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Abstract—Molecular fingerprints are significant cheminformatics tools to map molecules into vectorial space according to their

characteristics in diverse functional groups, atom sequences, and other topological structures. In this paper, we set out to investigate

a novel molecular fingerprint Anonymous-FP that possesses abundant perception about the underlying interactions shaped in small,

medium, and large molecular scale links. In detail, the possible inherent atom chains are sampled from each molecule and are extended

in a certain anonymous pattern. After that, the molecular fingerprint Anonymous-FP is encoded in virtue of the Natural Language

Processing technique PV-DBOW. Anonymous-FP is studied on molecular property identification and has shown valuable advantages

such as rich information content, high experimental performance, and full structural significance. During the experimental verification, the

scale of the atom chain or its anonymous manner matters significantly to the overall representation ability of Anonymous-FP. Generally,

the typical scale r = 8 enhances the performance on a series of real-world molecules, and specifically, the accuracy could level up to

above 93% on all NCI datasets.

Index Terms—molecular fingerprint, random walks, anonymous pattern walks, typical scale, property identification

✦

1 INTRODUCTION

The discovery of new molecules benefits human society
greatly, and accurate prediction for unknown molecular
properties remains an open challenge. In pharmaceutical
chemistry [1], drug designs [2], bioinformatics [3] et al.,
molecules from all of these domains and many more could
be represented as graphs, in which nodes interact with
others according to the edges among them and integrate
as a whole to perform specific properties. In the molec-
ular planar graph, the positions of nodes are occupied
by different atoms, and the edges are formed according
to the chemical bonds between atoms. The differences
in topological structure lead to diversity in chemical or
physical properties. For instance, Figure 1 introduces the
typical isomerism [4] between the 4-Nitrobiphenyl and 5-
Nitroacenaphthene molecules, which are involved in MU-
TAG dataset [5] and are labeled differently. Both of them
possess a same molecular formula C12H9NO2 but express
quite different properties (shown in table) due to distinct
carbon chain structures. In particular, 5-Nitroacenaphthene
is wildly used in pharmaceutical engineering as an impor-
tant raw material for medicine synthesis.

How to infer the physicochemical properties of
molecules, or to distinguish different molecules only from
graph topology has recently received a lot of attention from
various fields of machine learning. And the core of all these

†These authors contributed to the work equally and should be regarded as
co-first authors
* Corresponding author: weiw@buaa.edu.cn

inevitably attributes to the graph isomorphism problem
(abbreviated as GIP) [6], [7]. A graph is isomorphic to
another if there exists a bijective mapping f of the vertices
in this graph to vertices of the other one such that the
adjacency could be preserved, i.e., for graph G1 = (V1, E1)
and G2 = (V2, E2), for all vi, vj ∈ V1, i 6= j,

(vi, vj) ∈ E1 ⇔ (f(vi), f(vj)) ∈ E2. (1)

Clearly, graph isomorphism problem (GIP) is in the
class of NP, and subgraph isomorphism has been proved
as NP-complete, while it is still unknown whether graph
isomorphism belongs to NP-complete or not [8]. Thus it is
not feasible to directly apply theoretical fruits of GIP into
real molecular similarity measure. In recent years, abundant
literature in molecular fingerprints have provided effective
ways for molecule representation, identification, and com-
parison, and Maccs [9], PubChem fingerprints [10], Morgan
fingerprints [11] and so on are typical types..

Molecular fingerprints [12], [13] attempt to encode a
molecule into a list of bits by the presence of certain chem-
ical fragments from a pre-defined set of structural keys,
which are simplification or abstraction of substructure pat-
terns and need to be identified by domain knowledge. The
length of bits relies on the number of chemical fragments
contained in the target molecule, and each index in molec-
ular fingerprints denotes the key of chemical structure.
Molecular fingerprints are most useful when components
of each molecule are likely to be covered in the structural

http://arxiv.org/abs/2301.01620v1


PREPRINT SUBMITTED TO ARXIV 2

4-Nitrobiphenyl 5-Nitroacenaphthene

Fig. 1. The structural graphs for isomers 4-Nitrobiphenyl and 5-
Nitroacenaphthene molecules. 4-Nitrobiphenyl is one kind of aromatic
compound and 5-Nitroacenaphthene belongs to heteroaromatic com-
pounds.

keys set, however, face challenges when molecules contain
substructures out of the keys set.

To get rid of the full understanding of the keys set, the
most straightforward yet simplest strategy is to traverse all
possible (sub)structures by random walk model and then
map each known or unknown structure into a unique code
based on embedding techniques. In this way, any substruc-
ture is only determined by its contained atoms as well as the
linked mode in each atom chain, regardless of its judicious
chemical definition or function from the prior knowledge.
Here, the worthy issue notable for each mined substructure
lies in the topological scale, which corresponds to the length
r of each atom chain via random walk. Particularly, we
denote the scale of the most expressive substructures as the
typical scale in the targeted molecule.

Present Work. In this paper, we decompose a molecular
graph into a series of r-scale anonymous atom chains and
formulate a new molecular fingerprint method Anonymous
Pattern Molecular Fingerprint (abbreviated as Anonymous-
FP) based on such structures, where r denotes the length of
an atom chain from the source atom to the ending atom. Our
methodology consists of two steps: sampling anonymous
atom chains by random walks and coding anonymous atom
chains by embedding techniques.

Step 1. Sampling anonymous atom chains. We sample
t times r-scale random walks beginning at each atom in the
molecule and collect them as a set, which represents the
atom chain decomposition. It is obvious that the probability
of an r-scale atom chain occurring decreases with the in-
creasing distance r. To avoid distribution sparsity, we take
a special encoding mode named anonymous-based random
walk [14] to transfer each atom chain into its anonymous
pattern (i.e., anonymous atom chain) as a sequence of in-
dexes. Each position of such sequence denotes the order of
the first occurrence of the corresponding atom in the chain.

This schema makes Anonymous-FP suitable for molecules
that are absent of global structural keys and even labels of
some atoms. Moreover, this schema is also computational
complexity efficient because anonymous coding is usually
statistically significant, especially in understanding long r-
scale atom chains with sparse distribution.

Step 2. Encoding anonymous atom chains. To qualify
similarity between two molecules with different anonymous
atom chain decomposition faces the challenge of different
chain amounts. Inspired by a Natural Language Processing
(NLP) document embedding technique PV-DBOW [15],
which encodes each document into a vector representa-
tion, we treat a molecule as a document and anonymous
atom chains as interacted words inside. Then we embed
each molecule into Euclidean space as a vector and denote
such fixed-size vector as a molecular fingerprint named
Anonymous-FP. Our institution origins from the Similarity
Property Principle (SPP) [16], [17], which points out that
molecules express similar physicochemical properties if they
share similar structural features, similar anonymous atom
chain decomposition as well as proximity in embedding
space.

We evaluate the efficiency of Anonymous-FP on prop-
erty identification, such as property classification, using
a series of real-world molecular datasets (MUTAG, PTC,
PROTEINS, DD, and NCIs). We compare the perfor-
mance of Anonymous-FP with kernel methods (Graphlet
kernel, Weisfeiler-Lehman kernel), embedding methods
(Graph2vec, AWE), and Graph Neural Networks (PATCHY-
SAN, GraphSAGE). The experiment results indicate that our
Anonymous-FP shows a considerable advantage over others
in terms of classification accuracy. We present a systematic
analysis of the correlation between molecular graph rep-
resentation power and the atom chain length r as well as
sampling number t. Meanwhile, the scale that induces the
highest accuracy is followed as the typical scale. A more
interesting discovery is then proposed: in all NCI datasets,
the classification accuracy will achieve the best and go over
93% when r turns into 8.

2 RELATED WORKS

In this section, we review the related works for the primary
methods used in this paper, including molecular finger-
prints, basic definitions of an unweighted graph, molecular
graph embedding, and PV-DBOW technique in NLP.

Molecular Fingerprints. Molecular fingerprints are es-
sential cheminformatics tools dedicated to searching, de-
scribing, and validating molecular structural characteristics
through vectorial representation and comparison. Diverse
pioneering fingerprints could be roughly classified into four
categories, including substructure keys fingerprints, topo-
logical fingerprints, pharmacophore fingerprints, and other
types.

Substructure keys fingerprints encode each molecule
into a bit string based on the presence of substructures
from a set of structural keys but lose effectiveness when
absenting substructures from the keys set. MACCS [9],
PubMed fingerprints [10], and BCI fingerprints [18] finger-
prints are typical ones. Topological fingerprints (such as
Molprint2D [19], ECFP [20], and MP-MFP [21]) look for
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Fig. 2. An overview of the relation between atom chain and anonymous atom chain. As shown in subfigure (A), oxygen atoms, nitrogen atoms,
and carbon atoms are colored red, blue, and grey. Each of them is arrayed differently from 1 to 12, respectively. In subfigure (B), anonymous atom
chains 1-3 correspond to 5 different 6-scale atom chains, which are sampled randomly from these two molecules and covered with light green, light
blue, and light red shadows. Among these three anonymous atom chains, anonymous atom chain 1 and anonymous atom chain 2 are together
shared by both molecules, while anonymous atom chain 3 is unique to 5-Nitroacenaphthene. This also implies the difference between these two
molecules and could be roughly shown in subfigure (C).

atom chains and then hashing everyone of them to create
fingerprints. Pharmacophore fingerprints take account of
molecular features from a list of targeted features [22].
Other types usually generate fingerprints employing the
canonical SMILES [23], protein-ligand interactions [24], and
other structural interactions.

Graph Representation. Let G = (V , E) denote an un-
weighted graph with n vertices in set V and m edges in
set E ⊆ V × V , the adjacency matrix A ∈ R

n×n encodes
the vertex-wise connection of the graph and is defined as
follows:

Ai,j =

{

1, if (vi, vj) ∈ E

0, otherwise
. (2)

And the degree dvi of vertex vi is defined as the sum of
entries in i-th row from adjacency matrix A, which is exactly
the number of 1-hop neighbors for vi:

dvi =
n
∑

j=1

Ai,j . (3)

The transition matrix P records all the transition proba-
bilities Prob(vj |vi) for an agent moving from vertex vi to
anyone in its 1-hop neighborhood, and each entry Pi,j =
Prob(vj |vi) satisfying

Pi,j =







1

dvi
, if (vi, vj) ∈ E

0, otherwise

. (4)

Clearly, for each vertex vi,
n
∑

j=1

Pi,j = 1. (5)

Molecular Graph Embedding. Molecular graph em-
bedding is related to vector representation for molecules.
It maps molecular graph G into a d-dimension vector in
Euclidean space, i.e.,

ϕ : G→ R
d, (6)

where ϕ denotes an embedding function.
PV-DBOW. In Natural Language Processing (NLP), PV-

DBOW technique is used for unsupervised embedding sen-
timent in the level of the document. More specifically, given
a document set D = {D1, . . . , DN} with a set of words
V = {ω1, . . . , ων}, for the target document Di ∈ D which
contains a sequence of words Vi = {ω1, . . . , ωl} ⊆ V , the
goal is to learn low-dimension vector representation Di for
document Di by maximizing the following log probability:

∑

ωj∈Vi

logPr(ωj |Di). (7)

The conditional probability Pr(wj |Di) above is defined
as softmax function:

Pr(ωj |Di) =
exp(Di · ωj)

∑

ωm∈V
exp(Di · ωm)

, (8)

where ωj is the corresponding representation vector of ωj .

3 METHODOLOGY

In this section, we introduce the details of the new pro-
posed molecular fingerprint method Anonymous-FP. In
this method, each molecule from molecules set G =
{G1, . . . , GN} is decomposed into a set of r-scale atom
chains, then we transform them into r-scale anonymous
atom chains and embed molecule graph into high dimen-
sional vector space.

3.1 Atom Chain and Anonymous Atom Chain

In a molecular graph Gi = (Vi, Ei) with the adjacent matrix
A and transition matrix P, the r-scale atom chain is denoted
as a Markov chain w = (v0, v1, . . . , vr), which is derived by
such a process that an agent walks from the root atom v0 to
the end vr step by step.
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Then, the anonymous atom chain transforms each atom
chain into a sequence of integers recording positions that
appear first. More specifically, The anonymous atom chain
a for r-scale atom chain w is a sequence of integers defined
by operator ψ,

a = ψ(w) = [f(v0), f(v1), . . . , f(vr)], (9)

in which f is the position function such that f(vi) =
|(v0, . . . , vî)|, where î is the smallest integer such that
vî = vi.

Supposing that at each root vertex in Gi, agent samples
t r-scale atom chains and collects them into a set as the
structural decomposition for molecular graph Gi, denoted
by Wi = {w1

i , . . . , w
t
i}. This atom chain set corresponds

to an anonymous atom chain set Ai = {a1i , . . . , a
τi
i }, and

obviously |Ai| ≤ |Wi|.
Now we collect each molecular structural decomposition

Wi into a union, denoted by

W =
N
⋃

i=1

Wi = {w1, . . . , wµ}. (10)

Then accordingly, the union of anonymous atom chains
set is denoted as

A =
N
⋃

i=1

Ai = {a1, . . . , aν}. (11)

The process of transforming each atom chain into its
anonymous pattern is shown schematically in Figure 2. The
basic idea in pattern translation origins from two reasons.

(1) Enhance the representation of unknown structures.
In various pioneer molecular fingerprint methods, there
always requires a full understanding about atoms, groups,
or other substructures before generating fingerprints. How-
ever, in an anonymous pattern, an observer that conducts
random walks records each atom only by its first occurrence
in a random walk, regardless of its real atom category.
This may help transfer any well-known or less-known
substructure in chemistry and bioinformatics into a unique
numerical sequence under a consistent rule.

(2) Reduce the computational complexity. For each r-
scale atom chain w = (v0, v1, . . . , vr), the occurring prob-
ability is

P (w) =
r−1
∏

i=0

Pi,i+1, (12)

where the operational symbols follow the definitions in Sec-
tion 2. Accordingly, the probability of choosing anonymous
pattern a = ψ(w) in Gi equals

P (a) =
∑

w∈Wi,a=ψ(w)

P (w). (13)

In addition, we use the statistics in Figure 3 to verify
the simplification when conducting an anonymous pattern.
Here we define the scale r ranging from 6 to 10, and the
overall atom categories C > 10. The number of possible
atom chains and the number of anonymous atom chains
is reported in table and histograms, respectively. With an
increasing r, there faces an exponential rise in the number
of possible atom chains, which equals Cr+1 and is greater
than the number of r-scale anonymous atom chains. This

Atom Chain NumberAtom Chain NumberNumber of Atom Chains
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r 
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to
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Fig. 3. Statistics of possible atom chains and anonymous atom chains
when the targeted molecules are with C classes atoms (C > 10).

result may be attributed to the fact a mass of atom chains
with sparse distribution are all compressed into bits of
anonymous atom chains, such that the overall computa-
tional complexity reduces significantly.

3.2 Anonymous-FP

We propose a novel molecular fingerprints methodology on
the basis of anonymous atom chains mined from molecules.
In our work, a NLP technique PV-DBOW is adopted to
encode each molecule as fixed-length vector embedding,
and regard anonymous atom chains as words contained in
a document (i.e., molecule). Our ideology comes from the
Similarity Property Principle (SPP) [16], [17] that molecules
with similar anonymous atom chains share proximity in
embedding space.

In mathematical framework, we suppose a d-dimension
vector Gi as the representation for molecule Gi, and ν × d
matrix M as encoding for anonymous atom chains set
A = {a1, . . . , aν}, where each row vector ai corresponds
to anonymous atom chain ai.

The global object is to embed a targeted moleculeGi into
d-dimension vector Gi by minimizing the objective function

L = −
∑

aj∈Ai

logProb(aj |Gi). (14)

The conditional probability Prob(aj |Gi) above is de-
fined as a softmax function:

Prob(aj |Gi) =
exp(Gi · aj)

∑

am∈A
exp(Gi · am)

, (15)

where Gi and am are corresponding representation vectors
of Gi and am.

Since the volume ν for anonymous atom chains set A
tends to be very large, the enumeration part of the softmax
item (15) requires a large amount of computing resources.
Thus a negative sampling method [25] is taken to approx-
imate the log probability (14), which randomly samples a
small portion of anonymous atom chains Ã

aj
i as negative

samples out of targeted molecule Gi, i.e.,

Ã
aj
i = Ai/{aj}. (16)
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Only target anonymous atom chain aj and negative samples
are updated instead of all the elements from set A in the
iterative training. This strategy would be efficient, especially
for cases where tasks face huge computational complexity.
Thus the objective function (14) could be rewritten as the
following:

L =−
∑

aj∈Ai

logProb(aj |Gi)

= log σ(aj ·Gi) +
K
∑

k=1

E
ak∈Ã

aj

i

log σ(−ak ·Gi)

= log σ(aj ·Gi) +
K
∑

k=1

Eak∈Ai/{aj} log σ(−ak ·Gi)

(17)

where σ(x) = 1
1+exp (−x) denotes the sigmoid function, ak

is the vectorial embedding of negative sample ak sampled
from Ã

aj
i for K times. We optimize this loss function (17)

with stochastic gradient descent and update Gi and aj . Af-
ter the learning process finishes, we refer to this d-dimension
vector Gi as fingerprint Anonymous-FP for molecule Gi.

Anonymous-FP has absorbed the advantages of substruc-
ture keys fingerprints, topological fingerprints, pharma-
cophore fingerprints, and other fingerprint types. Here the
reason is twofold. On the one hand, it restates and slightly
extends substructure keys fingerprints and topological fin-
gerprints as all substructures are sampled via random walk
model as atom chains. Then atom chains are transferred
as their anonymous pattern so that the reliance on prior
knowledge about concrete substructure keys as well as the
atoms is partly released. On the other hand, Anonymous-FP
undertakes PV-DBOW to generate fingerprints with regard
to the targeted graph as a document and the contained
anonymous atom chains as words inside the document.
Thus the mechanisms that underlie structural interactions
are implied in vectorial representations and this acts as the
original starting point of this molecular fingerprint method.

Algorithm 1 and Figure 4 outline the framework of
Anonymous-FP. In its initialization, molecular embedding
vector Gi as well as the anonymous atom chains vectors
aj , j = 1, . . . , ν, are randomly preset by normal distribution
N (0, 0.01) first, then these embedding vectors are iteratively
calculated by gradient descent until achieving convergence.

4 EXPERIMENTS

In this section, to validate the efficiency of our proposed
methodology, we conduct extensive experiments on molec-
ular graph classification tasks for molecular graph datasets.
This task is a supervised pattern with training data con-
sisting of pairs of input data (i.e., Anonymous-FP of each
molecule) and desired output label (i.e., target physicochem-
ical property). It shows our method could achieve superior
performance compared with several well-used baselines. A
brief discussion of the interaction between the expressive-
ness of Anonymous-FP and the full exploration of walk-
driven samples will also be provided in this following part.

4.1 Datasets

Anonymous-FP is tested on a series of real-world molecule
graph datasets: NCI-1, NCI-109, PROTEINS, DD, MUTAG

Algorithm 1 Anonymous-FP

Input: molecules set G = {G1, . . . , GN}; anonymous atom

chains set A =
N
⋃

i=1
Ai = {a1, . . . , aν}; scale r; vector

dimension d
Output: Anonymous-FP Gi for molecule Gi

1: initialize Gi = [ǫs]1×d, ǫs ∼ N(0, 0.01)
2: initialize aj = [εs]1×d, εs ∼ N(0, 0.01), j = 1, . . . , ν
3: for each anonymous atom chain aj in Ai do

4: sample negative set Ã
aj
i from set A

5: L = log σ(aj ·Gi) +
K
∑

k=1

E
ak∈Ã

aj
i

log σ(−ak ·Gi)

6: Gi = Gi − α∂L
Gi

7: aj = aj − α∂L
aj

8: end for
9: return Anonymous-FP Gi

TABLE 1
Statistics of the benchmark graph datasets. The columns are the name
of the dataset, the number of positively labeled graphs, the number of

graphs, the number of classes, and the average number of
nodes/edges.

Dataset Positive Total Class Ave. Node Ave. Edge

NCI-1 2055 4110 2 29.87 32.30
NCI-109 2063 4126 2 29.68 32.13
PROTEINS 556 1112 2 39.06 72.82
DD 589 1178 2 284.32 715.66
MUTAG 94 188 2 17.93 19.79
PTC 172 344 2 14.29 14.69

and PTC. Each dataset belongs to a certain type of spe-
cific physicochemical property with the labels active and
inactive. The statistics are covered in Table 1 and the brief
descriptions are as follows.

• NCI-1, NCI-109 [26] are datasets of chemical com-
pounds divided by the anti-cancer property (active
or negative). These datasets have been made publicly
available by the National Cancer Institute (NCI).

• PROTEINS [27] is a set of protein graphs where
nodes represent secondary structure elements and
edges indicate neighborhood in the amino-acid se-
quence or in 3-dimension space.

• DD [28] is a dataset of protein structures where
nodes represent amino acids and edges indicate spa-
tial closeness, which is classified into enzymes or
non-enzymes.

• MUTAG [5] is a dataset of aromatic and heteroaro-
matic nitro compounds labeled according to whether
they have a mutagenic effect on bacteria or not.

• PTC [29] consists of graph representations of chemi-
cal molecules labeled according to carcinogenicity for
male and female rats.

4.2 Baselines

To fully illustrate the notable performance of our model, we
compare it with a series of baselines.

• Graphlet kernel [30]: Graphlet kernel (GK) mea-
sures graph similarity by counting common k-node
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Fig. 4. The algorithm of Anonymous-FP: Sampling atom chains from the initial graph data and then translating each atom chain into its anonymous
atom chain. By taking the union of all the anonymous atom chain sets, the set A is built and then passes through the embedding model PV-DBOW.
After that, the Anonymous-FP as outputs are provided iteratively.

graphlets, and this ensures the computation com-
plexity restricted in ploynomial time.

• Weisfeiler-Lehman kernel [31]: Weisfeiler-Lehman
kernel (WL) maps graph data into a Weisfeiler-
Lehman sequence, whose node attributes represent
graph topology and label information. WL kernel is
wildly used in isomorphism tests on graphs since
the runtime scales linearly in the number of edges of
the graphs and the length of the Weisfeiler-Lehman
graph sequence.

• Graph2vec [32]: Graph2vec treats rooted subgraphs
as words and graphs as sentences or documents,
then it uses Skip-gram in NLP to get explicit graph
embeddings.

• AWE [33]: AWE uses anonymous random walks to
embed entire graphs in an unsupervised manner,
but it takes a different embedding strategy compared
with our methodology. AWE leverages the neighbor-
hoods of anonymous walks while our work focuses
on the co-occurring anonymous walks in the global
scale.

• PATCHY-SAN [34]: Analogous to convolutional
neural networks (CNNs) [35], [36], PATCHY-SAN
(PSCN) proposes a framework to perform convolu-
tional operations for arbitrary graph data.

• GraphSAGE [37]: GraphSAGE takes advantage of an
inductive framework to calculate graph embeddings
by sampling and aggregating 1-hop and 2-hop neigh-
borhood features.

4.3 Implementation and Hyper-parameters

In this paper, we use Python 3.6.12, Tensorflow 1.2.0, Scikit-
learn 0.24.1, Numpy 1.22.1, and Networkx 2.6.3 as the com-
puting environment and all experiments are conducted on
the workstation with 2 INTEL XEON CPUs and 4 NVIDIA
GeForce GTX1080Ti GPUs. We first randomly divide each
dataset into 10 equal parts and choose 9 samples for training
and 1 sample for testing the efficiency. For fair evaluation,

we take the same size of Anonymous-FP as 128 for all
datasets. In fact, there is a tightly inherent association be-
tween Anonymous-FP representation and hyper-parameters
scale r as well as sampling number t. To explore this kind
of association, we regard Anonymous-FP as a function of r
which ranges from short scale 6 to 10 incrementally, and of
t which arises from 10 to 160. Then we build a molecular
graph classifier using Support Vector Machine with RBF
kernel [38] to test and verify the discriminative power of
Anonymous-FP and discuss the trend of the classification
accuracy under the control of hyper-parameters r, t.

4.4 Performance evaluation metrics

Most evaluation metrics are derived from these five terms:
accuracy, precision, recall, F1-Score, and ROC-AUC.

• Accuracy [39], [40] calculates the probability of a
model to make a correct prediction for the active or
inactive items.

• Precision [39], [40] estimates the probability of a
model to make a correct active class prediction.

• Recall [39], [40], referred to the true positive rate or
sensitivity, represents the fraction of correctly pre-
dicted active chemicals.

• F1-Score [39], [40], referred to as a balance of the
Precision and Recall, ranges from 0 to 1. A higher
F1-Score indicates a better classifier.

• ROC-AUC [41]. Receiver Operator Characteristic
(ROC) curves are used to show how a predictor
compares with the true outcome. Typically, the ROC
curve reflects how sensitivity (true positive rate)
changes with varying specificity (true negative rate)
for various thresholds. The predictive capabilities of
a variable are commonly summarized by the Area
Under Curve (AUC), which can derived by the inte-
gral measure under the line segments.
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TABLE 2
Average classification accuracy (mean ± std %) of our approach and baselines on real-world molecular datasets. The best result is marked in bold.

Algorithm NCI-1 NCI-109 PROTEINS DD MUATG PTC

Graphlet kernel [30] 62.28 ± 0.29 62.60 ± 0.19 71.67 ± 0.55 78.45 ± 0.26 80.63 ± 3.07 57.26 ± 1.41

Weisfeiler-Lehman kernel [31] 80.13 ± 0.50 80.22 ± 0.3 72.92 ± 0.56 77.95 ± 0.70 81.66 ± 2.11 56.97 ± 2.01

Graph2vec [32] 73.22 ± 1.81 74.26 ± 1.47 73.30 ± 2.05 58.64 ± 0.01 83.15 ± 9.25 60.17 ± 6.86

AWE [33] 62.72 ± 1.67 63.21 ± 1.42 70.01 ± 2.52 71.51 ± 4.02 87.87 ± 9.76 59.14 ± 1.83

PATCHY-SAN [34] 78.59 ± 1.89 - 75.89 ± 2.76 77.12 ± 2.41 92.63 ± 4.21 60.00 ± 4.82

GraphSAGE [37] 74.73 ± 1.34 74.17 ± 2.89 74.01 ± 4.27 75.78 ± 3.91 78.75 ± 1.18 -

Anonymous-FP 95.74 ± 0.96 95.95 ± 0.74 72.32 ± 4.77 94.83 ± 1.67 81.58 ± 4.85 61.14 ± 5.29

Typical Scale r 8 8 9 8 10 9

Sampling Number t 40 70 40 110 30 130

A B C

D E F

r = 6 r = 7 r = 8

r = 9 r = 10

Fig. 5. Supervised graph classification performance of Support Vector Machine with RBF kernel classifiers for NCI-1 (A), NCI-109 (B), PROTEINS
(C), DD (D), MUTAG (E), and PTC (F). Here the results are plotted as a function of the scale r and the sampling number t. The shadow indicts the
standard deviation of classification at each sampling point.

4.5 Overall Results

4.5.1 Accuracy

Table 2 summarizes the classification results calculated by
baselines and Anonymous-FP, meanwhile, the typical scale
r and sampling times t that lead to the best performance
of Anonymous-FP are also provided in this table. From
the table, we see that Anonymous-FP performs powerful
discriminative ability on NCI-1, NCI-109, DD, and PTC,
with each classification accuracy far outweighing the best
baseline in each dataset and equaling 95.74%, 95.95%,
94.83%, and 61.14%, respectively. However, Anonymous-FP
fails to outperform the baselines on PROTEINS and MUTAG
datasets, with about 3.57% and 10.95% lower than the best
result, respectively.

In addition, we proceed to the varying pattern of
Anonymous-FP classification performance corresponding to
sequential rs and ts, and the trend is shown in Figure 5.

We first present classification performance as a function of
scale r ∈ [6, 7, 8, 9, 10], which depicts atom chains as well
as anonymous atom chains in molecules from small scale to
large scale.

When r takes value as 6 or 7, the accuracy fluctuates
around the initial value throughout the process of sampling
number t increasing for all datasets. In particular, the accu-
racy in NCI-1 or NCI-109 almost equals 50%, which means
Anonymous-FP exhibits little discriminative ability for these
two balanced labeled datasets. For DD and PROTEINS,
increasing sampling number t still has no positive effects
on classification accuracy when the scale r = 7.

For middle-scale r values, i.e., r = 8, it turns out that
Anonymous-FP shows a close relation to higher classification
performance for all six datasets. As an overall view for
NCI-1, NCI-109, and DD datasets when scale r = 8, the
classifications outperform the best accuracies. For NCI-1
and NCI-109, we could clearly see that the growth trend
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Fig. 6. The evaluation metrics with average precision, average recall, and average F1-score on different datasets are reported.

Fig. 7. The ROC curves and AUC values of different datasets. We
present standard ROC curves of various datasets with different colors.
Here the false positive rate is on the horizontal axis and the true positive
rate is on the vertical axis. The diagonal dotted line denotes the identity.

increases drastically by almost 30% when scale r turns into
8, with the curve reaching the maximum values 95.74% and
95.95% respectively and maintaining oscillating around the
top. The best performances are also manifested when r = 8
for the DD dataset. While this performance does not hold
for MUTAG, where the best is reached with the scale of 10.

While for large r scales, i.e., 9 or 10, Anonymous-FP fails
to show performance as competitive as that when scale
rs equaling 8 for NCI-1, NCI-109. A notable phenomenon
found is that the accuracy declines sharply once scale r
increases or decreases from 9, and with the classification
accuracies reaching values that are no more than 60%.

Therefore, due to the above analysis, it leads us to
the fact that Anonymous-FP is put into close relation with
hyper-parameter anonymous atom chains scale r. In partic-
ular, Anonymous-FP derived from 8-scale anonymous atom
chains performs remarkable molecule discriminative abil-
ity. While this classification performance could disappear
suddenly, especially for NCI-1 and NCI-109 when the scale
receives a relatively small change, even r increases from
8 to 9. But it is still necessary for further investigation to
verify whether this phenomenon generally exists on other
NCI molecule datasets.

4.5.2 Precision, recall, F1-score, and ROC-AUC

Precision, recall, F1-score, and ROC-AUC are also significant
metrics to evaluate Anonymous-FP. We show the results in
Figure 6 and Figure 7.

In Figure 6, we compare the precision, recall, and F1-
score of Anonymous-FP on NCI-1, NCI-109, PROTEINS, DD,
MUTAG, and PTC molecule datasets. On NCI-1, NCI-109,
and DD, Anonymous-FP can boost the precision, recall, and
F1-score to more than 90%. This indicts the present method-
ology can open horizons for the accuracy of predicted
positive cases that are correctly real positives, real positive
cases that are correctly predicted positive, and the balanced
performance. On PROTEINS, MUTAG, and PTC, the pre-
cision is higher than the recall and F1-score in general.
This means opting to model the molecules via Anonymous-
FP benefits the precision prediction of mass positive cases.
The ROC-AUC in Figure 7 is used to determine the best
model over a series of thresholds, where a model with a
larger area under the curve (AUC) corresponds to better
comprehensive performance. For NCI-1, NCI-109, and DD,
the AUC is no less than 0.94, which is consistent with
Figure 6 and Table 2. The PROTEINS, MUTAG, and PTC
reach AUC with 0.67, 0.72, and 0.62.

4.6 Additional Experiments on NCI Datasets

In addition, we apply our proposed method to more NCI
datasets, whose details are summarized in Table 3. Each
instance represents a set of molecules with active or inactive
effects on particular cancer, and each set is separated by bal-
anced prior label distribution. In these experiments, we pay
attention to how the sampling number t (arranging from 10
to 160), and anonymous atom chain scale r (equalling 6, 7,
8, 9, or 10) affect the classification. Table 4 shows the best
result achieved by our proposed approach, the typical scale
r, and the sampling time t for each NCI dataset respectively.

In Figure 8, for each dataset, it is clear that our method
performs unsatisfactorily when r = 7 regardless of t’s
values. This means sampling time t has little effect on the
results in this situation. Once scale r turns to 8, the results of
all NCI datasets arise sharply towards more than 93% and
then are maintained around the best results as t increases.
Note that these 6 datasets react differently to scale r = 9:
NCI-33, NCI-41, and NCI-47 suffer insensitive influence to
scale r = 9, while the performance of NCI-81, NCI-83, or
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D E F

r = 6 r = 7 r = 8

r = 9 r = 10

Fig. 8. Supervised graph classification performance of Support Vector Machine with RBF kernel classifiers for NCI-33 (A), NCI-41 (B), NCI-47 (C),
NCI-81 (D), NCI-83 (E), and NCI-123 (F).

NCI-123 is able to level up when scale r = 9. In addition,
the overall precision, recall, and F1-score, as complementary
metrics, are also reported via bot-plots shown in Figure 9.
In the end, the results from the above analysis explicitly
support our inference: Anonymous-FP derived from 8-scale
anonymous atom chains could better distinguish molecules,
and this fact holds commonly for a mass of NCI databases.

TABLE 3
Statistics of NCI datasets. The columns are the name of the dataset,
the number of positively labeled graphs, the number of total graphs,

and the description of the corresponding dataset.

Dataset Positive Graphs Total Graphs Tumor Description

NCI-33 1467 2934 Melanoma
NCI-41 1350 2700 Prostate
NCI-47 1735 3470 Central Nerv Sys
NCI-81 2081 4162 Colon
NCI-83 1959 3918 Breast
NCI-123 2715 5430 Leukemia

TABLE 4
Classification results (mean ± std %), the typical scale r, and the

sampling number t for each NCI dataset.

Dataset Ave. Accuracy Typical Scale r Sampling Number t

NCI-33 95.53 ± 1.17 8 100

NCI-41 93.92 ± 1.30 8 20

NCI-47 96.02 ± 0.92 8 70

NCI-81 96.57 ± 0.85 8 140

NCI-83 96.91 ± 0.57 8 130

NCI-123 97.78 ± 0.63 8 100

5 CONCLUSION AND FURTHER OUTLOOK

Molecules are usually in the form of vertex-edge topo-
logical graph structure, which is constructed by a col-
lection of atom chains. The anonymous pattern of atom
chains reflects strong associations between items within a
molecule and carries the underlying semantics of the data.
In this paper, we propose a novel molecular fingerprints
method, Anonymous-FP, for discriminating molecules using
their embedded anonymous atom chains decompositions.
The advantage of this approach lies in that, it leverages a
NLP technique PV-DBOW to encode each molecule into a
vector, which acts as a characterization of global molecule
structures without the need of understanding each chemical
symbol for each atom.

As a highlight, the scale r of the anonymous atom chain
plays an important role in the representation of molecular
properties. Typically, the typical scale r = 8 could sig-
nificantly level up the discriminative accuracy for a series
of datasets and this interesting phenomenon holds pretty
generally for more NCI datasets. However, the potential
reason for scale r = 8 commonly promoting representation
is still unknown as of yet. Furthermore, it is also interesting
to gain more insight into more effective fingerprint designs
that are preferable for larger molecule representation.
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Fig. 9. The box-plots with precision, recall, and F1-score of 8-scale Anonymous-FP on different datasets are reported. The box-plots consist of
the most extreme values in the data set (maximum and minimum values), the lower and upper quartiles, the median, and the extreme outliers. In
each box-plot, most values are gathered between the lower and upper whiskers except the outliers denoted as solid nodes. The lower and upper
quartiles form the box, and the solid line represents the median.
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