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Interpretable Ensembles of Classifiers for
Uncertain Data with Bioinformatics Applications
Marcelo Rodrigues de Holanda Maia, Alexandre Plastino, Alex A. Freitas, and João Pedro de Magalhães

Abstract—Data uncertainty remains a challenging issue in many applications, but few classification algorithms can effectively cope
with it. An ensemble approach for uncertain categorical features has recently been proposed, achieving promising results. It consists in
biasing the sampling of features for each model in an ensemble so that less uncertain features are more likely to be sampled. Here we
extend this idea of biased sampling and propose two new approaches: one for selecting training instances for each model in an
ensemble and another for sampling features to be considered when splitting a node in a Random Forest training. We applied these
approaches to classify ageing-related genes and predict drugs’ side effects based on uncertain features representing protein-protein
and protein-chemical interactions. We show that ensembles based on our proposed approaches achieve better predictive performance.
In particular, our proposed approaches improved the performance of a Random Forest based on the most sophisticated approach for
handling uncertain data in ensembles of this kind. Furthermore, we propose two new approaches for interpreting an ensemble of Naive
Bayes classifiers and analyse their results on our datasets of ageing-related genes and drug’s side effects.

Index Terms—Classification, interpretability, data uncertainty, bioinformatics, the biology of ageing.

✦

1 INTRODUCTION

DATA uncertainty can be categorised into existential
uncertainty, which occurs when the existence of some

data record is uncertain, and value uncertainty, which can
be further categorised into class-label uncertainty or feature-
value uncertainty. This work addresses feature-value un-
certainty, which occurs when some feature values in a
data record (instance) are not precisely known. This un-
certainty can naturally arise due to the limited precision of
data collection technology, particularly in bioinformatics or
biomedical domains. An uncertain feature value is usually
represented by a probability distribution on the correspond-
ing feature’s domain.

It has been shown that incorporating information on un-
certainty into classification algorithms can improve predic-
tive performance [1], [2], [3], [4], [5], but this is still an under-
explored research topic, particularly for categorical features,
since most previous methods focus on uncertain numerical
features. Hence, this work proposes new ensemble methods
for coping with uncertain categorical features.

We focus on ensemble methods that learn many base
classifiers independently on random subsets of the original
training set and then aggregate the base classifiers’ pre-
dictions. In general, such ensemble methods usually have
better predictive performance and are more robust to slight
data variations than any single base classifier. In particular,
Bagging methods randomly sample subsets of the instances
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in the dataset with replacement (which is called bootstrap
sampling) [6], and Random Subspaces methods randomly
sample subsets of the features in the dataset [7].

An ensemble approach for uncertain categorical features,
named Biased Random Subspaces (BRS), has recently been
proposed by Maia et al. [3]. It consists in biasing the random
sampling of features for each model in an ensemble, based
on the principle that features with lower uncertainty degrees
should have better class-discrimination potential since the
confidence about their actual values is higher.

Relying on the same hypothesis, this work extends the
idea of biased random sampling by proposing two new
approaches for building ensembles of classifiers that cope
with uncertain categorical features. The first is a Biased
Bootstrap (BB) approach for selecting training instances for
each model in an ensemble. The second is a Biased Splitting
(BS) approach for sampling features to be considered when
splitting a node while building the trees of a Random Forest.

We evaluate our proposed approaches by using them to
build Naive Bayes (NB) classifiers ensembles and Random
Forests and performing experiments on ten classification
datasets with real uncertain information. This uncertainty
consists of feature values’ probability distributions extracted
from real-world databases – unlike previous work, which
typically used datasets with artificially generated uncer-
tainty [1], [2], [4], [5].

Out of these 10 datasets, 4 were also used in [3]. In
these datasets, each instance is an ageing-related gene. The
class labels indicate whether a gene has a pro-longevity
or anti-longevity effect on a particular organism’s lifespan,
as recorded in the GenAge database [8], and the features
represent protein-protein interaction (PPI) information. The
feature uncertainty is represented by probabilities of inter-
actions between two proteins, obtained from the STRING
database [9].

The other 6 datasets are introduced in this work. In these
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datasets, each instance is a drug (chemical). The class labels
indicate whether or not a drug has a particular side effect,
as recorded in the SIDER database [10], and the features
represent protein-chemical interaction (PCI) information.
The feature uncertainty is represented by probabilities of
interactions between a chemical (drug) and a protein, ob-
tained from the STITCH database [11].

We report two types of results. First, we compare the
predictive performance of the ensemble methods using the
aforementioned uncertainty-handling approaches (BRS, BB
and BS) against the accuracy of the corresponding base-
line ensemble methods (without the BRS, BB and BS ap-
proaches), using two well-known predictive performance
measures: the Area Under the ROC curve (AUROC) and
the geometric mean of Sensitivity and Specificity [12]. In
general, the proposed ‘biased-sampling’ ensemble methods
outperformed the baseline ‘unbiased-sampling’ methods.

Additionally, we report the results of interpreting the
best ensemble models learned from the ageing-related
datasets. Model interpretation is an increasingly important
topic in machine learning [13], and it has led to novel
biological insights in bioinformatics domains [14], [15].

Although a single NB classifier is naturally interpretable,
interpreting an NB ensemble is not trivial. We are aware of
only one approach in the literature for interpreting an NB
ensemble: transforming it into a single NB model by linear
approximation (with some loss of predictive accuracy) and
then interpreting that NB model [16], [17].

Hence, we propose two new approaches for interpreting
an NB ensemble as a further contribution. The first measures
the importance of a feature based on conditional probability
differences, whereas the second is a more sophisticated
approach based on finding a minimal set of features that
is sufficient to preserve the class predicted for an instance
(so that changes to the values of other features in that
instance do not change the class predicted by the model).
We use these two interpretation approaches for NB ensem-
bles and a conventional feature importance measure for
random forests to learn feature rankings for the ageing-
related datasets, identifying the most important features for
predicting such genes’ effects on an organism’s lifespan.

In summary, this paper extends the initial work from [3]
by providing four new contributions. First, we propose two
new approaches – Biased Bootstrap (BB) and Biased Split-
ting (BS) – for learning from uncertain categorical features,
which complement the Biased Random Subspace (BRS) one
introduced in [3]. Second, in [3] the BRS approach was
used to create NB ensembles only; whilst in this paper, we
create several types of ensembles, including NB ensembles
with the BB approach and random forests with the BS and
BB approaches. Third, the experiments in [3] used only 4
datasets of ageing-related genes, whilst in this paper, we
use 10 datasets: those 4 datasets and 6 new datasets for pre-
dicting drugs’ side effects. Fourthly, this paper introduces
two approaches for interpreting an ensemble of Naive Bayes
classifiers, whilst no such interpretation was attempted
in [3]. We also use these interpretation approaches to analyse
the best models learned from the ageing-related datasets,
discussing the results from the perspective of the biology of
ageing as an interdisciplinary contribution.

2 METHODS

2.1 Definitions

Let F = {f1, f2, . . . , fm} be the set of predictive features,
where m ≥ 1, and C = {c1, c2, . . . , cq} be the set of classes,
where q ≥ 2. The domain of a feature fj is dom(fj). A
dataset D = {(X1, y1), (X2, y2), . . . , (Xn, yn)} consists of n
labelled instances. Each instance in D, identified by an index
i, is associated with a feature vector Xi = (xi1, xi2, . . . , xim)
and a class label yi ∈ C . In the classification problem, the ob-
jective is to construct a model from D capable of predicting
the class of an unlabelled instance given its corresponding
feature vector.

Let U ⊆ F be the set of uncertain features, assumed
to be categorical in this work. The domain of a cate-
gorical feature fj is a finite set of values dom(fj) =
{vj1, vj2, . . . , vj|dom(fj)|}, |dom(fj)| ≥ 2. If fj is not uncer-
tain, its value xij for an instance i is represented by a single
value. Otherwise, it is a discrete probability distribution
represented by a probability vector Pij , i.e.:

xij =

{
xij ∈ dom(fj), if fj ∈ F \ U
Pij = (pij1, pij2, . . . , pij|dom(fj)|), otherwise

where, if fj ∈ U , pijk ∈ [0, 1] represents the probability that
xij takes the value vjk and

∑|dom(fj)|
k=1 pijk = 1.

2.2 Coping with uncertainty in ensemble models

Recently, an ensemble approach for coping with uncertainty
in categorical features, named Biased Random Subspaces
(BRS), has been proposed by Maia et al. [3]. It consists in
biasing the random sampling of features for each model in
an ensemble. Here we extend the idea of biased random
sampling to two new approaches: a Biased Bootstrap (BB)
approach for selecting training instances for each model in
an ensemble (which can be used with any bagging-based
ensemble algorithm) and a Biased Splitting (BS) approach
for sampling features to be considered when splitting a node
while building the trees of a Random Forest.

From [3], we have the definition of the bias value for a
feature fj , given by:

b∗j =

1− 1

|I \M∗j |
∑

i∈I\M∗j

Eij

× |I \M∗j |
|I|

where I = {1, 2, . . . , n} is the set of indices of all instances
in D, M∗j is the set of indices of instances in D with a
missing value for the feature fj , and Eij is the normalized
entropy of the probability distribution represented by Pij if
fij is an uncertain feature (or zero, otherwise), that is:

Eij =


∑|dom(fj)|

k=1 pijklog(pijk)

log(1/|dom(fj)|) , if fj ∈ U

0, otherwise

The feature bias values are normalized over all features,
defining a probability distribution B = (β1, β2, . . . , βm),
where a probability βj associated with a feature fj is given
by βj = b∗j/(

∑m
l=1 b∗l).

Instead of the default uniform distribution from the
general Random Subspaces strategy, the BRS approach uses
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the probability distribution B to sample the features to train
each base classifier in the ensemble.

Random Forests usually do not sample features before
generating each tree. Nonetheless, they sample a subset of
features to be considered candidate features when splitting
each tree node. Hence, we propose the Biased Splitting
(BS) approach for this sampling, which uses the probability
distribution B to sample the candidate features.

Finally, we propose the Biased Bootstrap (BB) approach
for instance sampling, which is analogous to the BRS and BS
approaches for feature sampling. Hence, we define the bias
value for an instance identified by index i, given by:

bi∗ =

1− 1

|F \Mi∗|
∑

fj∈F\Mi∗

Eij

× |F \Mi∗|
|F |

where Mi∗ is the set of features in D with a missing value
for instance i.

The instance bias values are normalized over all in-
stances, defining a distribution Γ = (γ1, γ2, . . . , γn), where
a probability γi associated with an instance identified by
index i is given by γi = bi∗/(

∑n
l=1 bl∗).

The BB approach uses probability distribution Γ to sam-
ple the instances for training each base classifier.

2.3 Interpreting NB ensembles via conditional proba-
bilities
The first approach we propose for interpreting an ensemble
of NB classifiers relies on the influence that a feature value
xij ∈ dom(fj) has for determining the most likely class to
be predicted for an instance by a single NB classifier, which
we compute as an importance score. We then combine the
importance scores from all the classifiers into the ensemble’s
importance scores.

This approach does not address feature uncertainty. It
assumes the base models of the ensemble are standard NB
classifiers. Therefore, in this context, xij is always repre-
sented by a single value.

Given a feature vector Xi = (xi1, xi2, . . . , xim) associ-
ated with an unlabelled instance identified by index i, an
NB classifier predicts the class y ∈ C that maximizes the
value given by P (y|Xi) ∝ P (y)

∏m
j=1 P (xij |y).

We first present our definition of importance for binary
classifiers, where C = {c1, c2}. The importance of a feature
value xij in a given NB classifier is estimated by the follow-
ing difference between conditional probabilities:

Diff(xij , c1, c2, e) = |P (xij |c1)− P (xij |c2)|

where e is the classifier for which the difference is com-
puted. Clearly, the higher the difference in the class-
conditioned probability of a feature value between the two
class labels, the more importance (influence) that feature
value will have for determining the most likely class to be
assigned to the testing instance.

For datasets with more than two class labels, this idea
can be generalised by summing the differences between all
pairs of class labels in C :

Importance(xij , C, e) =

q−1∑
r=1

q∑
s=r+1

Diff(xij , cr, cs, e)

The importance of a feature value xij for an ensemble
of NB classifiers is computed by averaging its importance
across all classifiers in the ensemble. However, different
NB classifiers will generally use different feature subsets
(due to the random subspaces approach). Intuitively, other
things being equal, the larger the number of classifiers
in the ensemble that use a feature, the larger the im-
portance of the value of that feature. Therefore, we as-
sume that, if a classifier eu does not use a feature fj ,
then Importance(xij , C, eu) = 0. Hence, we define the
ensemble-wide importance as:

Importance(xij , C) =

∑t
u=1 Importance(xij , C, eu)

t

where eu is the u-th classifier and t is the total number of
classifiers in the ensemble.

This equation is appropriate when the predicted class
returned by the ensemble is computed by a simple majority
vote of all classifiers, i.e., all classifiers have the same weight
in the voting. If weighted voting is used instead (where the
weight of a vote is proportional to the classifier’s confidence
in its prediction), then the importance equation could be
easily modified to compute a correspondingly weighted
average over the t classifiers.

Finally, once the importance value has been computed
for all feature values xij , we rank all feature values in de-
creasing order of importance. Then a user (domain expert)
can focus on interpreting the top-ranked feature values, i.e.,
the most important ones for predicting the class variable in
the ensemble.

Note that for binary domain features, where dom(fj) =
{vj1, vj2}, the importance computed for both values will be
the same due to the complementarity of the probabilities
in use. Given two class labels cr and cs such that cr ∈ C ,
cs ∈ C and cr ̸= cs, the following relations apply:

P (vj1|cr) = 1− P (vj2|cr) (1)

P (vj1|cs) = 1− P (vj2|cs) (2)

The difference of the class-conditioned probabilities of
the value vj1 between cr and cs for a classifier e would be:

Diff(vj1, cr, cs, e) = |P (vj1|cr)− P (vj1|cs)| (3)

By replacing (1) and (2) in (3), we obtain:

Diff(vj1, cr, cs, e) = |(1− P (vj2|cr))− (1− P (vj2|cs))|
= |1− P (vj2|cr)− 1 + P (vj2|cs)|
= |P (vj2|cs)− P (vj2|cr)|
= |P (vj2|cr)− P (vj2|cs)|
= Diff(vj2, cr, cs, e)

Therefore, for binary domain features (like the PPI and
PCI features in our datasets), the importance computed for
both values in the domain is the same. Then, the importance
computed for any of the values in a feature’s domain can be
interpreted as that feature’s importance.
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Algorithm 1. MinimalSufficientSet(Xi, e)

1: ci ← class predicted by e for Xi

2: SuppSet← {fj |P (xij |ci) > P (xij |y),∀y ∈ C \ {ci}}
3: S ← SuppSet
4: Calculate Importance(xij , C, e) for all fj ∈ S
5: SortedFeats← SortByImportance(SuppSet)
6: e′ ← e
7: for each feature fj in SortedFeats do
8: Remove fj from e′

9: c′i ← class predicted by e′ for Xi

10: if c′i = ci then S ← S \ {fj}
11: else Exit loop
12: return S

2.4 Interpreting NB ensembles via minimal sufficient
features

The approach based on conditional probability differences
measures the importance of each feature value separately,
ignoring its importance in the context of all other feature
values. This is consistent with NB assuming that each
feature is independent of all others conditioned on the
class variable, but it does not directly measure the influ-
ence of a feature value on class prediction. Naive Bayes
makes class predictions using the formula: P (y|Xi) ∝
P (y)

∏m
j=1 P (xij |y). Therefore, whether or not a conditional

probability will make a difference in the choice of the
predicted class depends on the entire set of conditional
probabilities and the prior class probability.

Hence, we propose a second approach that considers
sets of feature values. The principle we rely on is the same
adopted in the definitions of anchors by Ribeiro et al. [18]
and minimal sufficient factors by Watson et al. [19]. We seek
to find, for each instance, a minimal set of features sufficient
to preserve the class prediction, such that changes to the
other feature values of the instance would not change the
class predicted by the model.

Note that the larger the value of Importance(xij , C, e),
the higher the influence of xij for a class prediction in model
e, but even the feature with the highest Importance value
may still not be sufficient for a given prediction.

However, we can use this notion to find a minimal
sufficient set of features. The basic idea is to sort all fea-
tures in increasing order of their Importance values and
then identify the minimal set of top features in that sorted
list which, together, are sufficient for preserving the class
prediction made by the classifier.

Let ci be the class predicted by the classifier for instance
i. A feature value xij is said to “support” the prediction of
ci if and only if P (xij |ci) > P (xij |y),∀y ∈ C \ {ci}. That
is, the feature value xij becomes more likely if instance i
has class ci than if that instance has another class. Naturally,
when searching for a minimal sufficient set of features, we
only need to consider feature values that support the class
predicted by the classifier.

A method for identifying a minimal sufficient set of
features for the class prediction for a given instance is
presented in Algorithm 1.

Based on the sufficiency criterion, we define a measure
of the importance of a feature fj for a classifier e given the

set of instances X , denoted SImportance(fj , e,X), as the
proportion of instances in X for which fj is in the minimal
sufficient set returned by Algorithm 1.

The importance of a feature for the entire ensemble is
computed by simply averaging its importance across all
classifiers in the ensemble:

SImportance(fj , X) =

∑t
u=1 SImportance(fj , eu, X)

t

where eu is the u-th classifier and t is the total number of
classifiers in the ensemble.

2.5 Datasets
We have evaluated the proposed approaches on real data
from two application domains. The first domain is the
classification of ageing-related genes regarding their effect
on the lifespan of an organism, which may be positive (pro-
longevity) or negative (anti-longevity). From this domain,
we used the 4 datasets generated by Maia et al. [3], which
integrate data from the GenAge database (Build 20) [8]
and the STRING database (Version 11.0) [9]. Each dataset
contains data regarding ageing-related genes of one of the
4 major model organisms from the GenAge database: C.
elegans (roundworm), D. melanogaster (fruit fly), M. musculus
(mouse), and S. cerevisiae (baker’s yeast). Each feature in
these datasets refers to a protein-protein interaction (PPI)
extracted from the STRING database.

The second domain involves the prediction of drugs’
side effects. For this domain, we have generated 6 new
datasets by integrating data from the SIDER database (Ver-
sion 4.1) [10] and the STITCH database (Version 5.0) [11].
The SIDER database contains information on marketed
medicines and their recorded side effects (adverse drug
reactions). STITCH is a database of protein-chemical in-
teractions (PCI) that stem from computational predictions,
knowledge transfer between organisms, and interactions
aggregated from other databases.

Each side-effect dataset refers to one of the 6 most fre-
quent side effects in the SIDER database: nausea, headache,
dermatitis, rash, vomiting and dizziness. Each instance in
these datasets refers to a drug and consists of uncertain
features referring to PCIs and a binary class variable indi-
cating whether the corresponding drug has the side effect
represented in the dataset (positive) or not (negative). Each
PCI feature refers to one protein and has a binary domain,
indicating whether or not an interaction between the corre-
sponding chemical (drug) and the protein referred by the
feature has been observed. As uncertain features, they are
represented by probability distributions.

A value xij of an uncertain binary feature fj for an
instance i in a dataset is represented by a probability dis-
tribution Pij = (pij1, pij2), where pij1 and pij2 are the
complementary probabilities of xij taking each of the two
values in dom(fj). Therefore, each probability distribution
representing a PPI or PCI feature value is encoded by a sin-
gle value pij , and Pij = (pij , 1− pij). In our datasets, pij is
the confidence score (interaction probability) obtained from
the STRING or STITCH databases for the corresponding PPI
or PCI features, respectively.

Table 1 presents detailed information about the datasets.
They are particularly challenging for having many features,
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TABLE 1
Information about the Datasets

Dataset Instances Features
Missing

Values (%)
Class (%)

Neg. Pos.
AG-Worm 763 9692 93.8 66.3 33.7
AG-Fly 185 3883 88.4 37.3 62.7
AG-Mouse 82 4216 78.4 37.8 62.2
AG-Yeast 382 4274 90.3 88.0 12.0
SE-Nausea 1394 9096 97.5 15.4 84.6
SE-Headache 1394 9096 97.5 21.7 78.3
SE-Dermatitis 1394 9096 97.5 23.2 76.8
SE-Rash 1394 9096 97.5 23.8 76.2
SE-Vomiting 1394 9096 97.5 24.0 76.0
SE-Dizziness 1394 9096 97.5 27.3 72.7

a small number of instances, and a very high percentage
of missing values (when there is no information regarding a
specific interaction in the STRING or STITCH databases). To
avoid overfitting, we have discarded PPI and PCI features
with low support (annotating less than 10 instances). As
usual in the literature using PPIs as features for classifying
genes, we represent missing values as zeros.

2.6 Ensemble methods
We consider three baseline (‘unbiased-sampling’) ensemble
methods: two kinds of NB ensembles and one Random
Forest (RF). Although these baseline methods do not use
an uncertainty-based random sampling bias, they handle
uncertainty at the individual classifiers’ level.

The baseline NB ensembles, ENB-NV and ENB-EV, were
also used by Maia et al. [3]. In ENB-NV (Ensemble of NB
classifiers with Numeric Values), the NB classifiers treat
each uncertain value (an interaction probability) as a nu-
meric value and assume that the feature values’ probability
distributions are Gaussian. In ENB-EV (Ensemble of NB
classifiers with Expected Values), the NB classifiers bina-
rise each uncertain value into an expected value using the
threshold 0.5 and consider multivariate Bernoulli distribu-
tions for the data.

To the best of our knowledge, there is no work in the
literature coping with uncertain categorical features using
RFs. Among papers coping with uncertain numerical fea-
tures using RF (or single decision trees), the most sophisti-
cated approach is distributing fractions of examples (DFE)
over the child nodes when splitting a node on an uncertain
feature [4], [20], [21], [22]. The DFE approach provided RFs
with mildly positive results in [21] and mildly negative
results in [22]. Although only evaluated in the literature
for numerical features, RFs using the DFE approach (RF-
DFE) also apply to categorical ones. Since RF-DFE is the
most sophisticated available RF that can handle uncertain
categorical features, we use it as our baseline RF.

The baseline ensembles perform a standard unbiased
sampling of instances and features. For each of them, we
build three versions by incorporating different combinations
of our proposed approaches: BB, BRS and BB+BRS for NB
ensembles; BB, BS and BB+BS for Random Forests.

We have coded the algorithms1 by extending available

1. The source-code and datasets used in this work are available at
https://github.com/marcelorhmaia/interpretable-ensembles-for-ucd

implementations from the scikit-learn library [23]. We have
set the number of base classifiers (NB or decision trees) in
each ensemble to 500 and the number of instances used
to build each one to n. The number of features sampled
(to train each NB classifier or to split a tree node in an
RF) has been set to

√
m. Since our RFs distribute fractions

of examples using instance weights, instead of defining a
minimum number of instances required to be at a leaf node,
we defined the minimum sum of instance weights required
at a leaf node as 0.01 (1% of the number of instances).

2.7 Predictive performance measures
We have assessed the predictive performance of the al-
gorithms using two metrics: the Area Under the Receiver
Operating Characteristic curve (AUROC) and the geometric
mean of sensitivity and specificity (G-mean) [12].

We evaluated each algorithm using the well-known 10-
fold cross-validation. Furthermore, we have assessed the
statistical significance of the differences in the predictive
performance measures between each pair of algorithms,
using a paired Wilcoxon signed-rank test for each dataset,
with a significance level of 0.05.

2.8 Simpson’s paradox
Let X be a binary feature, taking values x1 or x2, and Y
be the class variable in a dataset. Let the dataset’s instances
be divided into two groups: those with X = x1 and those
with X = x2. Consider a class label of interest, y1 (e.g., the
pro-longevity or anti-longevity label in our ageing-related
datasets). Let P (y1|x1) and P (y1|x2) denote the conditional
probabilities of y1 for the corresponding groups of instances.
Consider the scenario where each group of instances is
further divided according to the values of another binary
feature Z , called a confounder, taking values z1 or z2 (in
our datasets, the confounders are binary, but this condi-
tion could be relaxed). Simpson’s paradox occurs when
P (y1|x1) > P (y1|x2) and P (y1|x1, zj) < P (y1|x2, zj),
for j ∈ {1, 2} or vice-versa: P (y1|x1) < P (y1|x2) and
P (y1|x1, zj) > P (y1|x2, zj), for j ∈ {1, 2}. That is, the
paradox occurs if the conditional probability of the class
label of interest y1 ‘increases’ (‘decreases’) from the group
where X = x1 to the group where X = x2 but, surprisingly,
the conditional probability of y1 ‘decreases’ (‘increases’)
from the former to the latter group, both for instances with
Z = z1 and instances with Z = z2 [24], [25], [26]. Hence,
the paradox shows a reversal of the direction of association
between the values of a feature and the probability of a class
label of interest in the context of a confounder.

3 RESULTS

3.1 Assessing predictive performance
3.1.1 Experiment 1
This experiment evaluated NB ensembles using NB-NV as
base classifiers (i.e., Gaussian NB with Numeric Values of
features). We have compared four ensembles: the baseline
ensemble of NB-NVs, denoted ENB-NV; and three biased-
sampling ensembles, combining ENB-NV with the biased
sampling approaches, denoted ENB-NV+BB, ENB-NV+BRS
and ENB-NV+BB+BRS.
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Table 2 shows the AUROC and G-mean results on the 10
datasets. The best values (for each metric and dataset) are
in bold. The last row shows each ensemble’s average rank
(per metric). Superscript symbols indicate the statistically
significant advantages (SSA). Based on these results, ENB-
NV+BRS is the best ensemble regarding AUROC and G-
mean, with an average rank of 1.6 for both metrics.

3.1.2 Experiment 2
This experiment evaluated NB ensembles using NB-EV
(which binarises uncertain values into Expected Values)
as base classifiers. Again, we have compared four ensem-
bles: the unbiased-sampling baseline ensemble of NB-EVs,
denoted ENB-NV; and three biased-sampling ensembles
combining ENB-EV with the biased sampling approaches,
denoted ENB-EV+BB, ENB-EV+BRS and ENB-EV+BB+BRS.
Table 3 presents the results for this group of ensembles.
ENB-EV+BRS is the best ensemble for AUROC and G-mean,
with the average ranks of 1.4 and 1.6, respectively.

3.1.3 Comparing the best NB ensembles
Table 4 presents the results for ENB-NV+BRS and ENB-
EV+BRS, the best ensembles from Experiments 1 and 2, re-
spectively. ENB-EV+BRS obtained the best AUROC results,
with an average rank of 1.4, whereas ENB-NV+BRS was the
best for G-mean, with an average rank of 1.0.

3.1.4 Experiment 3
This experiment evaluated four RFs: RF-DFE (distributing
fractions of examples among child nodes), the most sophis-
ticated available RF that can handle uncertain categorical
features; and three biased-sampling RFs, combining RF-
DFE with the biased sampling approaches: RF-DFE+BB, RF-
DFE+BS, RF-DFE+BB+BS. Table 5 presents the results. RF-
DFE+BB obtained the best AUROC results, with an average
rank of 2.0; whereas RF-DFE+BS obtained the best G-mean
results, also with an average rank of 2.0.

3.1.5 Comparing the best NB ensembles and the best RFs
This last comparison aimed at determining the best overall
method regarding each of the AUROC and G-mean metrics.
Table 6 presents the results. RF-DFE+BB obtained the best
AUROC results (average rank: 1.1), whereas RF-DFE+BS
obtained the best G-mean results (average rank: 1.3).

In general, the results of these three experiments sup-
port the hypothesis that the BB, BRS and BS approaches
can improve the predictive performance of ensembles on
uncertain data. A limitation of the BB approach was that
it produced poor results when applied to NB ensembles.
However, the BB and BS approaches proposed in this paper
worked well with RFs, and they obtained the best overall
results since RF-DFE+BB and RF-DFE+BS were the best
overall ensembles for the AUROC and G-mean metrics,
respectively, outperforming RF-DFE.

3.2 Identifying the top-ranked PPI features
We have applied our two proposed approaches for inter-
preting NB ensembles to the four ageing-related datasets to
identify the top-ranked PPI features for classification.

Among all NB ensembles evaluated in our experiments,
ENB-EV+BRS and ENB-NV+BRS have achieved the best
overall AUROC and G-mean values, respectively. We have
selected ENB-EV+BRS for model interpretation since it uses
binarised features, facilitating interpretation.

We have trained a model applying ENB-EV+BRS to
each dataset’s whole set of instances. Then, we used this
model to produce rankings of features in decreasing order
of importance.

Table 7 presents the top-10 features for each organism
(dataset) regarding the importance measure based on condi-
tional probabilities. For each feature, columns 2–5 present its
importance-based rank, the corresponding protein ID from
the STRING database, and the corresponding gene’s symbol
and name. Columns 6 and 7 present the absolute and rela-
tive frequencies of value 1 (considering the threshold of 0.5
used) for the corresponding feature in the instances of the
Pro-longevity and Anti-longevity classes. The last column
shows whether or not the feature is involved in occurrences
of Simpson’s paradox [24], [25] (discussed in Subsection 3.4).

Interestingly, out of the 40 top-ranked PPI features in
Table 7, 15 represent ribosomal proteins, namely 5 of the
top-10 PPI features for the worm dataset and all the top-10
PPI features for the yeast dataset. It is also worth observing
in Table 7 the relative frequency of genes (dataset instances)
of each class (Pro- vs Anti-longevity) that interact with the
gene associated with each of these 15 ribosomal proteins
(PPI features). In all those 15 table rows, the relative fre-
quency of Anti-longevity genes interacting with the corre-
sponding ribosomal protein is substantially higher than that
of Pro-longevity genes interacting with that ribosomal pro-
tein. The relative frequency differences are clearly striking
for 9 of the 10 yeast PPI features in the table, which have
a frequency of 0% for Pro-longevity genes and frequencies
varying from 14.0% to 18.2% for Anti-longevity genes.

Despite this strong pattern, none of these 9 yeast ri-
bosomal proteins is included in GenAge [8] – the most
comprehensive database of ageing-related genes. By itself,
this strong pattern does not allow us to conclude that those
9 ribosomal proteins have an anti-longevity effect on yeast,
which in principle could be confirmed only via appropriate
biological experiments. However, the pattern seems strong
enough to justify further investigation of some of those 9
ribosomal proteins in future work.

Among the 5 ribosomal proteins in Table 7 for worm,
4 (rps-0, rps-5, rps-11, rpl-3) are included in the GenAge
database. Actually, among the top-10 PPI features, 8 are
associated with genes included in GenAge – the exceptions
are atp-1 and rps-30.

Regarding the top-10 PPI features for mice, only the top-
ranked one, igf1, is included in GenAge. Interestingly, igf1
is annotated as having an “unclear” effect on longevity in
GenAge, whilst its closely related igf1r (igf1 receptor) is an-
notated as Anti-longevity. In Table 7, the relative frequency
of Anti-longevity genes interacting with the igf1 gene is
51.6%, which is much larger than the relative frequency of
such interaction in the Pro-longevity class: 19.6%.

Finally, out of the top-10 PPI features for fly in Table 7,
4 are associated with genes included in GenAge, namely
Sod1, FOXO, Sod2, park. Among the 6 genes not included
in GenAge, there are 3 heat shock proteins. Two of them,
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TABLE 2
Experiment 1 Results

Dataset
AUROC (%) G-mean (%)

ENB-NV
ENB-NV
+BB

ENB-NV
+BRS

ENB-NV
+BB+BRS

ENB-NV
ENB-NV
+BB

ENB-NV
+BRS

ENB-NV
+BB+BRS

AG-Worm 71.46 72.32 72.33 72.26 57.94 57.34 60.83∗† 60.55†

AG-Fly 65.62 65.94 65.03 66.37 57.31 57.61 59.79 58.37
AG-Mouse 66.73† 63.66 68.51 66.96 57.09 59.94 56.28 63.13
AG-Yeast 61.62 63.81∗ 61.22 62.74‡ 57.76 60.51§ 58.90§ 54.66
SE-Nausea 58.89 56.53 65.16∗†§ 51.10 20.47 24.97 28.97∗ 25.60
SE-Headache 56.35§ 54.64§ 56.92§ 51.75 53.61†§ 23.20 43.22†§ 24.45
SE-Dermatitis 58.06§ 56.05§ 59.83†§ 51.86 20.81 36.11 54.16∗†§ 21.48
SE-Rash 56.98§ 55.24§ 59.78†§ 51.10 21.12 40.63§ 54.94∗†§ 20.40
SE-Vomiting 60.64†§ 58.24§ 65.19∗†§ 53.69 23.18 34.78 33.55∗§ 28.70
SE-Dizziness 61.63†§ 55.21 65.01∗†§ 51.63 24.73 49.86 57.00∗†§ 23.21
Avg. Rank 2.5 2.7 1.6 3.2 3.2 2.4 1.6 2.8
∗SSA (vs ENB-NV), †SSA (vs ENB-NV+BB), ‡SSA (vs ENB-NV+BRS), §SSA (vs ENB-NV+BB+BRS)

TABLE 3
Experiment 2 Results

Dataset
AUROC (%) G-mean (%)

ENB-EV
ENB-EV
+BB

ENB-EV
+BRS

ENB-EV
+BB+BRS

ENB-EV
ENB-EV
+BB

ENB-EV
+BRS

ENB-EV
+BB+BRS

AG-Worm 76.91†‡§ 75.39§ 74.81§ 73.49 36.27 38.14 49.27∗† 54.68∗†‡

AG-Fly 64.05 66.24 69.00 67.91 28.28 26.09 28.06 30.10
AG-Mouse 69.26 70.03 69.30 68.92 41.59 35.58 46.82 35.10
AG-Yeast 75.55 75.77 76.79 78.30 22.23 32.62 47.78∗† 67.77†‡

SE-Nausea 50.45 46.81 57.06† 46.79 21.84 18.03 25.68∗† 19.20
SE-Headache 52.25†§ 48.86 54.86∗†§ 48.26 24.64 18.57 25.76†§ 20.17
SE-Dermatitis 54.55†§ 51.07 58.57∗†§ 52.00 22.12 17.89 23.51† 21.64†

SE-Rash 53.65†§ 49.19 57.71∗†§ 49.76 21.72 17.59 23.06† 21.24†

SE-Vomiting 56.43†§ 46.27 65.91∗†§ 47.95† 15.99 14.21 15.00 14.18
SE-Dizziness 57.72†§ 46.07 65.20∗†§ 46.90 23.78†§ 14.23 23.72† 21.58†

Avg. Rank 2.4 3.1 1.4 3.1 2.2 3.6 1.6 2.6
∗SSA (vs ENB-EV), †SSA (vs ENB-EV+BB), ‡SSA (vs ENB-EV+BRS), §SSA (vs ENB-EV+BB+BRS)

TABLE 4
Comparison of the Best NB Ensembles

Dataset
AUROC (%) G-mean (%)

ENB-NV
+BRS

ENB-EV
+BRS

ENB-NV
+BRS

ENB-EV
+BRS

AG-Worm 72.33 74.81 60.83∗ 49.27
AG-Fly 65.03 69.00 59.79∗ 28.06
AG-Mouse 68.51 69.30 56.28∗ 46.82
AG-Yeast 61.22 76.79∗ 58.90 47.78
SE-Nausea 65.16 57.06 28.97 25.68
SE-Headache 56.92 54.86 43.22∗ 25.76
SE-Dermatitis 59.83 58.57 54.16∗ 23.51
SE-Rash 59.78∗ 57.71 54.94∗ 23.06
SE-Vomiting 65.19 65.91 33.55∗ 15.00
SE-Dizziness 65.01 65.20 57.00∗ 23.72
Avg. Rank 1.6 1.4 1.0 2.0
∗SSA

Hsp70Ab and Hsp70Aa, have a relative frequency of only
5.8% for the Anti-longevity class, with a much larger relative
frequency of 19.0% and 19.8%, respectively, for the Pro-
longevity class.

Table 8 presents the top-10 features for each organism

regarding the importance measure based on minimal suffi-
cient features. Most features from Table 7 are also in Table 8:
8 features for worm, 9 for fly, 6 for mouse and 6 for yeast.

As RF-DFE+BB+BS achieved the best predictive perfor-
mance on the ageing-related datasets, we also produced fea-
ture rankings using it. We have used the default RF feature
importance measure from the scikit-learn’s implementation,
based on the Gini index2. Table 9 presents the top-10 features
for each organism. Consistently with Tables 7 and 8, many
of the top-10 PPI features for worm and yeast in Table 9
represent ribosomal proteins, which are mainly associated
with the anti-longevity class.

3.3 Confirming the relevance of the top-ranked fea-
tures for the biology of ageing

Overall, the top-ranked features fit well with current knowl-
edge on longevity/ageing and previous similar analyses, as
follows. The top-ranked features for worms include daf-
16, a key regulator of longevity in worms. Mutations in
daf-16 suppress the longevity effects caused by several

2. The Gini feature importance measure is biased towards features
with many values [27]. However, since all features in our datasets are
binary, this limitation is not an issue in this work.
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TABLE 5
Experiment 3 Results

Dataset
AUROC (%) G-mean (%)

RF-DFE
RF-DFE
+BB

RF-DFE
+BS

RF-DFE
+BB+BS

RF-DFE
RF-DFE
+BB

RF-DFE
+BS

RF-DFE
+BB+BS

AG-Worm 76.62†‡§ 75.41 74.86 74.73 52.95 56.55∗ 55.83∗ 60.22∗†‡

AG-Fly 67.87 71.81 67.27 69.57 66.87† 57.43 64.42† 65.91
AG-Mouse 68.38 67.68 70.66 72.60 60.65 56.63 59.14 56.63
AG-Yeast 77.44 78.75 78.51 79.11 51.99 51.03 52.46 57.30
SE-Nausea 69.33 69.99 69.08 69.52 55.91†§ 16.40 57.26†§ 16.40
SE-Headache 68.55§ 66.66 67.59 66.88 59.39†§ 20.18 57.96†§ 22.62
SE-Dermatitis 65.11‡ 66.44∗‡ 62.89 66.86∗‡ 52.20†§ 20.90 54.75∗†§ 19.39
SE-Rash 64.83‡ 66.26‡ 63.45 66.11∗‡ 53.17†§ 21.35 55.05∗†§ 19.66
SE-Vomiting 68.02 68.32 68.15 67.83 51.05 58.69 56.20∗ 59.29
SE-Dizziness 68.55 69.02 67.74 69.67†‡ 50.98 54.66 56.81∗ 60.23†

Avg. Rank 2.7 2.0 3.2 2.1 2.4 3.1 2.0 2.3
∗SSA (vs RF-DFE), †SSA (vs RF-DFE+BB), ‡SSA (vs RF-DFE+BS), §SSA (vs RF-DFE+BB+BS)

TABLE 6
Comparison of the Best NB Ensembles and the Best RFs

Dataset
AUROC (%) G-mean (%)

ENB-EV
+BRS

RF-DFE
+BB

ENB-NV
+BRS

RF-DFE
+BS

AG-Worm 74.81 75.41 60.83 55.83
AG-Fly 69.00 71.81 59.79 64.42∗

AG-Mouse 69.30 67.68 56.28 59.14
AG-Yeast 76.79 78.75 58.90 52.46
SE-Nausea 57.06 69.99∗ 28.97 57.26∗

SE-Headache 54.86 66.66∗ 43.22 57.96∗

SE-Dermatitis 58.57 66.44∗ 54.16 54.75∗

SE-Rash 57.71 66.26∗ 54.94 55.05∗

SE-Vomiting 65.91 68.32 33.55 56.20∗

SE-Dizziness 65.20 69.02∗ 57.00∗ 56.81
Avg. Rank 1.9 1.1 1.7 1.3
∗SSA

mutations [28]. Other top genes in worms include various
ribosomal proteins, which is not surprising given that they
control translation, which has been strongly associated with
longevity regulation in worms and other organisms [29].
Mitochondrial genes are also among the top hits, which also
fits current knowledge of the role of mitochondria in ageing
and longevity regulation [30]. Lastly, one of the top genes
is atg-7, an autophagy regulator that is a major longevity
pathway in invertebrates, including in worms [31].

There are heat shock proteins and genes related to stress
response among the top genes in flies. This fits well with the
long-established observation that stress resistance is impor-
tant for healthy ageing and longevity [32]. There are also an-
tioxidant enzymes, like superoxide dismutase, thioredoxin
and glutathione peroxidase; in invertebrates and flies, in
particular, antioxidant protection has long been considered
important for longevity [33]. Interestingly, in flies, we see
repair pathways and mechanisms that protect against stress
among top features, particularly with a high frequency of
pro-longevity interactions. In yeast, most top features are
ribosomal proteins, which, as mentioned earlier, have been
related to longevity regulation in model organisms.

In mice, the top gene is igf-1, with a strong anti-longevity

frequency. The growth hormone/insulin/IGF1 pathway is
the major longevity pathway in mammals [34], [35], so this
result fits our knowledge of longevity well. Also, other
players in the pathway like forkhead box proteins, Pik3cd,
Ins2 and Irs2 are among the top predictions. Some brain and
neuronal factors (e.g., Src) are also among the top features,
which could fit GH/IGF1’s neuroendocrine regulation [34].
Alternatively, they could be related to ageing changes in the
brain. As Src is not in GenAge, it could be an interesting
target for future studies.

Overall, the top-ranked features fit nicely into pro- and
anti-longevity pathways enriched in GenAge [31]. Of note,
in worms, ribosomal proteins and mitochondrial proteins
involved in oxidative phosphorylation have been previously
found enriched in anti-longevity processes [31], while in
flies, responses to oxidative stress (like antioxidant en-
zymes) are among enriched pro-longevity processes. In
mice, the insulin signalling pathway is a top enriched anti-
longevity pathway [31], in line with our results.

3.4 Detecting occurrences of Simpson’s paradox

When interpreting an association between each top-ranked
feature and a class label (pro- or anti-longevity), it is im-
portant to consider that the direction of that association
might be misleading due to Simpson’s paradox. By direction
of association we mean whether the presence of a PPI is
associated with an increased probability of the pro-longevity
or, conversely, the anti-longevity class.

Simpson’s paradox occurs when the direction of an
association between two variables X and Y at the popu-
lation (aggregated) level is reversed in all the sub-groups
produced by partitioning that population according to the
values of a third variable, Z, called a confounder [24], [25].
In other words, the direction of the association between
variables X and Y is reversed when conditioning on each
value of the confounder Z. In our classification task, X and
Z are predictive features, whilst Y is the class variable.

Table 10 shows an example of this paradox in the fly
dataset. Looking only at the aggregated data in the first row
of the table, ignoring the interaction between the values of
the Hsp83 and Hsc70-4 PPI features, we would conclude
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TABLE 7
Top-10 PPI Features in the ENB-EV+BRS Model According to the Importance Measure Based on Conditional Probabilities

Organism
Feat.
Rank

STRING ID
Gene

Symbol
Protein Name

Freq. in
Pro-long.

Freq. in
Anti-long.

Parad.

Worm

1 R13H8.1h daf-16 Forkhead box protein O 40 (15.6%) 43 (8.5%) no
2 F42G8.12 isp-1 Cytochrome b-c1 complex subunit Rieske, mitochondrial 9 (3.5%) 58 (11.5%) no
3 C34E10.6.1 atp-2 ATP synthase subunit beta, mitochondrial 6 (2.3%) 58 (11.5%) no
4 T05E11.1 rps-5 40S ribosomal protein S5 5 (1.9%) 60 (11.9%) no
5 F40F11.1.2 rps-11 Ribosomal protein, small subunit 4 (1.6%) 53 (10.5%) no
6 C26F1.4.2 rps-30 40S ribosomal protein S30 5 (1.9%) 43 (8.5%) no
7 B0250.1 rpl-2 60S ribosomal protein L8 3 (1.2%) 44 (8.7%) no
8 B0393.1.1 rps-0 40S ribosomal protein SA 6 (2.3%) 51 (10.1%) no
9 H28O16.1a H28O16.1 ATP synthase subunit alpha, mitochondrial 6 (2.3%) 56 (11.1%) no
10 Y56A3A.19 Y56A3A.19 Acyl carrier protein 2 (0.8%) 51 (10.1%) no

Fly

1 FBpp0082516 Hsc70-4 Heat shock 70 kDa protein cognate 4 34 (29.3%) 9 (13.0%) no
2 FBpp0305736 Sod Superoxide dismutase [Cu-Zn] 30 (25.9%) 4 (5.8%) no
3 FBpp0081956 Hsp70Ab Heat shock protein 70Ab 22 (19.0%) 4 (5.8%) no
4 FBpp0293589 foxo Forkhead box protein O 36 (31.0%) 14 (20.3%) no
5 FBpp0081986 Hsp70Aa Major heat shock 70 kDa protein Aa 23 (19.8%) 4 (5.8%) no
6 FBpp0070899 schlank Schlank, isoform A 31 (26.7%) 12 (17.4%) no
7 FBpp0086226 Sod2 Superoxide dismutase [Mn], mitochondrial 31 (26.7%) 8 (11.6%) no
8 FBpp0088134 CaMKI Calmodulin-dependent protein kinase activity 29 (25.0%) 10 (14.5%) no
9 FBpp0077974 park E3 ubiquitin-protein ligase parkin 20 (17.2%) 1 (1.4%) no
10 FBpp0305095 Hsp83 Heat shock protein 83 26 (22.4%) 10 (14.5%) yes

Mouse

1 ENSMUSP00000056668 Igf-1 Insulin-like growth factor 1 10 (19.6%) 16 (51.6%) no
2 ENSMUSP00000029175 Src Neuronal proto-oncogene tyrosine-protein kinase Src 3 (5.9%) 12 (38.7%) no
3 ENSMUSP00000050683 Foxo3 Forkhead box protein O3 8 (15.7%) 13 (41.9%) no
4 ENSMUSP00000055308 Foxo1 Forkhead box protein O1 5 (9.8%) 11 (35.5%) no
5 ENSMUSP00000000369 Rem1 GTP-binding protein REM 1 7 (13.7%) 10 (32.3%) yes

6 ENSMUSP00000101315 Pik3cd
Phosphatidylinositol 4,5-bisphosphate
3-kinase catalytic subunit delta isoform

1 (2.0%) 7 (22.6%) no

7 ENSMUSP00000102538 Ngf Beta-nerve growth factor 5 (9.8%) 8 (25.8%) yes
8 ENSMUSP00000031697 Cul1 Cullin-1 6 (11.8%) 7 (22.6%) no
9 ENSMUSP00000120152 Stat3 Signal transducer and activator of transcription 3 11 (21.6%) 14 (45.2%) no
10 ENSMUSP00000115578 Ubc Polyubiquitin-C 15 (29.4%) 4 (12.9%) no

Yeast

1 YLR167W RPS31
Fusion-protein cleaved to yield

ribosomal protein S31 and ubiquitin
0 (0.0%) 58 (17.3%) no

2 YIL133C RPL16A Ribosomal 60S subunit protein L16A 0 (0.0%) 51 (15.2%) no
3 YBR048W RPS11B Protein component of the small (40S) ribosomal subunit 0 (0.0%) 52 (15.5%) no
4 YPL090C RPS6A Protein component of the small (40S) ribosomal subunit 0 (0.0%) 51 (15.2%) no
5 YGL103W RPL28 Ribosomal 60S subunit protein L28 0 (0.0%) 61 (18.2%) no
6 YNL096C RPS7B Protein component of the small (40S) ribosomal subunit 0 (0.0%) 50 (14.9%) no
7 YJR145C RPS4A Protein component of the small (40S) ribosomal subunit 0 (0.0%) 51 (15.2%) no
8 YNL069C RPL16B Ribosomal 60S subunit protein L16B 0 (0.0%) 48 (14.3%) no
9 YBR031W RPL4A Ribosomal 60S subunit protein L4A 1 (2.2%) 53 (15.8%) no
10 YNL302C RPS19B Protein component of the small (40S) ribosomal subunit 0 (0.0%) 47 (14.0%) no

that the feature value “interaction with Hsp83 = yes” is more
associated with the pro-longevity class than “interaction
with Hsp83 = no”. Actually, among the genes/proteins
(instances) in our dataset that interact with Hsp83, 72.2% are
pro-longevity genes, whilst among the genes/proteins that
do not interact with Hsp83, 60.4% are pro-longevity genes.
So, interacting with Hsp83 is associated with an increased
probability of the pro-longevity class label.

However, when we look at the data partitioned by the
values of the “interaction with Hsc70-4” feature in the sec-
ond and third rows of the table, a different pattern emerges.
Among genes/proteins that do not interact with Hsc70-4,
the relative frequency of the pro-longevity class is higher
among genes/proteins that do not interact with Hsp83
(58.4%) than among genes/proteins interacting with Hsp83
(50%). The same pattern is observed among genes/proteins
interacting with Hsc70-4 (83.3% for Hsp83=no vs 76.7% for
Hsp83=yes). Hence, in both sub-groups of genes/proteins
(interacting or not with Hsc70-4), interacting with Hsp83 is
associated with decreased probability of the pro-longevity

class label, the reverse of the direction of association ob-
served for the aggregated data.

Tables 7 and 8 indicate Simpson’s paradox occurrences
for the feature Hsp83 in the fly dataset and features Rem1
and Ngf in the mouse dataset. Hence, when interpreting the
association between those features and the class variable,
one should be aware of those paradox occurrences to avoid
drawing wrong conclusions about the data.

4 CONCLUSION

This work addresses classification with uncertain categorical
features, whose values are represented by probability distri-
butions. We have proposed two new ensemble approaches
called Biased Bootstrap (BB) and Biased Splitting (BS) for
coping with this type of uncertainty, based on the principle
that features with lower uncertainty degrees have better
class-discrimination potential since there is higher confi-
dence on their actual values across the dataset.

Our experiments have evaluated these two approaches
on 10 datasets in the domains of ageing-related genes
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TABLE 8
Top-10 PPI Features in the ENB-EV+BRS Model According to the Importance Measure Based on Sufficiency

Organism
Feat.
Rank

STRING ID
Gene

Symbol
Protein Name

Freq. in
Pro-long.

Freq. in
Anti-long.

Parad.

Worm

1 F42G8.12 isp-1 Cytochrome b-c1 complex subunit Rieske, mitochondrial 9 (3.5%) 58 (11.5%) no
2 C26F1.4.2 rps-30 40S ribosomal protein S30 5 (1.9%) 43 (8.5%) no
3 C34E10.6.1 atp-2 ATP synthase subunit beta, mitochondrial 6 (2.3%) 58 (11.5%) no
4 B0250.1 rpl-2 60S ribosomal protein L8 3 (1.2%) 44 (8.7%) no
5 F40F11.1.2 rps-11 Ribosomal protein, small subunit 4 (1.6%) 53 (10.5%) no
6 B0393.1.1 rps-0 40S ribosomal protein SA 6 (2.3%) 51 (10.1%) no
7 T05E11.1 rps-5 40S ribosomal protein S5 5 (1.9%) 60 (11.9%) no
8 F28D1.7.1 rps-23 40S ribosomal protein S23 4 (1.6%) 48 (9.5%) no
9 C49H3.11.1 rps-2 40S ribosomal protein S2 7 (2.7%) 57 (11.3%) no
10 Y56A3A.19 Y56A3A.19 Acyl carrier protein 2 (0.8%) 51 (10.1%) no

Fly

1 FBpp0305736 Sod Superoxide dismutase [Cu-Zn] 30 (25.9%) 4 (5.8%) no
2 FBpp0081956 Hsp70Ab Heat shock protein 70Ab 22 (19.0%) 4 (5.8%) no
3 FBpp0082516 Hsc70-4 Heat shock 70 kDa protein cognate 4 34 (29.3%) 9 (13.0%) no
4 FBpp0081986 Hsp70Aa Major heat shock 70 kDa protein Aa 23 (19.8%) 4 (5.8%) no
5 FBpp0086226 Sod2 Superoxide dismutase [Mn], mitochondrial 31 (26.7%) 8 (11.6%) no
6 FBpp0293589 foxo Forkhead box protein O 36 (31.0%) 14 (20.3%) no
7 FBpp0077974 park E3 ubiquitin-protein ligase parkin 20 (17.2%) 1 (1.4%) no
8 FBpp0070899 schlank Schlank, isoform A 31 (26.7%) 12 (17.4%) no
9 FBpp0088134 CaMKI Calmodulin-dependent protein kinase activity 29 (25.0%) 10 (14.5%) no
10 FBpp0078604 Aux Auxilin, isoform A 17 (14.7%) 3 (4.3%) no

Mouse

1 ENSMUSP00000056668 Igf-1 Insulin-like growth factor 1 10 (19.6%) 16 (51.6%) no
2 ENSMUSP00000029175 Src Neuronal proto-oncogene tyrosine-protein kinase Src 3 (5.9%) 12 (38.7%) no
3 ENSMUSP00000050683 Foxo3 Forkhead box protein O3 8 (15.7%) 13 (41.9%) no
4 ENSMUSP00000055308 Foxo1 Forkhead box protein O1 5 (9.8%) 11 (35.5%) no
5 ENSMUSP00000101553 Ins2 Insulin-2 6 (11.8%) 13 (41.9%) no
6 ENSMUSP00000099878 Rps6 40S ribosomal protein S6 3 (5.9%) 8 (25.8%) no
7 ENSMUSP00000021090 Grb2 Growth factor receptor-bound protein 2 3 (5.9%) 8 (25.8%) no
8 ENSMUSP00000099621 Rpa2 Replication protein A 32 kDa subunit 12 (23.5%) 1 (3.2%) no
9 ENSMUSP00000120152 Stat3 Signal transducer and activator of transcription 3 11 (21.6%) 14 (45.2%) no
10 ENSMUSP00000102538 Ngf Beta-nerve growth factor 5 (9.8%) 8 (25.8%) yes

Yeast

1 YLR167W RPS31
Fusion-protein cleaved to yield

ribosomal protein S31 and ubiquitin
0 (0.0%) 58 (17.3%) no

2 YNL096C RPS7B Protein component of the small (40S) ribosomal subunit 0 (0.0%) 50 (14.9%) no
3 YJR145C RPS4A Protein component of the small (40S) ribosomal subunit 0 (0.0%) 51 (15.2%) no
4 YGL103W RPL28 Ribosomal 60S subunit protein L28 0 (0.0%) 61 (18.2%) no
5 YBR048W RPS11B Protein component of the small (40S) ribosomal subunit 0 (0.0%) 52 (15.5%) no

6 YKR094C RPL40B
Ubiquitin-ribosomal 60S subunit

protein L40B fusion protein
0 (0.0%) 59 (17.6%) no

7 YIL133C RPL16A Ribosomal 60S subunit protein L16A 0 (0.0%) 51 (15.2%) no
8 YGL030W RPL30 Ribosomal 60S subunit protein L30 0 (0.0%) 50 (14.9%) no
9 YGL123W RPS2 Protein component of the small (40S) subunit 1 (2.2%) 58 (17.3%) no

10 YKL009W MRT4
Protein involved in mRNA

turnover and ribosome assembly
0 (0.0%) 55 (16.4%) no

and drugs’ side effects. For this evaluation, we have used
real data with uncertain features referring to probabilities
of protein-protein and protein-chemical interactions. Our
results show that the ensembles using the proposed BB
and BS approaches achieved higher predictive performance
than baseline methods without uncertainty-based random
sampling bias, with the caveat that the BB approach did not
produce good results when applied to NB ensembles. These
results support the hypothesis that the proposed approaches
can effectively cope with uncertainty in categorical features.
In particular, our proposed approaches improved the per-
formance of RF-DFE, a Random Forest method that applies
the most sophisticated approach in the literature to handle
uncertain data in ensembles of this kind.

Furthermore, we have proposed two new approaches for
interpreting an ensemble of Naive Bayes classifiers based
on feature importance measures used to rank features in
decreasing order of their influence in the ensemble’s pre-
dictions. The first approach is straightforwardly based on

conditional probability differences, while the second, more
sophisticated, is based on the concept of a minimal set of
sufficient features for classifying each instance. We have
applied these two feature-ranking approaches to the ageing-
related datasets and compared them to the feature ranking
produced with a conventional feature importance measure
for random forests. An analysis of the top-ranked features
showed that, overall, they fit the current knowledge about
the influence of genes/proteins on ageing well. Besides,
we have also pointed out some strong patterns involv-
ing longevity effects and genes that are not included in
GenAge [8]. These findings suggest some targets for future
biological experiments that could confirm the longevity
effects of some genes/proteins.
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TABLE 9
Top-10 PPI Features in the RF-DFE+BB+BS Model

Organism
Feat.
Rank

STRING ID
Gene

Symbol
Protein Name

Freq. in
Pro-long.

Freq. in
Anti-long.

Parad.

Worm

1 M7.5 atg-7 AuTophaGy (Yeast Atg homolog) 33 (12.8%) 18 (3.6%) no
2 F40F11.1.2 rps-11 Ribosomal protein, small subunit 4 (1.6%) 53 (10.5%) no
3 Y37D8A.14 cco-2 Cytochrome c oxidase subunit 5A, mitochondrial 2 (0.8%) 48 (9.5%) no
4 B0412.4 rps-29 Ribosomal protein, small subunit 4 (1.6%) 46 (9.1%) no
5 Y45G12B.1a nuo-5 NADH Ubiquinone Oxidoreductase 2 (0.8%) 41 (8.1%) no
6 F42C5.8 rps-8 40S ribosomal protein S8 4 (1.6%) 49 (9.7%) no
7 Y37E3.8a Y37E3.8 Protein Y37E3.8, isoform a (Y37E3.8) mRNA, complete cds 3 (1.2%) 46 (9.1%) no
8 Y57G11C.34 mrps-7 28S ribosomal protein S7, mitochondrial 2 (0.8%) 54 (10.7%) no
9 Y105E8A.16.1 rps-20 Ribosomal protein, small subunit 3 (1.2%) 48 (9.5%) no
10 F58F12.1 F58F12.1 ATP synthase subunit delta, mitochondrial 4 (1.6%) 58 (11.5%) no

Fly

1 FBpp0085780 CG15116 Glutathione peroxidase activity 21 (18.1%) 3 (4.3%) no
2 FBpp0070416 ph-p Polyhomeotic-proximal chromatin protein 3 (2.6%) 4 (5.8%) no

3 FBpp0071973 Pi3K59F
Phosphotidylinositol 3 kinase 59F,
a.k.a. Vacuolar protein sorting 34

21 (18.1%) 4 (5.8%) no

4 FBpp0070717 dhd Thioredoxin-1 10 (8.6%) 1 (1.4%) no
5 FBpp0078138 CG7133 annotation not available 2 (1.7%) 0 (0.0%) no
6 FBpp0072932 PHGPx Peroxidase activity 19 (16.4%) 2 (2.9%) no
7 FBpp0083975 Atg6 Beclin-1-like protein; Autophagy-related 6 23 (19.8%) 4 (5.8%) no
8 FBpp0082927 Prx3 Thioredoxin peroxidase 3 10 (8.6%) 0 (0.0%) no
9 FBpp0087354 Prx2540-2 Peroxiredoxin 2540-2 8 (6.9%) 0 (0.0%) no
10 FBpp0099922 Nos Nitric oxide synthase 5 (4.3%) 0 (0.0%) no

Mouse

1 ENSMUSP00000128260 Tfdp2 Transcription factor dp2 1 (2.0%) 1 (3.2%) no
2 ENSMUSP00000126874 Ccnt1 Cyclin-T1 1 (2.0%) 2 (6.5%) no

3 ENSMUSP00000101315 Pik3cd
Phosphatidylinositol 4,5-bisphosphate
3-kinase catalytic subunit delta isoform

1 (2.0%) 7 (22.6%) no

4 ENSMUSP00000030464 Pik3r3 Phosphatidylinositol 3-kinase regulatory subunit gamma 1 (2.0%) 7 (22.6%) no
5 ENSMUSP00000099991 Pdpk1 3-phosphoinositide-dependent protein kinase 1 1 (2.0%) 6 (19.4%) no
6 ENSMUSP00000021090 Grb2 Growth factor receptor-bound protein 2 3 (5.9%) 8 (25.8%) no
7 ENSMUSP00000025749 Rps6kb2 Ribosomal protein S6 kinase beta-2 1 (2.0%) 4 (12.9%) no
8 ENSMUSP00000038514 Irs2 Insulin receptor substrate 2 4 (7.8%) 9 (29.0%) no
9 ENSMUSP00000034296 Pik3r2 Phosphatidylinositol 3-kinase regulatory subunit beta 3 (5.9%) 8 (25.8%) no
10 ENSMUSP00000047839 Ppp1r13l RelA-associated inhibitor 3 (5.9%) 0 (0.0%) no

Yeast

1 YKR094C RPL40B
Ubiquitin-ribosomal 60S subunit

protein L40B fusion protein
0 (0.0%) 59 (17.6%) no

2 YKL148C SDH1 Flavoprotein subunit of succinate dehydrogenase 11 (23.9%) 12 (3.6%) no
3 YKL180W RPL17A Ribosomal 60S subunit protein L17A 0 (0.0%) 56 (16.7%) no
4 YBR143C SUP45 Polypeptide release factor (eRF1) in translation termination 0 (0.0%) 53 (15.8%) no
5 YER056C-A RPL34A Ribosomal 60S subunit protein L34A 0 (0.0%) 52 (15.5%) no
6 YBR048W RPS11B Protein component of the small (40S) ribosomal subunit 0 (0.0%) 52 (15.5%) no
7 YGR148C RPL24B Ribosomal 60S subunit protein L24B 0 (0.0%) 48 (14.3%) no
8 YBL092W RPL32 Ribosomal 60S subunit protein L32 0 (0.0%) 50 (14.9%) no
9 YOR065W CYT1 Cytochrome c1, heme protein, mitochondrial 9 (19.6%) 11 (3.3%) no

10 YLR009W RLP24
Essential protein required for

ribosomal large subunit biogenesis
0 (0.0%) 52 (15.5%) no

TABLE 10
Simpson’s Paradox Occurrence in the Fly Dataset

Hsp83 = no Hsp83 = yes
Total Pro-long. Total Pro-long.

Aggregated data 149 90 (60.4%) 36 26 (72.2%)
Hsc70-4 = no 137 80 (58.4%) 6 3 (50.0%)
Hsc70-4 = yes 12 10 (83.3%) 30 23 (76.7%)

FAPERJ (Brazil) grant number E-26/201.139/2022; and In-
stituto Brasileiro de Geografia e Estatı́stica (IBGE, Brazil).

REFERENCES

[1] F. Angiulli and F. Fassetti, “Nearest neighbor-based classification
of uncertain data,” ACM Trans. Knowl. Discov. Data, vol. 7, no. 1,
2013.

[2] J. Ge, Y. Xia, and C. Nadungodage, “UNN: A neural network for
uncertain data classification,” in Advances in Knowledge Discovery
and Data Mining, M. J. Zaki, J. X. Yu, B. Ravindran, and V. Pudi,
Eds. Berlin: Springer, 2010, pp. 449–460.

[3] M. R. H. Maia, A. Plastino, and A. A. Freitas, “An ensemble of
naive bayes classifiers for uncertain categorical data,” in Proc. of
the 2021 IEEE Int. Conf. on Data Mining, 2021, pp. 1222–1227.

[4] S. Tsang, B. Kao, K. Y. Yip, W.-S. Ho, and S. D. Lee, “Decision trees
for uncertain data,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 1,
pp. 64–78, 2011.

[5] Z. Xie, Y. Xu, and Q. Hu, “Uncertain data classification with
additive kernel support vector machine,” Data Knowl. Eng., vol.
117, pp. 87–97, 2018.

[6] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp.
123–140, 1996.

[7] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp.
832–844, 1998.

[8] R. Tacutu, D. Thornton, E. Johnson, A. Budovsky, D. Barardo,
T. Craig, E. Diana, G. Lehmann, D. Toren, J. Wang, V. E. Fraifeld,
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