
1

BIOCODE: A Data-Driven Procedure to Learn
the Growth of Biological Networks

Emre Sefer

Abstract—Probabilistic biological network growth models have been utilized for many tasks including but not limited to capturing
mechanism and dynamics of biological growth actitivies, null model representation, capturing anomalies, etc. Well-known examples of
these probabilistic models are Kronecker model, preferential attachment model, and duplication-based model. However, we should
frequently keep developing new models to better fit and explain the observed network features while new networks are being observed.
Additionally, it is difficult to develop a growth model each time we study a new network. In this paper, we propose BIOCODE, a
framework to automatically discover novel biological growth models matching user-specified graph attributes in directed and undirected
biological graphs. BIOCODE designs basic set of instructions which are common enough to model a number of well-known biological
graph growth models. We combine such instruction-wise representation with a genetic algorithm based optimization procedure to
encode models for various biological networks. We mainly evaluate the performance of BIOCODE in discovering models for biological
collaboration networks, gene regulatory networks, metabolic networks, and protein interaction networks which features such as
assortativity, clustering coefficient, degree distribution closely match with the true ones in the corresponding real biological networks.
As shown by the tests on the simulated graphs, the variance of the distributions of biological networks generated by BIOCODE is similar
to the known models variance for these biological network types.

Index Terms—Biological Networks, Graph Mining, Network Growth Models, Algorithms

F

1 INTRODUCTION

Research of the dynamics by which temporal evolution
of biological networks occur is a key component in under-
standing how such biological networks operate. Especially,
understanding the dynamics and appearance of topological
features in biological networks such as modularity, assor-
tativity, disassortativity, and shrinking diameter is notably
important. Creating idealized graph growth models is a suc-
cessful method in understanding how such graph features
emerge in the first place. Examples of such idealized graph
growth models are preferential attachment models [e.g. [1],
[2]], duplication/mutation models [3], [4], [5], [6], [7], [8],
the Kronecker model [9], [10], forest fire model [11], and
other models [12], [13], [14], [15], [16], [17], [18], [19]. Those
models describe the biological networks growth mecha-
nistically and probabilistically. In common, those models
express such growth by union of various operations such
as node duplication, node expansion, node/edge creation,
node/edge deletion, and influence propagation.

Besides simulating realistic biological network growth,
such graph growth models are used for other purposes in
different applications where growth dynamics do not need
to be interpretable in some applications. As an example,
growth models may help in inferring the historical net-
works [20], may be helpful in anonymization [9], can be
utilized to test the performance of lengthy large-scale graph
methods, may be used as null models to detect anomalous
graph features.

The first theoretical studies on network models has
begun with Erdos-Rényi model [21]. Following research

• Emre Sefer is with the Department of Computer Science, Ozyegin
University, Istanbul, Turkey.

E-mail: emre.sefer@ozyegin.edu.tr

on network models found small-world [22] and a scale-
free node degree distribution [1] properties as frequent real
world network attributes and designed growth models to
generate such properties. Subsequent growth models in-
cluded additional properties as objectives across different
domains. One such property is clustering coefficient for
protein interaction networks [6], [7], [23] which resulted in
DMC (duplication, mutation, with complementarity) model.
Another property is shrinking diameter for an temporally
evolving social network [11] which ended up in forest fire
model. Following attempts [24], [25] have designed manual
models which fit multiple extra properties simultaneously
and have generated real-word like graphs. More recent
models try to also match richer node features in addition to
real world network topologies [26], [27]. It is a challenging
task to create a feasible, parsimonious, network growth
model that fits well to the data. As we study large-scale and
different types of networks, we will identify new properties
which require developing novel growth models. Neverthe-
less, the degree custom-made growth models model the de-
sired network properties will depend on model designer’s
capabilities and creativity.

In this paper, we come up with a formal characteriza-
tion of network growth models which encode well-known
and frequently-used network growth models in addition to
many more undiscovered models. Additionally, we intro-
duce an optimization framework which can automatically
discover novel models that better fit the desired network
attributes in the aforementioned formal setting. Models
learned by the proposed framework can generate many
sample networks across different classes matching input
properties. These learned models are relatively easy to un-
derstand and interpretable with an effort of certain degree.
In many scenarios, graph motifs can be frequently mined

ar
X

iv
:2

10
8.

04
77

6v
2 

 [
q-

bi
o.

M
N

] 
 5

 S
ep

 2
02

1



2

in the set of generated growth models as generated models
are in general distinct and better fit the desired properties.
These mined motifs are in general successfull in model-
ing a specific network attribute. Lastly, in numerous situ-
ations, computationally derived growth models outperform
human-designed models in matching real-world attributes.

Among the existing work, only a few research has fo-
cused on automatically designing network growth models.
Some of the earlier frameworks can adapt existing models
to novel graph data via recalculating model parameters gov-
erning graph dynamics. As an example, Kronecker graph
model parameters can be estimated better by integrating
Markov Chain Monte Carlo (MCMC) method to its param-
eter estimation, especially for matching several very large
network attributes [9]. Another example is estimating the
parameters for additional recursive growth models [24].
However, those methods are restricted to estimating net-
work model parameters and they cannot mimick novel
network growth dynamics. [28] focus on selecting the best
models among a few current models. According to this
work, DMC model fits protein-protein interaction graphs
the best [7]. Nonetheless, their approach does not fit pa-
rameters for current models and does not generate novel
models.

Here, we design a framework called BIOCODE to address
those inadequacies via encoding fundamental graph opera-
tions and other graph model defining structures as instruc-
tions operating in a virtual machine with multiple registers.
Intuitively, providing an effective set of atomic instructions
and network growth structures are our main motivation.
A series of such consecutive instructions define a network
growth dynamics iteration, and recurrent iterations of these
series of instructions temporally grow a graph. One of our
main contribution in BIOCODE is that only a number of
operations are enough to model a duplication model, a
forest-fire-like model, preferential attachment model, and
supposedly more growth models. Among these operations,
4 of them have parameters whereas the rest of opera-
tions are parameterless. Moreover, the machine operated
by BIOCODE operations has only 3 registers. Such smaller
machine design restrains the total number of candidate
programs which allows for an efficient search of the solution
space by a genetic algorithm.

BIOCODE allows us to learn biological network growth
models automatically and quickly which assures a num-
ber of biological networks key features. BIOCODE models
often outperform human-designed models in fitting to the
fundamental topological graph features of clustering coef-
ficient, assortativity, and degree distribution. Particularly,
model learned by BIOCODE on yeast protein interaction
networks [29] generate graphs better than the popular DMC
model which simulates these protein interaction networks
in terms of agreeing to the observed the degree distribution
and clustering coefficient values. Additionally, we can out-
perform Kronecker model with the best parameters [11] in
terms of generating graphs that match the degree distribu-
tion and assortativity of a recent biological co-authorship
network [30]. Lastly, the models identified by BIOCODE
is better than a Kronecker model in terms of simultane-
ously matching node degree distribution, assortativity, and
clustering coefficient of a gene regulatory network. In our

settings, the graphs generated by BIOCODE learned models
are more diverse than the ones generated by the competing
human-designed models, showing that models generated
by BIOCODE are correctly random network models.

Even though the proposed BIOCODE framework gen-
erates unattributed graphs, the process suggested by
BIOCODE is quite common and widespread. We can extend
BIOCODE to different graph classes. The technique pointed
by BIOCODE allows for automatic and more systematic
graph growth dynamics study.

2 THE BIOCODE FRAMEWORK

We come up with BIOCODE framework where we can
express growth models programmatically and briefly. A
register machine together with 15 instructions executing on
the register machine are defined. Every series of machine
instructions is a correct program concisely encoding a bi-
ological graph growth model. Basic and particular opera-
tions impacting the topological graph features are included
in BIOCODE instruction set. Few instructions are included
to direct the program flow and manage registers. Mainly,
instructions that are natural growth model structures are in-
cluded in BIOCODE instruction set. The selected instructions
may represent a number of unknown and existing biological
models.

BIOCODE machine changes an evolving graph’s topol-
ogy while it executes a program. Every single execution
of BIOCODE instructions in a program outlines a growth
process single step. We execute BIOCODE program from
scratch till the end t times in order to evolve a network
for t time steps. t is linked to the output graph size, and t is
an implicit parameter for each BIOCODE program. BIOCODE
machine registers are filled randomly with the graph nodes
between the successive program calls, modeling the suc-
cessive growth steps. When combined with a number of
randomized instructions, this randomization between suc-
cessive program runs aids BIOCODE to encode probabilistic
growth models as BIOCODE programs. Consequently, the
same program’s separate executions almost always generate
dissimilar biological networks.

2.1 BIOCODE registers
BIOCODE executes instructions on a 3 register virtual ma-
chine. These registers are r0, r1, r2 which can store positive
integers. Register values mainly correspond to node IDs,
even though their values may also correspond to parameters
used by several instructions. Register may take a special
value NIL showing the register is idle. BIOCODE keeps a
program counter, PC which displays the presently running
instruction. Once an instruction is run, program counter
is increased in order to maintain a sequential execution
of the program as long as one of the control flow in-
structions updates the program counter. As achieved by
REWINDinstruction below, BIOCODE programs can modify
themselves to support looping to a certain extenrt. As in
a traditional computer program, program is terminated
when program counter location passes beyond the program
length.

Let V be the evolving graph’s nodes, BIOCODE incor-
porates a limited amount of memory L : V → V which



3

is able to store a single node ID for each node in V . Here,
L(v) value on vertex v may not necessarily be v’s node ID,
instead it may be an another node’s ID. This ability of graph
vertices to store IDs of any other graph vertex is the key
factor on BIOCODE programs spreading a vertex’s influence
in the evolving graph (See Section 2.2 for details). v does
not have a label when L(v) =NIL. It is possible to have
more complicated influence operations and memory mod-
els. However, our experiments show that good agreement
can be achieved across multiple different settings by our
proposed minimal design.

2.2 BIOCODE instruction set

It is a difficult and long-established problem to design
instructions on virtual and physical processors. We carefully
included an operation in BIOCODE instruction set if such
operation represents a fundamental graph operation. Each
BIOCODE instruction is easily comprehensible and resemble
the operations seen in human-created graph growth models.
Union of those instructions may end up in growth mod-
els which can generate graphs with the required features.
BIOCODE instructions may be expanded by including fur-
ther instructions to incorporate novel graph growth pro-
cesses. Optimizing a hard objective becomes relatively easier
via a carefully-designed good instruction set. However,
totally resolving instruction set design problem is not this
paper’s focus. Instead, via our experiments, we show that
a single instruction set in Table 1 performs quite accurately
for many biological graph classes.

2.2.1 B IOCODE instructions
We can divide BIOCODE instructions in Table 1 into four
groupings: 1- Register instructions, 2- Control flow instruc-
tions, 3- Graph instructions, and 4- Influence instructions.
Among these groupings, the first two groupings focus on
managing BIOCODE state and managing the BIOCODE pro-
gram’s control flow as suggested by their names. The third
and fourth groupings focus on transforming the evolving
graph’s topology. See Table 1 below for a full operations list.
Next, we characterize the impact of these operations on the
resulting generated graphs and on BIOCODE machine state.
Section 3 discusses the expressibility of a number of graph
growth models by those operations.

Register instructions: One can directly manage the con-
tents of 3 registers by the register instructions. The CLEAR r2
adjusts the r2’s value to NIL. The SWAP instructions swaps
r0 and r1’s values. The SAVE instruction puts r0’s value
also into r2. Contrarily, LOAD copies r2’s value into r0. The
SET(i) operation puts integer i to r2.

Control flow instructions: BIOCODE operations order
of execution is modified by these control flow instruc-
tions. SKIP INSTRUCTION(p) moves the program counter
by 2 with probability p. In this case, the following in-
struction is conditionally run with probability 1 − p by
such probabilistic movement. Another instruction in this
category, REWIND(r, i), models for loop-like behaviours. Its
first critical argument r specifies how manu times program
counter must be decreased when REWIND(r, i) is run. In
another words, this parameter also models how far program
counter must go in reverse direction. Its second argument

i defines how many times the operations must be run.
Whenever BIOCODE executes REWIND(r, i), it is updated via
decreasing i by 1. Whenever i becomes 0, program counter
value will not be rewound as BIOCODE will stop execution.
These REWIND(r, i) parameters are reset within successive
program runs.

Graph instructions: The graph instructions primarily
modify topology of graph. The GENERATE EDGE instruction
generates an edge in the graph. BIOCODE retrieves the
node IDs from r0(u) and r1(v) registers, and generates
{u, v} edge. GENERATE EDGE instruction does not alter
the register states, so this instruction does not have an
impact if {u, v} edge is already part of the graph. The
NEW NODE instruction generates a new vertex in the evolv-
ing graph. BIOCODE retrieves vertex ID from register r0.
The RANDOM EDGE instruction uniformly and randomly
chooses an edge {u, v} in the graph, and puts corresponding
vertices u into r0 and v into r1. Finally, RANDOM NODE
instruction picks a vertex randomly and uniformly and puts
this vertex to r0.

Influence instructions: Graph vertices can have an
influence upon other nodes by influence instructions.
L(v) = u means vertex u influencesv. Such influence
mechanism is essential in generating graphs with different
types of features. One example is homophily in which
common topological neighborhoods are shared by ver-
tices to a certain degree. A vertex can influence a sub-
set of vertices in its neighbourhood by the main influ-
ence instruction, INFLUENCE NEIGHBOURS(p). While run-
ning the INFLUENCE NEIGHBOURS(p) instruction, BIOCODE
retrieves the vertex ID u from r0 where u turns into the in-
fluential or central vertex. Afterwards, BIOCODE propagates
this u mark to u’s every neighbour v by assigning L(v) = u
probabilistically. Such probabilistic assignment takes place
independently for each such vertex with probability p. In
turn, every newly marked node v marks its neighbours
having content u with probability pd(u,v), where d(u, v) is
the distance of shortest path between u and v. In this case,
vertices v such that d(u, v) <r2 might be impacted by this
influence instruction unless r2 is NIL. When r2 =NIL, the
influence instruction keeps executing till the probabilistic
process terminates and so process does not mark any more
vertices.

There are 3 further instructions that
INFLUENCE NEIGHBOURS(p) instruction operates together
with: CLEAR INFLUENCED instruction removes L values
such that the following instructions may operate with a
clean memory. The DISCONNECT FROM INFLUENCED
instruction retrieves a vertex u from r0 register,
and deletes all edges {u, v} satisfying L(v) = u.
CONNECT TO INFLUENCED generates edges between
the vertex in r0, w, and all vertices marked with the content
of r1 = u. CONNECT TO INFLUENCED generates edges
{w, v} for all v such that L(v) = u. Making the two
vertices neighbourhoods more like each other is a common
mechanism provided by CONNECT TO INFLUENCED.
Figure 1 represents all those influence instructions.



4

Table 1: Complete set of BIOCODE instructions

Operation Type Operation Definition

Register

CLEAR r2 set r2 to NIL
SWAP Swap r0 and r1 contents
SAVE Clone register r0 content to r2
LOAD Clone register r2 content to r0
SET(i) Clone vertex ID to r2

Control flow SKIP INSTRUCTION(p) Pass over the following operation
REWIND(r, i) Go back r lines i times

Influence

CLEAR INFLUENCED Clean all tags in L
DISCONNECT FROM INFLUENCED Delete edges to the neighbours tagged with u
CONNECT TO INFLUENCED Add edges to neighbours tagged with u
INFLUENCE NEIGHBOURS(p) Tag neighbours with u

Graph

GENERATE EDGE Generates an edge
NEW NODE Introduces a new vertex
RANDOM EDGE Randomly selects an edge
RANDOM NODE Randomly selects a vertex

Figure 1: The summary of 3 influence instructions. First of
all, vertex u puts an influence mark on its neighbours with
probability p. Then, the influenced neighbours v propagates
the influence to their neighbours with probability p2. When
vertex u separates from its marked neighbours, 2 gray
edges shown by the gray arrows will be deleted from the
graph. Lastly, w may connect to other vertices u has put an
influence upon.

3 REPRESENTING EXISTING MODELS

We show the general applicability of BIOCODE by showing
its expressive power on 3 well-studied biological network
growth models: forest fire (FF) [11], duplication and muta-
tion with complementarity (DMC) [7], Barabási-Albert (B-
A) [1]. We code BIOCODE programs matching these mod-
els key features. Those biological growth models illustrate
different topological aspects by matching different styles
of realistic biological networks. As an example, graphs
generated by the DMC model exhibit a wide spectrum of
clustering coefficients matching the ones seen in protein-
protein interaction networks. Similarly, graphs generated
by the FF model show densification power law attribute
and shrinking diameter while they evolve. Although there
are major variations in these growth models dynamics and
in the graphs features they generate, rather elementary
BIOCODE programs can represent those models by using

the same set of basic operations. BIOCODE operations are
reused over separate models indicating their high-quality in
disclosing a variety of network growth dynamics.

3.1 Barabási-Albert
According to B-A growth process, newy added nodes attach
to higher-degree nodes with a higher probability. [1]. B-
A process produces networks with scale-free distribution
which is frequently observed in real-world biological and
social networks. According to the scale-free distribution, too
many low-degree vertices in the distribution are followed by
few very high degree vertices.

Algorithm 1 defines a BIOCODE program that similarly
mimicks the B-A model. Even though fine differences be-
tween the original B-A model and the program exist, the
graphs generated by B-A model resemble the ones produced
by BIOCODE program. The B-A model’s fundamental part is
defined in lines 3–5. Among these lines, the RANDOM EDGE
operation in line 3 selects an edge that has high-degree
vertices at its endpoints with high probability. The proba-
bility of a randomly selected edge e containing vertex u is
relative to u’s degree: d(u)

E = 2 d(u)∑
v∈v d(v) . While e is chosen,

operations in lines 4 and 5 randomly select an endpoint for
e, ensuring vertex selection within e is without bias. The
model defined by Algorithm 1 picks up vertices relative to
their degree as required by B-A model with a small differ-
ence; contrary to B-A model, as BIOCODE program runs,
vertex degrees d(u) are modified. Then, instruction in line
7 connects the newly introduced vertex to u accomplishing
the newly introduced vertex’s preferential attachment. The
following REWIND instruction loops over this process such
that the newly introduced vertex is connected to i current
vertices.

3.2 Duplication and Divergence
DMC model (Duplication and mutation with complemen-
tarity model) [7] focuses on generating graphs that mimick
protein interaction graphs topological attributes. Network
evolves by the duplication of current vertices in DMC
model. The DMC model has qcon and qmod parameters
controlling the network growth as follows: Every newly
introduced, duplicated vertex u selects an anchor vertex



5

Algorithm 1 B-A

1: NEW NODE . Generate a new vertex u
2: SAVE
3: RANDOM EDGE . Randomly pick up an edge e
4: SKIP INSTRUCTION(0.5). Randomly select vertex v of e
5: SWAP
6: LOAD
7: GENERATE EDGE . Generate an edge between vertices
u and v

8: REWIND(5, i) . Randomly attach newly introduced
vertex to i current vertices

v and connects to all neighbours of v. For every vertex w
adjacent to both v and u, an edge is randomly selected
attaching w either to v or u, and selected edge is deleted
with qmod probability. Lastly, u and v are connected with
qcon probability by introducing an edge between them. The
frequent occurence of gene duplication is the main moti-
vation behind such network growth dynamics especially
in protein interaction networks, where genes synthesizing
proteins within the genome are frequently duplicated. At
the beginning, the duplicated genes are identical copies so
the resulting proteins keep all of the interactions seen in
the original protein. Nonetheless, once duplication is over,
the interactions between the original and duplicated genes
begin to differentiate as the evolutionary pressure on genes
in keeping the original interactions is decreased. We design
Algorithm 2 in BIOCODE which approximates the DMC
model quite closely.

Algorithm 2 introduces the DMC model coded in
BIOCODE that is somewhat different than the one proposed
by Vazquez et al. [7]. In our process, we cannot exactly
simulate the process of choosing the common neighbours
of v and u with qcon probability, and removing the edge to
either of them. Though, we can accomplish such dynamics
similarly by influencing the common neighbours of each
vertex with probability qmod

2 as shown in lines 8 and 10 once
v’s neighborhood are duplicated to u. In this case, influence
operation behaves precisely same as the traditional DMC
operation only if the influenced neighbours do not intersect
with each other. A neighbouring vertex might be influenced
by both v and u. Complementarity attribute of DMC model
means that the edge to either v or u is deleted, but not both.
In our corresponding BIOCODE program, complementarity
is kept as the program will overwrite the mark on the
common vertex, assuring program can only delete one of
the edges {v, w} and {u,w}. That process may end up with
qmod values which results in a marginally different impact in
BIOCODE procedures. However, BIOCODE produced DMC
graphs exhibit clustering coefficients (section 5.3) and Zipf
plots similar to the original DMC, that are the key attributes
DMC model creators have stressed out in their paper. Be-
sides, the graphs generated by BIOCODE Algorithm 2 exhibit
clustering coefficients and Zipf plots similar to the ones
found in yeast protein interaction graph. So, even though
there are fine differences, the BIOCODE algorithm 2 keeps
the fundamental components and features of the true DMC
model.

Algorithm 2 DMC

1: RANDOM NODE . Place a randomly selected vertex v
in r0

2: SET(1) . Set r2 (k-hop for influence) to 1
3: INFLUENCE NEIGHBOURS(1.0) . Influence neighhbours

of v
4: SWAP . Swap r0 and r1
5: NEW NODE . Introduce a vertex u to the graph and

place it in r0
6: CONNECT TO INFLUENCED . Attach/Connect vertex u

to influenced vertices
7: CLEAR INFLUENCED
8: INFLUENCE NEIGHBOURS( qmod

2 ) . Influence the
neighbours of u

9: SWAP
10: INFLUENCE NEIGHBOURS( qmod

2 ) . Influence the
neighbors of v

11: DISCONNECT FROM INFLUENCED . Remove edges
from vertex v

12: SWAP
13: DISCONNECT FROM INFLUENCED . Remove edges

from vertex u
14: CLEAR INFLUENCED
15: SKIP INSTRUCTION(1.0− qcon) . Pass over addition of

edge {u, v}
16: GENERATE EDGE . Create the edge with qcon

probability

3.3 Forest Fire

[11] introduced the forest fire (FF) model to better model the
frequently observed real-world network properties such as
temporal densification of the graph under a certain param-
eter range, shrinking diameter, and in and out-degree scale-
free degree distributions. The forest fire model can be eas-
ily and intuitively explained from graph growth prospect.
Here, we introduce a hardly changed model which applies
to undirected graphs. Once a newly introduced vertex u is
added to the graph, such vertex selects a current vertex v
randomly and uniformly which then acts as an agent and
the edge between v and u is joined. Afterwards, forest
fire model draws a natural number n from a geometric
distribution with success probability b, and v’s n neighbours
are selected and burned. FF model introduces an edge from
vertex u to each of those burned vertices, and the procedure
of choosing a number of neighbouring vertices and burning
these vertices is recursively rerun.

FF model is encoded by BIOCODE program in Algo-
rithm 3. Graphs generated by the BIOCODE program and the
FF model are same in terms of fundamental graph features.
Particularly, the graphs generated by Algorithm 3 display
densification power law and shrinking diameter for certain
range of parameters during graph evolution over time.

4 LEARNING BIOCODE MODELS

By expressing biological network growth models in terms
of a number of BIOCODE operations, learning a biologi-
cal graph growth model over BIOCODE can be expressed
formally as an optimization problem over the BIOCODE



6

Algorithm 3 FF

1: RANDOM NODE . Place a random vertex in r0
2: CLEAR r2 . Clean r2 contents for complete graph

influence
3: INFLUENCE NEIGHBOURS(b) . Propagate influence

recursively as breadth-first
4: SWAP . Put the random vertex into r1
5: NEW NODE . Introduce newly created vertex, u
6: GENERATE EDGE
7: CONNECT TO INFLUENCED . Connect/Attach vertex u

to influenced vertices

instructions search domain. BIOCODE uses genetic program-
ing methods to learn a set of instructions generating biolog-
ical networks that mimick given set of graph attributes as
close as possible. BIOCODE encodes those network attributes
within an individual BIOCODE program’s fitness function.
Recovering the formerly introduced growth models is not
the main goal of BIOCODE learning process, instead we fo-
cus on learning programs which grow graphs that represent
specific graph classes as measured by particular similarity
metrics.

4.1 Constructing a fitness function
BIOCODE defines an attribute collection x = [x1, x2, . . . , xm]
as a m-long feature vector where each entry xi can rep-
resent a single scalar value such as assortativity, or it can
represent a vector of values such as multiple independent
samples of the graph’s effective radius during its evolu-
tion. Representing the fundamental and necessary graph
attributes BIOCODE will match as part of growth model
is the main objective of attribute collection step. Let sl(., .)
be a user-defined similarity metric between the collections
lth attributes. To calculate the similarity between any two
attribute collections of the same dimension, we define a
possibly weighted metric s(xi;xj) as in:

s(xi;xj) =
m∑
t=1

wlsl(x
i
l, x

j
l ) (1)

where similarity measure sl(., .) can simply be inverse
of the difference between two attributes for single scalar
values. Or, it can also represent a metric of the distri-
bution similarities for nonscalar attributes. There are two
conditions on s(xi;xj): 1- s(xi;xj) must get the maximum
value when xj = xi, 2- s(xi;xj) must be a monotonically
non-decreasing function of the similarity between the two
attributes. One can weight every attribute separately by
the weights wl in Eq. 1 which then causes optimization
process to prefer some attributes more than the others. We
use wl = 1 for all l in our experiments.

The fitness of a BIOCODE program is defined by using
Eq. 1. Let xP be a random variable defining the attribute
collection for the graph produced by non-deterministic pro-
gram P , and let xT be a target attribute collection. Then, our
problem becomes searching for optimal P ∗ such that:

P ∗ = argmax
P

E[s(xP , xT )], (2)

where the expectation is calculated over P ’s multiple non-
deterministic executions. In this case, BIOCODE searches for

the optimal program P ∗ such that the attributes of the graph
produced by P ∗ should be the most similar to the attributes
of the graph given by xT according to similarity measure
s(., .). This optimization problem cannot be easily tackled
since number of candidate programs in the search space is
massive. BIOCODE handles this problem efficiently by using
a genetic programming algorithm that is proven to be quite
useful across difficult optimization problems.

4.2 Optimization with genetic algorithms
.

In BIOCODE, we apply the optimization procedures in
genetic algorithm by using the ECJ package [31]. We utilize
ECJ’s capabilities for following reasons: 1- Parallel evalu-
ation of individuals inside a generation, 2- Customization
of the breeding and selection processes for more than one
subpopulations, 3- Applying NSGA-II multi-objective op-
timization [32], and 4- Handling various representations
for variable and fixed length genomes. Every candidate
individual in the genetic program describes a program.
We calculate the fitness of all individual candidates in the
constant-size population at each generation. BIOCODE eval-
uates the fitness of each program by executing the program
for k iterations, and then compares the program’s attribute
vector xP with the target attribute vector. That evaluation
process is rerun for M times, and mean of the calculated
results is presented such that the program P ’s fitness is:

F (P ) = avg s(xP , xT ) (3)

As an alternative, we may calculate the mean for each
sl(x

i
l;x

j
l ) in Eq. 1 as an independent objective, and apply

a multi-objective optimization procedure such as NSGA-
II [32].

As part of BIOCODE optimization process, we breed
individual programs and the programs blend with each
other by a two-point crossover operation. This crossover
operation vary the programs length and content. As part
of each generation’s final step, individual programs contest
in a tournament where two randomly selected programs
are compared consecutively and the higher fitness value de-
termines the winning programs. Tournament winners turn
into individuals of the next population. BIOCODE draws
individual populations with replacement, and so drawn
individuals are copied in the next population. More fit pro-
grams have a higher chance to succeed in the tournaments,
so such members of the genetic algorithm have a higher
chance to survive into the subsequent generation.

5 APPLICATIONS TO REAL AND SYNTHETIC BIO-
LOGICAL NETWORKS

We evaluate the performance of our proposed framework
BIOCODE in learning programs that generate graphs match-
ing both real biological networks and synthetic networks
predefined attributes. We consider the following BIOCODE
parameters in our experiments unless otherwise noted.
BIOCODE programs in the optimization process first gen-
eration start with randomly selected 10 operations. Every
generation comprises 100 programs which are evaluated
by a single-objective or a multi-objective fitness functions



7

as in sections 5.1 and 5.2 respectively. BIOCODE advances
individual programs to next generations by tournament. At
the beginning of every generation, two-point crossover is
used to breed the individual population from the chosen
individuals from earlier generation. This crossover mech-
anism creates novel individual programs which can be of
different length. These individuals are then mutated with
rate 0.1. After carrying out this optimization approach for
15 generations, the fittest program from the ultimate gener-
ation is chosen to be the resulting representative BIOCODE
program. We compare other models against this represen-
tative program. We have implemented BIOCODE in Scala.
BIOCODE and datasets used in this paper are available
at https://github.com/seferlab/biocode.

5.1 Learning scale-free graphs

B-A model is motivated by generating graphs with scale-
free node degree distribution which is a fundamental prop-
erty of many real-word biological networks, and BIOCODE
is able to learn growth models that generate scale-free dis-
tributions. Given the massive growth model space charac-
terized by the operation set and corresponding parameters,
it is not clear whether effective exploration of that search
space can be achieved.

BIOCODE uses a shape function to calculate the degree
distributions similarity. In this case, one can select the good-
ness of fit to a scale-free distribution as an attribute. How-
ever, this method cannot be generalized to distributions
other than scale-free distributions. Generally, our goal is to
produce graphs matching an arbitrary degree distribution’s
shape. We model the shape of arbitrary distribution by
defining the shape ψshape as the cumulative distribution of
vertex degrees where degrees of the vertices (support of the
distribution) is scaled to range 0 and 1. We can compare
the degree distribution of different size graphs after such
scaling. Similarity measure for the shape attribute is defined
as:

sshape(ψ
i
shape, ψ

j
shape) =

1∥∥∥ψi
shape − ψ

j
shape

∥∥∥
1
+ ε

(4)

where ε, as a tiny positive constant, ensures that fitness is
well-defined when the compared shapes exactly match with
each other. The single parameter of B-A model is i which
is the number of existing nodes to which a newly intro-
duced node attaches. We retrieve the target node degree
distribution shape for i = 3, 4, 5, 6 by producing graphs for
such i values and obtaining scale-free exponents maximum
likelihood estimates of α = 2.6, 2.7, 2.8, 2.9 for each i. Then,
by utilizing sshape in Eq. 3, degree distribution shape differ-
ence between the estimated target shape and the program
generated graphs characterizes the program fitness.

By using this fitness function, BIOCODE can learn multi-
ple different programs that generate scale-free graphs. One
of the most effective BIOCODE programs that generate scale-
free graph is shown in Algorithm 4. We test the possibility
of a scale-free degree distribution by using statistical tests
specificially designed for scale-free distribution as defined
in [33]. Although BIOCODE has not explicitly used the α
parameter in the fitness function, the mean α values of the

Algorithm 4 Instance of Learned Scale-Free Model

1: NEW NODE
2: RANDOM NODE
3: CONNECT TO INFLUENCED
4: CLEAR r2
5: SET(1)
6: RANDOM EDGE
7: DISCONNECT FROM INFLUENCED
8: RANDOM NODE
9: GENERATE EDGE

10: INFLUENCE NEIGHBOURS(0.692)

graphs generated from the learned models passing the scale-
free test is 2.69, that is fairly similar to the target graphs α.

Indeed, we claim that discovering a BIOCODE program
which generates graphs with a scale-free degree distribution
is reasonably easy for the optimization process of BIOCODE.
One of the optimization trace while trying to fit a degree-
distribution generated from the B-A model with i = 4 is
shown in Figure 2. According to Figure 2, BIOCODE dis-
covers scale-free models in the first generation even before
selection has started to make an impact on the population.
Scale-free programs total fitness increases fast, and such
total fitness is considerably higher than the total fitness of
the remaining individuals without scale-free distribution by
generation 6 as seen in Figure 2. Our observations mainly
indicate the following: 1- Scale-free model discovery is not
so challenging, 2- The possibility of scale-free distribution
in the graph appears to correlate quite well with the shape
function.

Figure 2: Total fitness for shape function (sshape) at each
generation. The total fitness for individuals failing the scale-
free test is shown in blue, whereas the total fitness for
programs passing the scale-free test is plotted in red. Even
after 5th generation, scale-free individuals total fitness is
almost two times as big as the non-scale-free programs.

5.2 Performance on a biological collaboration network
We test the performance of BIOCODE over a co-authorship
network of genome-wide association studies (GWAS) [30].

https://github.com/seferlab/biocode


8

Particularly, we focus on such robust biological collabora-
tion network of “repeated co-authorship” where scientist
pairs have an edge between them if these scientists have
published together more than one time. This biological
collaboration network has high assortativity value of 0.19
showing that highly-collaborating scientists have an edge
with scientists that also collaborate profoundly. In this case,
BIOCODE concurrently optimizes for assortativity and the
shape distribution attributes by utilizing the multi objec-
tivecprocedure discussed in section 4.2.

We evaluate the performance by comparing the graphs
produced by BIOCODE program to the graphs produced
via Kronecker model [9]. The Kronecker model recreates
many real-world network attributes by its recursive and fast
procedure. We estimate Kronecker model parameters by us-
ing the KronFit maximum likelihood method on the GWAS
network. We compare real GWAS graph to the attributes of
100 graphs produced by each model. The learned BIOCODE
program outperforms the best-fit Kronecker model in terms
of better matching the degree distribution shape and the
assortativity of the true graph as in Figure 3. The mean
shape difference of the BIOCODE model is more similar
to the co-authorship network’s shape than the shape for
Kronecker model. The average assortativity for Kronecker
graphs is 0.165 whereas the average for BIOCODE graphs is
0.206. On the other hand, BIOCODE generated graphs have
a broader range of assortativity scores (std. dev 0.0208) than
the Kronecker graphs scores (std. dev 0.00629).

Figure 3: GWAS biological collaboration target network.
Each point in the plot shows an individual produced
graph from a model. The x axis shows the assortativity
difference between the target network and a graph. The
y axis shows the shape difference between the target
network and a graph. The green dot shows an exact match
to the target network.

5.3 Performance on a protein interaction network
BIOCODE is capable of learning a program that pro-
duces graphs similar a recently compiled and high-quality
yeast protein interaction network [34], [35]. BIOCODE op-
timizes for both clustering coefficient and shape distribu-
tion, which are biologically important in protein interaction

networks [7]. Our approach is similar the one described
in Section 5.2, but DMC model is used for the baseline
comparison instead of the Kronecker model. The best pa-
rameters for DMC model are identified as qcon = 0.37 and
qmod = 0.55 via a grid search over the parameter space.
The parameters are chosen such that the graphs generated
by BIOCODE model match the diameter, clustering coeffi-
cient, and match the number of edges of the input protein
interaction graph as close as possible. According to Figure 4,
the graphs produced by BIOCODE program is considerably
more similar to the real PPI network in terms of target
attributes than the ones generated by the DMC model.
BIOCODE program generates graphs with mean average
clustering 0.091 (standard deviation 0.006) matching the
true average clustering coefficient of 0.099 of the interaction
network quite accurately. In contrast, the graphs generated
by DMC model have mean average clustering coefficient
of 0.227 (standard deviation 0.013) that is truly far away
from the original interaction network’s value. The shape
distribution results in Figure 4 show the similar output.
The average shape distribution distance of the random
graphs produced by the BIOCODE program is 4.58 (stan-
dard deviation 1.69), where the average distance between
DMC graphs is 15.48 (standard deviation 6.29). In addition
to generating graphs better matching the target network,
BIOCODE program show less variance and higher stability
of parameters in terms of those metrics.

Figure 4: Protein protein interaction target network. Each
point in the plot shows an individual produced graph
from a model. The x axis shows the average clustering
coefficient difference between the target network and a
graph. The y axis shows the shape difference between the
target network and a graph. The green dot shows an exact
match to the target interaction network.

5.4 Performance on a gene regulatory network
In the previous sections, BIOCODE has outperformed the
compared growth model while optimizing models simulta-
neously for two network attributes. Across different growth
models, the particular network attributes were selected for
optimization since such attributes had already been studied
in the corresponding network class. However, BIOCODE



9

optimization is not limited to 2 target attributes. Here, we
discuss the possibility of extending the learning process to
more than two attributes. We learn a BIOCODE program
over gene regulatory (GR) network discussed in [9], [36]
by simultaneously optimizing for all 3 attributes such as
average clustering coefficient, assortativity, and shape. We
evolve 150 programs for 25 generations over the gene
regulatory network. We compare the graphs produced by
the optimized BIOCODE program to the ones produced by
the Kronecker model as in Section 5.2.

Figure 5 includes 3 plots which show the closeness
of BIOCODE produced graphs to the gene regulatory net-
work for all attribute pairs. In reality, graphs generated by
BIOCODE outperforms the graphs produced by Kronecker
model in terms of better matching the gene regulatory
graph. A single optimized BIOCODE program was opti-
mized with respect to all 3 attributes at a single time even
though the plots in the figure display 2 dimensions at once.
Graphs generated by BIOCODE program have low variance
with respect to the target network topological properties,
similar to the protein interaction network in Section 5.3.

5.5 BIOCODE generates random models
The graphs generated by BIOCODE program has higher di-
versity than the ones generated by human-designed models.
We use spectral distance between 100 graphs produced by
both the B-A model and the BIOCODE program to evaluate
the diversity of graphs. The spectral distance is a plausible
graph similarity metric correlating highly with the graph
edit distance [37]. We calculated the spectral distances be-
tween graphs by using discretized histogram of the nor-
malized Laplacian eigenvalue distribution over 100 bins. In
this case, the spectral distance becomes Euclidean distance
between such histograms.

BIOCODE generates nondeterministic models as seen in
Table 2. Ensemble of graphs produced by BIOCODE models
have higher diversity than the ensemble of graphs generated
by the B-A model while matching the target attributes
better. We observe similarly higher diversity when we re-
peat this experiment comparing the the graphs generated
byBIOCODE with the graphs produced by DMC over yeast
PPI network [34].

6 CONCLUSIONS AND FUTURE WORK

We come up with BIOCODE framework to represent net-
work growth dynamics as programs consisting of basic and
expressive list of operations. Such programs are general
enough to closely approximate diverse set of biological
graph growth models. Besides, models with the desired
attributes can be searched effectively by combining efficient
encoding of BIOCODE with an efficient genetic algorithm.
Across gene regulatory, protein interaction, and biological
collaboration networks, the proposed optimization process
is reasonably fast: It takes less than 30 minutes for 2 objec-
tives and less than 4 hours for 3 objectives. In this setting,
this optimization process can generate BIOCODE programs
which compete strongly with the carefully-designed hand-
coded network growth models. Such hand-coded models
are mainly introduced to match graph attributes in related
domains.

Figure 5: Gene regulatory target network. Each point in the
plot shows an individual graph produced from a model. The
difference between the coefficients of the gene regulatory
network and a graph produced from the model are shown
for all 3 network attribute pairs. The green dot defines the
gene regulatory graph and shows the origin.

Graphs with scale-free degree distribution can be gener-
ated by BIOCODE for a number of attachment parameters
i such that these programs pass stringent statistical tests
to verify scale-free property. In truth, BIOCODE learning
procedure discover scale-free programs fast, and in the
end, produces numerous different programs which generate
graphs passing the scale-freeness verification test. Moreover,
BIOCODE generates graphs that are more varied than the
graphs produced by the B-A model. Overall, these results



10

Table 2: Mean and standard deviation (µ±σ) of spectral distance between all graphs produced by BIOCODE programs and
by the B-A model.

i 3 4 5 6

B-A 0.0096± 0.0068 0.0044± 0.0017 0.0039± 0.0016 0.0036± 0.0015
BIOCODE 0.0151± 0.0125 0.0262± 0.0216 0.0298± 0.0238 0.0192± 0.0162

show the ubiquitousness of scale-free degree distribution
feature.

The introduced BIOCODE framework generates
unattributed graphs that can be both directed and
undirected, but it can be improved to generate graphs
with edge and node attributes as well. A number of
enhancements are possible via expanding the instruction
set. As an example, one can add instructuons to diffuse node
attributes from one part of graph to remaining parts. More
complicated influence procedure can be incorporated to
BIOCODE as well. BIOCODE machine needs to be enhanced
to support these instructions. For instance, BIOCODE needs
to add an edge memory similar to the existing label memory
to handle edge attributes. These enhacements are not so
challenging, despite it is critical to design them carefully.

Lastly, even though individual instructions as part of
BIOCODE programs can be interpreted quite easily, the
growth dynamics of programs generated by the learning
process may not be so clear to a certain extent. As a
future work, we plan to focus on analyzing ensembles
of optimized programs to identify understandable growth
mechanisms via identifying generally appearing instruction
motifs. For instance, by analyzing the programs similar to
Algorithm 4 in detail, we have identified several repeated
instruction patterns which can generate edges to current
vertices proportional to vertex degrees and can mimick
scale-free graphs. Influence instructions, GENERATE EDGE,
and NEW NODE are commony observed in these patterns.
Finding instruction sets that are understandable as a unit
can be achieved by mining BIOCODE programs for repeating
instruction motifs.

REFERENCES

[1] A. L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, oct 1999.

[2] R. Rak and E. Rak, “The fractional preferential attachment
scale-free network model,” Entropy, vol. 22, no. 5, 2020. [Online].
Available: https://www.mdpi.com/1099-4300/22/5/509

[3] A. Bhan, D. J. Galas, and T. G. Dewey, “A duplication
growth model of gene expression networks,” Bioinformatics,
vol. 18, no. 11, pp. 1486–1493, nov 2002. [Online]. Available:
http://www.kgi.edu/html/noncore/faculty/dewey/bioinf.pdf

[4] I. Ispolatov, P. L. Krapivsky, and A. Yuryev, “Duplication-
divergence model of protein interaction network,” Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics,
vol. 71, no. 6, p. 061911, jun 2005. [Online]. Available: https:
//journals.aps.org/pre/abstract/10.1103/PhysRevE.71.061911

[5] R. Sole, R. Pastor-Satorras, E. Smith, and T. KEPLER, “A model
of large-scale proteome evolution,” Advances in Complex Systems
(ACS), vol. 05, pp. 43–54, 02 2002.

[6] S. A. Teichmann and M. M. Babu, “Gene regulatory network
growth by duplication,” Nature Genetics, vol. 36, no. 5, pp.
492–496, may 2004. [Online]. Available: http://www.nature.com/
naturegenetics

[7] A. Vázquez, A. Flammini, A. Maritan, and A. Vespignani,
“Modeling of protein interaction networks,” Complexus, vol. 1,
no. 1, pp. 38–44, 2003. [Online]. Available: https://www.karger.
com/DOI/10.1159/000067642

[8] A. Jasra, A. Persing, A. Beskos, K. Heine, and
M. De Iorio, “Bayesian inference for duplication–mutation
with complementarity network models,” Journal of Computational
Biology, vol. 22, no. 11, pp. 1025–1033, 2015, pMID: 26355682.
[Online]. Available: https://doi.org/10.1089/cmb.2015.0072

[9] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani, “Kronecker graphs: An approach to modeling
networks,” The Journal of Machine Learning Research, vol. 11, pp.
985–1042, 2010. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1756039

[10] C. Seshadhri, A. Pinar, and T. G. Kolda, “An in-depth analysis of
stochastic kronecker graphs,” J. ACM, vol. 60, no. 2, May 2013.
[Online]. Available: https://doi.org/10.1145/2450142.2450149

[11] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
Densification laws, shrinking diameters and possible explana-
tions,” in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. New York, New
York, USA: ACM Press, 2005, pp. 177–187. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1081870.1081893

[12] G. G. Piva, F. L. Ribeiro, and A. S. Mata, “Networks with growth
and preferential attachment: modelling and applications,” Journal
of Complex Networks, vol. 9, no. 1, 04 2021, cnab008. [Online].
Available: https://doi.org/10.1093/comnet/cnab008

[13] M. Falkenberg, J.-H. Lee, S.-i. Amano, K.-i. Ogawa, K. Yano,
Y. Miyake, T. S. Evans, and K. Christensen, “Identifying
time dependence in network growth,” Phys. Rev. Research,
vol. 2, p. 023352, Jun 2020. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevResearch.2.023352

[14] D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman,
and S. H. Strogatz, “Are randomly grown graphs really random?”
Physical Review E, vol. 64, no. 4, p. 041902, sep 2001. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevE.64.041902

[15] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, “Structure
of Growing Networks with Preferential Linking,” Physical Review
Letters, vol. 85, no. 21, pp. 4633–4636, nov 2000. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.85.4633

[16] W. K. Kim and E. M. Marcotte, “Age-Dependent Evolution
of the Yeast Protein Interaction Network Suggests a Limited
Role of Gene Duplication and Divergence,” PLoS Computational
Biology, vol. 4, no. 11, p. e1000232, nov 2008. [Online]. Available:
https://dx.plos.org/10.1371/journal.pcbi.1000232

[17] R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution
of online social networks,” in Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
vol. 2006. New York, New York, USA: Association for
Computing Machinery, 2006, pp. 611–617. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1150402.1150476

[18] N. Przulj, O. Kuchaiev, A. Stevanović, and W. Hayes, “Geometric
evolutionary dynamics of protein interaction networks,” Pacific
Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp.
178–89, 01 2010.

[19] L. Huang, L. Liao, and C. H. Wu, “Evolutionary analysis and
interaction prediction for protein-protein interaction network
in geometric space,” PLOS ONE, vol. 12, no. 9, pp. 1–19, 09
2017. [Online]. Available: https://doi.org/10.1371/journal.pone.
0183495

[20] S. Navlakha and C. Kingsford, “Network archaeology:
Uncovering ancient networks from present-day interactions,”
PLoS Computational Biology, vol. 7, no. 4, p. 1001119, apr 2011.
[Online]. Available: www.nih.gov

[21] P. Erdos and A. Renyi, “On the evolution of random graphs,” Publ.
Math. Inst. Hungary. Acad. Sci., vol. 5, pp. 17–61, 1960.

https://www.mdpi.com/1099-4300/22/5/509
http://www.kgi.edu/html/noncore/faculty/dewey/bioinf.pdf
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.061911
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.061911
http://www.nature.com/naturegenetics
http://www.nature.com/naturegenetics
https://www.karger.com/DOI/10.1159/000067642
https://www.karger.com/DOI/10.1159/000067642
https://doi.org/10.1089/cmb.2015.0072
http://dl.acm.org/citation.cfm?id=1756039
http://dl.acm.org/citation.cfm?id=1756039
https://doi.org/10.1145/2450142.2450149
http://portal.acm.org/citation.cfm?doid=1081870.1081893
https://doi.org/10.1093/comnet/cnab008
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023352
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023352
https://link.aps.org/doi/10.1103/PhysRevE.64.041902
https://link.aps.org/doi/10.1103/PhysRevLett.85.4633
https://dx.plos.org/10.1371/journal.pcbi.1000232
http://portal.acm.org/citation.cfm?doid=1150402.1150476
https://doi.org/10.1371/journal.pone.0183495
https://doi.org/10.1371/journal.pone.0183495
www.nih.gov


11

[22] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-
world9 networks,” Nature, vol. 393, no. 6684, pp. 440–442, jun 1998.
[Online]. Available: https://www.nature.com/articles/30918

[23] K. Voordeckers, K. Pougach, and K. J. Verstrepen, “How do
regulatory networks evolve and expand throughout evolution?”
Current Opinion in Biotechnology, vol. 34, pp. 180–188, 2015, systems
biology • Nanobiotechnology. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0958166915000208

[24] L. Akoglu and C. Faloutsos, “RTG: A recursive realistic graph
generator using random typing,” Data Mining and Knowledge Dis-
covery, vol. 19, no. 2, pp. 194–209, oct 2009.

[25] G. Palla, L. Lovász, and T. Vicsek, “Multifractal network
generator,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 107, no. 17, pp. 7640–7645, apr
2010. [Online]. Available: www.pnas.org/cgi/doi/10.1073/pnas.
0912983107

[26] Y. Sun, Y. Yu, and J. Han, “Ranking-based clustering of
heterogeneous information networks with star network schema,”
in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. New York, New
York, USA: ACM Press, 2009, pp. 797–805. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1557019.1557107

[27] M. Kim and J. Leskovec, “Multiplicative Attribute Graph Model
of Real-World Networks,” Internet Mathematics, vol. 8, no. 1-2,
pp. 113–160, 2012. [Online]. Available: https://projecteuclid.org/
euclid.im/1339678185

[28] M. Middendorf, E. Ziv, and C. H. Wiggins, “Inferring network
mechanisms: The Drosophila melanogaster protein interaction
network,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 102, no. 9, pp. 3192–3197, mar 2005.
[Online]. Available: www.pnas.orgcgidoi10.1073pnas.0409515102

[29] V. Janjić, R. Sharan, and N. Pržulj, “Modelling the yeast
interactome,” Scientific Reports, vol. 4, no. 1, pp. 1–8, mar 2014.
[Online]. Available: www.nature.com/scientificreports

[30] B. K. Bulik-Sullivan and P. F. Sullivan, “The authorship network
of genome-wide association studies,” p. 113, feb 2012. [Online].
Available: http://gephi.org/

[31] E. O. Scott and S. Luke, “ECJ at 20: Toward a general
metaheuristics toolkit,” in GECCO 2019 Companion - Proceedings
of the 2019 Genetic and Evolutionary Computation Conference
Companion. New York, NY, USA: Association for Computing
Machinery, Inc, jul 2019, pp. 1391–1398. [Online]. Available:
https://dl.acm.org/doi/10.1145/3319619.3326865

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, apr 2002.

[33] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distri-
butions in empirical data,” pp. 661–703, nov 2009.

[34] R. Oughtred, J. Rust, C. Chang, B.-J. Breitkreutz, C. Stark,
A. Willems, L. Boucher, G. Leung, N. Kolas, F. Zhang, S. Dolma,
J. Coulombe-Huntington, A. Chatr-aryamontri, K. Dolinski, and
M. Tyers, “The biogrid database: A comprehensive biomedical
resource of curated protein, genetic, and chemical interactions,”
Protein Science, vol. 30, no. 1, pp. 187–200, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3978

[35] T. A. Gibson and D. S. Goldberg, “Improving evolutionary
models of protein interaction networks,” Bioinformatics, vol. 27,
no. 3, pp. 376–382, feb 2011. [Online]. Available: https:
//academic.oup.com/bioinformatics/article/27/3/376/319112

[36] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph,
G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson,
I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B.
Gordon, B. Ren, J. J. Wyrick, J.-B. Tagne, T. L. Volkert,
E. Fraenkel, D. K. Gifford, and R. A. Young, “Transcriptional
regulatory networks in saccharomyces cerevisiae,” Science,
vol. 298, no. 5594, pp. 799–804, 2002. [Online]. Available:
https://science.sciencemag.org/content/298/5594/799

[37] R. C. Wilson and P. Zhu, “A study of graph spectra for comparing
graphs and trees,” Pattern Recognition, vol. 41, no. 9, pp. 2833–2841,
sep 2008.

Emre Sefer obtained his B.Eng from Bogazici
University, Department of Computer Engineering
in 2008, M.S. in Computer Science from Univer-
sity of Maryland College Park in 2011, and Ph.D.
in Computational Biology from Carnegie Mellon
University in 2015. After completing his Ph.D. Dr.
Sefer had a brief a post-doc at CMU Machine
Learning Department with Ziv-Bar Joseph. He is
currently an assistant professor in Computer Sci-
ence Department, Ozyegin University. His aca-
demic research has focused on Bioinformatics,

and Machine Learning applications on social and economic networks.
He has published in number of journals and conferences during his PhD,
receiving best research paper award at Recomb 2016 conference.

https://www.nature.com/articles/30918
https://www.sciencedirect.com/science/article/pii/S0958166915000208
https://www.sciencedirect.com/science/article/pii/S0958166915000208
www.pnas.org/cgi/doi/10.1073/pnas.0912983107
www.pnas.org/cgi/doi/10.1073/pnas.0912983107
http://portal.acm.org/citation.cfm?doid=1557019.1557107
https://projecteuclid.org/euclid.im/1339678185
https://projecteuclid.org/euclid.im/1339678185
www.pnas.orgcgidoi10.1073pnas.0409515102
www.nature.com/scientificreports
http://gephi.org/
https://dl.acm.org/doi/10.1145/3319619.3326865
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3978
https://academic.oup.com/bioinformatics/article/27/3/376/319112
https://academic.oup.com/bioinformatics/article/27/3/376/319112
https://science.sciencemag.org/content/298/5594/799

	1 Introduction
	2 The BioCode Framework
	2.1 BioCode registers
	2.2 BioCode instruction set
	2.2.1 BioCode instructions


	3 Representing Existing Models
	3.1 Barabási-Albert
	3.2 Duplication and Divergence
	3.3 Forest Fire

	4 Learning BioCode Models
	4.1 Constructing a fitness function
	4.2 Optimization with genetic algorithms

	5 Applications to Real and Synthetic Biological Networks
	5.1 Learning scale-free graphs
	5.2 Performance on a biological collaboration network
	5.3 Performance on a protein interaction network
	5.4 Performance on a gene regulatory network
	5.5 BioCode generates random models

	6 Conclusions and Future Work
	References
	Biographies
	Emre Sefer


