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Abstract 24 

 25 

Background: Even when the same treatment is employed, some patients are cured, while others 26 

are not. The patients that are cured may have beneficial microbes in their body that can boost 27 

treatment effects, but it is vice versa for the patients that are not cured. That is, treatment effects 28 

can vary depending on the patient's microbiome. If the effects of candidate treatments are well-29 

predicted based on the patient’s microbiome, we can select a treatment that is suited to the patient’s 30 

microbiome or can alter the patient’s microbiome to improve treatment effects.  31 

Methods: Here, I introduce a streamlined analytic method, named microbiome virtual twins 32 

(MiVT), to evaluate the interplay between microbiome and treatment. MiVT is based on the 33 

subgroup identification framework, called virtual twins, that involves a two-step algorithm, 1) 34 

treatment effect prediction through machine learning and 2) subgroup identification using a 35 

decision tree. MiVT, however, employs a new prediction method, named distance-based machine 36 

learning (dML), to improve prediction accuracy in microbiome studies and a new significance test, 37 

named bootstrap-based test for regression tree (BoRT), to test if each subgroup's treatment effect 38 

is the same with the overall treatment effect.  39 

Results: I demonstrate in silico that dML robustly reaches a high prediction accuracy and BoRT 40 

is a valid significance test with correctly controlled type I error rates. I also demonstrate the use of 41 

MiVT in praxis through the gut microbiome study on the effects of cancer immunotherapies on 42 

melanoma patients.  43 

Conclusions: The results from MiVT can serve as a useful guideline in microbiome-based 44 

personalized medicine to select the therapy that is most suited to the patient’s microbiome or to 45 

use dietary supplements or therapeutics to tune the patient’s microbiome to be suited to the 46 
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treatment. MiVT can be implemented using an R package, MiVT, freely available at 47 

https://github.com/hk1785/MiVT. 48 

 49 

Keywords: Human microbiome, Subgroup identification, Virtual twins, Cancer immunotherapy, 50 

Personalized medicine, Precision medicine 51 

 52 

Background 53 

 54 

The human microbiome is the entire ecosystem of all microbes that inhabit different organs (e.g., 55 

gut, mouth, nose, skin, etc) of the human body. The roles of the microbiome on human health or 56 

disease have been increasingly studied due to the recent advances in high-throughput sequencing 57 

technologies. The key underlying channels through which the microbes can influence human 58 

health or disease have been found as immunologic or metabolic regulations and digestive processes 59 

[1-3]. The microbiome industry has been rapidly growing, and microbiome-based dietary 60 

supplements (e.g., prebiotics, probiotics, dietary fiber), therapeutics (e.g., antibiotics, 61 

pharmabiotics, fecal microbiota transplant, phage therapy) and diagnostics are currently flooded.  62 

The two major sequencing platforms for microbiome profiling are 16S rRNA-based amplicon 63 

sequencing [4, 5] and shotgun metagenomics [6]. Either of these sequencing platforms can produce 64 

various types of metagenomic information, yet the type of the microbiome data on which I focus 65 

here is the typical microbiome data that are on microbial abundance and phylogenetic tree 66 

information. The data are high-dimensional including numerous microbial features, such as 67 

operational taxonomic units (OTUs) or amplicon sequence variants (ASVs), that are characterized 68 

by their relative abundances, taxonomic annotations, and phylogenetic tree relationships. The data 69 
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are also sparse with excessive zeros, and highly skewed with few microbial features that occupy 70 

most of the total abundance; hence, most of the other microbial features are rare variants. The 71 

underlying etiological mechanisms can be multifactorial. That is, many microbial features can 72 

jointly influence human health or disease, especially the complex disease like cancer, diabetes, 73 

obesity, asthma, atopy, brain disorder and so forth. However, it is also likely that only few 74 

microbial features solely influence human health or disease [7]. The high complexity of the 75 

microbiome data and underlying etiological mechanism makes the downstream data analysis 76 

challenging. Hence, more delicate analytic methods and protocols are needed.     77 

Here, I especially pay attention to research question on if the microbiome can improve (or 78 

lower) treatment effects. Even when the same medical treatment is employed, some patients are 79 

cured, while others are not. For example, the melanoma of the former U.S. president, Jimmy Carter, 80 

has been cured by the cancer immunotherapy, called Pembrolizumab, but the same treatment effect 81 

does not apply to all the patients for all different types of cancer [8-10]. There are also various 82 

cancer immunotherapies, and their treatment effects can all vary. We can suspect that the patients 83 

that are cured may have beneficial microbes in their body that can boost treatment effects, but it is 84 

vice versa for the patients that are not cured.  85 

Matson et al. showed that the microbiome can improve treatment effects through randomized 86 

control trials using genetically similar mice, germ-free mice and gut microbiota transplant [11]. 87 

The researchers report that the anti-carcinogenicity of the cancer immunotherapy can be doubled 88 

(or halve) depending on the microbiome the mouse had [11]. This indicates that the treatment 89 

effect can be improved by altering the microbiome, and it is also the reason why the 90 

coadministration of microbiome-based dietary supplements and therapeutics along with a primary 91 

treatment like the cancer immunotherapy has been intensely studied.  92 
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However, the limitation of Matson et al. is that it was an animal (not human) microbiome study 93 

through mouse trials [11]. We have different genetic traits and surrounding environments from 94 

mice or any other animals. Hence, the human microbiome should be different from any other 95 

animals’ microbiome, and it is hard to apply the results from animal trials to the personalized 96 

medicine or precision medicine for the humans. The human microbiome studies are therefore 97 

deemed to be observational studies that are on the humans, to which we need analytic methods and 98 

protocols that are suited.  99 

In this paper, I introduce a streamlined analytic method, named microbiome virtual twins 100 

(MiVT), that can predict treatment effects, and then identify subgroups by treatment effects based 101 

on microbiome composition to evaluate the interplay between microbiome and treatment. MiVT 102 

is based on the subgroup identification framework, called virtual twins [12], that involves a two-103 

step algorithm, 1) treatment effect prediction through machine learning and 2) subgroup 104 

identification using a decision tree. MiVT, however, employs a new prediction method, named 105 

distance-based machine learning (dML). dML is based on a dimension reduction technique using 106 

ecological distance measures and a series of machine learning methods, elastic net (EN) [13], 107 

random forest (RF) [14] and deep feedforward network (DFN), to improve prediction accuracy in 108 

microbiome studies. MiVT also employs a new significance test, named bootstrap-based test for 109 

regression tree (BoRT), to test if each subgroup's treatment effect is the same with or different 110 

from the overall treatment effect. Thereby, we can, for example, interpret the final results from 111 

MiVT as the patients that have Mogibacterium < 0.00511% and Akkermansia ≥ 0.0126% in their 112 

gut have significantly a higher treatment effect, 0.100%, compared with the overall treatment 113 

effect, 0.0526% (P-value (BoRT): <.001). Such results can serve as a useful guideline in 114 

microbiome-based personalized medicine to select the best therapy among multiple candidates 115 
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depending on the patient’s microbiome composition or to use dietary supplements or therapeutics 116 

to tune the patient’s microbiome composition to improve treatment effect. 117 

The rest of this paper is organized as follows. In the Methods and materials section, the 118 

methodological details of dML and BoRT are dissected. In the Results section, dML and BoRT 119 

are evaluated in silico (see Simulations), and then the use of MiVT is demonstrated in praxis 120 

through the gut microbiome study on the effects of cancer immunotherapies on melanoma patients 121 

(see Real data applications). Finally, in the Discussion and conclusions section, potential 122 

extensions and implementations of MiVT are discussed.  123 

 124 

Methods and materials 125 

 126 

General settings 127 

Suppose that there are N patients. Let 𝑌𝑖  be a binary cure outcome (0: uncured, 1: cured),  𝑇𝑖  be a 128 

binary treatment status (0: control, 1: treatment), 𝑋𝑖  be a vector of p microbial features (e.g., OTUs, 129 

ASVs), where p >> N, and 𝑍𝑖 be a treatment effect for i = 1, ……, N. While I can describe the 130 

binary treatment status as 0 (control) vs. 1 (treatment), it can be more generally 0 (placebo) vs. 1 131 

(treatment), 0 (old treatment) vs. 1 (new treatment), 0 (treatment level 1) vs. 1 (treatment level 2), 132 

and so forth. The microbial features can be correlated with each other, and they tend to be 133 

phylogenetically related in microbiome studies. The treatment and microbial features can have 134 

marginal effects on the cure outcome. It is assumed that the treatment has no effect on microbial 135 

features [12], which is simply satisfied if the microbiome is profiled before the treatment.  136 

 137 

Step 1 (treatment effect prediction) 138 
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To see which microbiome composition improves treatments effects, we first need to predict 139 

treatment effects. The treatment effect can be measured by comparing the cure rate of the patient 140 

who received the treatment (say, treatment) and the cure rate of the same patient who did not 141 

receive the treatment (say, control) as in (Eq. 1).  142 

 𝑍𝑖 = P(𝑌𝑖  = 1|𝑇𝑖  = 1, 𝑋𝑖) - P(𝑌𝑖  = 1|𝑇𝑖  = 0, 𝑋𝑖) (1) 

However, the same patient cannot be assigned to both of the treatment and control groups at the 143 

same time. Therefore, one of the cure rates is always missing, and thus patient-level treatment 144 

effects 𝑍𝑖 ’s are not measurable. This dilemma is called the “fundamental problem of causal 145 

inference” [15].  146 

An alternative approach can be to employ genetically identical twins while assigning one of 147 

the twins to the treatment group and the other to the control group, and then we can compare their 148 

cure rates. For example, we can first transfer cancer cells into the twins making both of them cancer 149 

patients, and then give a medication to one of the twins and a placebo to the other, and then 150 

compare their cure rates. However, this approach can be limitedly permitted in an animal trial like 151 

the mouse trials of [11]. It is, of course, unethical to conduct such trials on the humans. Again, it 152 

is hard to apply the results from animal trials to the personalized medicine or precision medicine 153 

for the humans. 154 

Therefore, to predict treatments effects in an observational study where the human trials on 155 

twins are not permitted, I employ the method, called virtual twins [12]. The virtual twins mimic 156 

the animal trials on twins, and its key ideas are as follows. We can first predict the cure rate of the 157 

patient in the treatment group, and then predict the cure rate of “virtually” the same patient (say, 158 

virtual twin) in the control group. Then, we can finally predict the treatment effect by subtracting 159 

the former cure rate of the real patient from the latter cure rate of the virtual twin. Here, “virtual” 160 
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means to switch only the data of the variable on the treatment status from 1 to 0, while “twin” 161 

means to fix all the other data on the other variables. That is, more formally, the virtual twins 162 

calculate the cure rates for both treatment and control groups by flipping the treatment status on 163 

the data while fixing all the other data in a prediction model, and then the treatment effects are 164 

calculated as in (Eq. 2).  165 

 𝑍̂𝑖 = f(𝑌𝑖  = 1|𝑇𝑖  = 1, 𝑋𝑖) - f(𝑌𝑖  = 1|𝑇𝑖  = 0, 𝑋𝑖) (2) 

where f(.) is a prediction model, f (𝑌𝑖  = 1|𝑇𝑖  = 1, 𝑋𝑖) is the predicted cure rate of the treatment, and 166 

f (𝑌𝑖  = 1|𝑇𝑖  = 0, 𝑋𝑖) is the predicted cure rate of the control.  167 

We can notice here that the success of virtual twins primarily hinges on the accuracy of the 168 

prediction model f (.) in (Eq. 2). The original virtual twins paper [12] suggests to use RF [14], but 169 

here I introduce dML for higher accuracy in microbiome studies. dML tailors machine learning 170 

methods, such as EN [13], RF [14] and DFN, to account for the unique features of the microbiome 171 

data, such as the high-dimensionality, sparsity and phylogenetic relationships. For this, dML first 172 

extracts the lower-dimensional representations of the microbial features (say, coordinates) through 173 

multidimensional scaling [16] based on an ecological distance measure, such as Euclidean distance 174 

(Euclidean), Jaccard dissimilarity (Jaccard) [17], Bray-Curtis dissimilarity (BC) [18], unweighted 175 

UniFrac distance (UUniFrac) [19], generalized UniFrac distance (GUniFrac) [20] or weighted 176 

UniFrac distance (WUniFrac) [21]. The coordinate matrix can be derived by the eigen-177 

decomposition of the kernel matrix (denoted as, 𝐾(ℎ)) in (Eq. 3). 178 

𝐾(ℎ)= − 12 (𝐼𝑁 − 1𝑁1𝑁𝑇𝑁 ) 𝐷(ℎ)2 (𝐼𝑁 −  1𝑁1𝑁𝑇𝑁 ), (3) 

where h is an index for a distance measure in a set of candidate measures (e.g., h ∈{Euclidean, 179 

Jaccard, BC, UUniFrac, GUniFrac, WUniFrac}), 𝐷(ℎ) is the N × N pairwise distance matrix and 180 
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𝐷(ℎ)2  is its element-wise square matrix, 𝐼𝑁 is the N × N identity matrix, and 1𝑁 is the N × 1 vector 181 

of 1’s. Let 𝜆(ℎ)1, …, 𝜆(ℎ)𝑀 be positive eigenvalues and 𝑞(ℎ)1, …, 𝑞(ℎ)𝑀 be their corresponding 182 

eigenvectors obtained by the eigen-decomposition of the kernel matrix 𝐾(ℎ) in (Eq. 3). Then, the 183 

N × M coordinate matrix (denoted as, 𝑉(ℎ)) can be derived as in (Eq. 4).  184 

𝑉(ℎ)= 𝑄(ℎ)𝛬(ℎ) (4) 

where 𝑄(ℎ) is the N × M matrix of 𝑞(ℎ)1, …, 𝑞(ℎ)𝑀, 𝛬(ℎ) is the M × M diagonal matrix of  𝜆(ℎ)11/2 , …, 185 

𝜆(ℎ)𝑀1/2
, and M ≤ N. Then, the coordinates (i.e., the lower-dimensional representations of the 186 

microbial features) are used as inputs in a machine learning method, such as EN [13], RF [14] or 187 

DFN, which is to relax the high-dimensionality and sparsity of the microbiome data and modulate 188 

phylogenetic tree information using phylogenetic and non-phylogenetic distance measures. 189 

The distance measures are well-designed by properly reflecting the microbial abundance and 190 

phylogenetic tree information in their formula; hence, they have been widely used in many prior 191 

statistical methods [22-28]. However, they are distinct distance measures. For example, Euclidean, 192 

Jaccard [17] and BC [18] are non-phylogenetic, while the UniFrac distances [19-21] are 193 

phylogenetic. In addition, Jaccard [17] and UUniFrac [19] are based on incidence (i.e., 194 

presence/absence) information, while Euclidean, BC [18], GUniFrac [20] and WUniFrac [21] are 195 

based on abundance information. In practice, we do not know which distance measure makes the 196 

best prediction accuracy in advance due to the varying and unknown nature of the underlying 197 

prediction patterns.  198 

Furthermore, the performance of machine learning methods also varies depending on 199 

underlying prediction patterns. The EN fine-tunes the extent of variable selection and shrinkage in 200 

a linear model through the regularization that linearly combines the 𝐿1  and 𝐿2  penalties [13]. 201 
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Thereby, the EN can suit the prediction patterns that are linear with varying sparsity levels. The 202 

RF [14] is a bootstrap aggregation method that averages the predictions resulting from the 203 

collection of bagged decision trees built with randomly selected inputs. Thereby, the RF can suit 204 

the prediction patterns that are non-linear with varying sparsity levels. The DFN (a.k.a. multi-layer 205 

perceptron) extracts various linear combinations of inputs, and then nonlinearly maps them to the 206 

outputs through a large number of artificial neurons and hidden layers. Thereby, the DFN can suit 207 

various prediction patterns that are multifactorial or not, linear or nonlinear, and so forth. However, 208 

the DFN may require a huge sample size because of its high model complexity. Similarly, in 209 

practice, we do not know which machine learning method makes the best prediction accuracy in 210 

advance due to the varying and unknown nature of the underlying prediction patterns. 211 

Therefore, dML employs the k-fold cross-validation (CV) to select the optimal combination of 212 

distance measure and machine learning method that results in the smallest cross-entropy of (Eq. 213 

5). 214 𝐿(ℎ)( 𝑙)= − 1𝑁𝛷 ∑ [𝑦𝑖𝑖 ∈ 𝛷 log (𝑓(ℎ)(𝑙)(𝑋𝑖)) + (1 −  𝑦𝑖) log (1 −  𝑓(ℎ)(𝑙)(𝑋𝑖))], (5) 

where 𝛷 is the validation set of patients, 𝑁𝛷 is the number of patients in the validation set, h is an 215 

index for a distance measure in a set of candidate measures (e.g., h ∈{Euclidean, Jaccard, BC, 216 

UUniFrac, GUniFrac, WUniFrac}), and l is an index for a machine learning method (e.g., l ∈{EN, 217 

RF, DFN}. As a result, dML can robustly adapt to various prediction patterns (e.g., linear or 218 

nonlinear, sparse or dense, rare or common, phylogenetically related or independent, and so forth) 219 

through the extensive search in distance measure and machine learning method.  220 
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Let 𝑓𝑑𝑀𝐿(.) denote the prediction model with the optimal combination of distance measure and 221 

machine learning method that results in the smallest cross-entropy. Then, the treatment effects are 222 

predicted as in (Eq. 6). 223 

 𝑍̂𝑖 = 𝑓𝑑𝑀𝐿(𝑌𝑖  = 1|𝑇𝑖  = 1, 𝑋𝑖) - 𝑓𝑑𝑀𝐿(𝑌𝑖  = 1|𝑇𝑖  = 0, 𝑋𝑖) (6) 

where 𝑓𝑑𝑀𝐿(𝑌𝑖  = 1|𝑇𝑖  = 1, 𝑋𝑖) is the predicted cure rate of the treatment, and 𝑓𝑑𝑀𝐿(𝑌𝑖  = 1|𝑇𝑖  = 0, 𝑋𝑖) 224 

is the predicted cure rate of the control. 225 

 226 

Step 2 (subgroup identification) 227 

To see which microbiome composition improves treatments effects, after the first step of treatment 228 

effect prediction, we need to classify patients into subgroups by treatment effects based on patients’ 229 

microbiome composition. For this, the virtual twins paper [12] suggests to use a regression tree 230 

[29] that involves stratifying or segmenting the predictor space (i.e., the microbial feature space or 231 

upper-level taxonomic space in microbiome studies) into a number of simple regions by treatment 232 

effects. Thereby, we can make simple and useful interpretations using a nice graphical 233 

representation of the top-down tree structure [29]. 234 

Let 𝑅𝑗’s be distinct and non-overlapping regions and 𝑍̂𝑅𝑗’s be their corresponding treatment 235 

effects estimated by the mean treatment effects for the patients in each region for j = 1, …, J. Then, 236 

if we let A be the group of all N patients, 𝑍̂A becomes the overall mean treatment effect. 𝑅𝑗’s. 𝑍̂𝑅𝑗’s 237 

can be efficiently found through recursive binary partitioning [29]. As a result, we can identify 238 

subgroups (𝑅𝑗’s) and estimate their treatment effects (𝑍̂𝑅𝑗’s) that can be compared with the overall 239 

treatment effect (𝑍̂A). 𝑅𝑗  is, for example, the subgroup of patients that have Mogibacterium < 240 

0.00511%  and Akkermansia ≥ 0.0126% in their gut, and 𝑍̂𝑅𝑗 is their treatment effect estimated as, 241 

0.100%, that can be compared with the overall treatment effect 𝑍̂A of 0.0526%. 242 



12 

 

However, it has all been so far about parameter estimation with no facility for hypothesis 243 

testing. The problem is that we do not know if the estimated difference between each subgroup's 244 

treatment effect and the overall treatment effect is statistically significant, which is on the null and 245 

alternative hypotheses in (Eq. 7).  246 

 𝐻0: 𝑍̂𝑅𝑗 = 𝑍̂A vs. 𝐻1: 𝑍̂𝑅𝑗 ≠ 𝑍̂A, (7) 

Thus, I introduce a significance test, BoRT, that is based on the test statistic (denoted as, U) in (Eq. 247 

8). 248 

 U = 𝑍̂𝑅𝑗 - 𝑍̂A (8) 

The test statistic U is simply the difference in mean between the overall and subgroup treatment 249 

effects. If U is positive, the overall treatment effect is greater than the subgroup treatment effect, 250 

but it is vice versa if U is negative. A large absolute value of U tends to lend credence to 𝐻1.  251 

The distribution of 𝑍̂A  can be approximated using the bootstrap method [30] by random 252 

sampling with replacement of the patient-level treatment effects 𝑍̂𝑖’s. Let 𝑍̂𝑖𝑏’s be a bootstrap 253 

resample of the patient-level treatment effects 𝑍̂𝑖’s. Then, the bootstrap overall treatment effect 254 

(denoted as, 𝑍̂𝐴𝑏) can be calculated as in (Eq. 9). 255 

 𝑍̂𝐴𝑏 = 
1𝑁 ∑ 𝑍̂𝑖𝑏𝑁𝑖=1  (9) 

Under 𝐻0, all N patient in A are equally likely to belong to 𝑅𝑗 , which indicates a random relocation 256 

of the selected region (denoted as, 𝑅𝑗𝑟). Hence, the null test statistic value can be calculated as in 257 

(Eq. 10). 258 

 𝑈𝑁𝑢𝑙𝑙𝑏  = 𝑍̂𝑅𝑗𝑏  - 𝑍̂𝐴𝑏, (10) 

where 𝑍̂𝑅𝑗𝑏  = 
1𝑁𝑅𝑗 ∑ 𝑍̂𝑖𝑏𝑖 ∈ 𝑅𝑗𝑟  and 𝑁𝑅𝑗 is the number of patients that belong to 𝑅𝑗 . If we repeat it many 259 

times (say, B times), B null test statistic values (𝑈𝑁𝑢𝑙𝑙𝑏  for b = 1, … B) are generated. Then, a P-260 
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value is calculated as the proportion of the null test statistic values that are equal to or greater than 261 

the observed test statistic value as in (Eq. 11).  262 

 ∑ 𝐼(|𝑈𝑁𝑢𝑙𝑙𝑏 |  ≥ |𝐵𝑏=1 𝑈𝑂𝑏𝑠|)/𝐵, (11) 

where I(.) is an indicator function and 𝑈𝑂𝑏𝑠 is the observed test statistic value that is calculated 263 

using the original data.  264 

 265 

Results 266 

 267 

Simulations 268 

To reflect real microbiome composition, I first estimated parameters (i.e., proportions and 269 

dispersion) of the Dirichlet-multinomial distribution [31] based on 755 microbial features (that 270 

have the mean proportion > 10−5) of the gut microbiome for 39 melanoma patients prior to 271 

immunotherapy in [32]. Then, I randomly generated counts for 200 patients from the Dirichlet-272 

multinomial distribution using the estimated parameters and total counts randomly generated from 273 

the uniform distribution from 10,000 to 100,000 to reflect varying total read counts. A half of 274 

patients (i.e., 100 patients among 200 patients) was assigned to the test set, while the other half of 275 

patients was assigned to training set. I generated binary cure outcomes (𝑌𝑖’s) based on the logistic 276 

regression model (Eq. 12). 277 

 logit P(𝑌𝑖  = 1) = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2 ∑ 𝑋𝑖𝑗𝑗∈Ω  + 𝛽3 ∑ 𝑇𝑖𝑋𝑖𝑗𝑗∈Ω , (12) 

where i is the patient (i = 1, ……, 200), j is the microbial feature (j = 1, ……, 755),  𝑌𝑖  is the binary 278 

cure outcome, 𝑇𝑖  = 1 (treatment) for a half of patients, 𝑇𝑖  = 0 (placebo) for the other half of patients, 279 𝑋𝑖𝑗  is the proportion, 𝛽0 = 0.1 (marginal placebo effect), 𝛽1 = 0.5 (marginal treatment effect), Ω is 280 

the set of microbial features that influence treatment effects, 𝛽2 = is the marginal effect of the 281 
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microbial features and 𝛽3  is the interaction effect (treatment effect influenced by microbial 282 

features). 283 

I surveyed two sets of the marginal (𝛽2) and interaction (𝛽3) effects of the microbial features 284 

in (Eq. 12) as 𝛽2 = 0.0005 and 𝛽3 = 0.001 for relatively small effects and 𝛽2 = 0.001 and 𝛽3 = 285 

0.0015 for relatively large effects, respectively. I also surveyed Ω  in (Eq. 12) (i.e., the set of 286 

microbial features that influence treatment effects) using two different scenarios, respectively. 287 

First, I randomly selected 10 % of the microbial features (denoted as, Ω = {randomly selected 288 

features}). Second, I partitioned microbial features into 10 clusters using the partitioning-around-289 

medoids (PAM) algorithm [33] based on phylogenetic distances, and then randomly selected one 290 

cluster (i.e., Ω = {phylogenetically related features}). This mimics a situation when 291 

phylogenetically related microbial features jointly influence treatment effects. I repeated each 292 

scenario 300 times, and report average estimates. 293 

I evaluated the proposed method, dML, compared with other existing methods, EN [13], RF 294 

[14] and DFN addressing compositional issues using the centered log-ratio transformation [34], 295 

with respect to test classification error and test area under the curve (AUC). I observed that as the 296 

marginal (𝛽2) and interaction (𝛽3) effects of the microbial features in (Eq. 12) increase, the 297 

prediction accuracy increases for all surveyed methods, but their relative ranks are equally retained 298 

[Fig. 1 and Fig. 2]. We can observe that dML reaches the smallest test classification error and the 299 

highest test AUC (i.e., the highest prediction accuracy) for both scenarios of randomly selected 300 

features [Fig. 1A,C and Fig. 2A,C] and phylogenetically related features [Fig. 1B, D and Fig. 301 

2B,D]. This indicates that dML robustly reaches the highest prediction accuracy through the 302 

extensive search in distance measure and machine learning method. 303 
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I also evaluated BoRT with respect to type I error rate and power. The empirical type I error 304 

was calculated as the proportion of the P-values for the randomly relocated regions (𝑅𝑗𝑟’s) that are 305 

smaller than 0.05, and the empirical power was calculated as the proportion of the P-values for the 306 

selected regions (𝑅𝑗’s), as they are, that are smaller than 0.05. We can observe that the empirical 307 

type I error rates are close to 5% [Table 1]. Hence, BoRT is a valid significance test with the 308 

correct control of type I error rate. We can also observe that the empirical powers for the relatively 309 

large effects of 𝛽2 = 0.001 and 𝛽3 = 0.0015 in (Eq. 12) are greater than the empirical powers for 310 

the relatively small effects of 𝛽2 = 0.0005 and 𝛽3 = 0.001 in (Eq. 12) [Table 1]. 311 

 312 

Real data applications 313 

Here, I demonstrate the use of MiVT through the gut microbiome study on the effects of cancer 314 

immunotherapies on melanoma patients in [32]. The researchers collected fecal samples from 315 

metastatic melanoma patients prior to immunotherapy, and processed them via shotgun 316 

metagenomics [32]. Then, the researchers processed raw sequence data using NGS-QC and NCBI 317 

BMTagger Human Contamination Screening Tool for quality controls, and then constructed 318 

feature tables, taxonomic annotations and phylogenetic tree using MetaPhlAn [35]. More details 319 

on metagenomic sequencing and profiling procedures can be found in [32].  320 

The microbiome data contain 39 metastatic melanoma patients treated by immune checkpoint 321 

inhibitors targeting the programmed cell death 1 protein (PD-1), cytotoxic T lymphocyte–322 

associated antigen 4 (CTLA-4) or both PD-1 and CTLA-4, and 755 microbial features that have 323 

the mean proportion > 10−5. I dropped one patient treated by Anti-CTLA-4 only, and compared 324 

14 patients treated by Anti-PD-1 only with 24 patients treated by both Anti-PD-1 and Anti-CTLA-325 

4 [Table 2]. Of the 14 patients treated by Anti-PD-1 only (𝑇𝑖  = 0), 10 (71.4%) were non-responders 326 



16 

 

(𝑇𝑖  = 0) and 4 (28.6%) were responders (𝑌𝑖  = 1), while of the 24 patients treated by both Anti-PD-327 

1 and Anti-CTLA-4 (𝑇𝑖  = 1), 10 (41.7%) were non-responders (𝑌𝑖  = 0) and 14 (58.3%) were 328 

responders (𝑌𝑖  = 1) [Table 2]. Hence, it seems more likely to be a responder if the patient is treated 329 

by both Anti-PD-1 and Anti-CTLA-4 than by Anti-PD-1 only. However, the Fisher’s exact test 330 

gives a non-significant result on the association between treatment and outcome status (P-value: 331 

0.101). 332 

   I surveyed if the gut microbiome improves (or lowers) the effect of Anti-CTLA-4 over Anti-PD-333 

1 using MiVT. I performed the treatment prediction on the feature-level, but the subgroup 334 

identification on the lower-dimensional genus and species levels, respectively, while removing 335 

unknown and unclassified genera and species in taxonomic annotation. For reference, genera and 336 

species are also better perceived by microbiome researchers than OTUs or ASVs. I interpret the 337 

results on genera [Fig. 3 and Table 3] and species [Fig. 4 and Table 4] as follows.  338 

On genera [Fig. 3 and Table 3]. The melanoma patients that have the genus Mogibacterium < 339 

0.00511% and the genus Akkermansia ≥ 0.0126% in their gut have significantly a higher effect of 340 

Anti-CTLA-4, 0.100%, compared with the overall effect of Anti-CTLA-4, 0.0526% (P-value 341 

(BoRT): <.001) [Fig. 3 and Table 3]. On the contrary, the melanoma patients that have the genus 342 

Mogibacterium ≥ 0.00511%, the genus Erysipelatoclostridium ≥ 0.0036% and the genus 343 

Roseburia ≥ 0.165% in their gut have significantly a lower effect of Anti-CTLA-4, 0.000%, 344 

compared with the overall effect of Anti-CTLA-4, 0.0526% (P-value (BoRT): <.001) [Fig. 3 and 345 

Table 3]. This indicates that the genera, Mogibacterium, Erysipelatoclostridium and Roseburia, 346 

might be harmful in the administration of Anti-CTLA-4 over Anti-PD-1, while the genus 347 

Akkermansia might be beneficial.   348 
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On species [Fig. 4 and Table 4]. The melanoma patients that have the species Faecalibacterium 349 

prausnitzii  ≥ 0.0498%, the species Erysipelotrichaceae bacterium 3_1_53 < 0.0136% and the 350 

species Streptococcus infantis/mitis < 0.00567 in their gut have significantly a higher effect of 351 

Anti-CTLA-4, 0.100%, compared with the overall effect of Anti-CTLA-4, 0.0526% (P-value 352 

(BoRT): <.001) [Fig. 4  and Table 4]. On the contrary, the melanoma patients that have the species 353 

Faecalibacterium prausnitzii < 0.0498% and the species Eubacterium sp. 3_1_31 < 0.014% in 354 

their gut have significantly a lower effect of Anti-CTLA-4, 0.000%, compared with the overall 355 

effect of Anti-CTLA-4, 0.0526% (P-value (BoRT): <.001) [Fig. 4 and Table 4]. This indicates that 356 

the species, Erysipelotrichaceae bacterium 3_1_53 and Streptococcus infantis/mitis, might be 357 

harmful in the administration of Anti-CTLA-4 over Anti-PD-1, while the species, 358 

Faecalibacterium prausnitzii and Eubacterium sp. 3_1_31, might be beneficial.  359 

For additional reference, the RF with UUniFrac was the optimal combination that resulted in 360 

the smallest CV cross-entropy of 0.656 [Table 5]. 361 

 362 

Discussion and conclusions 363 

 364 

In this paper, I introduced a streamlined analytic method, MiVT, that predicts treatment effects 365 

and identifies subgroups by treatment effects based on the patient’s microbiome composition to 366 

evaluate the interplay between microbiome and treatment. As parts of MiVT, I introduced a new 367 

prediction method, dML, to improve prediction accuracy in microbiome studies and a new 368 

significance test, BoRT, to test if each subgroup's treatment effect is the same with or different 369 

from the overall treatment effect. I demonstrated in silico that dML robustly reaches a high 370 

prediction accuracy and BoRT is a valid significance test correctly controlling type I error rates. I 371 
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also demonstrated the use of MiVT in praxis through the gut microbiome study on the effects of 372 

cancer immunotherapies on melanoma patients [32]. This example study was equipped with the 373 

binary cure outcome, binary treatment status, microbial features and phylogenetic tree that are 374 

required to use MiVT. Moreover, the assumption that the treatment has no effect on microbial 375 

features was satisfied because the fecal samples were collected prior to immunotherapy. I 376 

performed the subgroup identification on the lower-dimensional genus and species levels for better 377 

interpretability, but any other taxonomic levels can also be surveyed. The results from MiVT can 378 

be a useful guideline in microbiome-based personalized medicine or precision medicine to select 379 

the therapy that is most suited to the patient’s microbiome or to use dietary supplements or 380 

therapeutics to tune the patient’s microbiome to be suited to the treatment.  381 

   I described MiVT only for a binary cure outcome, yet in practice, there are many different types 382 

of cure outcomes, such as continuous, survival and repeated measures outcomes. Hence, further 383 

extensions of MiVT are needed to make it more practical. The candidate distance measures, 384 

machine learning methods and implementation procedures that I described were sufficient to reach 385 

the robust performance in my simulations and real data applications. However, researchers may 386 

believe that they are less sufficient, and thus, for example, they want to consider some more 387 

candidate parameter values, repeat 10-fold CV more times, and so forth.  Hence, I added various 388 

user options in the R package, MiVT, for different model specifications, implementation 389 

procedures, and so forth. It would be better to make it overly sufficient than less sufficient. If it is 390 

less sufficient, MiVT may not have enough flexibility to make it robust.  391 

 392 

 393 

 394 
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 396 

ASV: amplicon sequence variant 397 

AUC: Area under the curve 398 

BC: Bray-Curtis dissimilarity 399 

BoRT: Bootstrap-based test for regression tree 400 

CTLA-4: Cytotoxic T lymphocyte-associated antigen 4 401 

CV: Cross-validation 402 

DFN: Deep feedforward network 403 

dML: Distance-based machine learning 404 

EN: Elastic net 405 

Euclidean: Euclidean distance 406 

GUniFrac: Generalized UniFrac distance 407 

Jaccard: Jaccard dissimilarity 408 

MiVT: Microbiome virtual twins 409 

OTU: Operational taxonomic units  410 

PAM: Partitioning-around-medoids 411 

PD-1: Programmed cell death 1 protein 412 

RF: Random forest 413 

UUniFrac: Unweighted UniFrac distance 414 

WUniFrac: Weighted UniFrac distance 415 
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Tables and Figure Legends 555 

 556 

Table 1. Empirical type I error rates and powers for BoRT (unit: %). 557 

 Type I error (%) 
Power (%) 

Randomly selected features Phylogenetically related features 

Small effects 5.027 45.035 46.688 

Large effects 4.860 49.312 47.368 

 558 

Table 2. The contingency table on the treatment and outcome status. 559 

 Anti-PD-1 

(𝑇𝑖 = 0) 

Anti-PD-1 & Anti-CTLA-4  

(𝑇𝑖  = 1) 

NR (𝑌𝑖 = 0) 10 (71.4%) 10 (41.7%) 

R (𝑌𝑖 = 1) 4 (28.6%) 14 (58.3%) 

Sum 14 (100%) 24 (100 %) 

 560 

Table 3. The results of BoRT from MiVT on the microbial genera in the gut of melanoma patients 561 

that improve (or lower) the effect of Anti-CTLA-4 over Anti-PD-1. *𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5 and 𝑅6 562 

are the identified subgroups that correspond with the terminal nodes from left to right in Fig. 3.  563 𝑁𝑅𝑗 is the sample size for each subgroup j = 1, ……, 6. Overall TE represents the overall treatment 564 

effect, and Subgroup TE represents the subgroup treatment effect.  565 

 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑁𝑅𝑗 8 5 5 5 5 10 

Overall TE 0.053% 0.053% 0.053% 0.053% 0.053% 0.053% 
Subgroup TE 0.000% 0.020% 0.080% 0.020% 0.080% 0.100% 

Subgroup TE – Overall TE -0.053% -0.033% 0.027% -0.033% 0.027% 0.047% 
P-value (BoRT) <.001 0.126 0.188 0.128 0.196 <.001 

 566 

 567 

 568 

 569 
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Table 4. The results of BoRT from MiVT on the microbial species in the gut of melanoma patients 570 

that improve (or lower) the effect of Anti-CTLA-4 over Anti-PD-1. *𝑅1, 𝑅2, 𝑅3, 𝑅4 and 𝑅5 are the 571 

identified subgroups that correspond with the terminal nodes from left to right in Fig. 4.  572 𝑁𝑅𝑗 is the sample size for each subgroup j = 1, ……, 5. Overall TE represents the overall treatment 573 

effect, and Subgroup TE represents the subgroup treatment effect.  574 

 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑁𝑅𝑗 5 5 7 5 16 

Overall TE 0.053% 0.053% 0.053% 0.053% 0.053% 
Subgroup TE 0.000% 0.020% 0.014% 0.040% 0.100% 

Subgroup TE – Overall TE -0.053% -0.033% -0.038% -0.013% 0.047% 
P-value (BoRT) 0.007 0.129 0.024 0.580 <.001 

 575 

Table 5. The CV cross-entropy values for each combination of distance measure and machine 576 

learning method from the real data application of the gut microbiome study on the effects of cancer 577 

immunotherapies on melanoma patients. 578 

 Euclidean Jaccard BC UUniFrac GUniFrac WUniFrac 

EN 0.994 0.903 0.813 0.761 0.745 0.897 

RF 0.686 0.672 0.704 0.656 0.714 0.677 

DFN 3.322 2.733 2.655 3.862 3.113 2.674 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 
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Fig. 1. Empirical test classification errors (see Error (%)) and test AUC (see AUC (%)) for the 588 

relatively small effects of 𝛽2 = 0.0005 and 𝛽3 = 0.001 (Eq. 12). A and C. For a situation when 589 

randomly selected features influence treatment effects (i.e., Ω = {randomly selected features}. B 590 

and D. For a situation when phylogenetically related microbial features influence treatment effects 591 Ω = {i.e., phylogenetically related features}.  592 

 593 

Fig. 2. Empirical test classification errors (see Error (%)) and test AUC (see AUC (%)) for the 594 

relatively large effects of 𝛽2 = 0.001 and 𝛽3 = 0.0015 (Eq. 12). A and C. For a situation when 595 

randomly selected features influence treatment effects (i.e., Ω = {randomly selected features}. B 596 

and D. For a situation when phylogenetically related microbial features influence treatment effects 597 Ω = {i.e., phylogenetically related features}.  598 

 599 

Fig. 3. The fitted regression tree by MiVT on the microbial genera in the gut of melanoma patients 600 

that improve (or lower) the effect of Anti-CTLA-4 over Anti-PD-1 (Unit: %). * G46: 601 

Mogibacterium, G10: Erysipelatoclostridium, G33: Roseburia, G103: Akkermansia, G13: 602 

Massiliomicrobiota. 603 

 604 

Fig. 4. The fitted regression tree by MiVT on the microbial species in the gut of melanoma patients 605 

that improve (or lower) the effect of Anti-CTLA-4 over Anti-PD-1 (Unit: %). * S40: 606 

Faecalibacterium prausnitzii, S6: Eubacterium sp. 3_1_31, S8: Erysipelotrichaceae bacterium 607 

3_1_53, S183: Streptococcus infantis/mitis. 608 
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