otherwise.

According to the selection decision S, there may be some
vehicles that need to move to the communication coverage of
their selected RSUs. Cloud-Terminal cooperation is utilized for
the movement to reduce the total task processing delay. Due to
the fact that ESs are resource-limited, vehicle Vi will offload as
high ratio of its task as possible to CS to save the resource of
ESs. Thus, we set T comm∗

i,CS = T move
i, j , which represents the maximum

offloading ratio for CS. Then the task characteristics of vehicle Vi

can be updated as:

D∗i = Di −
T move

i, j fi,V
Ri

− T move
i, j ρi,CS ; (27)

T max∗
i = T max

i − T move
i, j . (28)

The decisions of αe, αc and f of the new optimization problem
are similar to the decisions in overlapping region, so we do not
repeat them again.

4.3 The MSCET Schedule Algorithm
The pseudo of MSCET schedule algorithm is shown in Algo-
rithm 1. Vehicle Vi will send the message about the characteristics

{Di,Ri,T max
i } of its task to the system when it cannot process

the task in time. And then the system calculates the offloading
schedule based on the messages from all the vehicles in the area.
Specifically, there are two cases according to the location of each
vehicle. In general region, each vehicle needs to select one RSU as
its offloading target by Kuhn-Munkres matching method while in
overlapping region the RSU selection is unnecessary. Then, Cloud-
Terminal cooperation is utilized to improve the system utility
during the moving time in general region. After that, Cloud-Edge-
Terminal cooperation is introduced to further improve the utility.
Last but not the least, the genetic algorithm, interior point method
and KKT condition are adopted to optimize αc, f and αe until
getting the final result.

The complexities of initialization, Phase 1 and Phase 2
are O(3N + 3), O(N4) and O(3N) respectively. While for k
iterations, the complexity of the inner loop is O(k(2N + 1)).
Then the total complexity of middle loop, for z iterations, is
O(z(k(2N + 1) + N)). After that, for s iterations, the complexity
of Phase 3 is O(sN2(z(k(2N + 1)+N))). Considering the dominant
term, the time complexity of Algorithm 1 is O(N4 + 2skzN3).

Algorithm 1 MSCET Schedule Algorithm
Input: Di: the size of task input data of vehicle Vi;

Ri: the number of CPU cycles required to process
1-bit of the task of vehicle Vi;

T max
i : the maximum tolerant delay of vehicle Vi’s task.

Output: Offloading schedule consisting of S, αc, αeand f .
1: Initialization:

Set initial feasible solution α(0)
e , α(0)

c , f (0);
Set iteration number s = 1, z = 1, k = 1;

2: if li = 0 then
3: /*Phase 1: Selection of RSU*/
4: Get the minimum weight matching and S i, j;
5: /*Phase 2: Cloud-Terminal Cooperation*/

6: Let T comm∗
i,CS = T move

i, j and update Di and T max
i based on

Eq. (27) and Eq. (28);
7: end if
8: /*Phase 3: Cloud-Edge-Terminal Cooperation*/
9: /*Phase 3.1: Optimization of offloading ratio for CS*/

10: repeat
11: Utilize genetic algorithm to optimize αi,c;
12: s = s + 1;
13: /*Phase 3.2: Optimization of offloading ratio for ES*/
14: repeat
15: /*Phase 3.3: Optimization of computation resource*/
16: repeat
17: Construct the penalty function ϕ

(
f , r(k)

)
based on

Eq. (19) and set
∂ϕ

∂ f
= 0 to find the extreme point f ∗

of the penalty function;

18: Substitute f ∗ into the convergence condition

‖ f ∗(rk) − f ∗(rk−1) ‖ ≤ ε1 to verify its feasibility;

19: k = k + 1 and update r(k);
20: until Satisfaction
21: Calculate α(z)

i,e based on Eq. (26);
22: z = z + 1;
23: until Convergence
24: until Convergence

8

5 PERFORMANCE EVALUATION

In this section, we evaluate the proposed multi-scenario offloading
schedule (MSCET) and compare it with two benchmark schedules
and two different modes. We first describe the simulation settings,
and then show the schedules’ reliability. Afterwards we conduct
the performance comparisons to illustrate the effectiveness of the
proposed MSCET.

5.1 Simulation Settings
As mentioned, there are two scenarios in the vehicular network
(i.e., overlapping region and general region). In general region,
we consider a 250-meter unidirectional road, along which 5 RSUs
are deployed. Each RSU is equipped with an ES, which has the
computation resource of 0.5 GHz. While in overlapping region,
the virtual resource pool is constructed to integrate resource of
ESs, and the total resource of each virtual resource pool is 2.5
GHz. There are some vehicles running at a speed of 40 km/h.
Each vehicle Vi has a computation-intensive or delay-sensitive task
with three characteristics {Di,Ri,T max

i }. We set Di and T max
i to

be randomly distributed in the range of [10, 15]MB and [4, 6]s
respectively. The local computation resource of each vehicle is
12.5 MHz.

For performance comparison, we consider the following two
benchmarks schedules for Cloud-Edge-Terminal cooperation and
two cooperation modes using our proposed MSCET schedule.

1) Given Ratio and Resource based Selection optimization
(SGRR): The schedule selects the optimal offloading target for
each vehicle, under a given offloading ratio and computation
resource.

2) Nearby: The schedule optimizes computation resource and
offloading ratio, after which the vehicles offload their tasks to
nearby RSUs.

3) Cloud-Terminal: Each task is jointly processed in the
terminal and cloud server.

4) Edge-Terminal: Each task is jointly processed in the termi-
nal and edge server.

5.2 Convergence
To verify the reliability of the proposed MSCET schedule, we
evaluate the convergence of algorithm under different initial
points. The algorithm can converge only if the inner loop can
converge, thus the convergence of inner loop is omitted here and
only the convergence of algorithm is plotted, i.e. the convergence
of system utility. Fig. 3 shows that the system utility can converge
within 6 iterations and almost to the same value under different
initial points, indicating the reliability of the proposed MSCET
schedule.

5.3 Impact of RSUs’ Coverage Size
To compare the scalability of different schedules, we study the
impact of the radius of RSUs’ coverage on system utility in Fig. 4.
The results illustrate that the system utility of the Nearby will be
decreased with the increasing radius of RSUs’ coverage, while
the coverage size has no impact on the system utility of the other
two schedules, which means that the two schedules have a better
scalability. The reason is that both the MSCET and SGRR consider
the offloading selection optimization, making them not sensitive
to the increase of coverage size. However, for the Nearby, with the
expansion of RSUs’ coverage, the increasing number of vehicles

1 2 3 4 5 6 7 8 9 10
Iteration number

2

2.5

3

3.5

4

4.5

Sy
st

em
 u

til
ity

ae0 = 0.65

ae0 = 0.55

ae0 = 0.45

ae0 = 0.35

Fig. 3. Convergence of system utility under different initial points.

70 75 80 85 90 95 100
The radius of RSUs' coverage (m)

2.2

2.4

2.6

2.8

3

3.2

Sy
st

em
 u

til
ity

MSCET
SGRR
Nearby

Fig. 4. Performance comparison of system utility under different sizes of
RSUs’ coverage.

in RSUs’ coverage may cause that more vehicles connect to the
same RSU, which may lead to the overload of RSU. In this case
some tasks cannot be processed in the current time slot, and the
system utility may become lower. Besides, the performance of
the Nearby may fluctuate when some vehicles are located in the
boundary of RSUs, shown as the fluctuation in Fig. 4. Moreover,
the MSCET outperforms the SGRR due to its joint optimization
of resource allocation and offloading selection.

5.4 Advantages of Cloud-Edge-Terminal Cooperation

In this subsection, we compare the performance of the proposed
MSCET with different cooperation modes in general region. Fig. 5
shows the impact of the increasing number of vehicles on the
system utility between different cooperation modes. The results
illustrate that with the increasing number of vehicles, the utility
under all the three modes will increase. This is because that
the increasing number of vehicles will produce more tasks that
need to be processed. And Cloud-Terminal cooperation performs
a bit worse than other modes due to the long communication
delay between CS and vehicles. Furthermore, the performance
of MSCET is similar to that of Edge-Terminal when there are
fewer vehicles. While MSCET outperforms Edge-Terminal when
the number of vehicles exceeds a certain threshold. The reason
behind is that the proposed MSCET is a collaborative offloading

9

5 10 15 20 25 30
Number of vehicles

2

3

4

5

6

7

8

9

10

Sy
st

em
 u

til
ity

MSCET
Edge-Terminal
Cloud-Terminal

Fig. 5. Performance comparison of system utility under different cooper-
ation modes with the increase of vehicles in general region.

schedule combining ESs and CS and the tasks can be processed
locally and in servers (i.e., ESs and CS) simultaneously. In other
words, the tasks can be reasonably offloaded to reduce the impact
of the resource-limited ESs. Moreover, the proposed MSCET can
make full use of the moving time to process the tasks by utilizing
Cloud-Terminal cooperation while Edge-Terminal can only utilize
local resource to process the tasks until reaching the coverage of
the selected RSUs.

5.5 Advantages of virtual resource pool

To illustrate the benefits of virtual resource pool, we compare
the performance of MSCET with and without the virtual resource
pool under different amount of resource. Fig. 6 illustrates that the
performance of MSCET with or without the virtual resource pool
is similar when the resource in overlapping region is abundant.
However, the performance of MSCET without the pool will be
worse when the resource is limited and the performance difference
between MSCET with and without the pool increases with the
decrease of resource. As the virtual resource pool integrates the
resource from multiple distributed ESs. When some ESs are
resource-limited, the pool can invoke the resource from other
ESs to cooperate on the tasks. In contrast, ESs that without the
assistance of the pool can only utilize their own resource to process
the tasks and can be easily affected by the amount of the resource.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we study the task offloading problem for vehicular
networks and propose MSCET, a multi-scenario offloading sched-
ule for biomedical data processing and analysis tasks in Cloud-
Edge-Terminal collaborative vehicular networks, which integrates
the Cloud-Edge-Terminal cooperation and virtual resource pool to
improve the efficiency and reliability. We consider both the profits
and QoS as the system utility, and formulate the system utility
maximization problem. We then show that the problem is NP-
hard and present an algorithm consisting of the Kuhn-Munkres
matching method, genetic algorithm, interior point method and
KKT condition to obtain efficient solutions. The parameters of
the proposed MSCET are optimized to maximize the system
utility. Finally, we conduct extensive simulations to evaluate the
performance of the proposed MSCET and the simulation results

illustrate that the MSCET outperforms existing schedules. How-
ever, some assumptions in our proposed MSCET are based on
ideal condition and there may be some differences with the real
scenario. In the future, we intend to extend the MSCET schedule
to be applicable for the real-world scenario with implementation.

ACKNOWLEDGEMENT
This work was supported in part by NSFC grants (No.61772551,
No.62111530052), and the Major Scientific and Technological
Projects of CNPC under Grant ZD2019-183-003.

REFERENCES

[1] X. Ai, H. Chen, K. Lin, Z. Wang, and J. Yu, “Nowhere to Hide: Effi-
ciently Identifying Probabilistic Cloning Attacks in Large-Scale RFID
Systems,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 714–727, 2021.

[2] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
university press, 2004.

[3] H. Chen, S. Wang, N. Jiang, Z. Li, N. Yan, and L. Shi, “Trust-aware
Generative Adversarial Network with Recurrent Neural Network for
Recommender Systems,” International Journal of Intelligent Systems,
vol. 36, pp. 778–795, 2021.

[4] H. Chen, Z. Wang, F. Xia, Y. Li, and L. Shi, “Efficiently and Completely
Identifying Missing Key Tags for Anonymous RFID Systems,” IEEE
Internet of Things Journal, vol. 5, pp. 2915–2926, 2018.

[5] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[6] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4377–4387, 2019.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1990.

[8] H. Guo, J. Liu, and J. Zhang, “Computation offloading for multi-access
mobile edge computing in ultra-dense networks,” IEEE Communications
Magazine, vol. 56, no. 8, pp. 14–19, 2018.

[9] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Transactions on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, 2012.

[10] Q. Huang, W. Yue, Y. Yang, and L. Chen, “P2gt: Fine-grained genomic
data access control with privacy-preserving testing in cloud computing,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
pp. 1–1, 2021.

[11] C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end
task offloading in mobile-edge computing networks with limited commu-
nication capability,” IEEE Transactions on Cognitive Communications
and Networking, vol. 7, no. 2, pp. 624–634, 2021.

[12] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Generation Computer Systems, vol. 97,
pp. 219–235, 2019.

[13] L. Li, K. Ota, and M. Dong, “Deepnfv: A lightweight framework for
intelligent edge network functions virtualization,” IEEE Network, vol. 33,
no. 1, pp. 136–141, 2019.

[14] Z. Li, H. Chen, K. Lin, V. Shakhov, L. Shi, and J. Yu, “From edge data
to recommendation: A double attention-based deformable convolutional
network,” Peer-to-Peer Networking and Applications, pp. 1–14, 2021.

[15] K. Lin, H. Chen, N. Yan, Z. Li, J. Li, and N. Jiang, “Fast and reliable
missing tag detection for multiple-group rfid systems,” IEEE Transac-
tions on Industrial Informatics, pp. 1–1, 2021.

[16] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, “A scalable and
quick-response software defined vehicular network assisted by mobile
edge computing,” IEEE Communications Magazine, vol. 55, no. 7, pp.
94–100, 2017.

[17] Y. Liu, S. Wang, J. Huang, and F. Yang, “A computation offloading
algorithm based on game theory for vehicular edge networks,” in Proc.
IEEE International Conference on Communications (ICC), 2018, pp. 1–
6.

[18] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, 2019.

10

5 10 15 20 25 30
Number of vehicles

0

1

2

3

4

5

6

7

8

9

10

 u
til

ity

MSCET with pool
MSCET without pool

GRR

(a) Resource-rich

5 10 15 20 25 30
Number of vehicles

0

1

2

3

4

5

6

7

8

9

10

 u
til

ity

MSCET with pool
MSCET without
SGRR

(b) One resource-limited ES

5 10 15 20 25 30
Number of vehicles

0

1

2

3

4

5

6

7

8

9

10

 u
til

ity

MSCET with pool
MSCET without pool

GRR

(c) Three resource-limited ESs

Fig. 6. Performance comparison of system utility under different amount of resource with the increase of vehicles in overlapping region.

[19] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[20] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. USENIX Conference on Hot Topics in
Cloud Computing, vol. 10, 2010.

[21] L. Pu, X. Chen, G. Mao, Q. Xie, and J. Xu, “Chimera: An energy-efficient
and deadline-aware hybrid edge computing framework for vehicular
crowdsensing applications,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 84–99, 2019.

[22] Y. Qiu, T. Misu, and C. Busso, “Analysis of the relationship between
physiological signals and vehicle maneuvers during a naturalistic driving
study,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), 2019, pp. 3230–3235.

[23] E. E. Seabolt, G. Nayar, H. Krishnareddy, A. Agarwal, K. L. Beck,
I. Terrizzano, E. Kandogan, M. Kuntomi, M. Roth, V. Mukherjee,
and J. H. Kaufman, “Ibm functional genomics platform, a cloud-based
platform for studying microbial life at scale,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, pp. 1–1, 2020.

[24] B. Shen, X. Xu, F. Dai, L. Qi, X. Zhang, and W. Dou, “Dynamic task
offloading with minority game for internet of vehicles in cloud-edge
computing,” in 2020 IEEE International Conference on Web Services
(ICWS), 2020, pp. 372–379.

[25] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An approach to qos-
based task distribution in edge computing networks for iot applications,”
in Proc. IEEE International Conference on Edge Computing (EDGE),
2017, pp. 32–39.

[26] I. Sorkhoh, D. Ebrahimi, R. Atallah, and C. Assi, “Workload scheduling
in vehicular networks with edge cloud capabilities,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 9, pp. 8472–8486, 2019.

[27] Q. Wu, X. Chen, Z. Zhou, L. Chen, and J. Zhang, “Deep reinforcement
learning with spatio-temporal traffic forecasting for data-driven base
station sleep control,” IEEE/ACM Transactions on Networking, vol. 29,
no. 2, pp. 935–948, 2021.

[28] F. Xia, A. M. Ahmed, L. T. Yang, and Z. Luo, “Community-based
event dissemination with optimal load balancing,” IEEE Transactions
on Computers, vol. 64, no. 7, pp. 1857–1869, 2015.

[29] F. Xia, A. Rahim, X. Kong, M. Wang, Y. Cai, and J. Wang, “Modeling
and analysis of large-scale urban mobility for green transportation,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1469–1481,
2018.

[30] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2017.

[31] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and resource
allocation in uav-enabled mobile edge computing,” IEEE Internet of
Things Journal, vol. 7, no. 4, pp. 3147–3159, 2020.

[32] F. Zeng, R. Zhang, X. Cheng, and L. Yang, “Channel prediction based
scheduling for data dissemination in vanets,” IEEE Communications
Letters, vol. 21, no. 6, pp. 1409–1412, 2017.

[33] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular
edge computing networks: A load-balancing solution,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 2, pp. 2092–2104, 2020.

[34] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8,
pp. 7944–7956, 2019.

[35] J. Zhao, Y. Liu, K. K. Chai, Y. Chen, and M. Elkashlan, “Many-to-many
matching with externalities for device-to-device communications,” IEEE
Wireless Communications Letters, vol. 6, no. 1, pp. 138–141, 2017.

Zhichen Ni received the B.E. degree in mea-
surement and control technology and instrumen-
tation from China University of Petroleum, China,
in 2019. He is currently pursuing his master
degree in control science and engineering in
the College of Control Science and Engineering,
China University of Petroleum, China. His cur-
rent research interests include edge computing
and edge intelligence.

Honglong Chen received the M.E. degree in
control science and engineering from Zhejiang
University, China, in 2008, and the Ph.D de-
gree in computer science from The Hong Kong
Polytechnic University, Hong Kong, in 2012. He
was a Postdoctoral Researcher in the School of
CIDSE at Arizona State University from 2015
to 2016. He is currently a Professor and Ph.D
supervisor with the College of Control Science
and Engineering, China University of Petroleum,
China. His current research interests are in the

areas of Internet of Things, edge computing and crowdsensing. He has
published more than 80 research papers in prestigious journals and
conferences including IEEE TIFS, IEEE TMC, IEEE TWC, IEEE TVT,
IEEE IoT-J, IEEE INFOCOM, IEEE ICPP, IEEE ICDCS, etc. He is a
senior member of IEEE and CCF (China Computer Federation), and
a member of ACM.

Zhe Li received the B. E. degree in automation
from Shandong University of Science and Tech-
nology, China, in 2018. She is currently a grad-
uate student in the College of Control Science
and Engineering, China University of Petroleum,
China. Her research interest is in the field of
edge intelligence.

11

Xiaomeng Wang received the B.E. degree in
measurement and control technology and instru-
mentation from China University of Petroleum,
China, in 2020. She is currently pursuing her
master degree in control science and engineer-
ing in the College of Control Science and Engi-
neering, China University of Petroleum, China.
Her current research interests include cyberse-
curity and artificial intelligence security.

Na Yan received the B. E. degree in Automa-
tion from China University of Petroleum, China,
in 2019. She is currently pursuing her master
degree in control science and engineering in
the College of Control Science and Engineer-
ing, China University of Petroleum, China. Her
research interest is in the field of RFID.

Weifeng Liu is currently a Professor with the
College of Control Science and Engineering,
China University of Petroleum (East China),
China. He received the double B.S. degree in
automation and business administration and the
Ph.D. degree in pattern recognition and intelli-
gent systems from the University of Science and
Technology of China, Hefei, China, in 2002 and
2007, respectively. His current research interests
include pattern recognition and machine learn-
ing. He has authored or co-authored a dozen

papers in top journals and prestigious conferences including 10 ESI
Highly Cited Papers and 3 ESI Hot Papers. Dr. Weifeng Liu serves as
associate editor for Neural Processing Letter, co-chair for IEEE SMC
technical committee on cognitive computing, and guest editor of special
issue for Signal Processing, IET Computer Vision, Neurocomputing, and
Remote Sensing. He also serves dozens of journals and conferences.

Feng Xia received the B.Sc. and Ph.D. degrees
from Zhejiang University, Hangzhou, China. He
is currently an Associate Professor and the Dis-
cipline Leader of the School of Science, Engi-
neering and Information Technology, Federation
University Australia, Ballarat, VIC, Australia. He
has published two books and over 300 scien-
tific papers in international journals and confer-
ences. His research interests include data sci-
ence, knowledge management, social comput-
ing, and systems engineering. He is a Senior

Member of IEEE and ACM.

	MSCET Copyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au

	MSCET Accepted
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 Network Framework
	3.2 Task Model
	3.3 Communication Model
	3.4 Computation Model
	3.4.1 Local Computing
	3.4.2 Edge Computing
	3.4.3 Cloud Computing

	3.5 Processing Delay
	3.6 System Utility
	3.7 Problem Formulation

	4 The Proposed MSCET Schedule
	4.1 Decision in Overlapping Region
	4.1.1 Optimization of Offloading Ratio for CS
	4.1.2 Optimization of Computation Resource
	4.1.3 Optimization of Offloading Ratio for ES

	4.2 Decision in general region
	4.3 The MSCET Schedule Algorithm

	5 Performance Evaluation
	5.1 Simulation Settings
	5.2 Convergence
	5.3 Impact of RSUs' Coverage Size
	5.4 Advantages of Cloud-Edge-Terminal Cooperation
	5.5 Advantages of virtual resource pool

	6 Conclusions and Future Work
	References
	Biographies
	Zhichen Ni
	Honglong Chen
	Zhe Li
	Xiaomeng Wang
	Na Yan
	Weifeng Liu
	Feng Xia

