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Abstract—Modern Healthcare cyberphysical systems have be-
gun to rely more and more on distributed AI leveraging the
power of Federated Learning (FL). Its ability to train Machine
Learning (ML) and Deep Learning (DL) models for the wide
variety of medical fields, while at the same time fortifying
the privacy of the sensitive information that are present in
the medical sector, makes the FL technology a necessary tool
in modern health and medical systems. Unfortunately, due to
the polymorphy of distributed data and the shortcomings of
distributed learning, the local training of Federated models
sometimes proves inadequate and thus negatively imposes the
federated learning optimization process and in extend in the
subsequent performance of the rest Federated models. Badly
trained models can cause dire implications in the healthcare
field due to their critical nature. This work strives to solve this
problem by applying a post-processing pipeline to models used
by FL. In particular, the proposed work ranks the model by
finding how fair they are by discovering and inspecting micro-
Manifolds that cluster each neural model’s latent knowledge. The
produced work applies a completely unsupervised both model
and data agnostic methodology that can be leveraged for general
model fairness discovery. The proposed methodology is tested
against a variety of benchmark DL architectures and in the FL
environment, showing an average 8.75% increase in Federated
model accuracy in comparison with similar work.

Index Terms—Fairness, Adversarial networks, Federated, Im-
age synthesis, Image classification

I. INTRODUCTION

Modern medical fields including the healthcare/medical
and paramedical fields, medicine, and their respec-

tive research equivalent, are increasingly adopting AI-enabled
means, such as Machine Learning (ML) and Deep Learning
(DL) to optimize their operations. In these fields, the use of DL
and ML pushes for innovative and evolved solutions, but also
facilitates the operation of quality-of-life services. Specifically,
in the medical sector, to successfully train AI models requires
the utilization of large quantities of information, especially
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in the case of commercial deployment, produced by medical
equipment that are sensitive in nature. As of late, the privacy of
data in the AI fields has been the keen interest of both national
and global entities that strive to fortify their security. To this
end, the technology of Federated Learning (FL) is adopted in
order to decentrally train and optimize DL models remotely.
FL removes the need to transfer and process the sensitive data
to a central system but only processes the produced models,
thus ensuring their security and privacy aspect [1].

One of the primary challenges in Federated Learning is
model development and optimization. Specifically, a big effort
is being given in finding way to tackle low-quality models,
developed and employed, that occur due to bad quality data
from the distributed clients. This problem is dependent to the
heterogeneous data, large population and pervasive uncertainty
[2] and other such factors that can be found in largely
distributed machines. These factors introduce unfairness or
skewness to the data. This natural data bias is symptomatic
of their tendency to be unevenly distributed, leaning towards
a specific subset of the classes that is accumulated by the
models during training [3]. This indicates that the statistical
distribution of the relevant dataset will have a significant
impact on the performance of ML and DL models. Thus,
the apparent unbalanced bias and the lack of fairness that
is identified in the utilised data intended for use in ML or
DL implementations determines the quality of the resultant
model and its desired output, such as data categorization and
augmentation, anomaly detection, decision support, and so
on. This shortcoming affects the widespread deployment of
the aforementioned algorithms, their performance on the task
at hand, and the long-term viability of the system in which
they are utilized [4]. This topic is becoming increasingly
relevant in medical applications, where even little miscalcu-
lations can have disastrous consequences, even resulting in
the loss of human lives, necessitating the need for a solid
solution. There is minimal evidence showing the stability and
robustness of a participating worker’s model since FL is a
distributed scheme that inherits the difficulties of conventional
DL practices. This indicates that an unfair or biased model
who participated in the FL training might have a detrimental
influence on the overall success of the training, leading to
disastrous consequences. Because the training data and its
features, such as heterogeneity or distribution, are unknown
in the FL process, and because the data in practical scenarios
is defined as non-IID, the need for a method to test the
fairness of the created local models becomes crucial II-B. In
[5] The suggested methodology enforces demographic parity
and equalised chances on the local model using in-processing
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methods and a limited optimization problem. A potential flaw
in the method is that the technique does not address the issue
of data inequalities between customers, which may impair
the model’s impartiality. The method introduced in this work
intends to solve the problem of acquiring high-quality models
for the FL training and optimization procedure by enforcing
a process and evaluation criteria, such as a fairness metric,
that evaluate the fairness of a model trained on the edge.
This methodology, which follows a completely unsupervised
manner, intends to help the model selection procedure that
is realised during FL. This is done to produce higher quality
models than stochastically selecting clients [6] to participate in
FL which usually results in needing a high number of clients
[7], as shown in the experimental results.

On the federated fairness measuring and optimization as-
pect, some work on reducing the fairness saturation of the
learned data and in extent generated by DL networks has
been performed. In [8], the authors produce the FairGAN
network, a fairness-aware GAN architecture that learns to
be fair during training. It achieves this by augmenting an
additional D module that opposes the biased accumulation
of data by relying on a corresponding conditional protected
attribute pointing at a certain group in the data, s → Pdata(s).
One main drawback of this method is that the additional
network is introduced in the training process, meaning that
the training of the models needs an extra configuration on the
remote endpoint in the case of FL, but also requires more
intensive resource allocation during the active FL training.
The same principle is also explored in [9], where the authors
employ an additional D to discriminate unfair bias towards
protected categories. They evaluate their work by analyzing
the model’s bias-variance dilemma to prove its performance
against benchmark fairness-oriented datasets. In an effort to
map the bias measurement problem and provide an adequate
solution, [10] presents a method for evaluating the fairness
of a GAN deep network. This work is based on the property
of GANs to correlate their overfitting with their classifica-
tion accuracy. This work shows the relationship between the
fairness of the GAN’s biased data and augmented data and
their distribution. The authors utilize statistical sampling to
measure this fairness, based on the under-evaluation network.
A setback of this approach is that it relies on the knowledge of
the training procedure of the network. Moreover, the consid-
ered assumptions of the methodology are not representative
of a wide variety of augmentation networks, except GAN
networks. In another work, the authors in [11] present an
adversarial representation learning methodology, ensuring the
fairness models used by third parties. They apply well-known
fairness evaluation measures, such as a) demographic parity,
b) equal opportunity, and others, to the adversarial training
process to establish a discriminatory baseline. They evaluate
their strategy with experimental findings that demonstrate the
usefulness of their concept. This strategy, however, imposes
on the proposed model’s training process, refocusing it on the
accurate parameterization of the model during training in a
data-dependent way. In [12], the authors propose FairFed, a
novel algorithm for fairness-aware aggregation in federated
learning, was proposed to enhance group fairness in machine

learning models. FairFed’s empirical evaluation demonstrated
that FairFed provides fairer models, particularly under highly
heterogeneous data distributions across clients. One potential
flaw in the suggested method is that the fairness metric utilised
to adaptively alter the aggregate weights of various clients
depending on their local fairness metre may be insufficient
or may not capture all aspects of fairness relevant to the
challenge at hand. This might lead to model update biases
and, eventually, lower-quality global models. In, [13], a set
of metrics is defined, namely, a) the Fano inequality and
b) the structural similarity index that measures group and
individual fairness. The issue is however that the notion of
individual fairness is task-specific, limiting the proposed fair-
ness measures. Specifically, both measures depend on in-task
and data-specific aspects that might not be applicable in every
application. Furthermore, the suggested method for attaining
individual fairness necessitates that each device calculates and
exchanges its inequality value with the FL server which might
create privacy concerns. Lastly, in [14], the authors present
a post-processing fairness measuring method that evaluates
trained Federated models. In the paper they experiment with
a processing pipeline that leverages latent GAN deformations
to quantify the model’s predictions. They produce an unsuper-
vised ranking of each model’s learned classes by clustering the
deformation predictions. The method quantifies the fairness of
each model based on the performance of the rest of the models
using Fdi, a custom fairness metric.

It is also deemed necessary to mention currently utilized
metrics for the goal of model optimization tackling the fairness
problems. As is defined in [15], currently used fairness metrics
can be categorized in three major categories, namely, a) Pre-
Process, b) In-Process, and c) Post-Process, in respect to the
stage they are measured, i.e, before, during or after the training
process. These use measures like i) Normalized prejudice
index [16], ii) Disparate impact [17], iii) Equalized odds [18],
and so on, which rely on statistical measures targeting the
training data or how they are used by the training process.
The problem with these metrics and the reason for omitting
them from the comparative results of this work is that these are
mainly statistical-based fairness evaluation metrics aiming at
the pre-training testing (i.e., the data to be used in the training)
and as so diverge greatly from the scope of the proposed
methodology.

Finally, a problem that current research is emphatically
trying to solve is the interpretability and transparency of
Machine and Deep Learning models. Until recently, AI models
were seen and used a Black-Box, mostly due to the complex,
non-linear, manner in which they learn and in extent make
decisions. In the healthcare sector, were decisions concerning
patients must be made using concrete justifications, the need
to be able to understand the reasoning behind a decision
made by an AI model, becomes critical [19][20]. This sector
falls under the organized research of Explainable Artificial
Intelligence (XAI) [21]. This work delves in this field by
producing interpretable visualizations of what the models have
learned, as discussed in Section III.

Based on the aforementioned notions and problems this
work, striving to solve the biased skewness of the learned
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knowledge in Federated models, offers the below contribu-
tions:

• Presents a novel quantification pipeline oriented in mea-
suring the fairness or bias of DL models without knowing
the model’s architecture or the training data.

• Introduces and processes micro-Manifolds for latent
knowledge clustering and discrimination for model op-
timization

• Presents a latent knowledge visualization method for
trained DL models adding to the explainability of the
produced models

• Designs and presents a novel and end-to-end evalua-
tion pipeline that organises the data, enforces bias, and
measures the holistic performance of the DNNs in a
comparative manner

In particular, this work tries to fill the gap in the fair-
ness measuring methodology up to now, by producing and
evaluating a strictly unsupervised pipeline that can measure
and visualise the volumetric properties of each DNN. This
also aims to help the Federated process by evaluating the
aggregated models, post-process, and identifying stragglers
that possess and offer low-sample and low-quality data to the
FL process. The proposed methodology is designed to produce
a quantifiable metric to assess and describe the fairness of each
DNN.

The remainder of this work is structured as follows. The
tools used to implement the suggested strategy are described
in Section II. Section III outlines the approach developed
to solve the fairness discovery problem, whereas Section IV
offers the evaluation findings of the offered work. Furthermore,
hyperparameter ablation is created in Section V. Concluding,
Section VI brings this effort to a close.

II. BACKGROUND

In this section, the necessary background for the tools and
methods used in this work are presented. In particular, i) the
GAN Deep Neural Network architecture is explained and ii)
the Federated Learning environment is presented.

A. GAN Architecture

Two neural sub-networks, namely the Generator G and the
Discriminator D, form the basis of the GAN architecture and
compete with each other [22], [23] in an adversarial game. G
usually takes as input random noise data and tries to produce
similar-to-the-real data of the given use case. On the other
hand, D is trained to identify the real samples and the fake
data produced by G. The GAN architecture aims in training
the two rivaling sub-networks, in a manner that G is able to
generate realistic samples, which cannot be differentiated by
D from the real data and vice versa. Equation 1 shows the
relation between both sub-networks.

min
G

max
D

V (G,D) = min
G

max
D

Ex∼pdata
[log(D(x))]+

Ez∼pz [log(1−D(G(z)))]
(1)

where G accumulates from space Z noise z and maps it to
the space X which is used by D to input x. The probabilistic

distribution of spaces X and Z are denoted by pdata(x) and
pz(z), respectively.

Following the training from the Discriminator module, an
intermediate model is produced for the Anomaly Detection
procedure. The specific model is placed within the Discrimi-
nator between the input and a latent layer in advance of the
network’s output sequence. The model is used to reduce the
dimension of the input samples into a specific latent space.

B. Federated Learning

Federated Learning is a distributed stochastic learning and
privacy-preserving approach that enables the orchestration,
distribution, learning, and aggregation of Deep Learning mod-
els over several cloud devices or edge nodes [24]. It works
by stochastically dispersing a central Deep Learning model
among a specific corpus of nodes in order to train locally the
on-device acquired data. As a result, the models are returned
to the centralized system and input into a process known as
Federated Averaging [1], which aggregates the edge-calculated
weights with the central model.

Specifically, the central server distributes a global model
w0

Global along with training instructions to a Federated popu-
lation Pf ∈ [1, N ] where N ∈ N∗, each holding a set of local
data Di∈N and local models wi

l . The distributed models are
subsequently trained on the local data Di and then the weights
wi

Global are send back to the central system to be aggregated
through the Federated Averaging (2), or similar, process in
order to produce an updated global model wk

Global [25].

wk
G =

1∑
i∈N Di

N∑
i=1

Diw
k
i (2)

Here wk
G is the global model at the kth training iteration

and wk
i denotes the Federated population ith model at that

iteration.

C. Unsupervised Latent Direction Discovery

The unsupervised Latent Direction Discovery [26] is an
exploratory process through which different directions in the
latent space of a model are identified. Traversing these di-
rections in a GAN network can change its output based on
its knowledge, adding/subtracting or transforming elements,
called semantic manipulations. For example, let’s assume a
GAN network trained on dataset containing a large number
face images. The latent space of this model contains infor-
mation about the different characteristics of a face, such as
expressions, hair color and skin tone, eye color, and so on.
By traversing a latent direction in the latent space of this
model it is possible to input an image of a person with
a neutral expression and produce an image of that person
smiling, based on information accumulated of persons with
smiling expressions. This methodology utilises a specialized
GAN network, aimed at mapping the directions in a model’s
latent space. This mapping results in a number of latent
directions and corresponding semantic manipulations (shifts)
in those directions. Using these will the output of the model
in question can be manipulated. To do this, two components
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are trained for each model Gi, first a matrix AERdiKi ,
where di is the dimensionality of the latent space of Gi

and Ki corresponds to the number of directions in the latent
space. Then, a reconstructor Ri, which obtains an image pair
(Gi, Gi(z +A(aek))) and outputs Ri(I1, I2) = (k′, a′). Here
ek is a unit vector and a is a scalar, while k′ and a′ are the
prediction of a direction index k, and a prediction of a shift
magnitude a, respectively. The learning process is performed
using a minimisation process on the following loss function:

min
A,R

E
z,k,a

L(A,R) = min
A,R

E
z,k,a

[Lcl(k, k
′) + cLr(a, a

′)] (3)

where Lcl is the cross-entropy and Lr is the mean absolute
error, while we experimentally found c = 0.25 to be optimal.
After the training is completed, R has produced k latent
directions.

III. METHODOLOGY

This section delves into the implementation of the proposed
methodology of this work. Our work relies on the method-
ology developed in [26] which undertakes the design and
development of the Unsupervised Latent Direction Discovery
technique, which was analyzed in the Background section.
The proposed methodology is divided into four main pillars,
namely, a) Pre-trained Model Preparation (only for evaluation
purposes), b) Latent Direction Discovery, c) Latent micro-
Manifold Processing and lastly, d) Model Ranking, Figure 1.
Overall, this methodology aims to assess the fairness level of
deep learning models and augment them without prior knowl-
edge of training data, hyperparameters, or training/evaluation
environment. The methodology is defined in the shape of
a pipeline that can be used sequentially to measure the
fairness of each individual model. In particular, the process
starts by exploring the disentangled latent knowledge of the
model through Latent Direction Discovery in order to create
a perspective of what each model has learned. Next, sam-
ple points in the disentangled directions are processed and
clustered to micro-manifolds of latent knowledge to create
a quantifiable volume of the model’s knowledge. Finally, by
analysing the properties of this volume, significant information
can be obtained, which leads to the fairness evaluation of each
model.

A. Pre-trained Model Preparation

As stated before, the approach discussed in this study
focuses on finding the fairness level of prediction and aug-
mentation Deep Learning models with no prior knowledge
of the training data, hyperparameters, or training/evaluation
environment. A default training method is offered in this
section to robustly explain the technique and provide a global
view of this work. The Unsupervised segment, which would
be used in an FL system, is fully documented in section
III-B and below. Two different DL model architectures were
employed in this work since we refer to two sorts of DL use
cases, namely a decision-based and specifically a classification
scenario and a data augmentation/generation scenario. To that
end, a GAN network and a rudimentary DNN classifier were
built and tested following the given method.

1) Generative Network Architecture: One of the two Deep
Learning architectures selected for this work is the GAN
architecture. GAN networks are widely used in a variety of
scientific fields because of their powerful ability to accumulate
and generate data spaces but also due to their versatile aspect
and adaptability to a plethora of applications, such as anomaly
detection, regression, classification, dataset generation and
so on. To implement and test the proposed methodology
the DCGAN (Deep Convolutional GAN) [27] scheme was
selected due to its simplicity and wide application in the
medical sector but also because it can be abstracted to extend
subsequent GAN architectures. In the presented pipeline and
to measure the Fairness of the GAN models only the Generator
module is used while the rest of the network is treated as a
black box.

2) Classifier Network Architecture: The second architecture
that is investigated is the simple DNN image classification
scheme. This network is made to accumulate a batch of
preprocessed images and outputs a vector of length C ∈ N∗

in the form of a probability vector containing the correlation
of the input to each predicted class. The classifier is trained
on the benchmark data selected for this work, section IV,
and is integrated into the generated pipeline by leveraging an
augmentation head as is described below.

To better justify the proposed methodology, a more ad-
vanced classification DL model was selected. The ResNet18
architecture [28], a branched scheme of the ResNet archi-
tecture [28], which is one of the most powerful series of
deep neural networks with high performance on most bench-
mark datasets, was leveraged. Like the simpler DNN model,
ResNet18 models were trained on the given data and the re-
sulting trained models were integrated to this work’s pipeline.

B. Model Latent Knowledge Discovery

In the proposed methodology, the models under revision
go through the process of Latent Direction Discovery. This
methodology produces K directions and S shifts to deform the
output of that model. A subset of those K directions are chosen
and based on S shifts along those directions are uniformly
implemented upon N number of random noise samples to
produce a K×S×N matrix M of latent deformations of the
original DL model’s knowledge. This is performed to assert a
knowledge baseline of the model while traversing the different
directions within its latent space, Figure 2. The larger the value
of K, S, and N the higher the probability of capturing a higher
percentage of the latent knowledge of the DL model.

Up to this point, and utilizing simply the GAN’s G module
as an example, the procedure has flowed smoothly with the
supplied model. However, an issue occurs when evaluating
the second tested case, the classification model, because a
classifier, by definition, is not an augmentative model and does
not create data, or at least data in a comprehensible manner.
This raises the question of how to employ it in the Latent
Deformation process. Two approaches were investigated in
order to overcome this challenge. The initial approach would
to adapt the classification model to the Latent Deformation
process would be to extract an intermediate model up to a
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Fig. 1: Methodology pipeline

Fig. 2: Latent Direction Transversal Effect

Latent layer Ll. That layer’s output can then be translated
into a two-dimensional matrix describing image data and given
to the pipeline. Of course, the generated image would not
be translatable to any human visible pattern, but it would be
transmitted to the pipeline as information. One disadvantage
of this strategy is that portions of the model’s layers would
be removed, potentially resulting in information loss. The
second solution, which is also chosen for this study, is to
add a passive output reshaping unit to the classifier. This
reshaping head would make the model produce image data
in the same way as an augmentative model would. Because
the additional component operates in a tunneling fashion, all
of the information stored in the classifier is kept without
introducing any learnable parameters to the model. Fig.1
also depicts the coupling of the classifier with the passive
output reshaping head. We shall use the terms ”model” and
”generator” interchangeably throughout the rest of the paper
to describe either classification or augmentation models.

C. Latent micro-Manifold Processing

The generated data M are subsequently aggregated and
then scaled and normalized to a specific range. Next, a
dimensionality reduction algorithm (e.g. tSNE) is applied,
transferring the data of D dimensions to a space Md, where
d << D, trying to accommodate a balance between size loss
and information loss. Since normalizing and reducing the data
to a specific dimension (Dimensionality Reduction) are reliant
on the training data, no threshold can be specified that can
be used in a wide variety of cases. In this work, we project
the data to a three-dimensional space for illustration purposes.
However, before performing the dimensionality reduction, the
data are sufficiently randomized to eliminate any biases caused
by the nature of this technique. Two indexes Kindex and
Nindex are kept in parallel in order to reassemble the shuffled
data to its original order pointing to the direction and noise

they belong to. The structure of the data can be seen in Fig.
3.

Fig. 3: Structure of generated samples

After indexing and reassembling the data, small clusters
that were created in the overall data manifold due to the
deformed latent knowledge are isolated. These small cluster
define the micro-Manifolds described in this work. In this
instance, it was observed that micro-Manifolds are formed by
the points corresponding to the different noise inputted in the
deformation network, which is deformed S times along K
directions. This results in the creation of N micro-Manifolds
in the overall information manifold, formed from a set of kxs
elements, where k ∈ K, s ∈ S. Fig. 5 depicts two different
micro-Manifolds, a two- and a three-dimensional. Following,
the outliers from each micro-Manifold are eliminated in order
to reflect the clean latent information around each noise n.
As mentioned in [26], outliers are created because, except for
the interpretable deformations, like, zooming, rotating, aug-
menting features, and so on, there exist also transformations
that deform, saturate or even transform an object into another.
In the digit MNIST dataset, for example, a latent direction
might convert a digit into an unrecognizable/different shape
or even rebuild it as another digit, Figure 2. These directions
are dropped because they have deemed outliers in relation
to each noise n. The elbow approach is used to determine
the threshold at which outliers are recognized. In this work,
the Kneedle algorithm [29] was leveraged to dynamically
calculate the outlier removal threshold. In this work, we denote
the outlier removal threshold θ which is calculated using the
elbow method. In particular, the distances, calculated by Eq. 4,
between the consecutive points in a latent direction for each
direction in a cluster are inputted and the system removes
any information furthest than the biggest gap in the direction.
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This indicates an information disparity in the corresponding
direction, removing data from the cluster centre.

d =
√∣∣b2i − b2i−1

∣∣ (4)

Fig. 4: Latent Direction Quality: (a) Fair, (b) Biased

Where bi denotes the ith element of a direction.

Fig. 5: (a) 2D micro-Manifold, (b) 3D micro-Manifold without outliers

Micro-Manifolds are also centered, by simply removing the
mean as seen in Eq. 5.

M i
zero = M i −M i (5)

Here, M i
zero denotes the ith noise index, with no outliers.

M i denotes the ith element of the original matrix, and M i

denotes its mean average. Finally, the micro-Manifolds are
normalized in a predefined range. The described process can
be seen in Fig. 6.

D. Model Ranking

The final phase in the proposed methodology is the cal-
culation of the Fairness Rank of the DL model. This is
achieved through the volumetric analysis of the discovered and
processed micro-Manifolds. Specifically, the distance among
neighboring points in each direction of a noise sample is
calculated and then it is averaged along the different directions
within the same noise vector. This computes the density,
or rather the sparsity of the micro-Manifold. To calculate
a volumetric representation of the model’s knowledge, the
average of the mean of all the micro-Manifolds is calculated,

(a) (b)

Fig. 6: (a) Manifold, (b) No outliers and centered

Eq. 6. Through this process, we can quantify the knowledge
or lack thereof in a deep learning model.

ρ =
1

N

N∑
n=1

[
1

K

K∑
k=1

(
1

S − 1

S−1∑
s=1

ds

)]
(6)

where ρ is the mean density and ds denotes the distance
between pair of elements s in direction K. The same is done
to calculate the mean standard deviation of the distances in
Eq. 7,

σ =
1

N

N∑
n=1

[
1

K

K∑
k=1

std(dk])

]
(7)

where dk describes the distance vector of a certain direction
K. This process is also depicted in Figure 4, were w1 denotes
the model weight and w1+∆w denotes the transversal of the
weight in direction K by ∆w.

The final Fairness Rank can be calculated by using the
metrics collected up to this point, seen in Eq. 8. This process
server is also a secondary purpose. By taking advantage of
the information of the density in the different directions in
the noise vectors against the outliers discovered in that direc-
tion the quality of each direction can be actively inspected.
Measuring the density of a direction in space N will reveal
the quality distribution of that direction in the latent space,
thus differentiating between useful and fewer directions in the
respective latent space.

Ff =
ρσ

µ∗
µ + 1

(8)

Here ρ is the mean manifold density, σ denotes the mean
standard density deviation while µ∗

µ denotes the fraction of
mean manifold outliers µ∗ over the mean population µ.

IV. EVALUATION

In this section, we present the evaluation environment,
the leveraged datasets, and the various metrics and results
produced by the proposed techniques.
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A. Evaluation Environment

To realize the outlined methods, a mid-range evaluation
system was utilized. The simulations were performed on a
workstation utilizing the Linux OS, and relying on 16GB of
RAM memory, an i7 Intel core processor, and an NVIDIA
GTX 1080 8Gb GPU. Since the resource allocation and
experiment times are relative to the evaluation environment,
they are not presented here. Nevertheless, it was observed
that the developed approach is computationally expensive
for three reasons. First, the outlined method requires the
training of the GAN network that maps the latent space of the
evaluated models, which is a computationally arduous task.
Furthermore, the methodology produces a large number of
samples and performs dimensionality reduction on the data
in order to map the latent knowledge of the Deep Learning
models. Dimensionality reduction is also a method that needs
expensive computations. This adds to the resource require-
ments of the developed method. This although should not be
considered a drawback that hinders the Federated application,
since the proposed methodology is not an online task but can
be performed asynchronously.

B. Simulation Data

To substantiate the proposed approach, the need for targeted
sets of data arises. Thus, it was deemed necessary to utilize
benchmark data, both from the field of medical application, but
also widely applicable datasets that are used to validate DL
models. For this work, two datasets were selected, namely,
the a) DigitMNIST [30] and the b) MedMNIST [28] (Medical
Mnist) benchmark datasets. The Digit MNIST dataset com-
prises multiclass data containing images of the handwritten
digits 0−9 for general DL use, while the MedMNIST dataset
contains a series of multi-modal sub-datasets covering diverse
data scales and purposes, respectively, like classification, re-
gression, anomaly detection, and so on. For the purpose of
the experiment, the DigitMNIST and the PathMNIST sets
were chosen for their homogeneity of sample numbers and
multiclass features. Fig. 7 depicts samples from these two
datasets.

At this point, a notice has to be made regarding the
reasoning behind the use of the DigitMIST data collection. The
reason for using this particular dataset involves two factors.
First, this methodology does not aim in solving a data-oriented
problem, like classification or regression, but rather tries to
optimize the model itself without knowing its purpose by
fining badly trained models. The second factor involves the
dataset’s property of being by its nature balanced and does
not contain natural biases (like class overlapping) and, thus,
we can control the bias distribution to establish the correct
validation of our methodology. These two notes combined with
its the wide use of the chosen data constitute the reasons for
its use.

Concerning the DCGAN network and the classifier network,
both were trained with the i) DigitMNIST fairly trained
and biased on the separate class 1/3/5, respectively and ii)
PathMNIST fairly trained, and biased on the separate class

Fig. 7: Samples of: (left) PathMNIST, (right) DigitMNIST

1/3/5, respectively. The biased networks were trained on 10-
30 percent of the bias-induced class. After the training process
and the Latent direction discovery, the models were made to
augment a total of 100000 samples each. To do that, K = 10
random directions, S = 100 random shifts per direction, and
N = 100 random noise were selected, creating a manifold of
[10x100x100] for each case, respectively. Two different dimen-
sionality reduction algorithms were used for the experiments,
namely, the i) tSNE [31] and b) PCA [32]. In the performed
experiments, data were normalized leveraging a Min-Max
Scaler to the range of [0, 1] and reduced the manifolds to
the dimensions 2 and 3. For the outlier removal, an empirical
custom threshold was used based on the specific manifold at
hand with the best size/information loss trade-off or it was
dynamically calculated through the elbow method. All the
parameters used for each manifold, as well as the produced
results on the performed experiments, are presented in Tables
II, III, IV and V. After that, the findings of the experiments are
examined. Each experiment evaluates the performance of the
proposed technique against key data aspects, such as, a) Data
bias (fair, % of a class), b) Dimensionality reduction (e.g.,
tSNE, PCA), c) Reduced Dimension (e.g., 2D/3D), d) Dataset
(DigitMNIST/PathMNIST), e) DL Architecture (GAN, DNN).
Note that during the indexing of the manifolds, some values
are dropped as invalid. These values occur due to the stretch
of the deformation component [26] when drawing the latent
directions, resulting in invalid values (like out of index or nan
values), leading to some differences in the final population of
the manifold. All of the values reported in the experiments
were estimated relative to the resultant population of each
experiment. The notations used in the tables describing the
results are shown in Table I. Furthermore, Fig.8 presents the
outline of the experiments realised in the premise of this
work. In particular, Fig.8 presents the different aspects of the
experiments, e.g., Data bias, Dimensionality reduction, and the
network architectures tested against the proposed methodology
as described above.

C. Evaluation Experiments

The experiments described in Table II were produced using
different combinations of thresholds, dimension reductions,
and dimension reduction algorithms and, of course, data
distributions for each clustered of correlated cases (models).
A cluster of experiments is defined as the arrangement of
experiments with the same dataset, dimension reduction al-
gorithm, and dimension of manifolds. The elbow approach
was used to dynamically determine all of the thresholds in
Table II (averaging the produced thresholds for each cluster for
uniformity). The initial experiments were carried out using the
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DigitMNIST PathMNIST

Class

Rebalancing

Balanced

Class 1 unfair

Class 3 unfair

Class 5 unfair

Balanced

Class 1 unfair

Class 3 unfair

Class 5 unfair

tSNE

2D 3D

DCGAN DNN DCGAN DNN

PCA

2D 3D

DCGAN DNN DCGAN DNN

Proposed Methodology

Federated Testbed

Datasets

Tested Cases of 

class imbalance

Fig. 8: Experiment Outline

TABLE I: Result notations

Notation Meaning
DR Dimensionality Reduction Algorithm
D* Reduced Dimensions
θ Outlier Removal Threshold
ρ Mean Density
σ Mean Density Standard Deviation
µ Mean Manifold Population
µ Manifold Population
µ∗ Mean Outlier Number
µ∗ Outlier Number
µ ∗ /µ Outliers / Manifold Population
Ff F factor
log(Ff ) F factor logarithmic
W*/*/. . . /* Workers with id *
acc Accuracy
rec Recall
pre Precision
f1s F1 Score
BC Biased Class

tSNE method, which produced 3D manifolds and leveraging
a θ value of 0.8. It can be shown that in the case of the
biased classes, the mean outlier number increases, indicating
that the manifolds have a greater percentage of decorrelated
values. The Fairness factor increases as the model becomes
more biased. By reviewing the visual results in Figure 9, by
examining the digits, generated by each model, namely, a)
the model with bias on class 3, b) the model with bias on
class 5, and c) the fair model which was selected by the
proposed methodology, it can be seen that the method finds
the more balanced and higher quality model. In particular, in
the first and second case, it can be seen that the generated
digits are severely saturated in the respective biased classes.
On the other hand, the fair model produces higher-quality

samples. By selecting the fair model, the final aggregated
FL model will be able to generalise much faster, producing
better results. In the second cluster having 3D PCA reduced
data, there seems to exist a contradiction. According to Ff

the fairest model is a biased one. In fact, the fair model
has the lowest score. The same can be seen in the fourth
clustered, featuring 2D PCA reduction. PCA seems to produce
sparser micromanifolds with big value distances between a
steady number of consecutive direction values. Taking these
experimental results under consideration it is shown that the
PCA method is not suitable for calculating the fairness of
the models with the proposed Fairness Factor. Nevertheless,
the micromanifold representation of PCA shows a robust
knowledge representation so further experimentation should be
performed. The same also applies to the reduction of the data
to 2D manifolds as the clusters featuring 2D data reduction
show inconsistent results. This is a result of excessive data
loss due to D >> d.

Fig. 9: Generated Digit Quality of Evaluated DNNs: (a) biased class 3, (b)
biased classes 5 (c) fair [Selected]

Table III shows the experiments performed on DCGAN
models trained on the DigitMNIST dataset. The tSNE al-
gorithm is subsequently used to reduce the data in three
directions. A θ value of 2, which was experimentally selected,
was used to remove the outliers in the manifold. As would
be the case in a Federated Environment, the DL models
were initialized with the same weights and then trained on
the provided data distributions. Two fair models and two
unbalanced models were trained for the experiment. As can be
seen from the results, the two fair models hold lower Ff values
than the unbalanced ones. Moreover, comparing these results
with the ones from the first cluster of Table II it can become
apparent that the models trained on the unfair towards class 3
dataset tend to be worse than the rest of the unbalanced ones.
This demonstrates that in the DigitMNIST data collection,
class 3, has a significant influence on the resultant trained
model.

Finishing with the DCGAN model experiments, Table V
reveals the performance of the models on the PathMNIST
medical dataset. An interesting note in the results of this
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TABLE II: Experiments on DCGAN-DigitMNIST on different dimensionality reductions

Dataset Context DR D* θ ρ σ µ µ µ∗ µ∗ µ ∗ /µ Ff log(Ff )
fair 11.4557 6.7832 436.61 43661 36.6188 1137 0.0839 71.6934 4.2724
biased class 3 15.4486 8.1926 481.67 48167 41.2518 1142 0.0856 116.5794 4.7586DigitMNIST
biased class 5

tSNE 3 0.8
12.4335 7.4635 467.9 46790 39.5952 1018 0.0846 85.5574 4.4492

fair 1.9368 0.746 465.38 46538 51.0222 1024 0.1096 1.3022 0.264
biased class 3 1.9332 0.7455 465.29 46529 47.7444 1024 0.1026 1.3071 0.2678DigitMNIST
biased class 5

PCA 3 1
1.6344 0.7109 467.33 46733 46.2385 1274 0.0989 1.0574 0.0558

fair 12.6381 9.6439 859.78 85978 48.4452 1035 0.0563 115.3799 4.7482
biased class 3 12.8862 9.9498 846.02 84602 46.2543 1118 0.0547 121.5689 4.8005DigitMNIST
biased class 5

tSNE 2 1.7
11.2267 9.4876 863.29 86329 53.1292 1166 0.0615 100.3398 4.6086

fair 1.5154 0.7588 879.97 87997 55.4833 1097 0.0631 1.0817 0.0785
biased class 3 0.7553 0.7553 880.11 88011 43.8596 1097 0.0498 1.0911 0.0872DigitMNIST
biased class 5

PCA 2 1.9
1.3508 0.6795 877.74 87774 43.8151 1340 0.0499 0.8743 -0.1343

TABLE III: DCGAN-DigitMNIST results with same initialized weights

Dataset Context DR D* θ ρ σ µ µ µ∗ µ∗ µ ∗ /µ Ff log(Ff )
fair 1 9.5497 6.0059 890.02 89002 57.8095 1016 0.065 53.8568 3.9863
fair 2 10.6185 5.5618 875.05 87505 46.3709 1158 0.053 56.0861 4.0269
biased class 3 14.2306 9.2214 867.22 86722 52.1042 1016 0.0601 123.7888 4.8186DigitMNIST
biased class 5

tSNE 3 2
12.3917 7.6142 862.28 86228 51.014 1161 0.0592 89.0835 4.4896

experiment is the notably lower σ of the fair model in contrast
to the unbalanced models. The PathMNIST data, in contrast to
DigitMNIST, is defined by more complicated illustrations that
feature a variety of patterns versus handwritten digits with just
white edges and vertices on a black background. The results
demonstrate that the directions predicted by the deformator on
the imbalanced models are significantly sparser than those for
the fair model, validated by the change of value σ. Simply, the
micro-Manifolds describing the knowledge in the fair model
are thicker with smaller gaps between samples, which gives
the model stability. Again, as shown in the reported results,
the fair model has the lowest Ff .

Table IV presents the output of the DNN classifier on the
DigitMNIST dataset. The classifier was trained to predict the
class of an input picture as a probability vector, with the
greatest value indicating the class to which the sample belongs.
As previously stated, a reshaping unit was added to convert
the probability vector to an image matrix in order for the
classifier to be consistent with the suggested technique. As can
be seen, the models associated with the fair and biased classes
3 compete for the lowest Ff . The results are contained in Table
VII, which holds the Federated experiments with the DNN
model on the DigitMNIST dataset. Four distinct configurations
were implemented in the Federated context, namely, a) all
models balanced, b) one worker is unbalanced in class 1, c)
in class 3, and d) class 5 respectively. The aforementioned
models only have 0.2 difference in their accuracy scores
which justifies the close Ff values. This implies that with
a further optimized θ value instead of the statically chosen
θ = 2, the Ff would better reveal the fair model. In the
same manner, Table VI presents the experiments realised using
the widely used ResNet-18 classification architecture. As can
be seen, the proposed algorithm is able to differentiate the
differently biased models of the ResNet algorithm, clearly
outlining the correctly trained and balanced model.

In Table VII we compare the results of the proposed
methodology against the work performed in [14]. The results

depict the accuracy, precision and f1 score measured by the
resulting model that the federated process produces. The re-
sults show the quality of the models after the selection process
occurring by using the two different methods. In retrospect,
both methods strive to quantify the knowledge accumulated by
a model in order to measure how well it has learned that data.
In particular, in [14], fairness is tested by augmenting a large
number of samples, clustering them and then quantifying the
GAN models’ prediction, measuring their tendency to follow
a specific distribution. In contrast, our study visualizes and
evaluates the volumetric properties of small manifolds (Fig.6)
created around noise points when augmenting the model’s
input using permutations of that noise point. This reveals gaps
in the learned classes. In Table VII it can be seen that the
models chosen by the proposed method of this work, in the
different bias cases, produce better quality models than the
ones selected by the method introduced in [14]. Specifically,
we can see a steady increase in the quality of the models with
an average of 8.75% increase in accuracy, 9.69% in precision,
and 8.77% in F1-Score, respectively.

V. ABLATION

To distinguish the micro-Manifold centered changes over
the change of key hyperameters, we ablate parameter θ, seeing
the scaling over the mean density of the produced clusters
Table VIII. The cascading effect of the outlier omission is
visible in the experiments on the DigitMNIST dataset. As the
θ value increases, fewer outliers are omitted pointing to an
increase of the standard deviation and density, as well as the
population of the manifolds. Its effects are also visible in the
calculated fairness.

The methodology proposed in this work is oriented in
an unsupervised way to discover the latent knowledge of
Deep Neural Networks in order to aid the Federated Learning
process produced high-quality models. Even though in this
paper we present an experimentally driven approach to pro-
duce quantization and visualization of the latent knowledge of
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TABLE IV: Classification DNN-DigitMNIST results

Dataset Context DR D* θ ρ σ µ µ µ∗ µ∗ µ ∗ /µ Ff log(Ff )
fair 5.7822 0.8073 918.15 91815 57.875 1007 0.063 4.3912 1.4796
biased class 1 5.7935 0.836 911.6 91160 50.9093 1250 0.0558 4.5872 1.5233
biased class 3 5.7828 0.7931 911.69 91169 44.4167 1016 0.0487 4.3731 1.4755DigitMNIST
biased class 5

tSNE 3 2
5.9052 0.8724 911.66 91166 55.9496 1161 0.0614 4.854 1.5798

TABLE V: Experiments on DCGAN-PathMNIST

Dataset Context DR D* θ ρ σ µ µ µ∗ µ∗ µ ∗ /µ Ff log(Ff )
fair 5.7822 0.8073 918.15 91815 57.875 1007 0.063 4.3912 1.4796
biased class 1 9.1794 7.0835 899.4 89940 68.5 1015 0.0762 60.4199 4.1013PathMNIST
biased class 3

tSNE 3 2
9.5536 6.9159 928.37 92837 48.0938 1030 0.0518 62.8174 4.1402

TABLE VI: Experiments on classifier ResNet18-PathMNIST

Dataset Context DR D* θ ρ σ µ µ µ∗ µ∗ µ ∗ /µ Ff log(Ff )
PathMNIST fair tSNE 3 2 20.9837 9.59 919.77 91977 47.5585 1370 0.0517 190.5213 5.1345
PathMNIST biased class 1 tSNE 3 2 18.4441 11.1881 932.53 93253 49.6804 1202 0.0533 195.9168 5.2777
PathMNIST biased class 3 tSNE 3 2 23.753 10.8686 929.95 92995 49.9543 1310 0.0537 245.0005 5.5013
PathMNIST biased class 5 tSNE 3 2 20.6939 10.8702 910.4 91040 47.9232 1183 0.0526 213.6966 5.3646

TABLE VII: Federated model (DNN classifier) results on DigitMNIST, *BC:Biased Class

Method log(Ff ) Fdi [14]
No. Workers W0/1/2/3 W0/1/2 W0/1/2 W0/1/2 W0/1/2/3 W0/1/2 W0/1/2 W0/1/2
Biased Worker None W3 W3 W3 None W3 W3 W3
BC* None 1 2 3 None 1 2 3
acc 0.9728 0.9363 0.9521 0.9446 0.9638 0.8542 0.8857 0.8451
acc (%) +0.92% +8.76% +6.97% +10.53%
pre 0.9728 0.9445 0.9548 0.9517 0.9615 0.8528 0.8786 0.8433
pre (%) +1.17% +9.70% +7.98% +11.39%
f1s 0.9728 0.9376 0.9525 0.9456 0.9677 0.8588 0.8792 0.8487
f1s (%) +0.52% +8.40% +7.69% +10.24%

TABLE VIII: Ablation of θ on DCGAN/DNN - DigitMNIST

DCGAN DNN
Parameter θ =0.8 1.7 2 2
ρ 13.1126 12.25 14.1268 5.8159
σ 7.4797 9.6937 8.2989 0.8272
µ 46206 85636.33 86168.17 91327.5
Ff 91.2767 112.4295 117.4763 4.5513
log(Ff ) 1.9603 2.0508 2.0699 0.6581

neural networks, some limitations are still in need of resolu-
tion. First, as mentioned in the result evaluation section, the
methodology proposed is quite computationally intensive. This
means that a suitable system runs the proposed pipeline. Of
course, since in Centralized Federated Learning the aggregator,
in most cases, is a central server, this issue can be resolved.
This though is scaled based on the number of models that need
to be examined before the Federated Fusion process. Further-
more, even though, in this work we examined classification
and augmentative architectures, the field of Deep Learning is
rapidly expanding and so more network architectures need to
be examined to keep the compatibility of the proposed method
to state-of-the-art standards. Nevertheless, as described in the
manuscript, the proposed methodology is unsupervised also in
the aspects of network architectures, meaning that evaluating
a network architecture not presented in this work is feasible

following the methodology described in section III-A. Future
work will strive to resolve these limitations.

VI. CONCLUSION

In this work, we address the issue of bias in Deep Neural
Networks (DNNs) for Non-IID Federated Learning Training
in the healthcare context, and to a lesser extent in general, in
a totally unsupervised data/model agnostic approach. The FL
procedure dictates the aggregation of the weights of remotely
trained models, producing a global model containing the
mutual knowledge of the distributed devices. This technique
annexes security to the training process while keeping the data
private and the data owners anonymized. Though often, the
remote devices do not contain balanced data that sometimes
lean towards only one sub-class of that data. This can protrude
negatively to the global model, sometimes saturating the whole
aggregation process, which in fields like healthcare can have
catastrophic results. To tackle this phenomenon, this work
undertakes the proposition of an unsupervised ethical equity
or fairness methodology to identify defective locally trained
models. To this end, a deformation mechanism is employed
that stretches the latent knowledge of the model in random
shifts along several directions, creating thus the saturation of
the learned knowledge along a number of latent axes. These
deformations create micro-clusters of the learned information
that this work examines with respect to its sparsity and volu-
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metric properties to define the quality of knowledge that the
model has obtained in the form of a Fairness factor (Ff ). To
substantiate the proposed methodology, the pipeline is tested
against benchmark datasets and different DL architectures
in both Generative and Decision Support architectures. The
results of the proposed methodology is simulated and tested
on a variety of Federated settings using the benchmark data,
showing promise in measuring the fairness or bias of the to-be
Federated models. The work proposed in this paper is tested
against a variety of benchmark Deep Learning architectures,
namely, i) GANs, ii) DNNs, iii) ResNet-18, while also in
the FL environment, showing an average 8.75% increase in
Federated model accuracy in comparison with similar work.

Future work will involve the testing of more DL models,
used for various problems, as well as further experimentation
with the hyperparameters involved in the process to produce
more solid and robust results aiming at a unified ethical equity
exploration for Federated training of DL models.
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