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Abstract

Aligning electron density maps from Cryogenic electron microscopy (cryo-EM) is a first key step
for studying multiple conformations of a biomolecule. As this step remains costly and challenging, with
standard alignment tools being potentially stuck in local minima, we propose here a new procedure, called
AlignOT, which relies on the use of computational optimal transport (OT) to align EM maps in 3D space.
By embedding a fast estimation of OT maps within a stochastic gradient descent algorithm, our method
searches for a rotation that minimizes the Wasserstein distance between two maps, represented as point
clouds. We quantify the impact of various parameters on the precision and accuracy of the alignment,
and show that AlignOT can outperform the standard local alignment methods, with an increased range
of rotation angles leading to proper alignment. We further benchmark AlignOT on various pairs of
experimental maps, which account for different types of conformational heterogeneities and geometric
properties. As our experiments show good performance, we anticipate that our method can be broadly
applied to align 3D EM maps.

Introduction

Solving the 3D structures of biomolecules is key to their function and the mechanisms underlying biological
processes. For this purpose, cryogenic electron microscopy (cryo-EM) has become in recent years the most
used technique to solve structures [1]. One main advantage of this technique, in contrast with X-ray crys-
tallography, is that it potentially allows various conformations (or 3D configurations) of the same molecule
to be solved [2]. Once different conformations are obtained as 3D EM density maps (i.e., large 3D grids
of voxels with different levels of intensities), aligning these maps in 3D space is needed to further compare
them.

Efficient methods have been developed to align two protein structures [3, 4], assuming their atomic com-
position is known. In this case, aligning two conformational structures is tantamount to finding an optimal
rigid body transformation (i.e. a combination of 3D translation and rotation) that can align homologous
atoms. However, when density maps are only given, one cannot directly establish such a homology corre-
spondence from voxel to voxel, so the same problem becomes more challenging as the grid size increases and
with the computational cost of searching over all possible rigid body transformations.

To solve the rigid body alignment problem for 3D cryo-EM density maps, standard approaches use various
algorithms to maximize correlation [5, 6, 7]. More recently, Han et al. introduced a new method, which
relies on representing the maps as sets of unit vectors before performing alignment [8]. Overall, both the
choice of the metric to optimize, as well as the representation of the maps, can play important roles in
getting a successful alignment. In this paper, we introduce a novel approach, called AlignOT, that uses a
point-cloud representation of 3D maps, and minimizes the so-called Wasserstein distance between two maps
with a stochastic gradient algorithm. This non-Euclidean distance is associated with the theory of Optimal
Transport (OT) [9], with recent advances that make tractable the computation of transport-based distances
[10, 11]. After describing the procedure of AlignOT in detail, we present the results of our experiments that
quantify the precision and accuracy of this method, and benchmark it on a set of representative experimental
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maps. Overall, the good performance of AlignOT with respect to standard local alignment methods suggests
that our method can be broadly applied, as an alternative for aligning 3D EM maps with a non-Euclidean
metric. We finally discuss the potential limitations of AlignOT, and connections with other recent methods
and problems in optimal transport that would help to further improve and generalize it.

Material and Methods

Point cloud representation of EM maps

To represent voxelized cryo-EM maps, we use the topology representing network algorithm (TRN) [12], which
reduces a map of d3 voxels to a point cloud, i.e., a set of n points ∈ R3. Briefly, the voxelized maps (typically
∼ 1003 to ∼ 5003 voxels in the 3D grid) are first thresholded with a noise floor, to set low intensity regions
to zero, and normalized to a probability mass function P over the grid points. n points (ri(0))i=1...n are
initially sampled from P, and then updated in parallel for tf rounds by taking weighted steps, according to
the following equations [12]

ri(t+ 1) = ri(t) + ε(t) exp[−ki/λ(t)](rt − ri(t)), (1)

λ(t) = λ0

(λf
λ0

)t/tf
, (2)

ε(t) = ε0

(εf
ε0

)t/tf
, (3)

where rt is a single grid point sampled from P, ki denotes the rank of point ri(t), by its Euclidean
distance to rt, and λ0, ε0, λf , εf , tf are hyperparameters. In practice, we used ε0 = 0.3 and εf = 0.05 for the
initial and final step sizes, λ0 = 0.005×n and λf = 0.5 for the initial and final scaling ranks, and tf = 8×n
for the total number of steps (adapted from [13]).

Optimal Transport and Wasserstein distance

To compare the point cloud representations of EM maps, we use a non-Euclidean metric that derives from
the theory of Optimal Transport [9]. For two given point clouds, A = {a1, . . . , an} and B = {b1, . . . , bn},
we define a cost matrix Ci,j = d(ai, bj)

2, where d is the Euclidean distance. The entropy regularized 2-
Wasserstein distance between A and B, denoted by W2,ε(A,B), is then defined as

W2,ε(A,B) = [ min
P∈Rn×n

+

n∑
i,j=1

Ci,jPi,j + εH(P )]1/2

s.t. P.1 = PT .1 = 1/n

, (4)

where ε ∈ R+ is the regularization parameter and the entropy H(P ) is given by

H(P ) =

n∑
i,j=1

Pi,j logPi,j . (5)

The minimizer of equation (4) is called the transport plan. For the rest of the Methods section, we will
simply denote the Wasserstein distance as W2,ε, and Pi(a),i(b) as Pa,b, where i(a) and i(b) are the indices of
the two points a and b in A and B, respectively.

AlignOT : Algorithm for 3D map alignment

To align two 3D maps from their point cloud representations A and B, we solve the optimization problem

qopt = argmin
q∈H

W2,ε(Rq(A),B), (6)
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where q is a quaternion (defined over the quaternion space H), that we identify to a 3D rotation Rq in
SO(3), so Rq(A) = {Rq(ai)|ai ∈ A}. We explain in the Results section and Appendix A why we can only
consider rotations and ignore translations to solve the general alignment problem, and provide more details
on the identification of q to Rq in Appendix B. Our stochastic gradient descent procedure to solve (6), called
AlignOT, is detailed in Algorithm 1. At each iteration, the algorithm updates q from the transport plan P
between Rq(A) and B as follows: After sampling one point a ∈ Rq(A), we evaluate π(a) = argmaxb∈B Pa,b,
and compute the gradient in q associated with d(π(a), a)2, where d is the Euclidean distance, to update q. To
compute the transport plan, we apply the Sinkhorn algorithm [10], with the initial vectors set as the outputs
of the previous iteration. In practice, we also set the convergence condition ‖d(π(a), a)2‖ < δ (where δ > 0),
that stops the algorithm before the maximum number of iterations. The hyperparameters of this procedure
are the learning rate α associated with gradient descent, the regularization parameter ε associated with the
Wasserstein distance, and a threshold δ associated with the number of iterations. In all our experiments, we
set ε = 100, δ = 10−10, and the maximum number of iterations equal to 500.

Algorithm 1 AlignOT : 3D density maps alignment with SGD using unit quaternions and Wasserstein
distance

Input two 3D density maps A,B, number of sampled points n ∈ R, learning rate α ∈ R, regularization
parameter ε ∈ R, maximum number of iterations L ∈ N, and gradient threshold δ ∈ R
1: Sample two sets of n points A,B ⊂ R3 from A,B respectively, using TRNs
2: q = 1 + 0i+ 0j + 0k
3: G = α2

4: while not converged and the number of iterations is at most L do
5: Compute Rq(A)
6: Compute P to be the OT plan matrix between Rq(A) and B
7: Randomly select a ∈ Rq(A)
8: b = π(a)
9: f(q) = d(Rq(a), b)2 (where d is Euclidean distance in R3)

10: G = G+ ‖∇f(q)‖2
11: q = q − α√

G
×∇f(q)

12: q = q
‖q‖

13: end while
14: return q

Implementation

We implemented AlignOT in Python 3.6.4. To sample a point cloud representation of an EM map using
TRN, we adapted code from ProDy [14]. We used the NumPy package for matrix operations and POT’s
implementation of the Sinkhorn algorithm, which was modified to set the initial vectors (instead of initializing
with uniform vectors). Our code is available in this GitHub repository.

Datasets

We tested AlignOT on various publicly available EM maps available from the EMDB, as listed in Table 1,
and shown in Figure 1. For experiments that involved aligning a pair of distinct maps, we also used the
corresponding pair of structures taken from the PDB [15], and used MM-align [3] to set a ground truth
alignment, before converting the structures into EM maps using the function molmap in Chimera X [16]. All
the datasets used in this study are available at this OSF page.
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Results

Formulation of the alignment problem for EM maps with point cloud represen-
tation

We present here a new procedure, called AlignOT, that aligns 3D density maps from cryo-EM. Assuming
that the EM maps are represented by two 3D point clouds A = {a1, . . . , an} and B = {b1, . . . , bn}, and for a
given distance function d defined over the space of point clouds, the problem of aligning these maps consists
of finding a rigid body transformation that minimizes the objective function

Ld(R, T ) = d(moveR,T (A),B)2, (7)

where Ld(R, T ) is defined over rotation matrices R ∈ SO(3) and translation vectors T ∈ R3, and the operator
moveR,T (A) is defined as

moveR,T (A) = {Rai + T |ai ∈ A}. (8)

As the choice of d influences both the accuracy and the computational cost of the solution to the rigid body
alignment problem, we here use the 2-Wasserstein distance, associated with the theory of Optimal Transport
[9]. This distance can be used to compute distances between probability distributions, and is applied here
more specifically for two distributions of 3D point clouds of same size. To efficiently evaluate this distance,
we consider a regularized version (see equation (4) in the Methods section ), denotedW2,ε. Besides, given the
centers of mass ā = 1

n

∑n
i=1 ai and b̄ = 1

n

∑n
i=1 bi, and the centered point clouds Ac = {aci = ai− ā|ai ∈ A}

and Bc = {bci = bi − b̄|bi ∈ B}, we can show that the optimal translation of the objective function (7) is

Topt = b̄−Roptā, (9)

where

Ropt = argmin
R∈SO(3)

W2,ε(R(Ac),Bc). (10)

Thus, the search for an optimal rigid body transformation in (10) can be simplified to rotations after
matching the centers of mass of A,B, leading to equation (6) of the Methods section . We provide a detailed
proof of this result in Appendix A.

AlignOT optimization procedure and complexity

To search for an optimal rotation that minimizes the Wasserstein distance between two 3D point clouds, we
use an iterative Stochastic Gradient Descent algorithm, detailed in Algorithm 1. Basically, the algorithm
aims to improve the alignment at each iteration, by rotating a map according to an assignment provided
by the evaluation of the Wasserstein distance, with quaternions used to represent the 3D rotations (see
Appendix B for a full description). Since EM maps are defined on a 3D voxelized grid, we also first convert
the maps into point clouds, using the TRN algorithm [12]. We cover the application of the TRN application,
the Wasserstein distance and the optimization procedure, as well as its implementation in the Material and
Methods sections .

The complexity of our method (summarized in Algorithm 1) can be evaluated as follows: Assume that
L is the maximum number of iterations, n the size of the point cloud, and ε the regularization parameter of
the W2,ε distance. Each iteration of this algorithm consists of three steps. First, rotating one point cloud,
second, computing the OT plan matrix, and last, sampling a random point and computing the gradient.
Rotating a point cloud requires computing the coordinates of each point after rotation and takes O(n) time,
where n represents the number of points. To compute the OT plan matrix we use the Sinkhorn algorithm
[11] which solves this problem in O(n2 log nε−3) time, where ε is the regularization parameter. Finally, the
gradient step takes O(1) time. Overall, the most time-consuming part of this algorithm is computing the OT
plan matrix at each iteration. Therefore, the overall time complexity of the algorithm is O(n2L log nε−3).
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Alignment between maps can be obtained by minimizing the Wasserstein dis-
tance

To evaluate our method, we first tested AlignOT on aligning two point clouds that differ by a rotation only.
To do so, we used an experimental map of a ribosome from EMDB 1717, shown in Figure 1a (ribosome
structures are broadly studied in cryo-EM [2, 17]). First, we sampled two clouds of 500 points, and applied
a rotation defined in its axis-angle representation by an arbitrary axis, and an angle θ = 20◦. Figure 2a
illustrates how the moving point cloud gets closer to the targeted one over the iterations of the algorithm,
until the convergence criterion is reached. To confirm this visual impression, we repeated the procedure with
different initial angles θ ∈ {10◦, 30◦, 50◦, 70◦}. The corresponding Wasserstein distance obtained across the
iterations is shown in Figure 2b, with all the four trajectories converging to the same value and resulting in a
successful alignment. However, we also observed that as θ increases, it takes more iterations for the algorithm
to converge, with longer periods of slow variations at the beginning of the procedure, suggesting that this
alignment can only be achieved within a certain range of θ. Aside from the initial angle, we also studied in
Figure 2c how the size of the point cloud can affect the convergence plot. For θ = 50◦, decreasing the point
cloud size from 500 to 250 leads to a potential loss of precision (with the Wasserstein distance between two
aligned point clouds increasing from ∼ 115 to 130), but with faster convergence from the algorithm (from ∼
200 to 50 iterations to converge), indicating some trade-off between accuracy and speed.

To interpret these results, we further plotted in Figure 2d how the Wasserstein distance varies on average
(after sampling different point clouds of same size 250 and 500), as a function of θ (and same rotation axis).
In addition to the global minimum achieved for θ = 0, another local minimum was detected at θ = 180◦,
separated by a peak around 90◦. While the sharp decrease observed towards the global minimum suggests
that the optimization procedure can converge well for θ ≤ 60◦, it is also possible that the algorithm does not
converge to the global minimum above this range. Besides, the higher variability obtained from sampling
point clouds of size 250, compared with 500, suggests that the final alignment may be less accurate in this
case. While the same fixed rotation axis was considered in the previous experiments (with different values
of θ), we finally evaluated the probability to successfully align the maps for initial rotations of fixed angle θ
(45, 60, 75 and 90◦), and across different axes covering half of the sphere S2. Upon mapping the axes on the
planar disk in Figure 2e, we found local regions of poorer alignment that match with local minima of the
Wasserstein distance. These results also confirm the existence of a limiting range within which the method
can align two maps. While a successful alignment is overall obtained for θ = 45◦, the maps get partially
aligned in different regions of the disks for 60◦ (see Figure 2e), with the performance worsening as θ increases
(see Figure 3).

Benchmarking performance and accuracy of AlignOT with a pair of identical
maps

We next focused on point cloud size and the range of convergence, and quantified their impact on the
accuracy and computational cost of AlignOT. We first considered the same map and alignment task with
θ = 20◦ as previously, with different point cloud sizes n (from 50 to 1000). The results obtained with a
standard workstation are shown in Table 2, and confirm the existence of a trade-off between accuracy and
speed, with the alignment improving as n increases, but with a larger runtime that goes from a few seconds
for n = 50, 100, 200 to approximately a minute for n = 1000. While the accuracy of the alignment remains
poor for n = 50 and 100 (with an average error of 12.6◦ and 7.72◦ respectively), it significantly improves for
n = 500 with 2.35±1.23◦ error observed, with a runtime suggesting that AlignOT can be used in practice on
standard density maps. We also noted that AlignOT runs slower in comparison with Chimera and Chimera
X’s alignment function fitmap, which performs a steepest ascent optimization to align maps according to
their overlapping score [5, 16] (0.3 s on average). On the other hand, we show in our next experiments that
AlignOT outperforms fitmap in accuracy as θ increases.

More precisely, we determined the range of θ within which the method converges, and compared our
method with fitmap. As shown in Figure 2c, we found that AlignOT can cover a wider range that extends
to 75◦, while fitmap starts failing at approximately 45◦ (see also Figure 6 for a visualization of some
representative alignments obtained). Beyond this value, AlignOT leads to some variable results up until
100◦, due to the stochasticity of the algorithm. It then converges towards the other local minimum found
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for the Wasserstein distance observed in Figure 2d, with a difference of ∼ 175◦ from the true alignment. In
practice, Chimera also provides a global search option that randomly generates different initial instances of
the rotated map, and keeps the best alignment to the target map using fitmap. To estimate the potential
gain from using AlignOT, we generated 500 random initial placements, and computed the rates of successful
alignments from AlignOT and fitmap’s local search, to be 15.6% and 2.2%, respectively. In this context,
AlignOT thus reduces the number of initial placements needed in the global search by a factor of 7.6 (as
(1− 0.022)7.6 ≈ 1− 0.156).

Benchmarking AlignOT with conformationally heterogeneous pairs

We finally tested AlignOT on pairs of distinct maps, as this reflects how the method should be applied in
practice. More precisely, we considered six pairs, listed in Table 1 and shown in Figure 1, that all account for
different conformations of a protein or complex structure, and that were recently used to evaluate another
alignment method [8]. As illustrated in Figure 5a, we first used the molecular structures associated with the
maps to define a ground truth alignment using the structure-based alignment function MM-align [3] (see
also the Datasets section ). This ground truth was used to evaluate the performance of AlignOT, as well as
Chimera’s fitmap, which we used for benchmarking against our method.

Upon testing for different values of point cloud size n ∈ {250, 500, 1000} and initial rotation angle
θ ∈ {45◦, 60◦, 90◦}, we recorded the angle differences between the ground truth alignment and the output
using both fitmap and AlignOT, as reported in Table 3. Over the 18 cases tested, AlignOT outperformed
fitmap 13 times (72%), with some significant improvement observed in the majority of them (8 cases with
an average improvement of more than 20◦). For example, the improvement obtained in the pair ID 4
(θ = 45◦) is visualized in Figure 5b, and shows how the presence of some symmetries (observed in the
figure at the bottom of the molecule) can lead fitmap to misalign maps. Our experiments also confirm
the improvement of the range of convergence using AlignOT, which we illustrate in Figure 5c with the pair
ID 5 (with good alignment obtained at 60◦, contrary to fitmap). Besides, over the 5 cases where fitmap

outperformed AlignOT, either the difference between the two methods is marginal (less than 2◦, for ID 1, 3,
6, and θ = 45◦), or both methods perform poorly (ID 2 with θ = 60, 90◦). With the exception of the pair
ID 2 (with poor performance from both methods), we found that the best alignment yields a Wasserstein
distance that is the closest to that of the ground truth alignment, regardless of the method associated with
it. These results thus suggest that the Wasserstein distance, which determines the objective function of our
method, is a more appropriate metric to use than the Euclidean norm. Finally, our experiments highlight
that increasing point size cloud does not necessarily lead to the best alignment from AlignOT, as a result
of the trade-off between performance and speed that we also previously observed. Such a phenomenon was
observed for the pair ID 6 (θ = 45◦), with a better alignment for n = 250 than n = 1000, as illustrated in in
Figure 5d. As shown by the Wasserstein distance plots, the convergence is in this case significantly slower
for n = 1000, which leads the algorithm to stop before the convergence condition gets achieved.

Discussion

In this paper, we present AlignOT, a new method for aligning cryo-EM density maps that relies on minimizing
the Wasserstein distance between sampled point clouds. As shown in our experiments, AlignOT is scalable to
the typical size of density maps, with a good compromise between accuracy and speed that can be achieved
upon tuning the point cloud size. Our method can thus be used to quickly align maps that come from different
conformations of the same protein or complex. In particular, optimizing for a transport-based metric, instead
of other common metrics (e.g. overlap, correlation), allows AlignOT to generally outperform the standard
local optimization method implemented in Chimera. Interestingly, the Wasserstein (or Earth-mover) distance
was used in other applications in cryo-EM and tomographic projections (e.g. in interpolation or clustering
[18, 19, 20, 21]), as its natural interpretation as the cost of displacing mass between two distributions makes
it appropriate to compare volume-objects. While the choice of the TRN algorithm to generate point clouds
is justified by its previous use to represent molecular structures [22], it can also be replaced by any other
point cloud generation method, and it would be interesting to explore how to possibly improve our method
on this aspect (in particular, we could for example use Vector Quantization, as it also has been used for
approximating EM maps [23, 24]).
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In the more general context of solving a rigid body alignment problem, AlignOT can be seen as a variant
of the Iterative Closest Point method (ICP) framework [25], that consists of iteratively moving the point
clouds according to the best way to match them. Among the many different variants of the ICP, Grave
et al. similarly employed the Wasserstein distance to align language models [26]. Compared with their
approach, our method differs with the use of quaternions in the gradient evaluation, as they make it possible
to efficiently represent and manipulate 3D rotations. In addition, our modified version of the Sinkhorn
algorithm, which evaluates the transport plan between the point clouds, provides a more rapid computation
of the transport plan at each iteration, by simply reusing the vectors estimated at the previous iteration.

While Chimera’s fitmap or VESPER [8] support a global search option (with multiple initializations of
the local search function), we have not at this stage implemented a similar option for AlignOT, which also
limits the direct comparison with these global methods. In addition, it also be interesting to study how to
further optimize the learning rate and cloud size to improve the method. Yet, as our comparative experiments
indicate an improvement of the range of convergence, as well as the number of random placements leading
to a successful alignment, they suggest that AlignOT can potentially provide a useful alternative from the
aforementioned current tools, that could also in the future be implemented as a plug-in for Chimera (as in
[18]). Another current limitation is that the optimization problem assumes that the maps to align represent
different conformations of a molecule, and thus carry approximately the same total density. However, it is
also important in the context of Cryo-EM to consider the case (which VESPER does), of fitting two maps of
different sizes, with one representing only a part of the other [6, 27]. In this case, since we cannot simplify, as
in Appendix A , the rigid body alignment problem into an optimization over the rotations only, our method
does not apply directly. However, as one can naturally formulate this problem in our framework as a problem
of unbalanced, or partial Optimal Transport [28], and with the recent development of computational methods
to solve it [29, 30], it makes such a generalization of AlignOT a promising future direction to pursue.
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Figure 1: 3D maps used in our experiments, visualized with Chimera [5]. (a): Density map used in our
first experiment (EMDB:1717). (b-g): Pairs of maps used in the second set of experiments, representing
different conformational states of a given complex/molecule (see also Table 1).
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Figure 2: Alignment of two copies of a single map (from EMDB 1717) using AlignOT (a): We generated
two copies of the map that differ from a 3D rotation, and applied AlignOT (see Algorithm 1). The figure
shows the result of the procedure at different iterations (t = 1, 100, 500). The blue and red dots represent the
rotated and target point clouds, respectively. (b): For different initial values θ (= 10◦, 30◦, 50◦, 70◦) of the
angle difference between the two maps and same rotation axis, we plot the Wasserstein distance between the
two target and rotated point clouds across the iterations of the algorithm, showing that they all converge to
the same limit. (c): For the same initial rotation (with θ = 50◦), we plot the variations of the Wasserstein
distance across iterations as in (b), for point clouds of size n = 250 (black) and 500 (blue). (d): For the
same rotation axis as in (b) and (c), we plot the average Wasserstein distance between two sampled point
clouds as a function of θ, for point clouds of size 250 (black) and 500 (blue). Error regions show the standard
deviation from sampling 100 different point clouds for each angle. (e): Alignment success rate of AlignOT
at fixed angles θ = 45, and 60◦, and over the rotation axes that cover the upper hemishpere of S2. Heatmaps
show the percentage of outcomes that result in an alignment with error ≤ 5◦, where each point of the disk
is the projection of the axis considered in S2 (89 in total, with 20 runs for each).
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Figure 3: Alignment success rate of AlignOT at fixed angles θ = 45, 60, 75, and 90◦, and over the rotation
axes that cover the upper hemishpere of S2. Heatmaps show the percentage of outcomes that result in an
alignment with error ≤ 5◦, where each point of the disk is the projection of the axis considered in S2 (89 in
total, with 20 runs for each).
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Figure 4: Comparison between AlignOT and Chimera’s fitmap function: With a fixed axis and for a
rotation angle difference θ between 0 and 180 degrees (x-axis), we set up a couple of maps from EMDB:1717
and run AlignOT and Chimera’s fitmap function local search. The blue dots represent the error obtain in
the alignment using fitmap, while the box plot (showing the minimum, first quartile, median, third quartile,
and maximum) indicates the error of AlignOT over 10 runs.
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Figure 5: Performance of AlignOT with conformationally heterogeneous pairs (a): To quantify the per-
formance of AlignOT on aligning different maps, we first aligned the corresponding PDB structures using
MM-align [3] to set a ground truth alignment, and converted the aligned structures into cryo-EM density
maps using the molmap command in Chimera [16], which were then used to benchmark Chimera’s fitmap

function and AlignOT with different initial rotations (see also Table 3). (b): Alignments obtained for the
pair ID 4 (see Table 1) and initial rotation angle θ = 45◦. From top to bottom, we compare the alignment
obtained with (1) MM-Align from PDB structures, (2) AlignOT using a point cloud size n = 500, with both
point clouds and resulting density maps shown, and (3) Chimera’s fitmap function (from the density maps).
(c): Alignments obtained with the pair ID 5 show the increased range of convergence of AlignOT compared
with fitmap. While AlignOT successfully align the maps for θ = 45 and 60◦ (with the figure showing the
result for n = 1000), it is not the case for fitmap, with a misalignment observed at 60◦. (d): From top to
bottom, aligning pair ID 6 with θ = 45◦ shows a decrease in accuracy for AlignOT using a point cloud size
n = 1000, compared with n = 250. We plot the corresponding the Wasserstein distance over the iterations
of the algorithm, showing a larger final value for n = 1000, as the algorithm converges more slowly. As a
result, this is one of the few cases where we found that Chimera produces a better alignment.
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Figure 6: Visual comparison between AlignOT and Chimera’s fitmap function. We set up a couple of maps
from EMDB:1717 that differ from a rotation of fixed axis and angles θ = 60 and 120◦, and ran AlignOT and
Chimera’s fitmap function local search. The figure shows the result of the procedure, with the final rotation
(axis, angle) between the two maps.
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Tables

Table 1: EM maps used in our experiments, also shown in Figure 1. The map from EMDB:1717 is used for
aligning two copies of the same map. The other maps are grouped and aligned in our experiments as pair of
different conformations of the same molecule, with the PDB structures used to obtain a ground truth (see
Datasets and Results sections).

EMDB ID Protein or Complex Name Figure
1717 [31] Ribosome 1 a

EMDB/PDB ID Protein or Complex Name Figure/ID
3240 / 5fn5 [32]

Human γ-secretase 1 b / 1
2677 / 5a63 [33]
8881 / 5wpq [34]

TRPML 1 c / 2
8764 / 5w3s [35]
9515 / 5gjw [36]

Voltage-gated calcium channel 1 d / 3
6475 / 3jb [37]
6284 / 3j9t [38]

Yeast V-ATPase 1 e / 4
8724 / 5vox [39]
3342 / 5fwm [40]

Hsp90-Cdc37-Cdk4 1 f / 5
3341 / 5fwl [40]
4547 / 6qg5 [41]

eIF2B-eIF2 1 g / 6
4548 / 6qg6 [41]
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Table 2: Computational performance of AlignOT. For point clouds of size n ∈ {50, 100, 200, 500, 1000}, and
for a fixed rotation of θ = 20◦, we ran AlignOT on EMDB:1717 50 times. We evaluate the accuracy of the
method by computing the angle difference with the ground truth, and the associated runtime in seconds
(mean and std). Experiments were run on an Intel(R) Core(TM) workstation with i7-7700HQ CPU @
2.80GHz 2.81 GHz with 16.0 GB RAM.

n Angle difference Runtime (s)

50 12.60◦±4.51◦ 2.36±0.42
100 7.72◦±3.84◦ 4.66±0.57
200 3.85◦±1.53◦ 4.14±0.37
500 2.35◦±1.23◦ 16.36±1.37
1000 2.20◦±0.96◦ 54.75±2.77
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Table 3: Benchmarking of AlignOT on pairs of conformationally heterogeneous maps, as listed in Table
1. For each pair, we ran AlignOT and fitmap and reported the angle difference between the resulting
algorithm and the ground truth (see Figure 5a). For each pair, we ran our test with initial rotation angles
θ ∈ {45, 60, 90◦} , across 89 different axes covering half of the sphere S2 (with 20 runs for each), and point
cloud sizes n ∈ {250, 500, 1000} in AlignOT. Each table entry reports the mean and std observed (with sample
size 20), with the best results for each pair highlighted in bold. To compute the regularized Wasserstein
distance of final output for different methods, we sampled 500 points from each map and used the same
regularization parameter ε = 100.

ID Angle
MMAlign
W2

2,ε

fitmap AlignOT
n = 250 n = 500 n = 1000

Angle
diff. (◦)

W2
2,ε

Angle
diff. (◦)

W2
2,ε

Angle
diff. (◦)

W2
2,ε

Angle
diff. (◦)

W2
2,ε

1

45
125.14
±3.79

0.97
±0.71

125.36
±4.15

2.82
±1.34

130.73
±8.36

2.30
±1.08

125.65
±5.26

5.73
±3.84

127.51
±7.27

60
125.14
±3.79

6.39
±14.35

133.71
±38.01

2.79
±1.32

130.82
±8.42

2.99
±1.95

126.19
±5.22

10.78
±8.21

140.99
±23.44

90
125.14
±3.79

46.93
±30.70

267.78
±129.91

9.22
±25.99

140.72
±40.58

16.77
±22.09

169.43
±74.51

32.48
±25.48

223.20
±94.98

2

45
152.69
±9.67

37.91
±8.38

292.44
±30.47

20.01
±34.43

188.17
±29.67

14.99
±30.83

163.25
±25.32

11.06
±26.68

149.06
±21.79

60
152.69
±9.67

55.33
±5.79

317.66
±42.78

62.32
±42.37

214.83
±42.83

62.88
±41.47

195.23
±42.07

62.58
±39.83

188.42
±45.09

90
152.69
±9.67

85.21
±5.42

295.43
±49.50

98.20
±21.54

245.20
±40.92

99.69
±14.84

228.26
±39.47

99.66
±13.48

221.37
±40.41

3

45
237.78
±31.97

3.56
±10.48

268.36
±147.22

6.71
±10.13

263.32
±46.31

5.41
±1.66

221.49
±22.01

5.14
±1.20

201.35
±11.38

60
237.78
±31.97

38.35
±20.65

823.87
±415.12

9.49
±24.21

267.61
±64.31

7.00
±16.86

224.56
±44.38

5.13
±1.20

201.86
±12.05

90
237.78
±31.97

80.53
±7.75

1623.24
±521.41

37.25
±66.03

330.59
±157.46

30.94
±61.25

281.16
±144.28

25.27
±55.53

248.83
±130.86

4

45
413.84
±35.57

31.65
±10.33

325.64
±83.43

10.45
±2.67

422.41
±44.29

10.05
±1.94

408.48
±30.38

9.65
±1.49

401.14
±21.32

60
413.84
±35.57

47.21
±11.27

435.61
±126.95

10.75
±6.04

422.46
±42.70

10.07
±4.09

407.52
±30.02

9.56
±1.51

401.28
±21.67

90
413.84
±35.57

81.79
±6.69

655.52
±170.82

33.51
±57.08

440.99
±65.55

29.54
±52.75

425.56
±60.30

26.65
±46.27

432.05
±85.33

5

45
104.93
±1.53

2.02
±5.41

111.62
±15.84

5.94
±15.79

106.87
±3.95

3.77
±11.68

104.93
±2.66

2.02
±1.22

103.98
±1.32

60
104.93
±1.53

26.10
±19.97

138.80
±30.50

9.37
±28.47

107.42
±5.51

6.64
±24.80

105.38
±4.53

3.37
±14.33

104.35
±3.80

90
104.93
±1.53

60.52
±16.78

162.30
±23.35

17.454
±45.22

108.72
±7.94

26.27
±58.88

108.56
±9.91

16.71
±47.56

106.79
±9.03

6

45
119.92
±2.91

0.91
±4.98

113.25
±16.73

4.26
±1.58

120.77
±5.34

7.54
±4.20

122.15
±5.49

14.53
±6.93

138.26
±11.07

60
119.92
±2.91

14.73
±19.64

155.34
±58.90

5.17
±2.33

121.43
±5.52

11.50
±7.26

128.46
±11.18

22.12
±10.46

161.75
±20.83

90
119.92
±2.91

43.43
±27.87

204.40
±57.11

18.37
±26.30

143.74
±45.67

31.68
±25.94

178.16
±60.72

46.43
±22.89

258.30
±45.43
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Appendix

Appendix A: Optimal translation for the rigid body alignment
problem

To minimize the loss function over rigid body transformations (translation and rotations), we can simplify
the problem and restrict the search to rotations only as follows: For two point clouds A = {a1, . . . , an}
and B = {b1, . . . , bn}, and upon introducing the centers of mass ā = 1

n

∑n
i=1 ai and b̄ = 1

n

∑n
i=1 bi, and the

centered coordinates aci = ai − ā and bci = bi − b̄, equation (7) yields

L(R, T ) =W2,ε(moveR,T (A),B)2

= min
P∈Rn×n

+

n∑
i,j=1

‖Rai + T − bj‖22Pi,j + εH(P ) (s.t. ∀1 ≤ j ≤ n :

n∑
i=1

Pi,j =

n∑
i=1

Pj,i =
1

n
)

= min
P∈Rn×n

+

n∑
i,j=1

‖Raci +Rā+ T − bcj − b̄‖22Pi,j + εH(P ),

where we used definition of the entropy regularized Wasserstein distance from equation (4). This further
simplifies as

L(R, T ) = min
P∈Rn×n

+

n∑
i,j=1

‖Raci − bcj‖22Pi,j +

n∑
i,j=1

‖Rā+ T − b̄‖22Pi,j

+

n∑
i,j=1

(Raci − bcj ).(Rā+ T − b̄)Pi,j + εH(P ) (11)

= min
P∈Rn×n

+

n∑
i,j=1

‖Raci − bcj‖22Pi,j +

n∑
i,j=1

‖Rā+ T − b̄‖22Pi,j + εH(P ) (12)

= min
P∈Rn×n

+

[

n∑
i,j=1

‖Raci − bcj‖22Pi,j + εH(P )] + ‖Rā+ T − b̄‖22 (13)

where we used in (11) that
∑n
i,j=1 Pi,jaci = 1

n

∑n
i=1 aci = 0 and

∑n
i,j=1 Pi,jbcj = 1

n

∑n
j=1 bcj = 0. Also,

we used the fact that
∑n
i,j=1 Pi,j = 1 in (12). The second term in eq. (13) is minimized for T = b̄−Rā, i.e.

the translation that aligns the two centers of mass. Therefore, to solve the rigid body alignment problem,
we can assume that the distributions of points A and B are both centered at the origin, and that we only
need to solve the optimization problem over the rotations in SO(3), as stated in equation (10).

Appendix B: Quaternion Representation of 3D rotations

Quaternion Representation of 3D rotations and gradient formula

To formalize 3D rotations in AlignOT we use the quaternion representation (H). In this representation, given
a point a = (x, y, z) ∈ R3 and a rotation with angle θ around axis ~u = (ux, uy, uz) , we form quaternions

q = cos θ/2 + ux sin θ/2i+ uy sin θ/2j + uz sin θ/2k,

p = xi+ yj + zk,

where i, j, k are the basic quaternions such that

i2 = j2 = k2 = ijk = −1. (14)
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Using equation (14) we compute the following term

xresi+ yresj + zresk = qpq∗,

where Rq(a) = (xres, yres, zres) ∈ R3 is the coordinates of a after rotation, and q∗ is the conjugate of q and is
defined as

(q0 + q1i+ q2j + q3k)∗ = q0 − q1i− q2j − q3k.

We then define the absolute norm of q as

‖q‖2 = qq∗ = q20 + q21 + q22 + q23 ∈ R.

In AlignOT, we also compute the gradient associated with the function f(q) = f(q0, q1, q2, q3) = ‖Rq(a)−
b‖22, where a, b ∈ R3 as

∇f =
∂f

∂q0
+
∂f

∂q1
i+

∂f

∂q2
j +

∂f

∂q3
k,

where the explicit analytical formula of ∇f is provided in the Appendix B.

Analytical formula for the gradient update

In the previous section we defined gradient of a general function f : H → R. In this sectionuse this
definition to compute an explicit formula for the gradient of the function used in Algorithm 1 i.e. f(q) =
d(Rq(a), b)2, where d is Euclidean distance in R3, a = (ax, ay, az), b = (bx, by, bz) are two points in R3, and
q = q0 + q1i + q2j + q3k is a quaternion. Using the definition of Rq(a) in Appendix B to compute the
coordinates of Rq(a) = (axres , ayres , azres), we have

axresi+ ayresj + azresk = q(axi+ ayj + azk)q∗ = fi(q)i+ fj(q)j + fk(q)k.

After some simplification, we can write fi, fj and fk as

axres
= fi(q) = q21ax + 2q1q2ay + 2q1q3az + q20ax + 2q0q2az − 2q0q3ay − q23ax − q22ax,

ayres = fj(q) = 2q1q2ax + q22ay + 2q2q3az + q20ay + 2q0q3ax − 2q0q1az − q21ay − q23ay,
azres = fk(q) = 2q1q3ax + 2q2q3ay + q23az + q20az + 2q0q1ay − 2q0q2ax − q22az − q21az.

To compute partial derivatives of f we use that

∂f

∂ql
=

(axres
− bx)2 + (ayres − by)2 + (azres − bz)2

∂ql

= 2(fi(q)− bx)
∂fi(q)

∂ql
+ 2(fj(q)− by)

∂fj(q)

∂ql
+ 2(fk(q)− bz)

∂fk(q)

∂ql
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for l ∈ {0, 1, 2, 3}, which yields

∂f

∂q0
= 2(fi(q)− bx)

∂fi(q)

∂q0
+ 2(fj(q)− by)

∂fj(q)

∂q0
+ 2(fk(q)− bz)

∂fk(q)

∂q0

= 4(fi(q)− bx)(q0ax + q2az − q3ay) + 4(fj(q)− by)(q0ay + q3ax − q1az)
+ 4(fk(q)− bz)(q0az + q1ay − q2ax),

∂f

∂q1
= 2(fi(q)− bx)

∂fi(q)

∂q1
+ 2(fj(q)− by)

∂fj(q)

∂q1
+ 2(fk(q)− bz)

∂fk(q)

∂q1

= 4(fi(q)− bx)(q1ax + q2ay + q3az) + 4(fj(q)− by)(q2ax − q0az − q1ay)

+ 4(fk(q)− bz)(q3ax + q0ay − q1az),
∂f

∂q2
= 2(fi(q)− bx)

∂fi(q)

∂q2
+ 2(fj(q)− by)

∂fj(q)

∂q2
+ 2(fk(q)− bz)

∂fk(q)

∂q2

= 4(fi(q)− bx)(q1ay + q0az − q2ax) + 4(fj(q)− by)(q1ax + q2ay + q3az)

+ 4(fk(q)− bz)(q3ay − q0ax − q2az),
∂f

∂q3
= 2(fi(q)− bx)

∂fi(q)

∂q3
+ 2(fj(q)− by)

∂fj(q)

∂q3
+ 2(fk(q)− bz)

∂fk(q)

∂q3

= 4(fi(q)− bx)(q1az − q0ay − q3ax) + 4(fj(q)− by)(q2az + q0ax − q3ay)

+ 4(fk(q)− bz)(q1ax + q2ay + q3az),

∇f =
∂f

q0
+
∂f

q1
i+

∂f

q2
j +

∂f

q3
k.
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