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Efficient Approximate Kernel Based Spike
Sequence Classification

Sarwan Ali, Bikram Sahoo, Muhammad Asad Khan , Alexander Zelikovsky, Imdad Ullah Khan*, Murray
Patterson*

Abstract—Machine learning (ML) models, such as SVM, for tasks like classification and clustering of sequences, require a definition of
distance/similarity between pairs of sequences. Several methods have been proposed to compute the similarity between sequences,
such as the exact approach that counts the number of matches between k-mers (sub-sequences of length k) and an approximate
approach that estimates pairwise similarity scores. Although exact methods yield better classification performance, they pose high
computational costs, limiting their applicability to a small number of sequences. The approximate algorithms are proven to be more
scalable and perform comparably to (sometimes better than) the exact methods — they are designed in a “general” way to deal with
different types of sequences (e.g., music, protein, etc.). Although general applicability is a desired property of an algorithm, it is not the
case in all scenarios. For example, in the current COVID-19 (coronavirus) pandemic, there is a need for an approach that can deal
specifically with the coronavirus. To this end, we propose a series of ways to improve the performance of the approximate kernel (using
minimizers and information gain) in order to enhance its predictive performance pm coronavirus sequences. More specifically, we
improve the quality of the approximate kernel using domain knowledge (computed using information gain) and efficient preprocessing
(using minimizers computation) to classify coronavirus spike protein sequences corresponding to different variants (e.g., Alpha, Beta,
Gamma). We report results using different classification and clustering algorithms and evaluate their performance using multiple
evaluation metrics. Using two datasets, we show that our proposed method helps improve the kernel’s performance compared to the
baseline and state-of-the-art approaches in the healthcare domain.

Index Terms—Sequence Classification, Approximate Kernel, k-mers, Spike Sequence
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1 INTRODUCTION

THE COVID-19 global pandemic is unique compared to
past pandemics because it occurs in a time of world-

wide travel like never before and the widespread availabil-
ity of high-throughput sequencing. Before this pandemic,
sequences for a given virus were gathered in the order of
hundreds, maybe a few thousand, but the current number
of sequences of the SARS-CoV-2 virus (which causes the
COVID-19 disease) is orders of magnitude beyond this. This
amount is so high that methods such as phylogenetic tree
building [1], which have traditionally been used for study-
ing the diversity, dynamics, and evolution of viruses, are
no longer appropriate in this situation because they do not
scale. Some researchers have hence turned to alternatives
such as clustering and classification to tackle this “big data”
problem [2], [3], [4].

The SARS-CoV-2 is a type of coronavirus, so-called be-
cause of its notable spikes, which resemble “crowns”. These
spikes serve as the mechanism for the virus to fuse to the
host cell membrane. Coronaviruses such as SARS-CoV-2
cause a wide variety of respiratory diseases in an array of
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different hosts. Changes in these spikes (in the form of spike
protein mutations) allow coronaviruses to adapt to different
hosts and evolve into new and more transmissible variants.
See Figure 1 for an illustration of the SARS-CoV-2 genomic
structure, including the region (the spike region) that codes
the spike protein. It is hence important to use this source
of information to identify different host specificity [5] and
variants [4]. This motivates approaches for classifying coro-
navirus spike sequences to better understand the dynamics
of the different variants in terms of this information.

Fig. 1: The SARS-CoV-2 genome is around 29–30kb, en-
coding structural and non-structural proteins. ORF1ab en-
codes the non-structural proteins, while the four structural
proteins spike, envelope, membrane, and nucleocapsid are
encoded by their respective genes. The spike protein has
roughly 1300 amino acids.

Most classification approaches leverage the powerful
tools of machine learning (ML) — methods such as sup-
port vector machine (SVM) or random forest (RF), which
have highly optimized implementations. One problem re-
searchers face while utilizing ML models’ power is to
convert the character-based sequences into fixed-length nu-
merical vectors so that the machine can understand them.
One popular way to deal with this problem is by using
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k-mers-based approach (a substring of length k). Several
alignment-based [5], [6] and alignment-free [4], [7] have
been proposed recently for ML tasks such as classification
and clustering. Most of these methods involved computing
k-mers from the spike sequences and then computing the
k-mers count to get a frequency vector (more detail about k-
mers is given in Section 4). Since these methods are based on
feature engineering, they may not fully utilize ML models’
power as loss of information may occur while performing
the feature engineering process. One problem with the k-
mers-based methods is that the number of k-mers in a
given sequence could be large (and there could be a large
number of similar/redundant k-mers). Therefore, there is
a computational overhead for processing these redundant
k-mers. One way to reduce that overhead is by using Mini-
mizers [8]. Minimizers are a type of lightweight “signature”
of a sequence that is used primarily in the context of de novo
assembly and read mapping. In this paper, we are using
minimizers (as a pre-processing step) as a way to remove
some of the amino acids from the sequences and show that
this eventually improves the predictive performance of the
overall algorithm for classification and clustering.

A popular domain of research for sequence classifica-
tion that has shown success in the past is using kernel-
based method [9], [10]. These methods compute the ex-
act/approximate distance between pairs of sequences based
on the matches and mismatches between the k-mers (sub-
strings of length k) of the sequences. In [3], the authors
use an approximate kernel proposed in [10] to compute the
distance between pairs of sequences. These kernels are then
used to perform classification using kernel-based classifiers
such as SVM and non-kernel-based classifiers (using kernel
PCA) such as decision trees. In this work, we devise a
kernel that is computationally more efficient, has the ker-
nel’s theoretical properties and yields excellent predictive
accuracy for both clustering and classification. We then use
this kernel in comparison with many baselines (including
that of [3]) and show that it outperforms all baselines in
terms of predictive performance and runtime.

Our contributions in this paper are the following:

1) We propose a method based on minimizers, infor-
mation gain, and approximate kernel to perform
classification and clustering on the COVID-19 spike
sequences

2) Unlike in [3], we use more variants to show the
performance of kernel matrix with a higher number
of classes.

3) We show that spike sequences alone can be used to
classify different COVID-19 variants efficiently.

4) We show that our method could work for classifica-
tion and clustering tasks.

5) Using the domain knowledge (information gain),
we show that the classification and clustering per-
formance could be improved compared to the base-
lines.

6) We prove that the proposed kernel is positive
semidefinite.

The rest of the paper is organized as follows: Section 2
contains related work. Our proposed model is given in
Section 3, Section 4, Section 5, and Section 6. Section 7 con-

tains the experimental setup. Results are given in Section 8.
Finally, we conclude the paper in Section 9.

2 RELATED WORK

In bioinformatics, sequence homology (shared ancestry) de-
tection between a pair of proteins and prediction of disease
transmission using the Phylogeny-based method [11] are
essential tasks. The use of k-mers counts for phylogenetic
applications was first explored in [12], which proposed
constructing accurate phylogenetic trees from several cod-
ing and non-coding nDNA sequences. In bioinformatics,
sequence classification is a widely studied problem [13].
Some classification methods are alignment-free (considered
computationally less expensive), while others rely on se-
quences’ alignment (comparatively more computationally
expensive).

Converting input data into fixed-length numerical vec-
tors for applying different machine learning algorithms
such as classification and clustering is a common practice
across numerous fields like smart grid [14], [15], graph
analytics [16], [17], [18], [19], [20], electromyography [21],
clinical data analysis [22], network security [23], and text
classification [24]. Authors in [5] use the position weight
matrix-based approach to compute feature embeddings for
spike sequences. Although their approach shows promising
results, one drawback of their method is that it only works
for aligned data. A k-mers-based approach for classification
of SARS-CoV-2 sequences is proposed in [4]. Several meth-
ods to perform clustering on the spike sequence data have
also been proposed recently [7], [25].

Another domain for classifying sequences is by using
kernel matrix (gram matrix). In this method, a kernel matrix
is computed that represents the similarity between pairs of
sequences [9], [10]. This matrix is used as input to kernel-
based classifiers like Support Vector Machines (SVM). Re-
cently, authors in [3] proposed a kernel-based approach
for spike sequence classification. Although their method
shows promising results on classification, it is not clear if
the proposed method can be generalized to more variants
and for other bioinformatics tasks such as clustering.

One issue with sequence similarity measures involving
dynamic programming such as Smith-Waterman [26], is that
they have quadratic (O(n2)) runtime and space complexity.
Even at 7000 sequences, performing such an operation for
all (49 million) pairs would be infeasible. In fact, the ap-
proximate kernel method we propose here is precisely for
this reason, it allows for pairwise comparisons to be much
faster (O(k2nlog n), where k is a constant and n refers to the
length of larger sequence between a pair of sequences). On
the other hand, using common sequence similarity measures
such as Hamming distance (which takes linear time) maybe
too simple: not necessarily reflecting the underlying (e.g.,
physical) similarity between sequence fragments [9]. For
example, in protein sequence analysis, different pairs of
symbols (amino acids) induce different similarity levels, a
consequence of particular physical or chemical properties.
Hence, treating all differences the same (similar weight)
may not be a good option. Moreover, Hamming distance
treats sequences as vectors, which means that the sequences
must have same length, which is not always the case.
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As compared to our alignment-free kernel-based method,
Hamming distance may not be applicable in real world
because of its dependence on sequence alignment, which
itself is an expensive operation.

3 ALGORITHM FOR KERNEL COMPUTATION

In this section, we formulate the problem, describe our
algorithm and analyze its runtime and quality.

k-spectrum and k,m-mismatch kernel: Given a se-
quence X over alphabet Σ, the k,m-mismatch spectrum of
X is a |Σ|k-dimensional vector, Φk,m(X) of number of times
each possible k-mer occurs inX with at mostmmismatches.
Formally,

Φk,m(X) = (Φk,m(X)[γ])γ∈Σk =

(∑
α∈X

Im(α, γ)

)
γ∈Σk

,

(1)
where Im(α, γ) = 1, if α belongs to the set of k-mers that
differ from γ by at most m mismatches, i.e. the Hamming
distance between α and γ, d(α, γ) ≤ m. Note that form = 0,
it is known as k-spectrum of X . The k,m-mismatch kernel
value for two sequences X and Y (the mismatch spectrum
similarity score) [27] is defined as:

K(X,Y |k,m) = 〈Φk,m(X),Φk,m(Y )〉 (2)

=
∑
γ∈Σk

Φk,m(X)[γ]Φk,m(Y )[γ]

=
∑
γ∈Σk

∑
α∈X

Im(α, γ)
∑
β∈Y

Im(β, γ)

=
∑
α∈X

∑
β∈Y

∑
γ∈Σk

Im(α, γ)Im(β, γ).

For a k-mer α, let Nk,m(α) = {γ ∈ Σk : d(α, γ) ≤ m}
be the m-mutational neighborhood of α. Then for a pair of
sequences X and Y , the k,m-mismatch kernel given in eq
(2) can be equivalently computed as follows [28]:

K(X,Y |k,m) =
∑
α∈X

∑
β∈Y

∑
γ∈Σk

Im(α, γ)Im(β, γ) (3)

=
∑
α∈X

∑
β∈Y
|Nk,m(α) ∩Nk,m(β)|

=
∑
α∈X

∑
β∈Y

Im(α, β),

where Im(α, β) = |Nk,m(α) ∩ Nk,m(β)| is the size of
intersection of m-mutational neighborhoods of α and β. We
use the following two facts.

Fact 3.1. Im(α, β), the size of the intersection of m-mismatch
neighborhoods of α and β, is a function of k, m, |Σ| and d(α, β)
and is independent of the actual k-mers α and β or the actual
positions where they differ.

Fact 3.2. If d(α, β) > 2m, then Im(α, β) = 0.

In view of the above two facts, we can rewrite the kernel
value (3) as

K(X,Y |k,m) =
∑
α∈X

∑
β∈Y

Im(α, β) =

min{2m,k}∑
i=0

Mi(X,Y )·Ii,

(4)

where Ii = Im(α, β) when d(α, β) = i and Mi(X,Y ) is
the number of pairs of k-mers (α, β) such that d(α, β) = i,
where α ∈ X and β ∈ Y . Note that bounds on the
last summation follow from Fact 3.2 and the fact that the
Hamming distance between two k-mers is at most k. Hence
the problem of kernel evaluation is reduced to computing
Mi(X,Y )’s and evaluating Ii’s.

A closed form formula to evaluate the size of intersection
of mismatch neighborhoods of two k-mers at distance i is
derived in [10]. Let Nk,m(α, β) be the intersection of m-
mismatch neighborhoods of α and β i.e.

Nk,m(α, β) = Nk,m(α) ∩Nk,m(β)

As defined earlier |Nk,m(α, β)|= Im(α, β). Let Nq(α) =
{γ ∈ Σk : d(α, γ) = q} be the set of k-mers that differ with
α in exactly q indices. Note that Nq(α) ∩ Nr(α) = ∅ for all
q 6= r. Using this and defining nqr(α, β) = |Nq(α)∩Nr(β)|,

Nk,m(α, β) =
m⋃
q=0

m⋃
r=0

Nq(α) ∩Nr(β)

and

Im(α, β) =
m∑
q=0

m∑
r=0

nqr(α, β)

(5)

With these notations, let s = |Σ|, nij(α, β) can be
computed using the following closed form.

Theorem 3.3 ( [10]). Given two k-mers α and β such that
d(α, β) = d, we have that

nij(α, β) =

i+j−d
2∑
t=0

(
2d− i− j + 2t

d− (i− t)

)(
d

i+ j − 2t− d

)
×

(s− 2)i+j−2t−d

(
k − d
t

)
(s− 1)t

(6)

Corollary 3.4. Runtime of computing Id is O(m3), independent
of k and |Σ|.

This is so, because if d(α, β) = d, Id =
m∑
q=0

m∑
r=0

nqr(α, β)

and nqr(α, β) can be computed in O(m).

3.1 Computing Mi(X,Y )

Recall that given two sequences X and Y , Mi(X,Y ) is the
number of pairs of k-mers (α, β) such that d(α, β) = i,
where α ∈ X and β ∈ Y . Formally, the problem of
computing Mi(X,Y ) is as follows:

Problem 3.5. Given k, m, and two sets of k-mers SX and SY
(set of k-mers extracted from the sequencesX and Y , respectively)
with |SX |= nX and |SY |= nY . Let t = min{2m, k}, for 0 ≤
i ≤ t compute

Mi(X,Y ) = |{(α, β) ∈ SX × SY : d(α, β) = i}|

Note that the brute force approach to compute Mi(X,Y )
requiresO(nX ·nY ·k) comparisons. LetQk(j) denote the set
of all j-sets of {1, . . . , k} (subsets of indices). For θ ∈ Qk(j)
and a k-mer α, let α|θ be the j-mer obtained by selecting the
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characters at the j indices in θ. Let fθ(X,Y ) be the number
of pairs of k-mers in SX × SY as follows;

fθ(X,Y ) = |{(α, β) ∈ SX × SY : d(α|θ, β|θ) = 0}|.

We use the following important observations about fθ .

Fact 3.6. For 0 ≤ i ≤ k and θ ∈ Qk(k − i), if d(α|θ, β|θ) = 0,
then d(α, β) ≤ i.

Fact 3.7. For 0 ≤ i ≤ k and θ ∈ Qk(k − i), fθ(X,Y ) can be
computed in O(kn log n) time.

Proof. This can be done by first lexicographically sorting
the k-mers in each of SX and SY by the indices in θ. The
pairs in SX × SY that are the same at indices in θ can
then be enumerated in one linear scan over the sorted lists.
Let n = nX + nY , the running time of this computation
is O(k(n + |Σ|)) if we use counting sort (as in [28]) or
O(kn log n) for mergesort (since θ has O(k) indices.) Since
this procedure is repeated many times, we refer to this as
the SORT-ENUMERATE subroutine.

Define

Fi(X,Y ) =
∑

θ∈Qk(k−i)

fθ(X,Y ). (7)

We can compute Mi(X,Y ) from Fj(X,Y ) using the
following identity.

Lemma 3.8.

Fi(X,Y ) =
i∑

j=0

(
k − j
k − i

)
Mj(X,Y ). (8)

Proof. Let (α, β) be a pair in X × Y that contributes to
Mj(X,Y ), i.e. d(α, β) = j. Then for every θ ∈ Qk(k − i)
that has all indices within the k− j positions where α and β
agree, the pair (α, β) is counted in fθ(X,Y ). The number of
such θ’s are

(k−j
k−i
)
, hence Mj(X,Y ) is counted

(k−j
k−i
)

times
in Fi(X,Y ), yielding the identity.

Corollary 3.9. Mi(X,Y ) can readily be computed as:

Mi(X,Y ) = Fi(X,Y )−
i−1∑
j=0

(
k − j
k − i

)
Mj(X,Y )

Next, we derive expressions for Mi matrices for 1 ≤
i ≤ min{2m, k} (with values of Mi(X,Y ) for all pairs of
sequences). In this alternate form it is easier to approximate
the matrix Mi and show that the resultant approximate
kernel matrix indeed is positive semidefinite, as required
for kernel based machine learning methods.

For a sequence X and θ ∈ Qk(j), let uθ(X) be a |Σ|j
dimensional vector defined as:

uθ(X) = (uθ(X)[γ])γ∈Σj =

(∑
α∈X

I(α|θ, γ)

)
γ∈Σj

(9)

where I(α|θ, γ) = 1, if α|θ= γ.
It is easy to see that by definition fθ(X,Y ) =

〈uθ(X),uθ(X)〉. Let Ui(X) be the concatenation uθ(X) for
all θ ∈ Qk(k − i). Again by definition of Fi(X,Y ) in (7) we
have that Fi(X,Y ) = 〈Ui(X), Ui(Y )〉.

Let Fi and Mi be N ×N matrix with a row and column
corresponding to each of the N sequences, with values
Fi(X,Y ) and Mi(X,Y ) for all pairs of sequences X and
Y . We get the matrix versions of Lemma 8 and Corollary
3.9, i.e.

Fi =
i∑

j=0

(
k − j
k − i

)
Mj and Mi = Fi−

i−1∑
j=0

(
k − j
k − i

)
Mj

If Ui is a matrix with Ui(X)’s as its N columns, then by
definition, Fi = UTi Ui, thus Fi is a positive semidefinite
matrix. Using Lemma 8 one easily verify for 0 ≤ i ≤
min{2m, k}, the matrices Mi are also positive semidefinite.

Note that for space and computational efficiency we use
7 and Corollary 3.9 to compute Fi and Mi to compute By
definition, Fi(X,Y ) can be computed with

( k
k−i
)

=
(k
i

)
fθ

computations. K(X,Y |k,m) can be evaluated by (4) after
computing Mi(X,Y ) (by (8)) and Ii (by Corollary 3.4) for
0 ≤ i ≤ t. The overall complexity of this strategy thus is(

t∑
i=0

(
k

i

)
(k − i)(n log n+ n)

)
+O(n) = O(k·2k−1·(n log n)).

Next, we give our sampling based approximate method
for kernel computation. We select a random sample of index
sets in Qk−i for each i and compute an estimate F̂ xyi of
Fi(X,Y ). These F̂i’s are used to compute estimates M̂i of
Mi. In matrix form, this corresponds to a random projection
of the vectors Ui(X) on the subspace spanned by the se-
lected random index set. Thus, the resulting matrices M̂i’s
are positive semidefinite, leading to positive semidefinite
kernel matrix.

Algorithm 1 : Approximate-Kernel(SX ,SY ,k,m, ε, δ) to esti-
mate K(X,Y |k,m)

1: I ← ZEROS(t+ 1)
2: M̂ ← ZEROS(t+ 1)
3: F̂ ← ZEROS(t+ 1)
4: Populate I using Corollary 3.4
5: for i = 0 to t do
6: µF ← 0
7: for θ ∈ Bi do
8: µF ← µF + SORT-ENUMERATE(SX , SY , k, θ) .

Application of Fact 3.7
9: F̂ [i]← µF · 1

|Bi|
( k
k−i
)

10: M̂ [i]← F̂ [i]
11: for j = 0 to i− 1 do . Application of Corollary 3.9
12: M̂ [i]← M̂ [i]−

(k−j
k−i
)
· M̂ [j]

13: K ′ ← SUMPRODUCT(M̂, I) . Applying Equation (4)
14: return K ′

We randomly sample a collection Bi of index-sets from
Q̧k−i, that Algorithm 1 uses to compute estimate F̂ xyi for
a pair of sequences X,Y . Using (7) to estimate F̂ xyi for
the randomly chosen θ ∈ Bi. The estimated F̂ xyi ’s are
used to compute M̂xy

i (estimates of Mi(X,Y )) using Corol-
lary 3.9. These M̂xy

i ’s together with the pre-computed
exact values of Ii’s are used to compute our estimate,
K ′(X,Y |k,m, σ, ε, δ) for the kernel value using (4). The
sample sizes (cardinalities of Bi’s) are chosen such that
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variance in the estimates are bounded above by σ2 = ε2δ,
where ε and δ are user set parameters.

First, we give an analytical bound on the runtime of
Algorithm 1 then we provide guarantees on its performance.

Theorem 3.10. Runtime of Algorithm 1 is O(k2n log n).

Proof. Let B = maxi<t{|Bi|}. Observe that throughout the
execution of the algorithm there are at most tB computa-
tions of fθ , which by Fact 3.7 needs O(kn log n) time. Since
B is an absolute constant and t ≤ k, we get that the total
runtime of the algorithm is O(k2n log n).

Let K ′ = K ′(X,Y |k,m, ε, δ) be our estimate (output of
Algorithm 1) for K = K(X,Y |k,m).

Theorem 3.11. K ′ is an unbiased estimator of the true kernel
value, i.e. E(K ′) = K .

Proof. For this, we need the following result, whose proof is
deferred.

Lemma 3.12. E(M̂xy
i ) = Mi(X,Y ).

By Line 17 of Algorithm 1, E(K ′) = E(
∑t
i=0 IiM̂

xy
i ).

Using the fact that Ii’s are constants and Lemma 3.12 we
get that

E(K ′) =
t∑
i=0

IiE(M̂xy
i ) =

min{2m,k}∑
i=0

IiMi(X,Y ) = K.

Theorem 3.13. For any 0 < ε, δ < 1, Algorithm 1 is
an (εImax, δ)−additive approximation algorithm, i.e. Pr(|K −
K ′|≥ εImax) < δ, where Imax = maxi{Ii}.

Note that though Imax could be large, but it is only a
fraction of one of the terms in summation for the kernel
value K(X,Y |k,m).

Proof. Let F̂ xyi be our estimate for Fi (X,Y ). We use the
following bound on the variance of K ′ that is proved later.

Lemma 3.14. V ar(K ′) ≤ δ(ε · Imax)2.

By Lemma 3.12 we have E(K ′) = K , hence by Lemma
3.14, Pr[|K ′ − K|] ≥ εImax is equivalent to Pr[|K ′ −
E(K ′)|] ≥ 1√

δ

√
V ar(K ′). By Chebychev’s inequality, this

latter probability is at most δ. Therefore, Algorithm 1 is an
(εImax, δ)−additive approximation algorithm.

Proof. (Proof of Lemma 3.12) We prove it by induction on i.
The base case (i = 0) is true as we compute M ′[0] exactly,
i.e. M̂ [0] = M0(X,Y ). Suppose E(M̂xy

j ) = Mi(X,Y ) for
0 ≤ j ≤ i− 1. After execution of Line 10 we get

F̂ [i] =
1

|Bi|
µF

(
k

k − i

)
=

1

|Bi|

|Bi|∑
r=1

fθr (X,Y )

(
k

k − i

)
,

where θr is the random (k − i) index set. Since θr is chosen
uniformly at random, we get that

E(F̂ [i]) = E(fθr (X,Y ))

(
k

k − i

)
=
Fi(X,Y )( k

k−i
) (

k

k − i

)
(10)

After the loop on Line 15 is executed we get that

E(M̂ [i]) = Fi(X,Y )−
i−1∑
j=0

(k−j
k−i
)
E(M̂xy

j ). Using E(M̂xy
j ) =

Mj(X,Y ) (inductive hypothesis) in (8) we get that
E(M̂xy

i ) = Mi(X,Y ).

Proof. (Proof of Lemma 3.14) After execution of the inner

loop in Algorithm 1, we have F̂ xyi =
i∑

j=0

(k−j
k−i
)
M̂xy
j . We use

the following fact that follows from basic calculations.

Fact 3.15. SupposeX0, . . . , Xt are random variables and let S =∑t
i=0 aiXi, where a0, . . . , at are constants. Then

V ar(S) =
t∑
i=0

a2
iV ar(Xi) + 2

t∑
i=0

t∑
j=i+1

aiajCov(Xi, Xj).

Using fact 3.15 and definitions of Imax and σ we get that

V ar(K ′) =
t∑
i=0

Ii2V ar(M̂xy
i ) + 2

t∑
i<j

IiIjCov(M̂xy
i , M̂xy

j )

≤ I2
max

[ t∑
i=0

V ar(M̂xy
i ) + 2

t∑
i<j

Cov(M̂xy
i , M̂xy

j )
]

≤ I2
maxV ar(F̂

xy
t ) ≤ I2

maxσ
2 = δ(ε · Imax)2 (11)

The last inequality follows from the following relation
derived from the definition of F ′i and Fact 3.15.

V ar(F̂ xyt ) =
t∑
i=0

(
k − i
k − t

)2

V ar(M̂xy
i )

+2
t∑
i<j

(
k − i
k − t

)(
k − j
k − t

)
Cov(M̂xy

i , M̂xy
j )

(12)

Remark 3.16. For reference, we call this kernel based method
as Kernel Approximate (or Kernel Approx.). We use k = 3 and
m = 0 for this method, which is decided using standard validation
set approach [29].

4 ORDERED MINIMIZER WITH KERNEL (OMK)
The original study of approximate kernel in [10] (and the

one that uses approximate kernel in our conference version
of the paper [3]) uses the k-mers-based method to compute
the approximate values for the kernel matrix. One problem
with the k-mers is that there could be a lot of similar k-
mers in a sequence that may not add any value to boost the
predictive performance of the underlying machine learning
(ML) algorithms. These redundant k-mers, however, could
add computational overhead to the underlying processing.
One solution to deal with this problem is to use Minimiz-
ers [30] (also calledm-mers), wherem < k. The main idea of
the minimizer (m-mers) is the following: Given a k-mer, an
m-mer ∈ k-mer is a sub-sequence, which is lexicographically
smallest both in forward and reverse order of the k-mer
(as given in Figure 2). Since m < k, we ignore some of
the amino acids (which were in k-mers but not in m-mers),
which helps us to reduce computational overhead (as input
size is reduced). The pseudocode to compute minimizers
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given a sequence is given in Algorithm 2. Although the
notion of minimizer is previously used in the domain of
metagenomics [31], it has not been used (to the best of our
knowledge) for COVID-19 sequence classification.

Fig. 2: Example of k-mers and Minimizers in a spike se-
quence “MDPEGRKMLSVBSLRDSY”.

Algorithm 2 Minimizer Computation

1: Input: Sequence s and integer k and m
2: Output: Set of Minimizers
3: minimizers← ∅
4: queue← [] . maintain queue of all m-mers
5: idx← 0 . index of the current minimizer
6: for i = 1 to |s|−k + 1 do
7: kmer← s[i : i+ k]
8: if idx > 1 then
9: queue.dequeue

10: mmer← s[i+ k −m : i+ k] . new m-mer
11: idx← idx −1 . shift index of current minimizer
12: mmer← min(mmer, reverse(mmer)) .

lexicographically smallest forw./rever.
13: queue.enqueue(mmer)
14: if mmer < queue[idx] then
15: idx← k −m .

update minimizer with new m-mer
16: else
17: queue = [] . reset the queue
18: idx = 0
19: for j = 1 to k −m+ 1 do
20: mmer← kmer[j : j +m] .

compute each m-mer
21: mmer← min(mmer, reverse(mmer))
22: queue.enqueue(mmer)
23: if mmer < queue[idx] then
24: idx← j . index of current minimizer
25: minimizers← minimizers ∪ queue[idx] .

add current minimizer
26: return(minimizers)

To use the power of minimizer with the approximate
kernel approach [10], we perform the following operations:
Given a sequence, we first compute a set of minimizers
from the k-mers (where m = 3 and k = 9), see Figure 2
for an example. We then concat those minimizers to make
a new sequence (for reference, we call this new sequence
as sminimizer). That sequence is used as an input for the

approximate kernel algorithm to compute the kernel matrix.
Since the approximate kernel method operates by comput-
ing k-mers, the order of the amino acids in sminimizer is
preserved by applying k-mers approach. This is the reason
we call this method Ordered Minimizer with Kernel (OMK).
After computing the kernel matrix, we use kernel PCA [32]
to compute the feature vector representation (we selected
50 principal components for our experiments) for the se-
quences and apply different machine learning tasks on the
vectors, such as classification and clustering.

5 INFORMATION GAIN WITH KERNEL (IGK)
One way to compute the importance of amino acids in a
sequence is to use Information Gain (IG) [3]. The IG of an
amino acid position in terms of a class (variant) is defined
as follows:

IG(Class, position) = H(Class)−H(Class | position)
(13)

where
H(C) =

∑
i∈C
−pi log pi (14)

is the entropy of category C , and pi is the probability
of element i of category C . Intuitively, the information
gain of a given amino acid position tells us how much
information this position provides in deciding the class
(variant). Given a sequence, we first compute IG values
for amino acids. We then select the amino acids with top
IG values (top 243 amino acids, which are selected using
standard validation set approach) and use those amino
acids only as input to the approximate kernel method. The
approximate kernel approach computes the distance score
for each pair of sequences based on the amino acids with
top IG value only, and we then apply kernel PCA [32] for
non-kernel classifiers (we selected 50 principal components
for our experiments using standard validation set approach)
to compute the vector representation for the sequence and
apply classification/clustering tasks. For reference, we call
this method “Information Gain with Kernel (IGK)”.

Remark 5.1. Note that using less than 243 amino acids gave
worst classification results while having more that 243 amino
acids did not had any significant impact on the results.

6 ORDERED MINIMIZER WITH KERNEL AND IG
(OMK + IG)
In this setting, we first compute the set of minimizers from
the k-mers (where m = 3 and k = 9) for a given sequence
as performed in Section 4 (see Figure 2 for an example).
After getting the minimizers, we concat them to make a
single sequence (sminimizer). The information gain logic is
then applied on sminimizer to get the top amino acid (we
selected the top 2184 amino acids, in this case, using the
standard validation set approach). Those top amino acids
as given as input to the approximate kernel algorithm for
the computation of kernel matrix. Then kernel PCA [32] is
applied for non-kernel classifiers (we selected 50 principal
components for our experiments) to get the vector represen-
tation followed by classification/clustering methods.
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Remark 6.1. Note that the idea of using IG in this paper is
to reduce the dimensionality of sequence-based data, so that the
kernel computation and hence classification/clustering tasks can
be performed efficiently, while retaining good accuracies. Since
IG give us the importance of each amino acid positions within
sequences, we can take advantage of those importance scores to
extract the relevant amino acid positions and discard the rest. In
this way, since only the important features (amino acids to be
precise) are considered, we will get better embeddings, and hence
better classification/clustering results (in less computational time)
because the noise (if any) from the sequences is ignored.

In summary, given the original spike sequence data, we
have 1274 amino acids in each sequences. For IGK, we select
top 243 amino acids. For OMK, given a spike sequence, we
first compute k-mers (where k = 9) and then from each 9-
mer, we compute m-mer (where m− 3). Since number of k-
mers in any sequence are N−k+1 (where N is the length of
sequence), we will have 1274− 9 + 1 = 1266 k-mers. Now,
since we compute an m-mer of length 3 from each k-mer,
we have 1266 m-mers in total. If we concat those m-mers,
we will get 1266 ∗ 3 = 3798 amino acids, which we called
as ordered minimizer and use it as input to kernel method
(we call this OMK). In the next step, we compute top 2184
amino acids using IG from 3798 amino acids and we call
this method as OMK + IG.

7 EXPERIMENTAL SETUP

We use 70-30% training and testing data split for experi-
mentation. To tune the hyperparameters, we apply 5 fold
cross validation on the training data and then compute
results on 30% unseen (held out) testing set. Experiments
are conducted 5 times with different random train-test data,
and average ± standard deviation results are reported. All
experiments are performed in python language on a Core i5
system with Windows 10 OS and 32 GB RAM.

7.1 Dataset Statistics

We randomly sampled spike sequences from the largest
known database of human SARS-CoV-2, GISAID 1. The
sample size is 7000 (each sequence is length 1274). Since
kernel-based algorithms require the kernel matrix saved in
memory, in order to be able to perform experiments on a
PC and avoid memory overflow, we use 7000 sequences.
Moreover, the computational overhead of the baseline meth-
ods at a larger scale hinders performing any meaningful
comparison. Therefore, we chose 7000 sequences. Unlike the
conference version, where only 5 variants were considered
in experiments, here we consider all 22 variants. We used
uniform random sampling, hence the proportions of vari-
ants in the sample are close to those in the whole dataset
on the date of sampling. The proportion of variants on both
datasets is given in Table 1. We repeated the experiments
on two independent samples, referred to as GISAID-1 and
GISAID-2.

1https://www.gisaid.org/

7.2 Data Visualization

We use t-distributed stochastic neighbor embedding (t-SNE)
[33] to evaluate the (hidden) patterns in the data. The t-
SNE method maps input data to 2D real vectors that can be
visualized using scatter plots. The idea behind computing
t-SNE plots is to see if the overall distribution of data is
disturbed or remains the same when we use different em-
bedding methods. The t-SNE plots for different embedding
methods are shown in Figure 3. For the feature engineering-
based methods (i.e. OHE, Spike2Vec, and PWM2Vec), we
can see overlapping among different variants. However,
for the kernel-based methods (for which embeddings were
computed using kernel PCA), we can see a smaller (but com-
paratively pure) grouping of variants with less overlapping
as compared to the feature engineering-based methods.

Lineages Region Labels No. Mut.
S/Gen.

No. of sequences

GISAID-1 GISAID-2

B.1.1.7 UK [34] Alpha 8/17 3369 3397
B.1.617.2 India [35] Delta 8/17 875 878
AY.4 India [36] Delta - 593 516
B.1.2 - - - 333 350
B.1 292 276
B.1.177 Spain [37] - - 243 281
P.1 Brazil [38] Gamma 10/21 194 201
B.1.1 - - 163 166
B.1.429 California Epsilon 3/5 107 142
B.1.526 New York [39] Iota 6/16 104 82
AY.12 India [36] Delta - 101 82
B.1.160 - - - 92 88
B.1.351 South Africa [34] Beta 9/21 81 62
B.1.427 California [40] Epsilon 3/5 65 62
B.1.1.214 - - - 64 64
B.1.1.519 - - - 56 88
D.2 - - - 55 45
B.1.221 - - - 52 41
B.1.177.21 - - - 47 56
B.1.258 - - - 46 42
B.1.243 - - - 36 40
R.1 - - - 32 41

Total - - - 7000 7000

TABLE 1: Dataset statistics for 22 variants. The character ‘-’
means that information not available.

7.3 Baseline Models

In this section, we introduce the baseline (one-hot encoding)
and the state-of-the-art (SOTA) approaches (Spike2Vec and
PWM2Vec) that we used for comparison with our models.

7.3.1 One-Hot Embedding (OHE) [6]

A fixed-length numerical feature vector, OHE [3], [6] gener-
ates 0-1 vector on the character’s position in the sequence
given Σ. The 0-1 vectors for all characters are concatenated
to make a single vector for a given sequence. The length of
the feature vector, in this case, is 30576.

7.3.2 Spike2Vec [4]

Spike2Vec is recently proposed in [4] for spike sequence
classification. Given a sequence, Spike2Vec computes N k-
mers, where N = L − k + 1 (L is the length of the spike
sequence and k = 3 as given in [4]). After generating the
k-mers for a spike sequence, the count of each k-mer is used
to get the frequency vector. The length of Spike2Vec-based
embedding for each spike sequence is |Σ|k= 13824.

https://www.gisaid.org/
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(a) OHE (b) Spike2Vec (c) PWM2Vec

(d) Kernel Approximate (e) OMK (f) IGK

(g) OMK + IG

Fig. 3: t-SNE plots for the SARS-CoV-2 dataset for different feature embeddings.

7.3.3 PWM2Vec [5]
A method combining the power of k-mers and position
weight matrix [41], PWM2Vec is proposed in [5]. PWM2Vec
assigns different weight to each k-mer (where k = 9) in the
feature vector depending on the values of the characters in
the position weight matrix. The length of PWM2Vec-based
embedding for each spike sequence is 1265.

7.4 Evaluation Metrics for Classification
Various ML algorithms have been utilized for the classifi-
cation task. K-PCA output, which is 50 components fed to
different classifiers for prediction purposes. We use Support
Vector Machine (SVM), Naive Bayes (NB), Multi-Layer Per-
ceptron (MLP), K-Nearest Neighbour (KNN) (with K = 5),
Random Forest (RF), Logistic Regression (LR), and Decision
Tree (DT) classifiers. The evaluation metrics that we are
using are average accuracy, precision, recall, weighted and
macro F1, and ROC area under the curve (AUC).

7.5 Evaluation Metrics for Clustering
To perform the clustering on the data, we use the simple k-
means algorithm. To evaluate the performance of k-means,

we use the following internal evaluation metrics:
Silhouette Coefficient [42]: Given a vector v, it measures

the similarity of v to its own cluster (cohesion) compared to
the other clusters (separation). Its value range from −1 to 1
where upper bound 1 indicates best possible clustering and
lower bound −1 shows worst possible clustering.

Calinski-Harabasz Score [43]: is the ratio between the
inter-cluster dispersion and the between-cluster dispersion.
The higher the value of this score, the higher the clustering
performance.

Davies-Bouldin Score [44]: It validates the clustering
schemes by measuring the similarity between clusters. The
ratio of distances within-cluster to between clusters is re-
ferred to as similarity. Unlike the previous metrics, a lower
Davies-Bouldin Score indicates a better clustering perfor-
mance, and its lower bound is 0.

7.5.1 Elbow Method for k-means

To get the optimal number of clusters, we use the Elbow
method [7], [45]. The main idea of the elbow method is to
compute clusterings and evaluate the trade-off between two
metrics, namely runtime and the sum of squared error (dis-
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Fig. 4: Elbow method to find the optimal number of clusters.

tortion score). The clustering having the optimal value for
both metrics is selected as the ideal number of clusters. The
optimal number of clusters in this case is 4 (see Figure 4).

8 RESULTS AND DISCUSSION

In this section, we report classification and clustering results
using our proposed model, baseline, and SOTA methods.

8.1 Classification Results

The classification results (average ± standard deviation val-
ues of 5 runs) for GISAID-1 dataset are given in Table 2. We
can observe that OMK+IG outperforms all other methods,
including the baseline and SOTA, in terms of all evaluation
metrics. Similar behavior is observed for GISAID-2 dataset
(see Table 3). From these observations, we can conclude
that using the domain knowledge from IG along with the
power of minimizers, we can improve the classification
performance of the approximate kernel.

8.2 Clustering Results

To evaluate the performance of different methods in terms of
clustering, we report the quality of clustering using different
evaluation metrics. The clustering results for GISAID-1 and
GISAID-2 datasets are given in Table 4 and Table 5, respec-
tively. For the silhouette coefficient, OMK method performs
better than the other methods for both datasets. In terms
of Calinski-Harabasz score, IGK performs better than the
baselines for both datasets. However, the OHE outperforms
all methods in terms of Davies-Bouldin score. However, one
problem with OHE method is its runtime complexity due
to high dimensionality of the vectors. In terms of runtime,
OMK + IG performs better than other methods in case
of GISAID-1 dataset, while OMK outperforms the other
methods in case of GISAID-2 dataset. From the reported
clustering results, we can conclude that there is no single
method that outperforms all other approaches for all eval-
uation metrics (as can be seen from classification results).
However, kernel-based methods appear to be performing
better overall for both datasets (similar behavior is observed
from classification results).

8.3 Kernel Computation Runtime
We report the kernel computation runtime for Approximate
kernel, IGK, OMK, and OMK + IG in Table 6 (for GISAID-1
dataset). We can observe that since IGK contains the least
number of amino acids in each sequence, the kernel com-
putation time for this method is the minimum. However,
OMK method takes the maximum (2163 sec.) to compute the
kernel matrix. Since both GISAID-1 and GISAID-2 datasets
contain the same number of sequences, the kernel computa-
tion time for both datasets will be similar.

9 CONCLUSION

The COVID-19 outbreak induced by SARS-CoV-2 captured
the scientific community’s attention across the world. The
current research on SARS-CoV-2 focused on understand-
ing the transmission pattern of the virus, identifying new
variants, improving public health, and developing start-
of-art vaccine and treatment options. Computational biol-
ogy played a significant role in this scientific journey of
comprehensive understanding of the COVID-19 pandemic
and management. Especially in the processing of the high-
throughput sequencing data, there is an unmet need to
classify the genomic data accurately.

Here, we propose three different settings to efficiently
perform different machine learning tasks such as classifica-
tion and clustering on SARS-CoV-2 variants using spike se-
quences. Results show that the minimizer plus information
gain-based method outperforms the existing baseline and
state-of-the-art methods in terms of predictive performance.
In the future, we will work towards detecting new (un-
known) variants (such as Omicron) based on whole genome
sequences. We will collect more data in the future to test the
scalability of the proposed model. Another exciting future
work is considering other attributes like countries, cities,
and dates to design richer feature vector representations for
spike sequences.
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Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time (Sec.)

OHE

SVM 0.83 ± 0.0019 0.83 ± 0.0053 0.83 ± 0.0019 0.82 ± 0.0030 0.67 ± 0.0140 0.82 ± 0.0047 301.53 ± 0.2618
NB 0.64 ± 0.0085 0.75 ± 0.0084 0.64 ± 0.0096 0.65 ± 0.0089 0.48 ± 0.0155 0.75 ± 0.0102 18.9 ± 0.2816

MLP 0.79 ± 0.0045 0.81 ± 0.0604 0.79 ± 0.0045 0.78 ± 0.0060 0.61 ± 0.0202 0.79 ± 0.0079 164.05 ± 0.0164
KNN 0.8 ± 0.0116 0.81 ± 0.0074 0.8 ± 0.0116 0.79 ± 0.0099 0.6 ± 0.0287 0.79 ± 0.0158 498.46 ± 1.4808

RF 0.82 ± 0.0066 0.82 ± 0.0096 0.82 ± 0.0066 0.8 ± 0.0077 0.64 ± 0.0142 0.8 ± 0.0053 29.52 ± 0.0147
LR 0.83 ± 0.0048 0.83 ± 0.0050 0.83 ± 0.0048 0.82 ± 0.0065 0.67 ± 0.0344 0.81 ± 0.0173 70.07 ± 0.0442
DT 0.83 ± 0.0100 0.83 ± 0.0112 0.83 ± 0.0100 0.82 ± 0.0103 0.68 ± 0.0242 0.82 ± 0.0144 6.25 ± 0.0120

Spike2Vec

SVM 0.85 ± 0.0017 0.84 ± 0.0047 0.85 ± 0.0017 0.83 ± 0.0027 0.68 ± 0.0126 0.83 ± 0.0043 230.57 ± 0.2356
NB 0.35 ± 0.0077 0.73 ± 0.0076 0.35 ± 0.0087 0.45 ± 0.0080 0.45 ± 0.0140 0.72 ± 0.0092 12.54 ± 0.2534

MLP 0.79 ± 0.0040 0.81 ± 0.0544 0.79 ± 0.0040 0.8 ± 0.0054 0.58 ± 0.0182 0.79 ± 0.0071 65.79 ± 0.0147
KNN 0.82 ± 0.0104 0.82 ± 0.0067 0.82 ± 0.0104 0.81 ± 0.0089 0.6 ± 0.0258 0.78 ± 0.0142 115.85 ± 1.3327

RF 0.85 ± 0.0059 0.84 ± 0.0086 0.85 ± 0.0059 0.83 ± 0.0069 0.66 ± 0.0128 0.82 ± 0.0047 15.62 ± 0.0133
LR 0.85 ± 0.0044 0.85 ± 0.0045 0.85 ± 0.0044 0.84 ± 0.0058 0.68 ± 0.0310 0.83 ± 0.0156 50.74 ± 0.0398
DT 0.85 ± 0.0090 0.85 ± 0.0101 0.85 ± 0.0090 0.84 ± 0.0092 0.67 ± 0.0218 0.82 ± 0.0130 3.19 ± 0.0108

PWM2Vec

SVM 0.82 ± 0.0015 0.83 ± 0.0042 0.82 ± 0.0015 0.81 ± 0.0024 0.63 ± 0.0112 0.81 ± 0.0038 173.89 ± 0.2095
NB 0.51 ± 0.0068 0.61 ± 0.0068 0.51 ± 0.0077 0.53 ± 0.0071 0.17 ± 0.0124 0.62 ± 0.0082 1.17 ± 0.2253

MLP 0.8 ± 0.0036 0.78 ± 0.0483 0.8 ± 0.0036 0.78 ± 0.0048 0.53 ± 0.0162 0.77 ± 0.0063 24.4 ± 0.0131
KNN 0.77 ± 0.0093 0.79 ± 0.0059 0.77 ± 0.0093 0.76 ± 0.0079 0.55 ± 0.0230 0.76 ± 0.0127 10.55 ± 1.1846

RF 0.83 ± 0.0053 0.83 ± 0.0077 0.83 ± 0.0053 0.82 ± 0.0061 0.63 ± 0.0113 0.8 ± 0.0042 13.54 ± 0.0118
LR 0.82 ± 0.0039 0.81 ± 0.0040 0.82 ± 0.0039 0.81 ± 0.0052 0.62 ± 0.0276 0.8 ± 0.0139 40.81 ± 0.0353
DT 0.8 ± 0.0080 0.81 ± 0.0090 0.8 ± 0.0080 0.8 ± 0.0082 0.59 ± 0.0193 0.79 ± 0.0116 2.63 ± 0.0096

Kernel
Approx.

SVM 0.84 ± 0.0016 0.83 ± 0.0045 0.84 ± 0.0016 0.82 ± 0.0026 0.63 ± 0.0120 0.81 ± 0.0040 7.35 ± 0.2239
NB 0.75 ± 0.0073 0.82 ± 0.0072 0.75 ± 0.0082 0.77 ± 0.0076 0.6 ± 0.0133 0.82 ± 0.0088 0.17 ± 0.2408

MLP 0.83 ± 0.0038 0.82 ± 0.0517 0.83 ± 0.0038 0.82 ± 0.0052 0.62 ± 0.0173 0.81 ± 0.0068 12.65 ± 0.0140
KNN 0.82 ± 0.0099 0.82 ± 0.0063 0.82 ± 0.0099 0.82 ± 0.0084 0.62 ± 0.0245 0.79 ± 0.0135 0.32 ± 1.2661

RF 0.84 ± 0.0056 0.84 ± 0.0082 0.84 ± 0.0056 0.83 ± 0.0066 0.66 ± 0.0121 0.82 ± 0.0045 1.46 ± 0.0126
LR 0.84 ± 0.0041 0.84 ± 0.0042 0.84 ± 0.0041 0.82 ± 0.0055 0.62 ± 0.0294 0.81 ± 0.0148 1.86 ± 0.0378
DT 0.82 ± 0.0086 0.82 ± 0.0096 0.82 ± 0.0086 0.82 ± 0.0088 0.63 ± 0.0207 0.82 ± 0.0124 0.24 ± 0.0102

OMK

SVM 0.85 ± 0.0015 0.83 ± 0.0041 0.85 ± 0.0015 0.83 ± 0.0023 0.62 ± 0.0110 0.81 ± 0.0037 33.9 ± 0.2053
NB 0.74 ± 0.0067 0.8 ± 0.0066 0.74 ± 0.0075 0.76 ± 0.0070 0.59 ± 0.0122 0.8 ± 0.0080 0.13 ± 0.2208

MLP 0.83 ± 0.0035 0.82 ± 0.0474 0.83 ± 0.0035 0.82 ± 0.0047 0.61 ± 0.0158 0.8 ± 0.0062 21.77 ± 0.0128
KNN 0.81 ± 0.0091 0.81 ± 0.0058 0.81 ± 0.0091 0.8 ± 0.0077 0.63 ± 0.0225 0.8 ± 0.0124 0.31 ± 1.1609

RF 0.862 ± 0.0052 0.85 ± 0.0075 0.862 ± 0.0052 0.84 ± 0.0060 0.67 ± 0.0111 0.83 ± 0.0041 1.54 ± 0.0116
LR 0.85 ± 0.0038 0.84 ± 0.0039 0.85 ± 0.0038 0.83 ± 0.0051 0.63 ± 0.0270 0.81 ± 0.0136 2.99 ± 0.0346
DT 0.83 ± 0.0078 0.83 ± 0.0088 0.83 ± 0.0078 0.82 ± 0.0080 0.63 ± 0.0190 0.81 ± 0.0113 0.23 ± 0.0094

IGK

SVM 0.85 ± 0.0018 0.84 ± 0.0051 0.85 ± 0.0018 0.83 ± 0.0029 0.6 ± 0.0136 0.8 ± 0.0046 3.23 ± 0.2540
NB 0.74 ± 0.0083 0.82 ± 0.0082 0.74 ± 0.0093 0.76 ± 0.0087 0.58 ± 0.0151 0.8 ± 0.0099 0.1 ± 0.2731

MLP 0.83 ± 0.0043 0.82 ± 0.0586 0.83 ± 0.0043 0.81 ± 0.0059 0.59 ± 0.0196 0.79 ± 0.0077 9.96 ± 0.0159
KNN 0.82 ± 0.0113 0.82 ± 0.0072 0.82 ± 0.0113 0.81 ± 0.0096 0.59 ± 0.0278 0.79 ± 0.0153 0.34 ± 1.4364

RF 0.84 ± 0.0064 0.83 ± 0.0093 0.84 ± 0.0064 0.82 ± 0.0074 0.59 ± 0.0138 0.8 ± 0.0051 1.36 ± 0.0143
LR 0.85 ± 0.0047 0.84 ± 0.0048 0.85 ± 0.0047 0.83 ± 0.0063 0.61 ± 0.0334 0.8 ± 0.0168 1.7 ± 0.0428
DT 0.83 ± 0.0097 0.82 ± 0.0109 0.83 ± 0.0097 0.81 ± 0.0100 0.58 ± 0.0234 0.79 ± 0.0140 0.21 ± 0.0116
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Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time (Sec.)

OHE

SVM 0.84 ± 0.0017 0.84 ± 0.0046 0.84 ± 0.0018 0.83 ± 0.0028 0.6 ± 0.0138 0.8 ± 0.0045 285.83 ± 0.2511
NB 0.65 ± 0.0077 0.79 ± 0.0074 0.65 ± 0.0093 0.66 ± 0.0083 0.47 ± 0.0153 0.76 ± 0.0098 18.89 ± 0.2700

MLP 0.83 ± 0.0040 0.81 ± 0.0526 0.83 ± 0.0043 0.81 ± 0.0056 0.57 ± 0.0199 0.79 ± 0.0076 107.92 ± 0.1500
KNN 0.82 ± 0.0104 0.82 ± 0.0064 0.82 ± 0.0113 0.81 ± 0.0092 0.62 ± 0.0283 0.79 ± 0.0151 501.72 ± 2.3541

RF 0.85 ± 0.0059 0.85 ± 0.0083 0.85 ± 0.0064 0.83 ± 0.0071 0.63 ± 0.0140 0.81 ± 0.0050 29.84 ± 0.0985
LR 0.85 ± 0.0044 0.82 ± 0.0043 0.85 ± 0.0047 0.82 ± 0.0060 0.57 ± 0.0340 0.79 ± 0.0166 65.87 ± 0.1074
DT 0.83 ± 0.0090 0.82 ± 0.0098 0.83 ± 0.0097 0.82 ± 0.0095 0.6 ± 0.0239 0.8 ± 0.0138 6.49 ± 0.0824

Spike2Vec

SVM 0.86 ± 0.0016 0.86 ± 0.0039 0.86 ± 0.0018 0.85 ± 0.0025 0.69 ± 0.0120 0.84 ± 0.0040 136.92 ± 0.2159
NB 0.67 ± 0.0072 0.71 ± 0.0062 0.67 ± 0.0089 0.66 ± 0.0076 0.48 ± 0.0133 0.75 ± 0.0087 10.07 ± 0.2322

MLP 0.82 ± 0.0038 0.83 ± 0.0447 0.82 ± 0.0041 0.81 ± 0.0051 0.61 ± 0.0174 0.8 ± 0.0067 69.85 ± 0.1870
KNN 0.81 ± 0.0098 0.81 ± 0.0055 0.81 ± 0.0107 0.8 ± 0.0084 0.61 ± 0.0246 0.8 ± 0.0135 117.44 ± 2.0245

RF 0.86 ± 0.0056 0.85 ± 0.0071 0.86 ± 0.0061 0.84 ± 0.0065 0.68 ± 0.0122 0.84 ± 0.0045 13.02 ± 0.0847
LR 0.87 ± 0.0041 0.87 ± 0.0037 0.87 ± 0.0045 0.85 ± 0.0055 0.69 ± 0.0296 0.84 ± 0.0148 48.76 ± 0.0924
DT 0.86 ± 0.0085 0.85 ± 0.0083 0.86 ± 0.0092 0.85 ± 0.0087 0.68 ± 0.0208 0.83 ± 0.0123 2.45 ± 0.0709

PWM2Vec

SVM 0.82 ± 0.0019 0.81 ± 0.0055 0.82 ± 0.0028 0.81 ± 0.0036 0.58 ± 0.0166 0.79 ± 0.0063 17.13 ± 0.4269
NB 0.51 ± 0.0084 0.6 ± 0.0088 0.51 ± 0.0140 0.52 ± 0.0108 0.13 ± 0.0184 0.62 ± 0.0137 0.96 ± 0.4591

MLP 0.8 ± 0.0044 0.78 ± 0.0631 0.8 ± 0.0065 0.77 ± 0.0073 0.47 ± 0.0239 0.73 ± 0.0106 19.02 ± 0.1650
KNN 0.81 ± 0.0115 0.82 ± 0.0077 0.81 ± 0.0169 0.8 ± 0.0119 0.6 ± 0.0340 0.79 ± 0.0212 7.78 ± 4.0020

RF 0.85 ± 0.0065 0.84 ± 0.0100 0.85 ± 0.0096 0.84 ± 0.0093 0.62 ± 0.0168 0.81 ± 0.0071 4.8 ± 0.1675
LR 0.82 ± 0.0048 0.81 ± 0.0052 0.82 ± 0.0070 0.81 ± 0.0078 0.57 ± 0.0408 0.79 ± 0.0232 33.44 ± 0.1826
DT 0.81 ± 0.0099 0.82 ± 0.0117 0.81 ± 0.0146 0.81 ± 0.0124 0.57 ± 0.0286 0.78 ± 0.0194 2.47 ± 0.1401

Kernel
Approx.

SVM 0.85 ± 0.0023 0.85 ± 0.0043 0.85 ± 0.0021 0.84 ± 0.0030 0.63 ± 0.0132 0.81 ± 0.0040 5.06 ± 0.2591
NB 0.75 ± 0.0101 0.81 ± 0.0069 0.75 ± 0.0106 0.76 ± 0.0091 0.58 ± 0.0147 0.8 ± 0.0086 0.11 ± 0.2787

MLP 0.85 ± 0.0053 0.84 ± 0.0491 0.85 ± 0.0049 0.83 ± 0.0061 0.66 ± 0.0191 0.83 ± 0.0067 15.92 ± 0.1644
KNN 0.82 ± 0.0137 0.82 ± 0.0060 0.82 ± 0.0128 0.82 ± 0.0100 0.62 ± 0.0271 0.79 ± 0.0133 0.29 ± 2.4294

RF 0.85 ± 0.0078 0.85 ± 0.0078 0.85 ± 0.0073 0.84 ± 0.0078 0.66 ± 0.0134 0.82 ± 0.0044 1.49 ± 0.1017
LR 0.85 ± 0.0057 0.84 ± 0.0040 0.85 ± 0.0053 0.83 ± 0.0066 0.6 ± 0.0325 0.81 ± 0.0146 1.76 ± 0.1108
DT 0.83 ± 0.0119 0.83 ± 0.0091 0.83 ± 0.0111 0.82 ± 0.0104 0.63 ± 0.0228 0.81 ± 0.0122 0.25 ± 0.0850

OMK

SVM 0.86 ± 0.0018 0.86 ± 0.0052 0.86 ± 0.0026 0.85 ± 0.0034 0.67 ± 0.0156 0.83 ± 0.0060 46.7 ± 0.4012
NB 0.71 ± 0.0079 0.79 ± 0.0083 0.71 ± 0.0132 0.73 ± 0.0102 0.49 ± 0.0173 0.75 ± 0.0129 0.12 ± 0.4315

MLP 0.85 ± 0.0042 0.85 ± 0.0593 0.85 ± 0.0061 0.83 ± 0.0069 0.64 ± 0.0225 0.82 ± 0.0100 30.54 ± 0.1191
KNN 0.83 ± 0.0108 0.85 ± 0.0073 0.83 ± 0.0159 0.83 ± 0.0112 0.64 ± 0.0319 0.82 ± 0.0199 0.27 ± 3.7619

RF 0.86 ± 0.0061 0.86 ± 0.0094 0.86 ± 0.0090 0.84 ± 0.0087 0.65 ± 0.0158 0.82 ± 0.0066 1.43 ± 0.1574
LR 0.87 ± 0.0045 0.87 ± 0.0049 0.87 ± 0.0066 0.86 ± 0.0073 0.69 ± 0.0383 0.84 ± 0.0218 3.1 ± 0.1716
DT 0.86 ± 0.0093 0.86 ± 0.0110 0.86 ± 0.0137 0.85 ± 0.0117 0.68 ± 0.0269 0.83 ± 0.0182 0.19 ± 0.1317

IGK

SVM 0.86 ± 0.0016 0.86 ± 0.0042 0.86 ± 0.0017 0.84 ± 0.0026 0.62 ± 0.0127 0.81 ± 0.0042 4.94 ± 0.2310
NB 0.74 ± 0.0070 0.82 ± 0.0068 0.74 ± 0.0086 0.76 ± 0.0076 0.56 ± 0.0141 0.81 ± 0.0090 0.08 ± 0.2484

MLP 0.84 ± 0.0037 0.84 ± 0.0484 0.84 ± 0.0040 0.83 ± 0.0052 0.59 ± 0.0184 0.8 ± 0.0070 10.62 ± 0.1140
KNN 0.83 ± 0.0096 0.83 ± 0.0059 0.83 ± 0.0104 0.83 ± 0.0085 0.61 ± 0.0261 0.8 ± 0.0139 0.3 ± 2.1658

RF 0.86 ± 0.0055 0.86 ± 0.0077 0.86 ± 0.0059 0.84 ± 0.0066 0.62 ± 0.0129 0.81 ± 0.0046 1.19 ± 0.0906
LR 0.86 ± 0.0040 0.86 ± 0.0040 0.86 ± 0.0043 0.83 ± 0.0055 0.6 ± 0.0313 0.8 ± 0.0153 1.65 ± 0.0988
DT 0.84 ± 0.0083 0.84 ± 0.0090 0.84 ± 0.0089 0.83 ± 0.0088 0.59 ± 0.0220 0.8 ± 0.0127 0.18 ± 0.0758

OMK +
IG

SVM 0.87 ± 0.0020 0.87 ± 0.0038 0.87 ± 0.0019 0.85 ± 0.0027 0.69 ± 0.0118 0.84 ± 0.0036 15.09 ± 0.2306
NB 0.76 ± 0.0090 0.84 ± 0.0061 0.76 ± 0.0095 0.77 ± 0.0081 0.6 ± 0.0130 0.83 ± 0.0077 0.1 ± 0.2480

MLP 0.86 ± 0.0047 0.85 ± 0.0437 0.86 ± 0.0044 0.85 ± 0.0055 0.66 ± 0.0170 0.83 ± 0.0059 18.67 ± 0.1133
KNN 0.85 ± 0.0122 0.85 ± 0.0054 0.85 ± 0.0114 0.85 ± 0.0089 0.65 ± 0.0241 0.81 ± 0.0119 0.3 ± 2.1622

RF 0.88 ± 0.0070 0.88 ± 0.0069 0.88 ± 0.0065 0.87 ± 0.0069 0.70 ± 0.0119 0.85 ± 0.0040 1.29 ± 0.0905
LR 0.87 ± 0.0051 0.87 ± 0.0036 0.87 ± 0.0048 0.86 ± 0.0058 0.68 ± 0.0290 0.84 ± 0.0130 2.37 ± 0.0986
DT 0.85 ± 0.0106 0.85 ± 0.0081 0.85 ± 0.0099 0.84 ± 0.0093 0.66 ± 0.0203 0.83 ± 0.0108 0.21 ± 0.0757

TABLE 3: Average ± standard deviation classification results for GISAID-2 dataset. Best values are shown in bold.

Methods Silhouette
Coefficient

Calinski-
Harabasz Score

Davies-
Bouldin Score

Runtime
(Sec.)
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Spike2Vec 0.834 22794.361 0.467 11.31
PWM2Vec 0.477 1762.983 1.007 1.45
Kernel Approx. 0.851 24619.646 0.423 0.078
OMK 0.858 22083.103 0.456 0.080
IGK 0.717 37924.721 0.489 0.093
OMK + IG 0.672 14459.024 0.578 0.073

TABLE 4: Clustering performance comparison using differ-
ent metrics for k-means on GISAID-1 dataset. Best values
are shown in bold.
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