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Abstract

In this paper, we study the problem of inferring spatially-varying Gaussian Markov random
fields (SV-GMRF) where the goal is to learn a network of sparse, context-specific GMRFs
representing network relationships between genes. An important application of SV-GMRFs is
in inference of gene regulatory networks from spatially-resolved transcriptomics datasets. The
current work on inference of SV-GMRFs are based on the regularized maximum likelihood
estimation (MLE) and suffer from overwhelmingly high computational cost due to their highly
nonlinear nature. To alleviate this challenge, we propose a simple and efficient optimization
problem in lieu of MLE that comes equipped with strong statistical and computational guarantees.
Our proposed optimization problem is extremely efficient in practice: we can solve instances of
SV-GMRFs with more than 2 million variables in less than 2 minutes. We apply the developed
framework to study how gene regulatory networks in Glioblastoma are spatially rewired within
tissue, and identify prominent activity of the transcription factor HES4 and ribosomal proteins
as characterizing the gene expression network in the tumor peri-vascular niche that is known to
harbor treatment resistant stem cells.

1 Introduction

The advent of high throughput sequencing technologies has transformed our understanding of
biological systems, and catalyzed the adoption of a systems-level approach to studying biological
processes . Networks have emerged as the intuitive framework for reasoning about complex biological
systems [5, 90]. Nodes in the network represent individual components, and edges represent direct
interactions between them. For example, gene regualtory networks (GRNs) represent the wiring
diagram of the cell’s information processing system, with network edges identifying regulatory
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interactions between different genes. It has become clear that complex diseases like cancer must
be understood at the level of this interactome, rather than the classical reductionist approach of
studying individual components [23, 30]. As another example, with billions of neurons and hundreds
of thousands of voxels, the human brain is considered as one of the most complex physiological
networks, whose structure remains as a long-standing mystery [77, 50, 61, 71, 53]. The accurate
inference of the brain connectivity network will have a far-reaching impact on understanding different
neurological disorders [31, 8, 66]. According to the NIH’s BRAIN Initiative, the development of
“faster, less expensive, and scalable” technologies is the cornerstone for anatomic reconstruction of
neural circuits at realistic scales [6].

Spatially resolved transcriptomics have emerged as a transformative technology in the recent
past with immense potential to bolster our understanding of biology ant a tissue architecture
level[65, 60, 76]. Depending on the technology used, we can measure gene expression profile at
near single cell resolution at the transcriptome-scale in situ [3, 70]. In studying complex processes
such as tumor growth, viewing cancer as a case of evolution within the tissue has provided the
groundwork for building a comprehensive theoretical framework to understand tumor diversity [67].
Evolutionary trade-offs between proliferation and survival strategies amongst cancer cells are driven
by spatial gradients in exposure to nutrients, oxygen, immune cells and environmental toxicity
between the tumor core versus periphery [20, 21, 49]. The need to optimize growth of the tumor
through evolution of the hallmark traits [46] leads individual cancer cells to adopt a continuum
of transcriptional states, that maximize their performance given spatially-imposed metabolic and
survival constraints [7, 42, 10]. There are therefore strong spatial trends in the gene expression
profiles and the underlying regulatory networks even amongst differentiated cells of the same type in
both homeostasis and diseased states. Being able to infer these dynamic regulatory networks would
provide us with a new lens for understanding complex biological processes, and can lead to new
hypotheses regarding molecular mechanisms that would inspire further experimental and theoretical
investigations into the nature of regulatory interactions underlying disease states.

One popular approach to model these problems is based on spatially-varying Markov Random
Fields (SV-MRFs). SV-MRFs are associated with a network of undirected Markov graphs Gk(Vk, Ek),
where Vk and Ek are the set of nodes and edges in the graph at location k. The node set Vk represents
the random variables (e.g. genes) in the model, while the edge set Ek captures the conditional
dependency between these variables at location k. In the special case of Gaussian Markov Random
Fields (GMRFs), the edge set of the Markov graphs can be fully characterized based on the inverse
covariance matrix (also known as the precision matrix). In particular, if the entry (i, j) of the
precision matrix Θk is zero, then the variables i and j at location k are independent conditioned on
the remaining variables.

A widely-used method for the inference of SV-MRFs is based on the so-called regularized
maximum-likelihood estimation (MLE). Intuitively, MLE seeks to find a graphical model based on
which the observed data is most likely to occur. However, MLE-based methods suffer from major
computational challenges that undermine their applicability in large-scale settings. For example,
in the Gaussian setting, the MLE requires optimizing over the so-called log-determinant of the
precision matrix, which are known to be intractable in large scales [13, 44, 33]. This drawback is
further compounded in the spatially-varying regime, where the precision matrix must be estimated
at each spatial location, leading to a dramatic increase in the size of the problem.
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1.1 Our Contributions

To address the aforementioned challenges, we propose a simple estimation methods for the inference
of spatially-varying GMRFs. Unlike MLE-based methods, our proposed approach is based on a
class of simple and computationally efficient optimization methods that come equipped with strong
statistical guarantees and are implementable in realistic scales. Our contributions are summarized
as follows:

Computational guarantee: Our proposed method reduces to a series of decomposable convex
quadratic optimization problems that can be solved efficiently using any off-the-shelf solvers. In
addition, the decomposable nature of the proposed optimization problem makes it amenable to
parallel and distributed implementation.

Statistical guarantees: In addition to the desirable computational guarantees, we show the
statistical consistency of our proposed method—both theoretically and in practice. In particular,
we characterize the non-asymptotic consistency of our proposed method, proving that it accurately
recovers the underlying graphical model, even in the high-dimensional settings where number of
available samples is significantly smaller than the number of unknown parameters. Moreover, it can
efficiently reveal the correct sparsity information in the parameters and their differences.

Application in inferring gene regulatory networks: Glioblastoma (GBM) is an incurable
malignancy of the brain, with a median survival time of only 12-18 months despite therapy with
surgical resection, chemotherapy and radiation [47]. Despite aggressive treatment, these tumors
inevitably recur and this recurrence is likely due to significant heterogeneity, which has been high-
lighted by single cell sequencing studies [87]. Heterogenous populations of treatment-resistant tumor
cells with stem cell properties have been identified in GBM that have been shown to drive treatment
recurrence. Furthermore, these resistant cells often reside within unique microenvironmental niches
[1, 45, 72, 57]. The consequence of spatial context in regulating the tumor cell state, stemness
properties, and treatment resistance in these tumors is increasingly appreciated [56, 51]. It is thus
imperative that we understand how the gene networks of GBM cells are rewired as a function of
their spatial environment, to identify context-specific upstream regulators of heterogenous tumor cell
states. We thus employ our developed statistical framework to study how gene regulatory networks
are spatially rewired in GBM.

We partition the tumor section into distinct micro-environmental niches and estimate networks
involving genes showing significant spatial trends in their activity. We identify Transcription
factors and hub genes that control tumor behavior in distinct local environments. We find that the
perivascular tumor niche is characterized by high levels of activity of ribosomal genes and that HES4
is a prominant upstream regulator in this environment. Our findings have been previously reported
to be particularly important aspects of the stemness features of Glioblastomas in recent literature
[9, 79]. We feel that our ability to define context specific upstream regulators of tumor states is an
important step in fighting tumor recurrence and developing targeted therapies for this disease.

1.2 Notations

The i-th element of a vector v or vt is denoted as vi or vt;i. For a matrix M , the notations Mi:

and M:j denote the i-th row and j-th column, respectively. Moreover, for an index set S and a
matrix M , the notations MS: and M:S refer to a submatrix of M with rows and columns indexed
by M , respectively. For a matrix M or a vector v, the notations ‖M‖`q and ‖v‖q correspond to
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the element-wise `q-norm of M and `q-norm of v, respectively. Moreover, ‖M‖q and ‖M‖max are
the induced q-norm and the element with the largest absolute value of the matrix M , respectively.
Moreover, ‖M‖0 denotes the total number of nonzero elements in M . We use M � 0 to show
that M is positive definite. For a vector v and matrix M , the notations supp(v) and supp(M) are
defined as the index sets of their nonzero elements. Given two sequences f(n) and g(n) indexed
by n, the notation f(n) . g(n) implies f(n) ≤ Cg(n) for some constant C < ∞. Moreover, the
notation f(n) � g(n) implies that f(n) . g(n) and g(n) . f(n). The sign function sign(·) is defined
as sign(x) = x/|x| if x 6= 0 and sign(0) = 0. Accordingly, when x is a vector, the function sign(x) is

defined as
[
sign(x1) sign(x2) . . . sign(xn)

]>
.

Organization. The rest of the paper is organized as follows. In Section 2, we formulate the
inference of spatially-varying GMRFs and discuss the shortcomings of the existing techniques.
Motivated by these shortcomings, we present a new formulation of the problem in Section 3. The
related work is presented in Section 4. In Section 5, we delineate the statistical guarantees of our
proposed formulation, and how to solve it efficiently. Finally, we showcase the performance of our
proposed method on synthetically generated as well as the Glioblastoma spatial transcriptomics
dataset in Section 7.

2 Problem Formulation

Consider data samples from K different Gaussian distributions with covariance matrices Σ?
k ∈

Sd+, k = 1, ...,K and sparse precision matrices Θ?
k = Σ?

k
−1, k = 1, ...,K. Let {xki }

nk
i=1 be nk

independent samples drawn from the k-th distribution, i.e., xki ∼ N (0,Σ?
k), for every i = 1, . . . , nk

and k = 1, . . . ,K. Our goal is to estimate the precision matrices {Θ?
k}Kk=1 given the samples. The

most commonly-used method to perform this task is via maximum likelihood estimation (MLE)
with an `1 regularizer (also known as Graphical Lasso [40]):

Θ̂k = arg min
Θk�0

Tr(ΘkΣ̂k)− log det(Θk) + λ‖Θk‖`1

where Tr(·) is the trace operator and Σ̂k := 1
nk

∑nk
i=1 x

k
i x

k>
i is the sample covariance matrix for

distribution k. A major drawback of the above estimation method is that it ignores any common
structure among different distributions. To address this issue, a common approach is to consider a
joint estimation method (also known as joint Graphical Lasso [25]):

{Θ̂k}=arg min
Θk�0

K∑
k=1

(
Tr(ΘkΣ̂k)−log det(Θk)+λ‖Θk‖`1

)
+ P

(
{Θk}Kk=1

)
(1)

where the term P
(
{Θk}Kk=1

)
is a penalty function that encourages similarity across different precision

matrices. A major difficulty in solving joint Graphical Lasso is its computational complexity: in
order to obtain an ε-accurate solution, typical numerical solvers for (1) have complexity ranging from
O(Kd6 log(1/ε)) (via general interior-point methods) [68, 74] to O(Kd3/ε) (via tailored first-order
methods, such as ADMM) [44, 25, 63]. Solvers with such computational complexity fall short of any
practical use in the large-scale settings. Indeed, the prohibitive worst-case complexity of methods
based on Graphical Lasso is also exemplified in their practical performance [35, 91, 33, 36, 37, 34].
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3 Proposed Method

To address the aforementioned issues, we propose the following surrogate optimization problem for
estimating sparse precision matrices:

{Θ̂k} = arg min
Θk

K∑
k=1

‖Θk − F̃ ∗(Σ̂k)‖2`2︸ ︷︷ ︸
backward mapping deviation

+ µ
K∑
k=1

‖Θk‖`1︸ ︷︷ ︸
absolute regularization

+ γ
∑
l>k

Wkl ‖Θk −Θl‖q`q︸ ︷︷ ︸
spatial regularization

(Elem-q)

In the above optimization, the backward mapping deviation captures the distance between the
estimated precision matrix and the so-called approximate backward mapping which will be described
in Section 3.1. Moreover, the absolute regularization promotes sparsity in the estimated parameters,
whereas spatial regularization encourages common spatial similarities among different parameters.
For any given pair (k, l), the weight W−1

kl can be interpreted as the “distance” between the k-th
and l-th MRFs. Accordingly, a large value for Wkl encourages similarity between Θk and Θl. Two
common choices of spatial similarities are sparsity and smoothness:

• Smoothly-changing GMRF: In smoothly-changing GMRFs, the adjacent precision matrices
vary gradually. In this setting, q = 2 can be used as the spatial regularizer in Elem-q to
promote the smoothness in the parameter differences.

• Sparsely-changing GMRF: In sparsely-changing GMRFs, the adjacent precision matrices differ
only in a few entries. In this setting, q = 1 is a natural choice for the spatial regularizer
in Elem-q since it promotes sparsity in the parameter differences.

3.1 Approximate Backward Mapping

Our proposed optimization problem is contingent upon the availability of an approximate backward
mapping. For a GMRF, the backward mapping is defined as the inverse of the true covariance
matrix, i.e., F ∗(Σ?

k) = Σ?
k
−1 = Θ?

k [84]. Based on this definition, a natural surrogate for the

backward mapping is F ∗(Σ̂k) = Σ̂−1
k , where Σ̂k is the sample covariance matrix for distribution

k. However, in the high-dimensional settings, the number of available samples is significantly
smaller than the dimension, and as a result the sample covariance matrix Σ̂k is singular and
non-invertible. To alleviate this issue, Yang et al. [88] introduce an approximation of the backward
mapping based on soft-thresholding. Consider the operator STν(M) : Rd×d → Rd×d, where
STν(M)ij = Mij−sign(Mij) min{|Mij |, ν} if i 6= j, and STν(M)ij = Mij if i = j. Given this operator,

the approximate backward mapping is defined as F̃ ∗(Σ̂k) = STν(Σ̂k)
−1, for every k = 1, . . . ,K. An

important property of this approximate backward mapping is that it is well-defined even in the
high-dimensional setting nk � d with an appropriate choice of the threshold ν [88]. Given this
approximate backward mapping, we will show that the estimated precision matrices from Elem-q
are close to their true counterparts with an appropriate choice of parameters.

3.2 Decomposability

An important property of Elem-q is that it naturally decomposes over different coordinates of the
precision matrices: for every (i, j) with 1 ≤ i ≤ j ≤ d, the ij-th element of {Θk}Kk=1 can be obtained
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by solving the following subproblem:

{Θ̂k;ij}Kk=1 = arg min
{Θk;ij}Kk=1

K∑
k=1

(
Θk;ij − [F̃ ∗(Σ̂k)]ij

)2
+µ

K∑
k=1

|Θk;ij |+ γ
∑
l>k

Wkl |Θk;ij −Θl;ij |q ,

(Elem-(i, j, q))
Recall that the original problem Elem-q has Kd(d + 1)/2 variables. The above decomposition
implies that Elem-q can be decomposed into d(d + 1)/2 smaller subproblems, each with only K
variables that can be solved independently in parallel. This is in stark contrast with the joint
Graphical Lasso, which requires a dense coupling among the elements of the precision matrices
through the non-decomposable logdet function. Later, we will show how each subproblem can be
solved efficiently for different choices of q.

4 Related Work

Recently, many approaches have been proposed for sparse precision matrix estimation in high
dimensions. This line of work begins by the inference of a single precision matrix, which can be
achieved by `1-regularized MLE, also known as Graphical Lasso (GL) [39, 4, 89].

Extending beyond single precision matrix inference, a recent line of research has focused on
estimating time-varying MRFs, where the relation among variables may change over time [94]. A
common approach for estimating time-varying MRFs is based on kernel methods, where the sample
covariance matrix at any given time is a weighted average of the samples over time, where the
weights are collected from a predefined kernel [94, 41, 32].

In the context of spatially-varying graphical models, the main focus has been devoted to different
variants of MLE-based techniques, such as Fused Graphical Lasso (FGL) and Group Graphical
Lasso (GGL) [25]. FGL penalizes the pairwise difference of the precision matrices in `1-norm, while
GGL regularizes the `2-norm of the (i, j)-th element across all K precision matrices. Guo et al.
[43] reparameterized each off-diagonal element as the product of a common factor and difference,
then applied separate `1 regularization to these two parts. Saegusa and Shojaie [78] proposed
to regularize the MLE with a Laplacian-type penalty to exploit the information among different
distributions. However, all these techniques are based on MLE, and consequently suffer from a
notoriously high computational cost.

To alleviate the computational cost of MLE-based technique, Lee and Liu [59] proposed to
estimate the joint precision matrices based on a constrained `1 minimization for inverse matrix
estimation (CLIME) technique [17]. Unlike GL, CLIME does not optimize over the complex logdet
function and has shown more favorable theoretical properties than GL. Finally, our method is built
upon the Elementary Estimator introduced by Yang et al. [88], where the proposed estimator admits
a closed-form solution based on soft-thresholding. This method was later extended by Fattahi and
Gomez [32] to time-varying setting, showing that it can be solved in near-linear time and memory.

5 Statistical Guarantees

In this section, we elucidate the statistical properties of Elem-q for SV-GMRFs with two widely-used
spatial structures, namely smoothly-changing and sparsely-changing GMRFs. To this goal, we first
need to make two important assumptions on the true precision matrices.
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Assumption 1 (Bounded norm). There exist constant numbers κ1 <∞, κ2 > 0, and κ3 <∞ such
that

‖Θ?
k‖∞ ≤ κ1, inf

w:‖w‖∞=1
‖Σ?

kw‖∞ ≥ κ2, ‖Σ?
k‖max ≤ κ3

for every k = 1, . . . ,K.

Assumption 1 is fairly mild and implies that the true covariance matrices and their inverses have
bounded norms.

Assumption 2 (Weak sparsity). Each covariance matrix Σ?
k satisfies maxi

∑d
j=1

∣∣∣[Σ?
k]ij

∣∣∣p ≤ s(p),
for some function s : [1,∞)→ R and scalar 0 ≤ p < 1.

Informally, we say “the true covariance matrices are weakly sparse” if {Σ?
t }Tt=0 are s(p)-weakly

sparse with s(p)� d for some 0 ≤ p < 1. The notion of weak sparsity extends the classical notion
of sparsity to dense matrices. Indeed, except for a few special cases, a sparse matrix does not have a
sparse inverse. Consequently, a sparse precision matrix may not lead to a sparse covariance matrix.
However, a large class of sparse precision matrices have weakly sparse inverses. For instance, if Θ?

k

has a banded structure with small bandwidth, then it is known that the elements of Σ?
k = Θ?

k
−1

enjoy exponential decay away from the main diagonal elements [27, 52]. Under such circumstances,
simple calculation implies that s(p) ≤ C

1−ρp for some constants C > 0 and ρ < 1. More generally, a
similar statement holds for a class of inverse covariance matrices whose support graphs have large
average path length [12, 11]; a large class of inverse covariance matrices with row- and column-sparse
structures satisfy this condition.

Next, we introduce some notations that simplify our subsequent analysis. Let π : {1, 2, . . . ,K}2 →
{1, 2, . . . ,K(K + 1)/2} be a fixed, predefined labeling function that assigns a label to each
pair (k, l) with l ≥ k. Let G be a diagonal matrix whose k-th diagonal entry is defined as

W
1/q
π−1(k)

. Moreover, let A ∈ RK(K−1)/2×K be the adjacency matrix defined as A(π(k, l), k) = 1

and A(π(k, l), l) = −1, for every l > k. Finally, define Θij = [Θ1;ij Θ2;ij . . . ΘK;ij ]
> and

F̃ ∗ij =
[
[F̃ ∗(Σ̂1)]ij [F̃ ∗(Σ̂2)]ij . . . [F̃ ∗(Σ̂K)]ij

]
, for every j ≥ i. It is easy to see that ‖GAΘij‖qq =∑

l>kWkl|Θk;ij −Θl;ij |q for every j ≥ i, and accordingly, Elem-(i, j, q) can be written concisely as

Θ̂ij =arg min
Θij

∥∥∥Θij−F̃ ∗ij
∥∥∥2

2
+µ‖Θij‖1 + γ ‖GAΘij‖qq . (2)

Next, we provide sharp statistical guarantees for our proposed method when the precision matrices
{Θ?

k}Kk=1 change smoothly or sparsely across different distributions.

5.1 Smoothly-changing GMRF

We start with our main assumption on the smoothness of the precision matrices.

Assumption 3 (Smoothly-changing SV-GMRFs). There exists a constant D ≥ 0 such that∑
l≥k(Θ

?
k;ij −Θ?

l;ij)
2 ≤ D2 for every (i, j).

Informally, we say “SV-GMRF is smoothly-changing” if Assumption 3 is satisfied with a small D.
For a smoothly-changing SV-GMRF, it is natural to choose q = 2 in Elem-q to promote smoothness in
the spatial difference of the precision matrices. Our next theorem characterizes the sample complexity
of Elem-q with q = 2 for smoothly-changing SV-GMRF. Let Θmin = min{|Θ?

k;ij | : Θ?
k;ij 6= 0}.
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Theorem 1 (Smoothly-changing SV-GMRF). Consider a smoothly-changing SV-GMRF with
parameter D, and weakly-sparse covariance matrices with parameter s(p) for some 0 ≤ p < 1.
Suppose that the number of samples satisfies

nk & L
log d

Θ2
min

, where L=max

{(
s(p)

κ2

) 2
1−p
κ2

3,

(
κ1κ3

κ2
+D

)2
}
.

Define nmin = mink{nk}. Moreover, suppose that F̃ ∗(Σ̂k) = [STνk(Σ̂k)]
−1 with νk � κ3

√
log d/nk.

Then, the solution obtained from Elem-q with q = 2 and parameters

γ � 1

K ‖W‖max

√
log d

nmin
, µ � D

√
log d

nmin
,

satisfies the following statements with probability of 1−Kd−10:

• Sparsistency: The solution is unique and satisfies supp(Θ̂k) = supp(Θ?
k) for every k.

• Estimation error: The solution satisfies

‖Θ̂k −Θ?
k‖max .

(
κ1κ3

κ2
+D

)√
log d

nmin
, for every k.

For smoothly-changing SV-GMRF, the above theorem provides a non-asymptotic guarantee on
the estimation error and sparsistency of the estimated precision matrices via Elem-q with q = 2,
proving that the required number of samples must scale only logarithmically with the dimension d.
Moreover, both the estimation error and the required number of samples decrease with a smaller
smoothness parameter D; this is expected since a small value of D implies that the adjacent
distributions share more information, and hence, the SV-GMRF is easier to estimate.

5.2 Sparsely-changing GMRF

In sparsely-changing SV-GMRFs, the precision matrices are assumed to change sparsely across
different distributions; this is formalized in our next assumption.

Assumption 4 (Sparsely-changing SV-GMRFs). There exists a constant D0 ≥ 0 such that∑
l≥k ‖(Θ?

k;ij −Θ?
l;ij)‖0 ≤ D0 for every (i, j).

Similar to the smoothly-changing SV-GMRFs, we say “SV-GMRFs is sparsely-changing” if it
satisfies Assumption 4 with a small D0. For a sparsely-changing SV-GMRFs, it is natural to choose
q = 1 in Elem-q to promote sparsity in the spatial difference of the precision matrices. To analyze
the statistical property of this problem, we first consider (2) with q = 1 and rewrite it as:

min ‖F̃ ∗ij−Θij‖22+µ‖BΘij‖1, where B=

[ γ
µGA

I

]
. (3)

The above reformulation is a special case of the generalized Lasso problem introduced by Lee
et al. [58]. To show the model selection consistency of the above formulation, we next introduce the
notion of irrepresentability.
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For any fixed (i, j), let SB ⊂ {1, 2, ...,K(K + 1)/2} be the support of BΘ?
ij , i.e., [BΘ?

ij ]k 6= 0 for
every k ∈ SB. Moreover, let ScB = {1, 2, ...,K(K + 1)/2}\SB. Evidently, we have |SB| ≤ D0 + S0,
where D0 is introduced in Assumption 4 and S0 is defined as the maximum number of nonzero
elements in Θ?

ij , i.e., S0 = maxi,j{‖Θ?
ij‖0}.

Assumption 5 (Irrepresentability condition (IC), Lee et al. [58]). We have∥∥∥BScB :B
†
SB : sign

(
(BΘ?

ij)SB :

)∥∥∥
∞
≤ 1− α (4)

for some 0 < α ≤ 1, where B†SB : is the Moore-Penrose pseudo-inverse of a matrix BSB :.

The irrepresentability condition (IC) entails that the rows of B corresponding to the zero
elements of BΘ?

ij must be nearly orthogonal to the other rows. Despite the seemingly complicated
nature of IC, classical results on Lasso have shown that it is a necessary condition for the exact
sparsity recovery, and hence, cannot be relaxed [92, 82]. Later, we show that this condition is
satisfied for our problem under a mild condition on the weight matrix W and parameters µ and γ.

Another quantity that plays a central role in our derived bounds is the so-called compatibility
constant defined as

κIC :=
∥∥∥BScB :B

†
SB :

∥∥∥
∞

+ 1.

The compatibility constant κIC is closely related to IC. In particular, if
∥∥∥BScB :B

†
SB :

∥∥∥
∞
≤ 1 − α

(which is a slightly stronger version of IC), then κIC ≤ 2 − α. Similar to IC, we will later show
that κIC remains bounded under a mild condition on the weight matrix W . Finally, we define
∆Θmin = mink,i,j{|Θ?

k;ij −Θ?
l;ij | : Θ?

k;ij −Θ?
l;ij 6= 0}.

Theorem 2 (Sparsely-changing SV-GMRFs.). Consider a sparsely-changing SV-GMRFs with
parameter D0, and weakly-sparse covariance matrices with parameter s(p) for some 0 ≤ p < 1.
Suppose that the number of samples satisfies

nmin & L
log d

min{Θ2
min,∆Θ2

min}
, where L =

{(
s(p)

κ2

) 2
1−p
κ2

3,

(
κICκ1κ3

κ2α

)
(‖W‖maxD0+S0)

}
.

Define nmin = mink{nk}. Moreover, suppose that F̃ ∗(Σ̂k) = [STνk(Σ̂k)]
−1 with νk � κ3

√
log d/nk.

Moreover, suppose that the weight matrix W and parameters µ and γ are chosen such that IC
(Assumption 5) is satisfied. Then, the solution obtained from Elem-q with q = 1 and parameter

µ � κICκ1κ3

κ2α

√
log d

nmin
,

satisfies the following statements with probability 1−Kd−10:

• Sparsistency. The solution is unique and satisfies supp(Θ̂k) = supp(Θ?
k) for every k and

supp(Θ̂k − Θ̂l) = supp(Θ?
k −Θ?

l ) for every k > l.

• Estimation error. For every (i, j), the solution satisfies∥∥∥Θ̂ij−Θ?
ij

∥∥∥
2
.

(√
‖W‖maxD0+

√
S0

)
κICκ1κ3

κ2α

√
log d

nmin
.
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The above theorem characterizes the sample complexity of inferring sparsely-changing SV-
GMRFs, showing that the sparsity pattern of the precision matrices and their differences can be
recovered exactly, given that the number of samples scale logarithmically with the dimension and
the problem satisfies IC. Evidently, our result crucially relies on the satisfaction of IC and κIC being
small. This leads to a follow-up question: how restrictive are these conditions in practice? Our next
proposition shows that both conditions hold if γ and µ are selected such that µ ≤ γ ≤ 2µ and Wkl

is the same for every k > l.

Proposition 1. Suppose that 0 < µ ≤ γ ≤ 2µ and Wkl is the same for every k > l. Then,
1 ≤ κIC ≤ 5 and IC holds with α = µ/γ.

Proposition 1 can be easily extended to general choices of W . In particular, suppose that
W = τ11> +E for some τ > 0, where 1 is the vector of ones. Then, Proposition 1 combined with a
simple matrix perturbation bound reveals that

α ≥ 1/2−O(‖E‖max), and 1 ≤ κIC ≤ 5 +O(‖E‖max).

In other words, IC holds and κIC remains bounded, provided that ‖E‖max = O(1), that is, the
elements of the weight matrix W do not vary too much. Later in our numerical experiments, we
will show that such choices of W provide the best statistical results on both synthetically generated
as well as gene expression datasets.

6 Parameter Tuning and Implementation

In this section, we explain different implementation aspects of our proposed method.

Tuning W: To obtain a solution for Elem-q, we first need to fine-tune the parameters µ, γ, νk,W
based on the available data samples. Recall that, for every pair (k, l), the value of W−1

kl can be
interpreted as the ”distance” between precision matrices for distributions k and l. Intuitively, Θ?

k

and Θ?
l are close if their corresponding covariance matrices Σ?

k and Σ?
l are close. Therefore, to obtain

an estimate of W , we first compute the distance between any pair of sample covariance matrices

Dkl =
∥∥∥Σ̂k − Σ̂l

∥∥∥
`2

, and then assign Wkl = 1/(1 +Dkl) for every k 6= l.

Tuning µ, γµ, γµ, γ, and νkνkνk: Recall that the parameter µ controls the sparsity of the estimated precision
matrices, whereas γ penalizes their differences. Moreover, νk is the threshold for used in the
proposed approximate backward mapping. In Theorems 1 and 2, we provide an explicit value for
these parameters that depend on the parameters of the true solution, which are not known a priori.
Without any prior knowledge on the true solution, these parameters can be selected by minimizing
the extended Bayesian Information Criterion (BIC) [38]:

(µ̂, γ̂, ν̂) = arg min
µ,γ,ν

BIC(µ, γ, ν), where

BIC(µ,γ,ν) :=

K∑
k=1

nk[Tr(Σ̂kΘ̂k(µ,γ,ν))−log det Θ̂k(µ,γ,ν)] + log(nk)df(k) + 4df(k) log d,
(5)

In the above definition, Θ̂k(µ, γ, ν) is the optimal solution of (Elem-q) with parameters (µ, γ, ν).
Moreover, df(k) is defined as the number of nonzero elements in Θ̂k(µ, γ, ν). Theorems 2 and 1
suggest that γ = C1

√
log d/nmin, µ = C2

√
log d/nmin, and νk = C3

√
log d/nk, where C1, C2, and
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C3 are constants that depend on the true solution. Therefore, to pick the parameters µ, γ, and
νk, we perform a grid search over the constants C1, C2, and C3, and pick those that minimize
BIC(µ, γ, ν).

Algorithm: Next, we explain a general algorithm for solving Elem-q. As mentioned before, Elem-q
decomposes over different coordinates (i, j), where each subproblem can be written as Elem-(i, j, q).
This decomposition leads to a parallelizable algorithm, where each thread solves Elem-(i, j, q), for a
subset of the coordinates (i, j). This approach is oulined in Algorithm 1.

Algorithm 1 General algorithm for solving Elem-q

Input: Data samples {xki }, parameters (µ, γ, νk), and weight matrix W .;

Output: Solution {Θ̂k}Kk=1 for Elem-q;

Compute the sample covariance matrix Σ̂k for every k = 1, ...,K;

Compute the approximate backward mapping F̃ ∗(Σ̂k) =
[
STνk(Σ̂k)

]−1
for every k = 1, ...,K;

for every (i, j) do
Compute a sub-gradient Dt ∈ ∂f`1(Ut);
Obtain Θ̂ij by solving Elem-(i, j, q);

end for

Next, we analyze the computational cost of each step of our proposed algorithm. Given nk
number of samples, the sample covariance matrix Σ̂k can be computed in O(nkd

2) time and memory
(Line 3). Moreover, given each sample covariance matrix, the approximate backward mapping can
be obtained by an element-wise soft-thresholding followed by a matrix inversion, which can be
done in O(d3) time and memory (Line 4). Finally, for each (i, j) and the choices of q = 1, 2, the
subproblem Elem-(i, j, q) can be reformulated as a linearly constrained convex quadratic problem.
Suppose that W has nnz number of nonzero elements. Then, each subproblem can be solved in
O(nnz3) [13]. Moreover, assuming that the algorithm is parallelized over M machines, the total
complexity of solving all subproblems is O((d2/M)nnz3). In the next section, we show that our
proposed algorithm is extremely efficient in practice.

7 Numerical Experiments

In this section, we evaluate the performance of our proposed method on synthetically generated
dataset, as well as the Glioblastoma spatial transcriptomics dataset. All experiments are implemented
using MATLAB 2021b, and performed with a 3.2 GHz 8-Core AMD Ryzen 7 5800H CPU with 16
GB of RAM. We use the function quadprog in MATLAB to solve each subproblem.

7.1 Synthetically generated dataset.

First, we use synthetically generated dataset to compare the statistical performance of our proposed
method with two other estimators: the fused graphical lasso (FGL) [25] and FASJEM [85]. FGL is
an MLE-based approach augmented by a regularizer to promote spatial similarity among different
distributions. On the other hand, FASJEM uses the same Elementary Estimator [88] framework as
ours while having different regularization term. By comparing the estimated parameters with their
true counterparts, we will show that our method outperforms both FGL and FASJEM in recovering
the true precision matrices.

11



Data generation: Our data generation process is motivated by ideas proposed by Peng et al. [73]
and Lyu et al. [62] to imitate the gene expression profiles from a synthetically-generated co-expression
network. Our main goal is to generate the data synthetically from a known distribution, and then
evaluate the performance of the estimated parameters by comparing them to the ground truth.

We simulate the true precision matrices for K distinct clusters (populations) with varying level
of similarity. Within each cluster, we assume that the graph representing the true precision matrix
has a disjoint modular structure, with power law degree distribution for nodes within each module.
Specifically, we split d genes into M modules, with d/M genes per module generated based on
Barabasi-Albert model [2]. Within each cluster, the modules are simulated independently and
concatenated to produce a block-diagonal matrix, which is treated as the true precision matrix for
the corresponding cluster.

In order to simulate the true precision matrices for all clusters, we first generate a random
spanning tree over clusters. Starting at the root cluster, we generate M modules, and in each module,
we randomly generate a graph with d/M vertices according to the Barabasi-Albert model. Based on
the adjacency matrix of this graph, we select the edge weights uniformly from [−1,−0.4] ∪ [0.4, 1].
To ensure the positive semi-definiteness of the constructed precision matrix, we use 1.1 times the
sum of the absolute values of all off-diagonal elements in each row as the value of the diagonal
elements in that row. Finally, we construct the precision matrix as a block diagonal matrix with M
modules on the diagonal blocks. We then traverse the spanning tree from the root cluster and, at
every new cluster, construct the precision matrix by perturbing its parent cluster. We consider two
types of perturbations: (i) edge weight perturbation; and (ii) edge reconnection. To perform Type
(i) perturbation, we sample a subset of the M modules at the parent cluster, and add a uniform
perturbation from the interval [−0.04, 0.04] to the non-zero edges. For Type (ii) perturbation, we
replace one of the M modules with a newly simulated one following a power-law degree distribution.
Thus, at every cluster, the precision matrix is slightly perturbed relative to its parent, and the
precision matrix differences accumulate, which means that the number of different edges of two
precision matrices increases with their distance. Figure 1 illustrates the precision matrices for the
two adjacent clusters. Having simulated the precision matrices, at every cluster k, we next collect
nk samples from a zero-mean Gaussian distribution with the constructed precision matrix.

Experiment 1: Varying number of samples. In our first experiment, we fix K = 5, d = 250, and
M = 5, and compare the performance of Elem-q with FGL and FASJEM with varying number of
samples nk. We compare the estimation accuracy in terms of Recall = TP/(TP + FN), Precision =
TP/(TP + FP), and F1-score = 2(Recall×Precision)/(Recall + Precision), where TP, FN, and FP
correspond to the true positive, false negative, and false positive values, respectively. To fine-tune
the weight matrix W and the parameters (µ, γ, νk), we use the distance measure and BIC approach
delineated in Section 6. Moreover, we use the same BIC approach to fine-tune the parameters of
FGL and FASJEM.

Figure 2 illustrates the performance of different estimation methods. It can be seen that Elem-q
with q = 1, 2 (denoted as Elem-1 and Elem-1) perform almost the same, and they both outperform
FASJEM and FGL in terms of the Precision and F1 scores. On the other hand, the Recall score for
FASJEM is artificially high due to the underestimation of the regularization parameters via BIC,
which in turn leads to overly dense estimation of the precision matrices.

Experiment 2: Varying dimension. Next, we analyze the performance of our proposed method for
different dimensions d. In particular, we consider a high-dimensional regime where d is significantly
larger than the number of available samples nk. We fix K = 5 and set nk = d/2. The parameters
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(b) Child cluster

Figure 1: The child cluster is obtained from the parent cluster by regenerating module 5 and
perturbing the edge weights of module 10.

(a) Precision (b) Recall (c) F1-score

Figure 2: Precision, Recall, and F1-score for the estimated precision matrices for different methods
with varying sample size. Elem-1 and Elem-2 perform similarly, and they both outperform FGL and
FASJEM. The higher value of Recall for FASJEM is due to the underestimation of the regularization
parameters that promote sparsity, which in turn leads to a large value of TP.

µ, γ, νk and the weight matrix W are tuned as before.
Figure 3 depicts the Precision, Recall, and F1-score, as well as the runtime of our proposed
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(a) Precision (b) Recall

(c) F1-score (d) Runtime

Figure 3: Precision, Recall, F1-score for the estimated precision matrices, as well as the runtime of
our proposed method with varying dimension. Elem-1 and Elem-2 outperform FASJEM in terms of
Precision and F1-score, while FASJEM outperforming Elem-1 and Elem-2 in terms Recall. Similar
to the previous experiment, the higher value of Recall for FASJEM is due to the underestimation of
the regularization parameters which lead to overly dense precision matrices. Moreover, both Elem-1
and Elem-2 are drastically faster than FASJEM.

method and FASJEM with respect to Kp = Kd(d+ 1)/2 which ranges from 105 to 2.5× 106.1 It
can be seen that the runtime of our proposed method scales almost linearly with p, with the largest
instance solved in less than 2 minutes. On the contrary, FASJEM has an undesirable dependency on
p, with a runtime exceeding 10 minutes for medium-scale instances of the problem. The linear time
of our algorithm with respect to p is due to its decomposable nature of over different coordinates of
the precision matrices.

Experiment 3: Varying number of clusters. Finally, we evaluate the performance of our method

1Due to the large scale of these instances, FGL did not converge within 10 minutes even for the smallest instance
with d = 200. Therefore, it is omitted from our subsequent experiments.
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(a) Precision (b) Recall

(c) F1-score (d) Runtime

Figure 4: Precision, Recall, F1-score for the estimated precision matrices, as well as the runtime of
our proposed method with varying number of clusters. Elem-1 and Elem-2 outperform FASJEM
in terms of Precision and F1-score, while FASJEM outperforming Elem-1 and Elem-2 in terms
Recall. Similar to the previous experiments, the higher value of Recall for FASJEM is due to the
underestimation of the regularization parameters which lead to overly dense precision matrices.
Moreover, both Elem-1 and Elem-2 are drastically faster than FASJEM.

with varying number of clusters K. We fix d = 500, M = 10 and nk = 250, and use the same tuned
parameters in the previous experiment. Figure 4 shows the Precision, Recall, and F1 score for our
proposed method and FASJEM, as well as their runtime with respect to K. Similar to the previous
experiments, both Elem-1 and Elem-2 outperform FASJEM in terms of the estimation accuracy.
Moreover, it can be seen that in practice, the runtime of Elem-1 and Elem-2 scale almost linearly
with K.
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Figure 5: Adjacent tumor sections from a primary GBM patient sample are separated into five
distinct clusters informed by their expression similarity and spatial proximity.

8 Application to Glioblastoma Spatial transcriptomics dataset

We collected gene expression profile using the Visium spatial transcriptomics (ST) platform from a
primary GBM patient tumor showing high perfusion signal in diffusion MRI (relative cerebral blood
volume parameter derived from dynamic susceptibility contrast MR perfusion). We sampled two
adjacent tissue sections, giving us 6500 spots with transcriptomics data from this region. Since most
routine clustering algorithms for spatial transcriptomics datasets are only based on expression-based
proximity between cells, and completely ignore the spatial information, we first define a simple
clustering algorithm that is also informed by spatial context.

We integrate data from adjacent tissue slices using the reciprocal PCA method in the R package
for single cell data analysis (also known as Seurat) [48]. We use the dimension reduction algorithm
PHATE [69] to obtain a 3D embedding of the integrated counts data. We then compute pairwise
Euclidean distances between spots in the embedded space, and with their spatial coordinates. We
perform upper quantile normalization of distance matrices based on their 75th quantile to ensure
that both expression and spatial distances are in the same scale, and use their sum to define pairwise
distances between spots. This dissimilarity matrix is used as input for PAM clustering. Optimal
number of clusters (k = 5) is identified using the Calinski-Harabasz criterion [18], with the resulting
clusters shown in Figure 5.

In order to understand biological characteristics of these clusters, and to aid in downstream
interpretation of inferred networks, we performed spot deconvolution using the RCTD algorithm [16].
Since spots in the Visium microarray have a resolution of about 60µm, they could be composed of
multiple cell types. We thus used annotated single cell RNASeq dataset from [26] to identify cell type
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Figure 6: Output of RCTD spot deconvolution algorithm, visualized as fraction of spots composed
of major contributing cell types. Cluster 4 is enriched for Vascular and immune cells, and cluster 5
has some nascent astrocytic populations.

compositional differences between the regions. We visualize in Figure 6 the proportion of each spot
containing each of the major cell types. We see that the tissue is primarily composed of neoplastic
cells, with some vascular niches and Astrocytic populations. We can see that Cluster 4 corresponds
to a distinct vascular niche in the tumor with significant immune infiltration, and Cluster 5 has
some non-tumor astrocytic cells. Thus the obtained clusters are biologically meaningful, and we can
now seek to understand how gene network interactions vary in different microenvironments of this
tumor.

Having defined biologically meaningful subdomains in the tumor section, we identify the top 2500
genes showing significant spatial trends in their expression, as determined using the SparkX algorithm
[95]. Since the Visium data is highly sparse, we carry out a non-paranormal transformation of
normalized spot-level counts data using the huge package in R [93]. Inter-cluster similarity constraints
for network inference are imposed based on pairwise distances between the cluster medoids. Similar
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Figure 7: The number of detected reads and genes varies significantly across the tissue section. The
regions associated with cluster 3 have the least number of detected genes, and could explain the
very low number of edges in the corresponding graph.

to the previous case study, we use the BIC criterion to learn the optimal parameter values. Using
these parameters, we find that of 2500 genes, 1180 have an edge in at least one cluster.

The number of inferred edges per cluster are respectively 4511, 13785, 446, 8400 and 4534. The
significant variation in the number of edges in the clusters could be caused by the difference in
numbers of detected read counts across the tissue section. This is shown in Figure 7, where we can
see that Cluster 3 has significantly fewer detected genes than the other regions. While performing
count imputation could help to some extent, we observed that the variation in the expressed gene
counts persisted, showing similar spatial trends. This is therefore a biological and not technical
artefact of the data.

To compare the extent of similarity between the inferred networks, we use the DeltaCon algorithm
[55], a statistically principled and scalable inter-graph similarity function. The relative similarity
values are shown in Figure 8. We can see that inferred networks from the different clusters are
largely distinct, with Clusters 1 and 3 having the maximum pairwise similarity of 0.27. The network
in Cluster 4 is maximally different from the other regions. This is as expected, given that this region
is compositionally most unique. The gene network in Cluster 2 is also very different from other
zones. As we saw in Figure 7, this region is transcriptionally most active, and the inferred graph
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Figure 8: Inter-network similarity computed using the Delta-Con algorithm highlight extent of
change in gene regulatory networks between different clusters.

has nearly twice as many interactions between genes as in the other regions.
Figure 9 shows the top 15 strongest edges in each cluster from the inferred network, with

node sizes scaled by their respective degree and negative interactions shown as dotted lines. We
can immediately see that each cluster has distinct underlying regulatory interactions driving their
transcriptional states, even if they appear compositionally homogeneous.

Transcription factors are proteins that play a dominant role in regulating gene expression
networks of cells and are particularly important in driving tumor growth and evolution [15]. By
binding to regulatory regions of target genes, they are responsible for enhancing or suppressing gene
expression and thereby controlling cell states. Regulatory interactions involving TFs are therefore
of particular interest in understanding gene networks. We highlight these interactions in Figure 10.
Since Cluster 2 has an order of magnitude more edges, we highlight only the top 100 edges.

Frequently highlighted TFs active across different regions include the AP1 family TFs FOS and
JUN, which are known downstream effectors of the Mesenchymal state in Gliomas [64], and other
master regulators such as CEBPD [86] and oligodendroglial lineage factors OLIG1 and OLIG2 [54].
We also see significant activity of SOX2 in Cluster 1, a known drivers of stemness features and
radiation-resistance in Gliomas [80]. Cluster 3 shows significant activity of Lactotransferrin (LTF),
which encodes an iron-binding protein with known innate immune and tumor-suppresive activity
[24]. Interestingly, this gene has also been characterized as being an upstream master regulator of
different GBM subtypes [14], warranting further exploration of this gene in driving tumorigenesis in
GBM.
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Figure 9: Top 15 strongest edges in each network are shown. Size of the nodes reflects their degree.
Dotted lines indicate negative interactions. The nodes are colored by the cluster identity.

The TF network in Cluster 4, which represents the peri-vascular niche, is most different from
the other regions, as expected given its unique microenvironment. This region shows prominent
activity of HES4, a known downstream effector of the NOTCH signaling pathway that is known to
inhibit cell differentiation and helps maintain the stemness features in Gliomas [9]. HES4 specifically
regulates proliferative properties of neural stem cells, and reduces their differentiation. This is a
very promising observation, given that the perivascular niche is known to harbor therapy-resistant
glioma stem cells whose properties are critically driven through NOTCH signaling [51]. Cluster
5 has dominant activity of NME2, an nucleotide diphosphate kinase enzyme involved in cellular
nucleotide metabolism and DNA repair [75]. The NME2 protein has also been identified to be a
highly specific Tumor-associated antigen in IDH mutant Gliomas [28]. By studying the regulatory
networks in each cluster separately, we are thus able to infer differential activity of different master
regulators in different microenvironmental niches, which informs us of the varying cell states.

We observed that the majority of the estimated edges are unique to the respective clusters, with
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Figure 10: Transcription factor interactions in each cluster are highlighted. For each cluster, we
show the top 100 strongest edges involving TFs. The graphs are visualized using the Davidson-Harel
layout. Color scheme is same as in Figure 9.

Cluster 4 being most different with 84% unique edges. This network is characterized by a very high
degree of connectivity between genes encoding ribosomal proteins. About a third of the nodes (60 /
184) having node degree over 100, and is qualitatively very different from the degree distribution we
saw in the other networks. We next characterized the networks using different centrality measures
such as their degree, betweenness, closeness, eigen and pagerank, each of which measures a different
aspect of importance of nodes [29]. We reduce each network to its set of unique edges, and consider
the top 10% of nodes by each centrality measure to be hub genes. We then compare multiplicity
of these nodes across the different networks. As expected, majority of hub genes are specific to
individual networks. However in spite of removing shared edges, we observe that the gene TMSB4X
is identified as a shared hub gene in Clusters 1, 2 and 5, suggesting its potential importance in
Glioma growth. We also note that TMSB4X has the highest degree of all genes in a base network
that is shared across clusters. This gene encodes an actin-sequestering polypeptide, and is known to
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promote stemness and invasive phenotype in Gliomas [22].
Next we performed a Gene Ontology Enrichment analysis with the cluster-specific hub genes

shown in Figure 11. We can clearly see that the networks in each cluster are specific for different
tasks. Cluster 1 shows an enrichment for neural differentiation related genes, which are known to
be downregulated in GBM, as well as extracellular matrix related processes associated with invasive
properties of the tumor. Cluster 2 specific hubs are associated with metabolic and biosynthetic
processes. Cluster 3 hubs are associated with innate immune responses, in agreement with our
observation that LTF is a major TF in this network. Cluster 4 has a large number of ribosomal
genes with high connectivity. High levels of ribosomal protein activity has been shown to be
associated with promoting stemness characteristics of Gliomas [79], and we see it to be a defining
characteristic of the peri-vascular niche. Cluster 5 shows enrichment for neuronal processes like
synaptic transmission, consistent with the presence of normal astrocytes in this region.

In summary, using our scalable framework of inferring gene regulatory networks across multiple
spatially informed clusters, we are able to learn and characterize variations in tumor cell states with
their microenvironmental niches and identify master regulators that are differentially active in each
region. We are able to reinforce the role of known TFs such as CEBPD, FOS-JUN, OLIG and SOX
family TFs, as well as identify less known drivers of context-dependent tumor adaptation. Using
our method, we can demonstrate the significant strengths and show how it can be used to get a
very deep understanding of tumor growth and adaptation from spatial gene expression datasets.

9 Conclusion

In this work, we study the inference of spatially-varying Gaussian Markov random fields (SV-
GMRFs) and its application in gene regulatory networks in Spatially resolved transcriptomics. The
existing methods for inferring GMRFs suffer from the so-called curse of dimentionality, which limit
their applicability to small-scale and spatially-invariant networks. To address this challenge, we
propose a simple and efficient inference framework for inferring SV-GMRFs that comes equipped
with strong statistical guarantees. Contrary to the existing MLE-based methods, our proposed
method is amenable to parallelization and is based on solving a series of decomposable convex
quadratic programs. We show that our proposed method is extremely efficient in practice, and
outperforms the existing state-of-the-art techniques—both computationally and statistically. We
study the developed framework in the context of inferring gene networks underlying oncogenesis,
using Glioblastoma (GBM) as a case study. We uncover the nature of spatial gene relationships
across multiple subregions of the tumor. Given that the tumor cell states are dynamically regulated
by their spatial context, our discovered context specific master regulators is an important step
towards developing targeted therapies in the future.
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Figure 11: GO enrichment analysis for cluster-specific hub genes shows specific activity of different
biological processes across the tumor section. Cluster 4 that represents a perivascular niche shows a
high level of activity of ribosomal genes and translational activity.
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A Proof of Theorem 1

The overarching idea behind the proof of Theorem 1 is as follows: we first derive a deterministic
guarantee on the estimation error of the proposed method. We then prove our main theorem by
extending this result using probabilistic concentration bound.

Our first result provides a set of deterministic conditions for the optimal solution to have small
estimation error and correct sparsity pattern.

Proposition 2 (Deterministic guarantee for smoothly-changing SV-MRFs). For a given index
(i, j), suppose that the regularization parameters satisfy

γ <
1

2K ‖W‖max

, (6)

6‖F̃ ∗ij−Θ?
ij‖∞+6γK ‖W‖maxD ≤ µ <

3Θmin

2
. (7)

Then, the following statements hold:

• (Sparsistency) The solution Θ̂ij is unique and satisfies supp(Θ̂ij) = supp(Θ?
ij).

• (Estimation error) We have ‖Θ̂ij −Θ?
ij‖∞ ≤ 2µ/3

The proof of the above proposition is provided in Appendix D.1. Next, we show how this
proposition can be used to complete the proof of Theorem 1. In order to invoke Proposition 2,

we first need to prove that its conditions are satisfied. Recall that γ =
√

log d/(K2 ‖W‖2max nmin)

and nmin ≥ c1

(
s(p)

2
1−p log d

)
/Θ2

min ≥ c1 log d for some c1. It is easy to see that, for c1 > 4, we

have γ < 1/(2K ‖W‖max) and hence, the first condition (6) is satisfied. To show the validity of the
second condition (7), we need the following intermediate lemma borrowed from [33].

Lemma 1 (Theorem 3 of [33]). Under the conditions of Theorem 1, the following inequality holds
with probability of at least 1−Kd−10

∥∥∥F̃ ∗(Σ̂k)−Θ?
k

∥∥∥
max
≤ 128κ1κ3

κ2

√
log d

nk
, for every k.

Proof. The proof is a direct consequence of the proof of Theorem 3 in [33]. The details are omitted
for brevity.

Proof of Theorem 1. Based on Lemma 1 and our choice of γ, one can write

6‖F̃ ∗ij−Θ?
ij‖∞+6γK ‖W‖maxD ≤

(
768κ1κ3

κ2
+ 6D

)√
log d

nmin
:= µ

Now, it only remains to show that the defined µ indeed satisfies µ < 3Θmin/2. This can be readily
verified by our choice of nk:

nk ≥ c2

(
κ1κ3

κ2
+D

)2 log d

Θ2
min
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for sufficiently large constant c2. Therefore, the conditions of Proposition 2 are satisfied, and as a
result, we have supp(Θ̂ij) = supp(Θ?

ij) for every (i, j) and

∥∥∥Θ̂k −Θ?
k

∥∥∥
max
≤ 2µ3/3 .

(
κ1κ3

κ2
+D

)√
log d

nmin

which completes the proof of Theorem 1. �

B Proof of Theorem 2

Similar to the proof of Theorem 1, first we provide a deterministic guarantee on the estimation
error.

Proposition 3 (Deterministic guarantee on sparsely-changing SV-MRFs). For a given (i, j), suppose
that the irrepresentability assumption is satisfied. Moreover, suppose that

8κIC

α
‖F̃ ∗ij−Θ?

ij‖∞ < µ <
min{2Θmin,∆Θmin}

4
√

2 ‖W‖maxD0 + 5
√
S0

,

Then, the following statements hold:

• (Sparsistency) The solution Θ̂ij is unique and satisfies supp(Θ̂ij) = supp(Θ?
ij) and supp(Θ̂k;ij−

Θ̂l;ij) = supp(Θ?
k;ij −Θ?

l;ij) for every l > k.

• (Estimation error) We have∥∥∥Θ̂ij −Θ?
ij

∥∥∥
2
≤ 2

(√
2 ‖W‖maxD0 + 1.25

√
S0

)
µ.

The proof of the above proposition is provided in Appendix D.2. Based on the above proposition,
we proceed with the proof of Theorem 2.

Proof of Theorem 2. In light of Lemma 1, we have

∥∥∥F̃ ∗(Σ̂k)−Θ?
k

∥∥∥
max
≤ 128κ1κ3

κ2

√
log d

nk
,

for every k and with probability of at least 1−Kd−10. This implies that

8κIC

α
‖F̃ ∗ij−Θ?

ij‖∞ ≤
1024κICκ1κ3

κ2α

√
log d

nmin
:= µ

Now, in order to use Proposition 3, it suffices to have

µ <
min{2Θmin,∆Θmin}

4
√

2 ‖W‖maxD0 + 5
√
S0
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which is guaranteed to hold once

nmin ≥ c3

(
κICκ1κ3

κ2α

)(
‖W‖maxD0 + S0

min{Θmin,∆Θmin}

)
· log d

for sufficiently large constant c3. Therefore, Proposition 3 holds and we have supp(Θ̂k) = supp(Θ?
k)

for every k and supp(Θ̂k;ij − Θ̂l;ij) = supp(Θ?
k;ij −Θ?

l;ij) for every i, j and l > k. Moreover, we have∥∥∥Θ̂ij −Θ?
ij

∥∥∥
2
≤ 2

(√
2 ‖W‖maxD0 + 1.25

√
S0

)
µ

.

(√
‖W‖maxD0 +

√
S0

)
κICκ1κ3

κ2α

√
log d

nmin
.

This completes the proof. �

C Proof of Proposition 1

Without loss of generality and to streamline the presentation, we assume that Wkl = 1 for every k, l.

It is easy to observe that BSB : has full column rank, thus we have (BSB :)
† =

(
B>SB :BSB :

)−1
B>SB :.

Let (B>SB :BSB :)
−1 = det(B>SB :BSB :)

−1
F , where F is the adjugate of B>SB :BSB : defined as Fij =

(−1)i+jMij and Mij is the minor of B>SB :BSB : formed by deleting its i-th row and j-th column. We
split SB into two sets S1 and S2, where S1 represents the support set of GAΘ?

ij and S2 = SB\S1.
We also split ScB into two sets Sc1 and Sc2 in a similar way. Our first goal is to show that IC holds
with α = µ/γ which satisfies 1/2 ≤ α ≤ 1. To this end, we show that

BSc1B
†
SB : sign

(
(BΘ?

ij)SB :

)
= 0, (8)∥∥∥BSc2B†SB : sign

(
(BΘ?

ij)SB :

)∥∥∥
∞
≤ 1− µ/γ (9)

To prove (8), it suffices to show that[
(B>SB :BSB :)

−1B>SB :sign(BSB :Θ
?
ij)
]
u

=
[
(B>SB :BSB :)

−1B>SB :sign(BSB :Θ
?
ij)
]
v
,

for every u 6= v such that Θ?
u;ij = Θ?

v;ij . First, we write[
(B>SB :BSB :)

−1B>SB :sign(BSB :Θ
?
ij)
]
u

=

[(
B>SB :BSB :

)−1
]
u:

B>SB : sign
(
BSB :Θ

?
ij

)
=

[(
B>SB :BSB :

)−1
]
u:

[
B>S1 B>S2

]
sign

(
BSB :Θ

?
ij

)
=

γ
µ

∑
k<l

(Fuk − Ful) sign(Θ?
k;ij −Θ?

l;ij) +
∑
k

Fuk sign(Θ?
k;ij)

det(B>SB :BSB :)

where the last equality is due to the definition of F . On the other hand, one can verify that

(B>SB :BSB :)kl =

{
− γ2

µ2
I{π(k, l) ∈ S1}, k 6= l

I{Θ?
k;ij 6= 0} −

∑
u6=k(B

>
SB :BSB :)ku, k = l

(10)

where I(·) is the indicator function. Before proceeding, we need the following intermediate lemma.
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Lemma 2. The following statements hold:

• Fuu = Fvv for every u, v such that Θ?
u;ij = Θ?

v;ij.

• Fuk = Fvk for every u, v, k such that Θ?
u;ij = Θ?

v;ij, k 6= u, and k 6= v.

The proof of the above lemma can be found in Appendix D.3. For u, v such that Θ?
u;ij = Θ?

v;ij ,
one can write[

(B>SB :BSB :)
−1B>SB :sign(BSB :Θ

?
ij)
]
u
−
[
(B>SB :BSB :)

−1B>SB :sign(BSB :Θ
?
ij)
]
v

=
1

det(B>SB :BSB :)

(
γ

µ

∑
k<l

((Fuk − Fvk)− (Ful − Fvl))

sign(Θ?
k;ij −Θ?

l;ij) +
∑
k

(Fuk − Fvk)sign(Θ?
k;ij)

)
Therefore, it suffices to prove that

∑
k<l

((Fuk − Fvk)− (Ful − Fvl)) sign(Θ?
k;ij−Θ?

l;ij) = 0 and
∑
k

(Fuk−

Fvk)sign(Θ?
k;ij) = 0. Invoking Lemma 2, one can write∑

k<l

(Fuk − Fvk) sign(Θ?
k;ij −Θ?

l;ij) =
∑
u<l

(Fuu − Fvu) sign(Θ?
u;ij −Θ?

l;ij)

+
∑
v<l

(Fuv − Fvv) sign(Θ?
v;ij −Θ?

l;ij)

=(Fuu − Fuv)
(∑
u<l

sign(Θ?
u;ij

−Θ?
l;ij)−

∑
v<l

sign(Θ?
u;ij −Θ?

l;ij)

)

=(Fuu − Fuv)
v∑

l=u+1

sign(Θ?
u;ij −Θ?

l;ij).

Thus, we have∑
k<l

((Fuk − Fvk)− (Ful − Fvl)) sign(Θ?
k;ij −Θ?

l;ij) =(Fuu − Fuv)(
v∑

l=u+1

sign(Θ?
u;ij −Θ?

l;ij)

+
v∑

k=u+1

sign(Θ?
k;ij −Θ?

u;ij)) = 0.

On the other hand, one can write∑
k

(Fuk − Fvk) sign(Θ?
k;ij) =(Fuu − Fvu) sign(Θ?

u;ij) + (Fuv − Fvv) sign(Θ?
v;ij)

=(Fuu − Fuv) sign(Θ?
u;ij)− (Fuu − Fuv) sign(Θ?

v;ij)

=0,

which completes the proof of (8).
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Now, to prove (9), we derive the explicit form of

[(
B>SB :BSB :

)−1
B>SB : sign

(
BSB :Θ

?
ij

)]
u

, for any

u such that Θ?
u;ij = 0. Recall that the determinant of a matrix remains unchanged after adding

multiples of a column to another column. Adding all the other columns to the column u of B>SB :BSB :

changes this column to [I{Θ?1;ij 6=0}, I{Θ?2;ij 6=0}, ..., I{Θ?K;ij 6=0}]
>. Therefore, for any γ

µ > 0, we have

∑
k∈S
−γ

2

µ2
Fku + |S|γ

2

µ2
Fuu =

∑
k∈S

Fku = det(B>SB :BSB :)

=⇒ Fuu =
(1 + γ2

µ2
) det(B>SB :BSB :)

|S| γ2
µ2

On the other hand, for every v ∈ Sc2\u, one can write

[
B>SB :BSB :

]
v:

[
(B>SB :BSB :)

−1
]

:u
=

∑
k∈S −

γ2

µ2
Fku + |S| γ

2

µ2
Fvu

det(B>SB :BSB :)
= 0,

Recalling that
∑

k∈S Fku = det(B>SB :BSB :), the above equality implies Fuv =
det(B>SB :BSB :)

|S| . Similarly,
for k ∈ S2, one can write

[
B>SB :BSB :

]
u:

[
(B>SB :BSB :)

−1
]

:k
=

∑
l∈S −

γ2

µ2
Flk + |S| γ

2

µ2
Fuk

det(B>SB :BSB :)
= 0. (11)

which again implies Fuk =
det(B>SB :BSB :)

|S| . Therefore, for any u ∈ Sc2, we have

Fuk =


det(B>SB :BSB :)

|S| , k 6= u

(1+ γ2

µ2
) det(B>SB :BSB :)

|S| γ2
µ2

, k = u
(12)

Now, based on the above formula, we can compute the explicit form of

[(
B>SB :BSB :

)−1
B>SB : sign

(
BSB :Θ

?
ij

)]
u

.

First, note that∑
k<l

(Fuk − Ful) sign(Θ?
k;ij −Θ?

l;ij) =
∑
k<u

(Fuk − Fuu)sign(Θ?
k;ij −Θ?

u;ij)

+
∑
u<l

(Fuu − Ful)sign(Θ?
u;ij −Θ?

l;ij)

=
∑
k<u

(Fuk − Fuu)sign(Θ?
k;ij) +

∑
u<l

(Ful − Fuu)sign(Θ?
l;ij)

=
∑
k 6=u

(Fuk − Fuu)sign(Θ?
k;ij)

=
∑
k∈S

(Fuk − Fuu)sign(Θ?
k;ij)
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Therefore[(
B>SB :BSB :

)−1
B>SB : sign

(
BSB :Θ

?
ij

)]
u

=

γ
µ

∑
k∈S

(Fuk − Fuu)sign(Θ?
k;ij) +

∑
k

Fuk sign(Θ?
k;ij)

det(B>SB :BSB :)

=

( γµ + 1)
∑
k∈S

Fuksign(Θ?
k;ij)−

γ
µ

∑
k∈S

Fuusign(Θ?
k;ij)

det(B>SB :BSB :)

=

( γµ + 1)
∑
k∈S

sign(Θ?
k;ij)

|S|
− γ

µ

∑
k∈S

sign(Θ?
k;ij)

1 + γ2

µ2

|S| γ2
µ2

=

∑
k∈S

sign(Θ?
k;ij)

|S|

(
1− µ

γ

)
≤ 1− µ

γ

(13)

where in the third equality, we used the explicit form of Fuk in (12). Therefore, we have∥∥∥∥BSc: (B>SB :BSB :

)−1
B>SB :sign

(
BSB :Θ

?
ij

)∥∥∥∥
∞
≤ |1− µ/γ|, which implies that α = µ/γ.

Next, we provide an upper and lower bound for κIC. Recall that κIC :=

∥∥∥∥BSc: (B>SB :BSB :

)−1
B>SB :

∥∥∥∥
∞

+

1. Hence, we trivially have κIC ≥ 1. Therefore, it suffices to show that

∥∥∥∥BSc: (B>SB :BSB :

)−1
B>SB :

∥∥∥∥
∞
≤

4. To this goal, we show that

∥∥∥∥Bu:

(
B>SB :BSB :

)−1
B>SB :

∥∥∥∥
1

≤ 4, for every u ∈ ScB. We consider three

cases:

Case 1: Suppose that u = π(k, l) for some (k, l) such that Θ?
k;ij = Θ?

l;ij = 0. One can write

Bu:

(
B>SB :BSB :

)−1
B>SB : =

γ

µdet(B>SB :BSB :)
[Fk1 − Fl1, ..., FkK − FlK ]B>SB :

=
γ

µdet(B>SB :BSB :)

·[..., 0, Fkk−Flk, 0, ..., 0, Fkl−Fll, 0, ...]B>SB :

=
γ

µ

[
..., 0,

µ2

γ2|S|
, 0, ..., 0,

−µ2

γ2|S|
, 0, ...

]
B>SB :

(14)

Thus ‖Bu:

(
B>SB :BSB :

)−1
B>SB :‖1 = 2 γµ

∑
u∈S

µ2

γ2|S| ≤ 4.

Case 2: Suppose that u = π(k, l) for some (k, l) such that Θ?
k;ij = Θ?

l;ij 6= 0. Let S̄ = {r|Θ?
r;ij 6=

Θ?
k;ij , r = 1, ...,K}. It is easy to verify that column k and l of B>SB :BSB : are the same except for the

k-th and l-th element. Subtracting column k of BS>B: from column l, one can write

(|S̄|γ
2

µ2
+ 1)Fkk − (|S̄|γ

2

µ2
+ 1)Fkl = det(B>SB :BSB :). (15)

Therefore,

Fkk − Fkl =
det(B>SB :BSB :)

|S̄| γ2
µ2

+ 1
(16)
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Combining (16) and Lemma 2, one can write

Bu:

(
B>SB :BSB :

)−1
B>SB : =

γ

µdet(B>SB :BSB :)
[Fk1 − Fl1, ..., FkK − FlK ]B>SB :

=
γ

µ

..., 0, 1

|S̄| γ2
µ2

+ 1
, 0, , ..., 0,− 1

|S̄| γ2
µ2

+ 1
, 0, ...

B>SB :

(17)

Therefore, again we have ‖Bu:

(
B>SB :BSB :

)−1
B>SB :‖1 ≤ 4.

Case 3: Suppose that u = K(K−1)
2 + k for some k and Θ?

k;ij = 0. One can write

Bu:

(
B>SB :BSB :

)−1
B>SB : =

1

det(B>SB :BSB :)
[Fk1, Fk2, ..., FkK ]B>SB :

=
γ

µ

[
...,

1

|S|
,

1 + γ2/µ2

|S|(γ2/µ2)
,

1

|S|
, ...

]
B>SB :

(18)

Thus ‖Bu:

(
B>SB :BSB :

)−1
B>SB :‖1 = 1 + µ

γ ≤ 3. The completes the proof. �

D Additional Proofs

D.1 Proof of Proposition 2

For the purpose of proof, we rewrite the optimization problem (2) with q = 2 as an instance of the
Lasso problem [83].

‖Θij − F̃ ∗ij‖22 + γ‖GAΘij‖22 = (Θij − F̃ ∗ij)>(Θij − F̃ ∗ij) + γΘ>ijA
>G>GAΘij

= Θ>ij(I + γA>G>GA)Θij − 2Θ>ijF̃
∗
ij + (F̃ ∗ij)

>F̃ ∗ij
(19)

Since I + γA>G>GA is a strictly diagonally dominant symmetric matrix, it has a unique Cholesky
decomposition I + γA>G>GA = C>C. Therefore, one can write

‖Θij − F̃ ∗ij‖22 + γ‖GAΘij‖22 = ‖(C>)−1F̃ ∗ij − CΘij‖22 − (F̃ ∗ij)
>C−1(C>)−1F̃ ∗ij + (F̃ ∗ij)

>F̃ ∗ij (20)

Therefore, problem (Elem-(i, j, q)) is equivalent to:

min ‖y − CΘij‖22 + µ‖Θij‖1, (21)

where y = (C>)−1F̃ ∗ij . Note that (21) is an instance of Lasso with the observation model y = CΘ?
ij+w,

where w = (C>)−1F̃ ∗ij − CΘ?
ij is the noise vector.

The above equivalence will allow us to invoke the exact recovery guarantee of Lasso in our setting.
For any fixed (i, j), let S ⊂ {1, 2, ...,K} with |S| = s be the support of Θ?

ij satisfying Θ?
k;ij 6= 0

for all k ∈ S. Moreover, let Sc = {1, 2, ...,K}\S. Without loss of generality and to streamline our
presentation, we assume that S = {1, 2, . . . , s}. At the crux of the exact recovery guarantees based
on Lasso lies the classical notion of mutual incoherency [92, 19, 83].
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Assumption 6 (Mutual Incoherency). There exists some α ∈ [0, 1) such that

max
j∈Sc

∥∥∥(CT
SCS

)−1
CT
SCj

∥∥∥
1
≤ α

Mutual incoherency entails that the effect of the columns of C corresponding to “unimportant”
(zero) elements of Θ?

ij on the remaining columns is small. Although mutual incoherency cannot be
guaranteed for general choices of C and S, our next lemma shows that it is indeed satisfied for our
problem, provided that γ is sufficiently small.

Lemma 3. For C>C = I + γA>G>GA and any S ⊆ {1, 2, . . . ,K}, the mutual incoherency holds
with α = 1/2, provided that γ < 1/(2K ‖W‖max).

Proof. It is easy to verify that

A>G>GA =



∑
i 6=1

W1,i −W1,2 · · · −W1,K

−W2,1

∑
i 6=2

W2,i · · · −W2,K

· · ·
−WK,1 −WK,2 · · ·

∑
i 6=K

WK,i


(22)

Since S ∩ Sc = ∅, the elements of C>S CSc can only include the off-diagonal elements of C>C, which
in turn correspond to the off-diagonal entries of A>G>GA defined as (22). Therefore, we have

‖C>S Cj‖∞ ≤ γ ‖W‖max , j ∈ Sc. (23)

On the other hand, since C>S CS is strictly diagonally dominant, its inverse matrix satisfies

‖(C>S CS)−1‖∞ ≤
1

mini

{∣∣(C>S CS)i,i
∣∣−∑j 6=i

∣∣(C>S CS)i,j
∣∣}

=
1

mini

{
1 + γ

∑
j 6=i |Wi,j | − γ

∑
j∈S\i |Wi,j |

}
=

1

mini

{
1 + γ

∑
j∈Sc\i |Wi,j |

} ≤ 1

(24)

where the first inequality is due to [81, Theorem 1]. Combined with (23), we have

‖(C>S CS)−1C>S Cj‖1 ≤ K‖(C>S CS)−1‖∞‖C>S Cj‖∞
≤ Kγ ‖W‖max ‖(C

>
S CS)−1‖∞

≤ Kγ ‖W‖max < 1/2,

(25)

which completes the proof.
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Given the mutual incoherency condition, we follow the so-called primal-dual witness (PDW)
approach introduced by Wainwright [83] to prove Proposition 2. To this goal, first we delineate
the optimality conditions for (21). Given a convex function f : RK → R, we say that z ∈ RK is a
subgradient of f at Θij , denoted by z ∈ ∂f(Θij), if we have

f(Θij + δ) ≥ f(Θij) + 〈z, δ〉 for all δ ∈ RK .

When f(Θij) = ‖Θij‖1, it can be seen that z ∈ ∂‖Θij‖1 if and only if zk = sign(Θk;ij) for all

k = 1, 2, ...,K. For (21), we say that a pair (Θ̂ij , ẑ) is primal-dual optimal if

ẑ ∈ ∂‖Θij‖1, 2C>(CΘ̂ij − y) + µẑ = 0 (26)

Evidently, if (Θ̂ij , ẑ) is primal-dual optimal, then Θ̂ij is the minimizer of (21). Given this optimality
condition, the Primal-dual witness is constructed as follows.

PDW construction: PDW construction has the following steps:

1. Set Θ̂Sc;ij = 0

2. Determine
(

Θ̂S;ij , ẑS

)
∈ Rs × Rs by solving the oracle subproblem

Θ̂S;ij ∈ arg min
ΘS;ij∈Rs

{‖y − CSΘS;ij‖22︸ ︷︷ ︸
=:f(ΘS;ij)

+µ‖ΘS;ij‖1, (27)

then choose ẑS ∈ ∂
∥∥∥Θ̂S;ij

∥∥∥
1

such that ∇f (ΘS;ij)|ΘS;ij=Θ̂S;ij
+ µẑS = 0

3. Solve for ẑSc ∈ RK−s via the zero-subgradient equation (26), and check whether or not the
strict dual feasibility condition ‖ẑSc‖∞ < 1 holds.

Note that the vector Θ̂Sc;ij is determined in Step 1, whereas the remaining three subvectors

Θ̂S;ij , ẑS , and ẑSc are determined in Steps 2 and 3. By construction, Θ̂Sc;ij = 0 and the subvectors

Θ̂S;ij , ẑS and ẑSc satisfy the zero-subgradient condition (26). Therefore, we have[
C>S CS C>S CSc

C>ScCS C>ScCSc

] [
Θ̂S;ij −Θ?

S;ij

0

]
+
µ

2

[
ẑS
ẑSc

]
=

[
C>S w
C>Scw

]
(28)

We say that “PDW construction succeeds” if the vector ẑSc constructed in step 3 satisfies the strict
dual feasibility condition. The following result shows that the success of PDW construction implies
that (Θ̂S;ij , 0) ∈ RK is the unique solution of the Lasso problem.

Lemma 4 (Lemma 7.23 of [83]). The success of the PDW construction implies that the vector
(Θ̂S;ij , 0) ∈ RK is the unique optimal solution of the Lasso problem (21).

Proof of Proposition 2. To apply Lemma 4, it suffices to show that the vector ẑSc ∈ RK−s constructed
in Step 3 satisfies the strict dual feasibility condition. Using the zero-subgradient condition (28), we
have
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ẑSc = − 2

µ
C>ScCS(Θ̂S;ij −Θ?

S;ij) +
2

µ
C>Scw. (29)

On the other hand, (28) implies that

Θ̂S;ij −Θ?
S;ij = (C>S CS)−1C>S w −

µ

2
(C>S CS)−1ẑS (30)

Substituting this expression back into (29) yields

ẑSc = C>ScCS(C>S CS)−1ẑS + C>Sc [I − CS(C>S CS)−1C>S ]
2w

µ
(31)

Due to Lemma 3, we have ‖C>ScCS(C>S CS)−1ẑS‖∞ ≤ 1/2. Therefore, if the following inequalities
are satisfied ∥∥∥∥C>Sc [I − CS(C>S CS)−1C>S ]

2w

µ

∥∥∥∥
∞
≤ 1

2

=⇒ 4‖C>Scw − C>ScCS
(
C>S CS

)−1
C>S w‖∞ ≤ µ,

then we conclude that ẑSc < 1, which establishes the strict dual feasibility condition. On the other
hand, one can write

4

∥∥∥∥C>Scw − C>ScCS (C>S CS)−1
C>S w

∥∥∥∥
∞
≤ 4‖C>Scw‖∞ + 4

∥∥∥∥C>ScCS (C>S CS)−1
C>S w

∥∥∥∥
∞

≤ 4‖C>w‖∞ + 4Kγ ‖W‖max ‖C
>w‖∞

= 4(1 +Kγ ‖W‖max)‖C>w‖∞ ≤ 6‖C>w‖∞

where the second inequality follows from Lemma 3. We also have C>w = C>y − C>CΘ?
ij =

F̃ ∗ij −Θ?
ij − γA>G>GAΘ?

ij . Therefore, upon choosing

µ ≥ 6‖Θ?
ij − F̃ ∗ij‖∞ + 6γK ‖W‖maxD

≥ 6‖F̃ ∗ij −Θ?
ij − γA>G>GAΘ?

ij‖∞,

we establish the strict dual feasibility condition. This implies that Θ̂ij = (Θ̂S;ij , 0) is the unique

solution of (21). Therefore, we have supp(Θ̂ij) ⊆ supp(Θ?
ij) and

‖Θ̂ij −Θ?
ij‖∞ = ‖Θ̂S;ij −Θ?

S;ij‖∞

≤ ‖(C>S CS)−1C>S w‖∞ +
µ

2
‖(C>S CS)−1‖∞

≤ ‖(C>S CS)−1‖∞
(
‖C>w‖∞ +

µ

2

)
≤ 2µ

3 + 3γmini{
∑

j∈Sc\i |Wi,j |}
≤ 2µ

3

(32)

Now, it suffices to show that supp(Θ?
ij) ⊆ supp(Θ̂ij). Suppose that Θ?

k;ij 6= 0 for some k. Then, one
can write

|Θ̂k;ij | ≥ |Θ?
k;ij | − |Θ̂k;ij −Θ?

k;ij |

≥ Θmin;ij −
2µ

3
> 0.
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Therefore, we have supp(Θ?
ij) ⊆ supp(Θ̂ij) which shows that supp(Θ̂ij) = supp(Θ?

ij). This completes
the proof. �

D.2 Proof of Proposition 3

To prove Proposition 3, we first provide the following lemma adapted from [58].

Lemma 5 (Corollary 4.2 of [58]). Suppose that the irrepresentability assumption holds and

‖F̃ ∗ij−Θ?
ij‖∞ <

α

8κIC
µ.

Then, the optimal solution to (3) is unique and satisfies the following properties:

• (Estimation error):
∥∥∥Θ̂ij −Θ?

ij

∥∥∥
2
≤ 2

(
κρ + α

4
κ%
κIC

)
µ

• (Sparsistency): (BΘ̂ij)SB :c = 0,

where
κρ = sup

θ
{‖Bθ‖1 | ‖θ‖2 = 1, (Bθ)SB :c = 0}

κ% = sup
θ
{‖θ‖1 | ‖θ‖2 = 1, (Bθ)SB :c = 0}

κIC = sup
‖z‖∞≤1

∥∥∥BSB :cB
†
SB :zSB :

∥∥∥
∞

+ ‖zSB :c‖∞

(33)

Based on the above lemma, we proceed with the proof of Proposition 3

Proof of Theorem 3. Based on our assumptions, Lemma 5 can be invoked to show that supp(Θ̂ij) ⊆
supp(Θ?

ij) and supp(Θ̂k;ij−Θ̂l;ij) ⊆ supp(Θ?
k;ij−Θ?

l;ij). Now, it remains to prove the upper bound on

the estimation error, as well as supp(Θ?
ij) ⊆ supp(Θ̂ij) and supp(Θ?

k;ij −Θ?
l;ij) ⊆ supp(Θ̂k;ij − Θ̂l;ij).

First, it is easy to verify that κρ ≤
√

2 ‖W‖maxD0 +
√
S0 and κ% ≤

√
S0. Moreover, by setting

zi = 1 for some i ∈ ScB, one can easily verify that κIC ≥ 1. Therefore, according to Lemma 5, we
have ∥∥∥Θ̂ij −Θ?

ij

∥∥∥
2
≤ 2

(
κρ +

α

4

κ%
κIC

)
µ

≤ 2

(√
2 ‖W‖maxD0 +

√
S0 +

√
S0

4

)
µ

≤ 2

(√
2 ‖W‖maxD0 + 1.25

√
S0

)
µ,

where in the second inequality, we used κρ ≤
√

2 ‖W‖maxD0 +
√
S0, κ% ≤

√
S0, α ≤ 1, and κIC ≥ 1.

Now, it suffices to show that supp(Θ?
ij) ⊆ supp(Θ̂ij) and supp(Θ?

k;ij−Θ?
l;ij) ⊆ supp(Θ̂k;ij− Θ̂l;ij).

Suppose that Θ?
k;ij 6= 0 for some k. Then, one can write

|Θ̂k;ij | ≥ |Θ?
k;ij |−|Θ̂k;ij−Θ?

k;ij |

≥ Θmin;ij−2

(√
2 ‖W‖maxD0 + 1.25

√
S0

)
µ > 0,
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where the last inequality follows from the assumption µ < Θmin;ij/
(
2
(√

2 ‖W‖maxD0 + 1.25
√
S0

))
.

This implies that Θ̂k;ij 6= 0, and hence, supp(Θ?
ij) ⊆ supp(Θ̂ij). Similarly, suppose Θ?

k;ij −Θ?
l;ij 6= 0

for some (k, l). One can write

|Θ̂k;ij−Θ̂l;ij |≥|Θ?
k;ij−Θ?

l;ij |−|Θ̂k;ij−Θ?
k;ij |−|Θ̂l;ij−Θ?

l;ij |

≥∆Θmin;ij−4

(√
2 ‖W‖maxD0+1.25

√
S0

)
µ

>0,

where the first inequality is due to triangle inequality and the last inequality follows from µ <
∆Θmin;ij/

(
4
(√

2 ‖W‖maxD0+1.25
√
S0

))
. This in turn implies that supp(Θ?

k;ij−Θ?
l;ij) ⊆ supp(Θ̂k;ij−

Θ̂l;ij), which completes the proof. �

D.3 Proof of Lemma 2

Using the standard properties of adjucate matrices, one can obtain Fvv from Fuu after the following
steps:

1. Move column v of Muu to position u, so that it becomes the u-th column of Muu.

2. Move row v of Muu to position u, so that it becomes the u-th row of Muu.

To be more specific, the column and row indices of Muu change from {1, 2, ..., u− 1, u+ 1, ..., v −
1, v, v + 1, ...,K} to {1, 2, ..., u − 1, v, u + 1, ..., v − 1, v + 1, ...,K}. Since the column/row indices
of Mvv are {1, 2, ..., u − 1, u, u + 1, ..., v − 1, v + 1, ...,K}, we only need to show that Muu and
Mvv are the same at the u-th column and u-th row. Moreover, due to symmetry, it suffices
to show that Muu and Mvv are the same at the u-th column. Now, the u-th column of Muu

is
(
B>SB :BSB :

)
{1,...,u−1,v,u+1,...,v−1,v+1,...,K},v

and the u-th column of Mvv is
(
B>SB :BSB :

)
{1,...,K}\v,u

.

From the structure ofB>SB :BSB : and the fact that Θ?
u;ij = Θ?

v;ij , we have
(
B>SB :BSB :

)
{1,...u,...,v,...,K},u

=(
B>SB :BSB :

)
{1,...v,...u,...,K},v

. Thus one can write(
B>SB :BSB :

)
{1,...,u−1,v,u+1,...,v−1,v+1,...,K},v

=
(
B>SB :BSB :

)
{1,...u−1,u,u+1,...,v−1,v+1,...,K},u

=
(
B>SB :BSB :

)
{1,...,K}\v,u

(34)

Therefore, Mvv can be obtained fromMuu using the above two steps. This implies thatMuu(−1)2|v−u−1| =
Mvv which in turn leads to Muu = Mvv. On the other hand, due to the definition of Fuu and Fvv,
we have Fuu = (−1)2uMuu = (−1)2vMvv = Fvv. The second statement can be proved in a similar
fashion. The details are omitted for brevity. �
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