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Abstract—Identifying interactions between compounds and proteins is an essential task in drug discovery. To recommend compounds

as new drug candidates, applying the computational approaches has a lower cost than conducting the wet-lab experiments. Machine

learning-based methods, especially deep learning-based methods, have advantages in learning complex feature interactions between

compounds and proteins. However, deep learning models will over-generalize and lead to the problem of predicting less relevant

compound-protein pairs when the compound-protein feature interactions are high-dimensional sparse. This problem can be overcome

by learning both low-order and high-order feature interactions. In this paper, we propose a novel hybrid model with Factorization

Machines and Graph Neural Network called FMGNN to extract the low-order and high-order features, respectively. Then, we design a

compound-protein interactions (CPIs) prediction method with pharmacophore features of compound and physicochemical properties of

amino acids. The pharmacophore features can ensure that the prediction results much more fit the expectation of biological experiment

and the physicochemical properties of amino acids are loaded into the embedding layer to improve the convergence speed and

accuracy of protein feature learning. The experimental results on several datasets, especially on an imbalanced large-scale dataset,

showed that our proposed method outperforms other existing methods for CPI prediction. The western blot experiment results on

wogonin and its candidate target proteins also showed that our proposed method is effective and accurate for finding target proteins.

The computer program of implementing the model FMGNN is available at https://github.com/tcygxu2021/FMGNN.

Index Terms—Compound protein interaction, Deep learning, Graph Neural Network, Factorization Machines, Pharmacophore features

Ç

1 INTRODUCTION

THE identification of compound-protein interactions
(CPIs) is of extraordinary significance to modern drug

discovery in terms of suggesting new drug candidates and
repositioning old drugs. The biological assays for CPIs iden-
tification like high-throughput screening assays, are still
extremely experimental costly. To reduce the experimental

cost, computational methods for identifying potential CPIs
were proposed in the past decade [1], [2], [3].

To identify potential CPIs, a variety of machine learning
based predicting algorithms have been proposed since 2008.
Most of machine learning based CPIs prediction methods
treat the CPIs prediction problem as binary classification task,
inwhich its goal is to determinewhether a compound-protein
pair interacts. The CPIs prediction procedure mainly consists
of generating feature vectors, training model with known
CPIs, and predicting unknown compound-protein pairs on
the trained model. Yamanishi et al. [4] proposed a bipartite
network by integrating the chemical and genomic features
into a pharmacology feature space, and applied a kernel
regressionmethod to predict CPIs. Bleakley et al. [5] presented
a supervised bipartite local model called BLM using support
vector machines (SVM) classifier to predict drug and target
sets respectively. Laarhoven et al. [6] constructed a Gaussian
interaction profile (GIP) kernel to capture the topological fea-
tures in CPIs network. The Matrix Factorization (MF) based
methods were introduced by decomposing the interaction
feature vectors into drug latent factors and target latent factors
to predict potential CPIs [7], [8], [9]. By treating the CPIs as a
network link prediction problem, Chen et al. [10] developed a
network-based random walk model with restart on heteroge-
neous networks (NRWRH) to predict potential CPIs. Tang
et al. [11] proposed a method called MDMHN to predict hid-
den or missing CPIs on a heterogeneous network by trans-
forming a compound-protein interaction pairs prediction
problem to amatrix denoising problem.
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With the fast development of biological technology, the
chemical biology data in the public databases, such as Pub-
Chem[12], ChEMBL[13], KEGG[14], and STITCH[15], have
increase to millions over the past 20 decades. The advantage of
deep learning method is more obvious in dealing with large
scale compound protein interaction pairs. In recent years, many
deep learning frameworks have been utilized in drug discovery
research [16], [17]. Compared with traditional machine leaning
methods, deep learningmethods have the advantage of extract-
ing high-order feature interactions and mining deep hidden
relationship between compounds andproteins.

The method DL-CPI [18] uses PubChem fingerprints of
compound molecular and PFam descriptors of protein as
input feature vectors, and then trains the prediction model
with Deep Neural Networks (DNNs). Regarding com-
pounds and proteins as 1D sequences orword-based sequen-
ces, the method DeepDTA [19] uses convolutional neural
networks (CNNs) to extract real-valued features of com-
pounds and proteins. The method WideDTA [20] adapts the
word-based sequence representation for compounds and
proteins, and utilizes two extra features LMCS (ligand max
common structures) and PDM (protein motifs and domains)
to improve model performance and prediction accuracy.
From the perspective that compound structure is regarded
as molecular graph, the methods CPI-GNN[21] and Graph-
DTA[22] use graph neural networks (GNNs) [23], [24] and
graph convolutional neural networks (GCNs) [25] to learn
representation of compounds, themodel GANDTI integrates
a graph convolutional autoencoder and generative adversar-
ial network (GAN) to deeply learn the feature vectors for
drugs and targets [26]. Regarding both compounds and pro-
teins as sequence data, recurrent neural networks (RNNs)
are used to extract feature vectors of compounds and pro-
teins in DeepAffinity [27] and Zheng’swork [28]. In addition,
attentionmechanism is introduced to improve the prediction
accuracy, the model TransformerCPI addresses sequence-
based CPI classification task bymodifying transformer archi-
tecture with self-attention mechanism [29], the method
MHSADTI predicts DTIs based on the graph attention net-
work andmulti-head self-attentionmechanism [30].

Deep learning model can achieve good high-order feature
interactions of compound molecules and target proteins.
However, since the compound-protein interactions are high-
order sparse, deep learning model will over-generalize and
produce prediction of less relevant drugs when it extracts
only the high-order feature interactions. By introducing
hybrid architectures with learning both low and high-order
feature interactions, the methods Wide&Deep [31] and
DeepFM [32] overcome the problemof prediction error caused
by data sparsity. The low-order feature interactions can use
cross-product transformations over sparse features. However,
the method DeepFM [32] uses DNN as the deep part, which is
suitable for learning the categorical features in the prediction
of click-through rate (CTR), but not suitable for learning com-
pound subgraph features in the CPIs prediction problem.

For the compound-protein interactions, 1-order feature inter-
actions can be obtained directly from the raw feature, e.g., the
feature “GetAtomic ¼ ¼ O” has value of 1 if the compound
contains oxygen atoms. 2-order feature interactions can be
achieved effectively by using cross-product transformations
over sparse features. For example, AND (GetAtomic ¼ ¼ S,

GetFormalCharge ¼ ¼ 0) has value of 1 if the compound con-
tains sulfur atoms and the sulfur atoms have no charge. The 1-
order and the 2-order feature interactions are defined as the low-
order feature interactions, and the combination of the 3-order
and over 3-order feature interactions is defined as the high-order
feature interactions. The low-order and high-order feature inter-
actions correlatewith the final compound-protein interaction.

Inspired by the model DeepFM [32], we proposed a new
hybrid model called FMGNN to learn both low and high-
order feature interactions. Learning the low-order feature
interactions can find the frequent co-occurrence of features.
Learning the high-order feature interactions can explore
implicit feature interactions. The model FMGNN integrates
the architectures of factorization machine (FM) [33] and
graph neural network (GNN) [23] to learn the low and high-
order feature interactions of compound graph, and integra-
tes the architectures of FM and convolutional neural network
(CNN) to learn the low and high-order feature interactions of
protein sequences. The feature interactions of compounds
and protein sequences are concatenated to predict CPIs.

Our main contributions are summarized as follows:

1) We propose a novel model called FMGNN that inte-
grates the architectures of factorization machine (FM)
and graph neural network (GNN). The FMGNN
builds predictionmodel using low-order feature inter-
actions of compounds and proteins with FM and it
also builds prediction model using high-order feature
interactions of compounds and proteins with GNN
and CNN. The model FMGNN can learn low and
high-order feature interactions concurrently.

2) We generate the compound feature vectors with
compound substructure graphs and pharmacophore
features, which consider not only the topological
similarity, but also the functional similarity between
compound subgraphs. This ensures that the predic-
tion results much more fit the expectation of biologi-
cal experiment.

3) We construct the gram corpus and treat it as the pre-
trainedmodel in the embedding layer of CNNmodel,
which can reduce the training iteration times and
improve the convergence rate of the proposedmodel.

2 MATERIAL AND METHODS

2.1 Material

The experimental data used are the datasets for human and C.
elegans that created by Liu et al. [34]. They include highly cred-
ible negative samples of compound-protein pairs obtained by
a systematic screening framework. The positive samples were
retrieved from DrugBank [35] and Matador [36]. The dataset
human contains 3364 positive interactions between 1052 com-
pounds and 852 proteins. The dataset C.elegans contains 4000
positive interactions between 1434 compounds and 2504
proteins.

To inspect our proposed prediction method on large-scale
data, we retrieved the compound-protein pairs of Homo sapi-
ens from database STITCH Version 5.0 [15]. To ensure the
highly credible samples, we retrieved the compound-protein
pairs that their interaction probability is greater than 90% as
positive samples, and lower than 10% as negative samples.
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The final dataset STITCH used contains 115927 positive inter-
actions between 13286 compounds and 5313 proteins.

Because real CPI datasets are typically imbalanced, we
evaluate the robustness of the prediction methods by the
imbalanced dataset. Fixed the number of positive samples,
we set three ratios of positive and negative samples as 1:1,
1:3, and 1:5 respectively in our experiment. This kind of
experimental setting was first proposed by Tabei and Yama-
nishi [37]. All the negative samples were retrieved from the
low candidates based on the scores obtained by the data-
base STITCH. As a classification problem, the metrics such
as the AUC, precision, recall and F1-score are used to evalu-
ate CPI prediction performance.

2.2 Method

In this paper, we propose a novel prediction model called
FMGNN, which learn both low and high order feature inter-
actions, to predict compound-protein interactions. The
model FMGNN integrates the architectures of factorization
machine (FM) [33] with graph neural network (GNN) [21],
[23] and graph convolutional neural networks (GCNs) [21],
[25], respectively. Fig. 1 shows the framework of FMGNN.

As illustrated in Fig. 1, the compoundwith SMILES notation
and protein amino acid sequence are two inputs of the predic-
tion model FMGNN. Compounds are represented by a mole-
cule graph with atoms as nodes and chemical bonds as edges
(details in Section 2.2.1), and proteins are represented as a
word sequence with fixed amino acids sub-sequences as
words. Themodel FMGNN jointly trains with FM andGNN to
learn low and high-order feature interactions among substruc-
ture graphs of compounds, and outputs the combined feature
vector of compound yC ¼ fðyFM þ yGNNÞ, and then the model
FMGNN jointly trains with FM and CNN to learn low and
high order feature interactions among sub-sequences of amino
acids, and outputs the combined feature vector of protein
yP ¼ fðyFM þ yCNNÞ: Finally, the model FMGNN concate-
nates two feature vectors and passes through fully-connected
layers and a softmax layer to calculate the final output ŷ :

ŷ ¼ SoftmaxðReLU yC þ yPð Þ (1)

where ŷ 2 ð01Þ is the predicted CPI probability, yC is the fea-
ture vector of compounds, yP is the feature vector of pro-
teins, and ReLU is a non-linear activation function [38].

2.2.1 Compound Substructure Graphs With

Pharmacophore Features

In this section, we introduce compound substructure graphs
with pharmacophore features. We use r-radius subgraphs
[39] to represent the compound substructures. The r-radius
subgraphs are induced by the neighboring vertices and
edges within radius r from a vertex. However, the predic-
tion bias may be caused if only the substructure similarity
between compounds is considered. The prediction bias will
be corrected if the pharmacophore features of compound
molecules, such as hydrogen bond acceptors and hydrogen
bond donors, are taken into account. So we use the pharma-
cophore features of compound molecules in the process of
constructing the substructure graphs of compound mole-
cules. In our work, we used 7 types of pharmacophore fea-
tures, including hydrogen bond donors, hydrogen bond
acceptors, aromatic, posIonizable, negIonizable, hydro-
phobe and ZnBinder, to construct the substructure graphs
of compound molecules.

Pharmacophore [40] is used to featurize the compound
molecules by identifying essential properties of molecular
recognition. Every type of atom or group in a compound
can be reduced to a pharmacophore feature, which can be
used to analyze the similarity among small molecules and
identify the key contributing features to the biological func-
tion. In pharmacophore-based model, the concept of bioi-
sosterism is used to guarantee the model more reliable,
which considers not only the topological similarity of mole-
cules, but also the functional similarity of groups.

For example, Fig. 2 shows the topological structure-based
and pharmacophore-based alignments between methotrex-
ate and dihydrofolate, respectively. By comparing with the
conformation superposition (1rx2, 1rb3) verified by experi-
ment, we can see that the pharmacophore based conforma-
tion is closer to the experimental result. Therefore, we will
obtain higher prediction accuracy by adding the pharmaco-
phore features of molecules than using only the topological
structure of compounds in learning representation of r-
radius substructure graphs of compound.

To describe the compound substructure graphs with
pharmacophore features, we use a graph G ¼ ðVðA;PÞ; EÞ ,
where VðA;PÞ is the set of atoms, A is the set of atom types,
P is the set of pharmacophore features of A, E is the set of
chemical bonds between adjacent atoms, and eij 2 E is the
chemical bond connecting the i-th and j-th atoms. For atom
vi, viðai; piÞ 2 VðA;PÞ represents the i-th atom with atom
type ai and pharmacophore feature pi Firstly, we embed all
atoms and chemical bonds in a d-dimensional real-valued
vector space with these atom types and pharmacophore fea-
tures. Then, we construct r-radius substructure graphs [39]
by the neighboring vertices and edges within radius r from
a vertex [21].

We defined a set Nði; rÞ to represent neighboring atoms
within radius r from the i-th atom. Note that Nði; 0Þ ¼ fig.
We define the r-radius substructure graphs for vertex vi,
v
ðrÞ
i , as follows:

v
rð Þ
i ¼ V rð Þ

i ai; pið Þ; E rð Þ
i

� �
(2)

Fig. 1. Framework of FMGNN.
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where

V rð Þ
i ai; pið Þ ¼ vj aj; pj

� �jj 2 N i; rð Þ� �
;

E rð Þ
i ¼ emn 2 Ej m;nð Þ 2 N i; rð Þ � N i; r� 1ð Þf g

:

Then, we define the r-radius substructure graphs for
edge eij, e

ðrÞ
ij , as follows:

e
rð Þ
ij ¼ V rð Þ

i ai; pið Þ [ V r�1ð Þ
i ai; pið Þ; E rð Þ

i \ E rð Þ
j

� �
(3)

Next, the model FM is used to train the substructure
graphs of a compound for getting the low-order feature
interactions (see: Section 2.2.2). Meanwhile, the model GNN
is used to train the substructure graphs of a compound for
getting the high-order feature interactions (see: Section 2.2.3).

2.2.2 Factorization Machines (FM) Model

The model FM [33] is a factorization machine to learn fea-
ture interactions for recommendation system. The model
FM combines the advantages of Support Vector Machines
(SVM) with factorization models to estimate feature interac-
tions using factorized parameters reasonably in very sparse
data. The computation complexity of the model FM is lin-
ear, and its optimization effect is good. The model FM is a
general predictor working with any real value feature vec-
tor. So we choose the model FM to learn low-order feature
interactions in CPIs prediction. The procedure to learn com-
pound feature vectors with model FM is shown in Fig. 3.

As shown in Fig. 3, the substructure graphs of a compound
(Section 2.2.1) are the input of the model FM. When both sub-
structure graph i and substructure graph j appear in the same
compound, the output of component FM, yFM , is the

summation ofweighted 1-order and 2-order feature interactions:

yFM ¼ w0 þ
Xn
i ¼ 1

wixi þ
Xn
i ¼ 1

Xn
j ¼ iþ1

wi;j � xi � xj (4)

where xi, xj are the i-th and j-th substructure graphs of a
compound respectively, w0 is the global bias, wiis the
parameter of xi, wi,j is the parameter of the interaction
between xi and xj, i, j ¼ 1, 2,. . .,n.

For any positive definite matrixW, there exists a matrix V
such thatW ¼ V�VT, where V 2 Rn�k and VT is the transpo-
sition of V.

The 2-order interaction between xi and xj can be learned
via the inner product of their latent vectors vi and vj.Xn

i ¼ 1

Xn
j ¼ iþ1

wi;j � xi � xj ¼
Xn
i¼1

Xn
j¼iþ1

hvi; vjixi � xj (5)

where hvi; vji is the dot product of two latent vectors vi and
vj with size k:

hvi; vji ¼
Xk
f ¼ 1

vi;f � vj;f (6)

Then, the 2-order interaction between xi and xj can be
reformulated as follow [33]:

Xn
i ¼ 1

Xn
j ¼ iþ1

hvi; vjixixj

¼ 1

2

Xk
f ¼ 1

Xn
i ¼ 1

vi;fxi

 !2

�
Xn
i ¼ 1

v2i;fx
2
i

0
@

1
A (7)

Meanwhile, the output of FM component, yFM , is
rewrited as follow:

yFM ¼ w0 þ
Xn
i ¼ 1

wixi

þ 1

2

Xk
f ¼ 1

Xn
i ¼ 1

vi;fxi

 !2

�
Xn
i ¼ 1

v2i;fx
2
i (8)

While the FM can model high-order feature interactions,
in practice only 2-order feature interactions are usually

Fig. 3. Procedure to learn compound feature vectors with model FM.

Fig. 2. Comparison between topological structure and pharmacophore.
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considered due to high complexity. The models GNN [23]
and CNN [21] are applied to learn high-order feature inter-
actions for compound molecule graphs and protein amino
acids sequences, respectively.

2.2.3 Model GNN

In our work, the model GNN is based on learning represen-
tations of r-radius substructure graphs of compound. The
model GNN maps a graph G to a vector y 2 Rd with two
functions, i.e., transition and output functions [21], [23].

In the model GNN, firstly, the feature vector for the sub-
structure graphs of a compound is randomly initialized in
embedding layer, the i-th substructure graph embedding at
time step t is represented as v

ðtÞ
i , and v

ðtÞ
i is updated with

transition function [21]:

v
tþ1ð Þ
i ¼ sigmoid

 
v

tð Þ
i þ

X
j2N ið Þ

h
tð Þ
ij

!
(9)

where sigmoid is the activation function, NðiÞ is the set of
neighboring indices of the i-th substructure graph, and

h
ðtÞ
ij 2 Rd is the hidden neighborhood vector.
Then, the model GNN learns the neural network parame-

ters including the feature vectors via back propagation to
obtain the final output yGNN :

yGNN ¼ 1

Vj j
XVj j

i ¼ 1

v
tð Þ
i (10)

where jVj is the number of substructure graphs of a
compound.

Random initialization operation will spend a long time to
achieve convergence in the GNN training. To accelerate the
training for protein feature vector, we construct a gram cor-
pus with the physicochemical properties of amino acids for
proteins.

2.2.4 CNN Model With Physicochemical Properties of

Amino Acids

As shown in Fig. 4, the models FM [33] and CNN [21] are used
to embed the n-gram amino acids into vector, and then obtain
low and high-order feature vectors for protein sequences,
respectively. The model FM can obtain the low-order feature
interactions of protein sequences as described in Section 2.2.2.
In this section, we describe the model CNN, which can
obtain high-dimensional real-valued vector representations of
protein sequences. The model CNN maps sequence S ¼
fs01; s02; . . . ; s0jsjg to vector yCNN 2 Rd with multiple filter

functions in t times, s
ðtÞ
i ¼ ReLUðWconvv

ðt�1Þ
i þbconvÞyCNN ¼

1
jSj
PjSj

i ¼ 1s
ðtÞ
i where the dimensionality d of protein sequences is

the same as that of the compound substructure graphs
described in Section 2.2.1. Fig. 4 shows the procedure to learn
protein feature vectorswith themodels FMandCNN.

To apply the model CNN to deal with protein sequence,
the protein sequences is first divided into overlapping n-
gram amino acids, and then the n-gram amino acids are
defined as “words” [41]. Since a protein consists of 20 amino
acids, the number of all possible n-grams is 20n. To keep the
vocabulary of reasonable size and avoid low-frequency

words in the learning representations, we set an n-gram
number n ¼ 3. For example, we divide an adenosine deami-
nase-like protein into an overlapping 3-gram amino acid
sequence as follow:

MAQTP. . .GQNL!“MAQ”, “AQT”, “QTP”, . . ., “GQN”,
“QNL”.

To accelerate training the model CNN, we construct a
gram corpus for “words” based on 554 physicochemical
properties of amino acids. These physicochemical properties
of amino acids are obtained from the dataset AAindex1 [42].

The dataset AAindex1 adopts different dimensions for dif-
ferent attributes of amino acids, and the differences between
their values are also very large, the direct use of the dataset
AAindex1will affect the results of data analysis. We use Z nor-
malization method to normalize the original data from the
datasetAAindex1.Anormalization term f is defined as follows:

f ¼ fo � �f

s
(11)

where fo is the original data, �f is the mean value of fo, s is
the standard deviation of fo.

Given a set of amino acids AA¼ {x1,x2,. . .,x20}, where each
amino acid xi ¼ {fi,1, fi,2,. . .,fi,554 j i2[1], [20]} is a vector with
the Z normalized 554 physicochemical properties, we con-
struct gram corpus C ¼ {gram1, gram2,. . ., gram j gram j }; where
jgramj is the total number of grams, j gram j ¼ 20n. For n¼ 3,
each 3-gram gramðxi; xj; xkÞ ¼ 1

n ðxi þ xj þ xkÞ is a feature
vector, where xi; xj; xk 2 fx1; x2; � � � ; x20g are any three
amino acids, the addition operation of vector is the addition
of corresponding components of vector. Hence, we have

1

n
xi þ xj þ xk

� �
¼ fi;1 þ fj;1 þ fk;1

n
;
fi;2 þ fj;2 þ fk;2

n
; � � � ; fi;544 þ fj;544 þ fk;544

n

� 	
(12)

Next, the principal component analysis (PCA) was
applied to keep only the most important features by

Fig. 4. Procedure to learn protein feature vectors with models FM and
CNN.
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removing the noise and unimportant features. In our
study, we set NPCA ¼ d, d is the same as the dimensionality
of protein sequences. Finally, the gram corpus C is loaded
as the pretrained model in the embedding layer of model
CNN.

For example, the construction of gram corpus for an
adenosine deaminase-like protein is shown in Fig. 5. The
Z_AAindex.txt file stores the Z normalized 554 physico-
chemical properties from the dataset AAindex1.

2.2.5 Algorithm

Based on the above steps, we propose an algorithm for pre-
dicting compound-protein interactions integrating the
architectures of models FM and GNN called FMGNN, in
which its input file “CPIFile” includes the positive and
negative CPI pairs extracted from database, the file
“Z_AAindex.txt” stores the normalized 554 physico-chemi-
cal properties from the dataset AAindex1, r is the radius of
substructure graphs and the default value of r is 2, and n is
the number of amino acids in a gram and its default value
of n ¼ 3. Algorithm 1 describes our proposed prediction
algorithm called FMGNN.

Our algorithm FMGNN can obtain more accurate pre-
diction than other existing algorithms because FMGNN
learns high-order feature interactions to mine deep hid-
den relationship between compounds and proteins,
extracts low-order feature interactions to solve the prob-
lem of over-generalized and produced prediction of less
relevant drugs when the compound-protein interactions
are high-order sparse; and it uses pharmacophore fea-
tures of compound to ensure that the prediction results
much more fit the expectation of biological experiment,

and refers the physicochemical properties of amino acids
to improve the convergence speed and accuracy of pro-
tein feature extraction.

Algorithm 1 FMGNN

Input: CPIFile, Z_AAindex.txt, r, n
Output: AUC, Precision, Recall, F1-score
Begin
1. Construct r-radius substructure graphs with pharmacophore

features for compounds. For i-th vertex, v
ðrÞ
i ¼ ðVðrÞ

i

ðai; piÞ; EðrÞ
i Þ, for edge eij between the i-th and j-th vertex,

e
ðrÞ
ij ¼ ðVðrÞ

i ðai; piÞ [ Vðr�1Þ
i ðai; piÞ; EðrÞ

i \ EðrÞ
j Þ , as described in

Section 2.2.1;
2. Divide the protein sequences into overlapping n-gram

amino acids;
3. Construct the gram corpus C ¼ fc1; c2; � � � ; cjCjg for all the

n-gram amino acids;
4. For i-th vertex, initialize the feature vector of compound xi

randomly in the embedding layer.
5. Compute the low-order feature vector of compound yFM c

with the model FM as described in Section 2.2.2, where
yFM c ¼ w0 þ

Pn
i ¼ 1wixiþ

1
2

Pk
f ¼ 1 ðð

Pn
i ¼ 1vi;fxiÞ2 �

Pn
i ¼ 1v

2
i;fx

2
i Þ ;

6. Compute the high-order feature vector of compound yGNN

with model GNN, yGNN ¼ 1
jVj
PjVj

i ¼ 1v
ðtÞ
i , as described in

Section 2.2.3;
7. Concatenate the low and high-order feature vectors of com-

pound to generate the final compound feature vector yC ,
yC ¼ concatenateðyFM c; yGNNÞ;

8. For the i-th gram, initialize the feature vector of protein gi
with the gram corpus C as the pretrained weight in the
embedding layer.

9. Compute the low-order feature vector of protein sequence
yFM p with the model FM described in Section 2.2.2,where
yFM p ¼ w0þ

Pn
i ¼ 1wigi þ 1

2

Pk
f ¼ 1 ðð

Pn
i ¼ 1vi;fgiÞ2 �

Pn
i ¼ 1

v2i;f g
2
i Þ;

10. Compute the high-order feature vector of protein sequence

yCNN with the model CNN, yCNN ¼ 1
jgj
Pjgj

i ¼ 1g
ðtÞ
i , described

in Section 2.2.4;
11. Concatenate the low and high-order feature vectors of pro-

tein sequence to generate the final protein feature vector
yP , yP ¼ concatenateðyFM p; yCNNÞ;

12. Concatenate yC and yP , and pass through fully-connected
layers to calculate the final output ŷ ¼ ReLUðW ðyC þ yP Þ
þbÞ.

End.

3 EXPERIMENT

For the compounds, we taken the SMILES notation of the
compounds as input, which was converted to a graph repre-
sentation, and extracted information of the molecular graph
with tool RDKit, such as atom types, pharmacophore fea-
tures, chemical bonds, and the adjacency list of atoms. For
proteins, we taken amino acid sequences as input. We nor-
malized 554 physicochemical properties of amino acids
from the dataset AAindex1, and constructed an n-gram cor-
pus to accelerate the embedding process for protein
sequences.

We implemented our proposed algorithm FMGNN by
using Pytorch 1.4.0 with CUDA 10.0 and RDKit 2020.03.3.

Fig. 5. Constructing process of 3-gram vectors for an adenosine deami-
nase-like protein.
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We used the optimizers LookAhead [43] and RAdam [44] to
train our proposed prediction model. The use of combining
LookAhdad with RAdam can solve the serious convergence
problem caused by the optimizer Adam without learning
rate warmup. The experiment was conducted at the CPU/
GPU server at high-performance computing center of
Guangxi University1. The experimental configuration is
shown at https://hpc.gxu.edu.cn/gk1/yjzy.htm. All the
settings and hyper-parameters in algorithm FMGNN are
summarized in Table 1.

To compare with the traditional machine learning meth-
ods, we chose K nearest neighbors (KNN), random forest
(RF), and support vector machines (SVM), whose results are
obtained by Liu et al. [34]. To compare with other deep
learning methods, we chose four methods CPI-GNN[21],
GraphDTA[22], GCN[25], and TransformerCPI [29]. To
compare with relative method, we also chose the method
DeepFM [32]. The performance of our algorithm FMGNN
with the above eight algorithms was compared in terms of
AUC, Precision, Recall and F1-score. Tables 2 and 3 show the
experimental results for nine algorithms on datasets human
and C.elegans, respectively.

From Tables 2 and 3, we can see that compared with other
eight algorithms, our proposed algorithm FMGNN achieved
higher values of AUC and precision on both two datasets
human and C.elegans. The algorithm SVM achieved higher
values of recall and F1-score than the algorithm FMGNN on
dataset human, and the algorithmTransformerCPI achieved
higher values of recall and F1-score than the algorithm

FMGNN on dataset C.elegans. On the whole, the experimental
results of AUC, precision, recall and F1-score show that our pro-
posed algorithmFMGNNhas advantages.

To inspect our proposed algorithm FMGNN on the bal-
anced and imbalanced large-scale datasets, we conducted
the experiment on the dataset STITCH, where the dataset
STITCH is a larger and much sparser dataset than datasets
human and C.elegans. Both the two algorithms FMGNN
and CPI_GNN are GNN-based prediction algorithms. We
conducted the experiment for algorithms FMGNN and
CPI_GNN on the dataset STITCH. The experimental results
are shown in Fig. 6.

As shown in Fig. 6, compared to the algorithm
CPI_GNN, our proposed algorithm FMGNN obtained
higher values for AUC, Precision, Recall and F1-score. It
illustrates that our algorithm FMGNN is robust even if the
dataset is imbalanced and larger one. Moreover, the more
imbalanced the data is, the higher the performance of our
algoorithm is. i.e., the AUC score increased 9% when the
negative ratio is 5, and only 1% when the negative ratio is 1;
the Recall score increased 15% when the negative ratio is 5,
and only 5% when the negative ratio is 1; the F1-score
increased 9% when the negative ratio is 5, and only 3%
when the negative ratio is 1. It indicates that the more spares
the dataset is, the more efficient of considering both low and
higher-order features is, and the more important the low-
order feature interactions is.

TABLE 1
Hyper-parameters in Algorithm FMGNN

Name value

Number of GNN layers 3
Number of CNN layers 3
Number of output layers 3
Dimension of feature vectors 10
Learning rate 1e-4
Learning rate decay 0.01
Decay interval 10
Weight decay 1e-4
Iteration time 100
Optimizer LookAheadþRAdam

TABLE 2
Experimental Results of Nine Algorithms on Dataset Human

Algorithm AUC Precision Recall F1-score

KNN 0.860 0.927 0.798 0.858
RF 0.940 0.897 0.861 0.879
SVM 0.910 0.964 0.969 0.968
GraphDTA 0.960 0.882 0.912 0.897
GCN 0.956 0.862 0.928 0.894
CPI-GNN 0.970 0.918 0.923 0.921
TransformerCPI 0.973 0.916 0.925 0.921
DeepFM 0.525 0.636 0.263 0.372
FMGNN 0.984 0.976 0.953 0.959

TABLE 3
Experimental Results of Nine Algorithms on Dataset C.Elegans

Algorithm AUC Precision Recall F1-score

KNN 0.858 0.801 0.827 0.814
RF 0.902 0.821 0.844 0.832
SVM 0.894 0.785 0.818 0.801
GraphDTA 0.974 0.927 0.912 0.919
GCN 0.975 0.921 0.927 0.924
CPI-GNN 0.978 0.938 0.929 0.933
TransformerCPI 0.988 0.952 0.953 0.952
DeepFM 0.535 0.523 0.847 0.647
FMGNN 0.990 0.969 0.931 0.949

Fig. 6. Experimantal results in different negative ratio for the algorithms
FMGNN and CPI_GNN on dataset STITCH.

1. http://hpc.gxu.edu.cn
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4 DISCUSSION

4.1 Effect of Learning Both Low and Higher-Order
Feature Interactions

Some prediction methods achieve high performance in CPI
with the learning models CNN, DNN, and GNN [18], [19],
[20], [21], [22]. The major contribution of these deep learning
models is that they explore new implicit feature interactions.
But along with the increase of compounds, the compound-
protein pairs become high-order sparse like the pairs in data-
set STITCH, the models CNN, DNN, and GNN [18], [19],
[20], [21], [22] will over-generalize and produce prediction of
less relevant drugs. The major downside of these deep learn-
ing models is that they focus more on high-order feature
interactions while ignore low-order feature interactions. In
general, there are sophisticated feature interactions between
compounds and proteins in CPI prediction, learning both
low and high-order feature interactions can find the frequent
co-occurrence of features, and explore implicit feature inter-
actions. We integrated model FM with models GNN and
CNN in our proposed predictionmodel. This allows our pro-
posed model to improve the prediction accuracy of CPI by
jointly learning low and high-order feature interactions.

Learning both low and high-order features brings addi-
tional improvement over the case of learning only one feature.
To show the effect of learning both low and high-order feature
interactions, we conducted experiment on dataset STITCH for
our algorithm FMGNN with and without the layer FM,
respectively. The experimental results are shown in Table 4.

From Table 4 we can see that compared to the algorithm
FMGNNwithout layer FM, the algorithm FMGNNwith FM
obtained higher values for all the metrics on dataset
STITCH. It indicates that low-order feature interactions con-
tribute to the prediction results.

4.2 Effect of Pharmacophore Features

Pharmacophore [40] has great significance in process of drug
discovery. There are seven kinds of pharmacophore features,
including hydrogen bond donor, hydrogen bond acceptor,
positive and negative charge center, aromatic ring center,
hydrophobic group, hydrophilic group, and geometric con-
formation volume collision. The methods based on pharma-
cophore features make use of not only the topological
similarity of compounds but also the functional similarity of
groups. Thus, using the concept of bioisosterism makes the
predictionmodel more reliable.

To show the effect of pharmacophore features, we con-
ducted the experiment for the algorithms FMGNN and
FMGNN without pharmacophore features on dataset
STITCH. The experiment results are shown in Table 5.

We can see from Table 5 that compared to the algorithm
FMGNN without pharmacophore features, the algorithm
FMGNN with pharmacophore features obtained higher

values for all the metrics on dataset STITCH. It means that
pharmacophore features are contributed to the prediction
results.

4.3 Convergence Effect of Gram Corpus

In general, randomly initialization operation is used to
embed feature vector in the embedding layer for deep learn-
ing model. But random initialization makes the algorithm
take a long time to achieve convergence and have a large
loss value for large-scale dataset. To accelerate the algo-
rithm converge and reduce the loss value for the predicted
value and real value, we used a gram corpus to initialize the
weight of embedding layer. The gram corpus was con-
structed by the physicochemical properties of amino acids
for proteins based on the dataset AAindex1, and it was
loaded as the pretrained model for embedding layer in the
model CNN. To evaluate the convergence effect of gram
corpus, we conduct the experiment for the algorithms
FMGNN and CPI_GNN on datasets STITCH and human.
Fig. 7 shows the experiment result.

As shown in Fig. 7, our proposed algorithm FMGNN
spent a short time to achieve convergence and had a less
loss value on both two datasets. The loss value was stable at
40 iterations with the algorithm FMGNN, but stable at 50

TABLE 4
Experimental Results for FMGNN and FMGNNWithout Layer

FM on Dataset STITCH

Algorithm AUC Precision Recall F1-score

FMGNNw/o FM 0.970 0.923 0.918 0.920
FMGNNw/ FM 0.983 0.963 0.936 0.949

TABLE 5
Experimental Results for FMGNN and FMGNNWithout Phar-

macophore Features on Dataset STITCH

Algorithm AUC Precision Recall F1-score

FMGNNw/o
pharmacophore features

0.970 0.923 0.918 0.920

FMGNNw/
pharmacophore features

0.984 0.977 0.944 0.960

Fig. 7. Convergence comparison for the algorithms FMGNN and
CPI_GNN.
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iterations with the algorithm CPI_GNN on both two data-
sets. The details are given in Table S1-Table S4.

For the human dataset, the average loss value was 0.0025
in our proposed algorithm, but 0.0178 in the algorithm
CPI_GNN. For the dataset STITCH, the average loss value
is 0.0384 in our algorithm FMGNN, but 0.0569 in algorithm
CPI_GNN. The details of average loss values are given in
Table S5. This indicates that our proposed algorithm
FMGNN had a less loss value, and the gram corpus contrib-
uted to the low computational cost.

4.4 Comparing With Different GNNs

We used the linear GNN [23] as the deep part to learn high-
order features for compounds in our proposed algorithm.
As we know, there are other popular GNN models, such as
GCN [25] and GATs [45]. To evaluate the contribution of

various GNN models in our algorithm FMGNN, we con-
ducted the experiment for linear GNN, GCN and GATs as
the deep part layer to extract high-order feature interactions
for compounds on the dataset Human. Fig. 8 shows the
experiment result.

As shown in Fig. 8, the GATs layer spent a shortest time
to finish the training. The GCN layer had the minimum
training loss value. And the GNN layer had the best metric
values. In practical applications, we should choose the lin-
ear GNN or GCN or GATs according to the actual dataset
and environment.

4.5 Case Study

To verify the reliability of the algorithm FMGNN, we pre-
dicted the interactions between wogonin and 300 candidate
target proteins. Wogonin is a dihydroxy-and monome-
thoxy-flavone. It has a role as a cyclooxygenase 2 inhibitor,
an antineoplastic agent, an angiogenesis inhibitor, and a
plant metabolite. Its SMILES expression is “COC1 ¼ C (C2
¼ c1oc ( ¼ CC2 ¼ O) C3 ¼ CC ¼ CC ¼ C3) O”. We choose
the algorithm FMGNN trained by dataset STITCH as pre-
diction model. After calculating prediction scores by algo-
rithm FMGNN, the prediction scores of 300 candidate
target proteins were ranked, and the top 5 proteins were
shown in Table 6. Furthermore, the Top 1 protein was
selected for biological experiment verification, and the
experimental results were shown in Fig. 9.

The ATP5C1 encodes a subunit of mitochondrial ATP
synthase, which catalyzes the synthesis of ATP utilizing an
electrochemical gradient of protons across the inner mem-
brane during oxidative phosphorylation [46]. It has been
reported that the expression of protein ATP5C1 in liver
tumor tissues was lower than that in non-tumor tissues [47].
Our western blot experiment results showed that compared
with the control group, the expression of protein ATP5C1
was increased as HepG2 cells were exposed to 50mM,

Fig. 8. Comparison on training loss value, elapsed time and four matric
for linear GNN, GCN and GATs layer as the deep part in algorithm
FMGNN on dataset Human.

TABLE 6
Top 5 Candidate Target Proteins for Wogonin

UniprotID Protein Name Score

P36542 ATP5F1C 0.972
P62424 RPL7A 0.970
O75822 EIF3J 0.968
O00425 IGF2BP3 0.968
P18754 RCC1 0.968

Fig. 9. (A) Hep G2 cells were treated with 0 mM, 50 mM, 100 mM and 150
mM of wogonin for 48 hours, and then the expression levels of protein
ATP5C1 were detected by western blot (n ¼ 3). (B) Quantification of pro-
tein ATP5C1 obtained by using Image J software. The values were the
ratios of ATP5C1/actin (n ¼ 3, ns, not significant, �P < 0.05).
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100mM and 150mM of wogonin for 48 hours. This indicates
that protein ATP5C1 may be a potential target of wogonin.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a hybridmodel of incorporating Fac-
torization Machines (FM) and GNN/CNN with pharmaco-
phore features of compounds and physicochemical properties
of amino acids to predict potential compound-protein interac-
tions. The model FM was applied to extract the low-order fea-
ture interactions, the models GNN and CNN were used to
learn the high-order feature interactions for compounds and
proteins, respectively. The experimental results demonstrated
that a jointly low and high-order feature interactions obtained
additional improvement of CPIs prediction. Generating the
compound feature vectors with compound substructure
graphs and pharmacophore features can ensure the prediction
results closer to the expectation of biological experiment. Load-
ing the physicochemical properties of amino acids as the pre-
trained weight model in embedding layer can accelerate the
training process of the model CNN. The experimental results
on datasets Human and C.elegans showed that our proposed
prediction method outperformed the classical machine learn-
ing methods and existing deep learning methods in term of
AUC and precision. In addition, the experimental results on a
large-scale balance and imbalance dataset also showed that our
proposed algorithm outperformed the algorithm CPI_GNN in
all terms of AUC, precision, recall and F1-score. The western
blot experiment results on wogonin and its candidate target
proteins showed that our algorithm FMGNNwas effective and
accurate for finding potential target proteins.

The target of drugs usually refers to protein, but RNA is
also a potential target. One future research direction is how
to predict the drug-RNA interactions because the known
drug-RNA interaction data is scarce. Meanwhile, it is also
another future research direction for predicting drug-target
interactions using deep learning framework on multiomics
information such as gene regulatory omics andmetabolome.
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