
CodonU: A Python Package For
Codon Usage Analysis

A Thesis submitted
in partial fulfillment of the requirement for the degree of

Bachelor Of Technology

By

Souradipto Choudhuri

Roll No. 00419031

Under the Guidance of

Keya Sau, Ph.D.

Associate Professor

Department Of Biotechnology

Haldia Institute of Technology
(Autonomous)

June, 2023

CodonU: A Python Package For
Codon Usage Analysis

A Thesis submitted
in partial fulfillment of the requirement for the degree of

Bachelor Of Technology

By

Souradipto Choudhuri

Roll No. 00419031

Under the Guidance of

Keya Sau, Ph.D.

Associate Professor

Department Of Biotechnology

Haldia Institute of Technology
(Autonomous)

June, 2023

CodonU: A Python Package For
Codon Usage Analysis

A Thesis submitted
in partial fulfilment of the requirement for the degree of

Bachelor Of Technology

By

Souradipto Choudhuri

Roll No. 00419031

Approved By

Keya Sau, Ph.D. Suvroma Gupta, Ph.D.
Project supervisor Head of the Department

Department Of Biotechnology

Haldia Institute of Technology
(Autonomous)

June, 2023

i

Certificate By Supervisor

This is to certify that the thesis entitled, “CodonU: A Python Package for
Codon Usage Analysis” submitted by Souradipto Choudhuri (00419031) in partial
fulfillment for the requirements for the award of Bachelor of Technology Degree in
Biotechnology Engineering from Haldia Institute of Technology, Haldia, 721657, is
an authentic work carried out by them under my supervision and guidance.

To the best of our knowledge, the matter embodied in the thesis has not been sub-
mitted to any other University / Institute for the award of any Degree or Diploma.

Signature:

Supervisor
Keya Sau, Ph.D.

Associate Professor
Department of Biotechnology
Haldia Institute of Technology

Date: June 13, 2023

ii

Declaration

I declare that this written submission represents my ideas in my own words and
where others’ ideas or words have been included, I have adequately cited and ref-
erenced the original sources. I also declare that I have adhered to all principles of
academic honesty and integrity and have not misrepresented or fabricated or falsi-
fied any idea/data/fact/source in my submission. I understand that any violation
of the above will be cause for disciplinary action by the Institute and can also evoke
penal action from the sources which have thus not been properly cited or from whom
proper permission has not been taken when needed.

Souradipto Choudhuri (00419031)

Date: June 13, 2023

iii

Acknowledgement

On the very outset of this report, I would like to extend my sincere and heartfelt
obligation towards all the personages who helped us in this endeavor. Without their
active help, cooperation and encouragement, I would not have made headway in the
project.

I am ineffably indebted to my supervisor Prof. Dr. Keya Sau for her consci-
entious guidance and encouragement to accomplish this project. I am extremely
thankful and pay my gratitude to her for her valuable guidance and support on
completion of this project in its present form.

I extend my thanks towards the Department of Biotechnology as well as Haldia
Institute of Technology for giving me this opportunity.

I also acknowledge with a deep sense of reverence, my gratitude towards my
parents, who has always supported me morally as well as economically.

At last but not least gratitude goes to all of my friends who directly or indirectly
helped me to complete this project report.

Any omission in this brief acknowledgement does not mean a lack of gratitude.

Thanking You,
Souradipto Choudhuri

iv

CodonU

A Python Package for Codon Usage Analysis

Souradipto Choudhuri

Abstract

Codon Usage Analysis has been accompanied by several web servers and indepen-
dent programs written in several programming languages. Also this diversity speaks
for the need of a reusable software that can be helpful in reading, manipulating and
acting as a pipeline for such data and file formats. Most popular software for these
kind of analyses is CodonW. But it has its limited scopes and a complex pipeline
for data analysis. So, we propose CodonU, a package written in python language.
It is compatible with existing file formats and can be used solely or with a group
of other such packages. The proposed package incorporates various statistical mea-
sures necessary for codon usage analysis. The measures vary with nature of the
sequences, viz. for nucleotide, Codon Adaptation Index (CAI), Codon Bias Index
(CBI) etc. and for protein sequences Gravy score etc. Users can also perform the
Correspondence Analysis (COA). This package also provides the liberty to generate
graphics to users, and also perform phylogenetic analysis which is out of scope for
CodonW. Capabilities of the proposed package were checked thoroughly on a di-
verse genomic set. Detailed documentation and some examples for this open-source
project is available at GitHub: https://www.github.com/SouradiptoC/CodonU

v

https://www.github.com/SouradiptoC/CodonU

Acronyms

AA Amino Acid
Aromaticity Over all aromaticity of the protein
C C Programming Language
CADD Computer Aided Drug Design
CAI Codon Adaptation Index
CBI Codon Bias Index
CDS Coding DNA Sequence
COA Correspondence Analysis
CUA Codon Usage Analysis
CUTG Codon usage tabulated from the GenBank genetic sequence

data database
ENc Effective Number of Codon
Fop Frequency of Optimal Codons
gbk GenBank File
GRAVY Overall hydrophobicity of protein
GUI Graphic User Interface
JS JavaScript Programming Language
Nuc Nucleotide
PCA Principal Component Analysis
Python Python Programming Language
R R Programming Language
RSCU Relative Synonymous Codon Usage

vi

Contents

Approval i

Certification By Supervisor ii

Declaration iii

Acknowledgement iv

Abstract v

Acronyms vi

I Introduction 1

1 Motivation 2
1.1 Introduction . 2
1.2 CodonW . 2
1.3 Workflow . 3
1.4 Proposal . 3

2 Objective 4
2.1 Introduction . 4
2.2 Using Python Programming Language 4
2.3 Objectives . 5

3 Literature Survey 7
3.1 Tools for Correspondence Analysis 7
3.2 Tools for Visualizing COA . 7
3.3 Early Databases . 8
3.4 Early Tools for CUA . 8
3.5 New Tools for CUA . 9

II Theoretical Analysis 10

4 Statistical Measures 11
4.1 Biological Viewpoint . 11

4.2 Statistical Measures for Nuc Sequence 11
4.2.1 Relative Synonymous Codon Usage 11
4.2.2 Codon Adaptation Index . 12
4.2.3 Codon Bias Index . 13
4.2.4 Effective Number of Codon 14

4.3 Statistical Measures for AA Sequence 16
4.3.1 Overall hydrophobicity of protein Score 16
4.3.2 Over all aromaticity of the protein Score 16

5 Correspondence Analysis 17
5.1 Introduction . 17
5.2 Correspondence Analysis . 17

5.2.1 Methodology . 17
5.2.2 Interpretation . 18
5.2.3 One Example . 18

5.3 Principal Component Analysis . 18
5.3.1 Methodology . 19
5.3.2 Interpretation . 19

5.4 COA in CUA . 19
5.4.1 Methodology . 19
5.4.2 Interpretation . 20

5.5 Categorization of COA Based on Sequence 20
5.6 Application of COA in CUA . 20

III Implementation 21

6 Implementation 22
6.1 Introduction . 22
6.2 Required Packages . 22
6.3 Third Party Softwares . 22

7 Extractor 23
7.1 Introduction . 23
7.2 Functions . 23

8 File Handler 25
8.1 Introduction . 25
8.2 Functions . 25

9 Analyzer 27
9.1 Introduction . 27
9.2 Functions . 27

10 Correspondence Analysis 32
10.1 Introduction . 32
10.2 Functions . 32

11 Phylogenetic Analysis 34
11.1 Introduction . 34
11.2 Functions . 34

12 Vizualizer 36
12.1 Introduction . 36
12.2 Function . 36

IV Conclusion 43

13 Conclusion 44

V Bibliography 45

Bibliography 46
Articles . 46
Books . 49
Book Chapters . 49
Thesis . 50
Softwares, Online Tools, etc. 50

VI Communication 51

List of Figures

5.1 Example of COA . 18

12.1 ENc and Neutrality Plot . 37
12.2 Parity Rule 2 and Phylogenetic Tree Plot 38
12.3 Phylogenetic Tree Plot . 39
12.4 COA Plots of Codon . 41
12.5 COA Plots of AA . 42

List of Code Snippets

7.1 extract cds . 23
7.2 extract cds lst . 23
7.3 extract exome . 23
7.4 extract exome . 24
8.1 get gb . 25
8.2 write exome fasta . 25
8.3 write nucleotide fasta . 25
8.4 write protein fasta . 26
8.5 set entrez param . 26
9.1 calculate cai . 27
9.2 caululate cbi . 28
9.3 calculate enc . 29
9.4 calculate rscu . 29
9.5 calculate aromaticity . 30
9.6 calculate gravy . 30
10.1 mca codon freq . 32
10.2 mca codon rscu . 33
10.3 mca aa freq . 33
11.1 generate phylo input . 34
11.2 phy clustal w . 34
11.3 phy clustal o . 35
12.1 plot enc . 36
12.2 plot neutrality . 36
12.3 plot pr2 . 37
12.4 plot phy dnd . 37
12.5 plot phy fas . 38
12.6 plot phy nex . 38
12.7 plot mca codon freq . 39
12.8 plot mca rscu . 40
12.9 plot mca aa gravy . 41
12.10plot mca aa aroma . 42

Part I

Introduction

1

Chapter 1

Motivation

1.1 Introduction

Codon Usage Analysis (CUA) is a topic of investigation for many decades now. This
is nothing but various biases observed in the genome of various species. In a very
simplified way, synonymous codons are sets of codons that code for the same Amino
Acid (AA). While the resulting protein remains unchanged, the preferential usage
of particular codons can vary across species, genes, and even within different regions
of a single gene. This phenomenon has been the subject of investigation in the field
of bioinformatics for several decades.

The topic of the thesis is in silico analysis of CUA. The term ‘In Silico’ has a
fascinating origin. Tracing the etymology of the word, in silico shares it origin with
in vitro and in vivo. In vitro means the experiments that are done in a controlled
environment mimicking living organism. Just as so, silico in the word ‘in silico’
refers to the silicon used in computer chips. The word was first used by Christopher
Gale Langton (as reported by Hameroff 1987). He used the term for describing
artificial life while pitching about a workshop on the topic at Los Alamos National
Laboratory in 1987. Though it was not written in a scientific literature until 1990.
It was first used in a scientific literature by Sieburg 1990. The phrase in silico
originally applied only to computer simulations that modeled natural or laboratory
processes (in all the natural sciences), and did not refer to calculations done by
computer generically. But now it also envelops the calculations. ‘In silico’ is highly
used in Systems’ biology, Network biology, CADD etc in modern days.

1.2 CodonW

The problem of CUA was addressed by various researchers in the in silico approach.
But arguably, most popular among them was developed by Peden 1999. Peden
developed the tool as his Ph.D. project. He also made it public as a software named
as CodonW (Pedan 2005).

CodonW was well received by the scientific community from its release. It was
written in C. It could calculate CAI, CBI, ENc, Fop for Nuc sequences. For AA
sequences, it can calculate GRAVY score and Aromaticity score. In case of COA,
it can perform codon usage, amino acid usage and RSCU.

2

Chapter 1. Motivation

1.3 Workflow

Though CodonW was very popular and still in use for various research projects, the
workflow needed for working with CodonW is intertwined. A workflow using CodonW

may consist of:

1. First the gbk needs to be downloaded from genome database (NCBI 1992).

2. Then the downloaded files are uploaded to coderet (A. Bleasby 2000). From
there the CDS sections are exported.

3. The exported sequences are then fed in CodonW.

4. The results are then interpreted by the user.

The interpretation can not be done with standalone CodonW. Various other softwares
need to be used for statistical significance checking and phylogenetic analysis like
SPSS (IBM. Corp 2009) and Mega (Tamura, Stecher, and Kumar 2021; MEGA Dev
Team 2021) respectively. Also CodonW uses much more disk space and yeilds various
files which can not be manipulated with current softwares.

1.4 Proposal

Previous section speaks for the need of a novel software for CUA. Also the limitations
faced by CodonW is not mitigated by its developer. When I originally started to work
on CUA of Staphylococcus sp., I faced the complex workflow and come to know about
the limitations faced. These serve as the motivation for developing CodonU. Details
of the mentioned software is discussed in the later chapters.

3

Chapter 2

Objective

2.1 Introduction

The motivation for writing CodonU was driven by the need to simplify and enhance
the process of codon usage analysis in genomic research. The existing tools and
software available at the time had limitations and complexities that hindered efficient
analysis and hindered the exploration of codon usage patterns.

One of the key motivations was to provide researchers with a user-friendly and
comprehensive package that consolidates various steps in codon usage analysis. By
merging these steps and streamlining the workflow, CodonU aims to reduce the bur-
den on researchers and enable them to focus more on the interpretation and analysis
of results.

Another motivation was to address the challenges associated with file compat-
ibility and data integration. CodonU was designed to be compatible with existing
file formats, making it easier for researchers to handle and manipulate their data.
This compatibility also allows for seamless integration with other software packages,
providing researchers with a flexible and powerful analytical environment.

2.2 Using Python Programming Language

CodonU was written in the Python (Python Dev Team 2001) due to several com-
pelling reasons. Python is a popular and widely-used language in the field of sci-
entific research and data analysis, offering a range of benefits that align with the
objectives of CodonU development.

Firstly, Python is known for its simplicity and readability, making it easier for
developers and users to understand and work with the codebase. This simplicity
enables efficient coding, debugging, and maintenance of the software, which is crucial
for a tool like CodonU that aims to be user-friendly and accessible.

Secondly, Python has a rich ecosystem of libraries and packages specifically de-
signed for scientific computing and bioinformatics, such as Biopython (Cock et al.
2009; Biopython Dev Team 2021), NumPy (Harris et al. 2020; NumPy Dev Team
2023), Pandas (McKinney 2010; Pandas Dev Team 2022), and Matplotlib (Hunter
2007; Matplotlib Dev Team 2023). These libraries provide pre-built functions and
tools that greatly facilitate the implementation of various functionalities within

4

Chapter 2. Objective

CodonU. Leveraging these existing packages not only saves development time but
also ensures that CodonU benefits from the well-established and extensively tested
functionalities of these libraries. Furthermore, Python offers excellent cross-platform
compatibility, allowing CodonU to run seamlessly on different operating systems.
This versatility is essential for ensuring broad accessibility and enabling researchers
to utilize CodonU on their preferred computing environment.

Additionally, Python’s popularity within the scientific community makes it a
preferred choice for collaborative research and future development. Its widespread
adoption means that other researchers and developers are more likely to be familiar
with Python, increasing the potential for collaboration, code contributions, and the
incorporation of new features into CodonU.

Overall, choosing Python as the programming language for CodonU combines its
simplicity, extensive library support, cross-platform compatibility, and strong com-
munity engagement. These factors collectively contribute to the usability, flexibility,
and future growth potential of CodonU as a valuable tool for codon usage analysis
in genomic research.

2.3 Objectives

The primary objective of developing CodonU was to address the challenges and
limitations faced by researchers in performing codon usage analysis. The following
objectives guided the development of CodonU:

1. Simplifying Workflow: CodonU aimed to simplify the complex and time-
consuming workflow involved in codon usage analysis. By integrating various
steps and functionalities into a single software package, CodonU streamlines
the analysis process, reducing the effort and expertise required from users.

2. Enhanced User-Friendliness: The objective was to create a user-friendly tool
that enables researchers, even those without extensive bioinformatics back-
ground, to perform codon usage analysis effectively. CodonU provides an
intuitive interface and clear documentation, making it accessible to a wide
range of users.

3. Interoperability and Compatibility: CodonU sought to ensure interoperability
and compatibility with existing file formats and software tools commonly used
in codon usage analysis. By supporting widely used formats and incorporat-
ing popular third-party software, CodonU facilitates seamless integration into
existing research pipelines.

4. Statistical Measures and Analysis: CodonU aimed to provide a comprehen-
sive set of statistical measures and analysis methods relevant to codon usage
analysis. These measures include CAI, CBI, COA, and more. By offering a
range of analytical capabilities, CodonU enables researchers to gain valuable
insights into codon usage patterns.

5. Visualization Capabilities: The objective was to empower users with visual-
ization tools for effective data exploration and presentation. CodonU enables

5

Chapter 2. Objective

the generation of high-resolution graphics, suitable for publication and shar-
ing, aiding in the interpretation and communication of codon usage analysis
results.

Overall, the objective of CodonU was to provide a comprehensive, user-friendly,
and flexible software tool that simplifies codon usage analysis, promotes interoper-
ability, and facilitates valuable insights into genomic research.

6

Chapter 3

Literature Survey

3.1 Tools for Correspondence Analysis

Codon Usage Analysis as previously said, has been a topic of discussion for many
decades now. There are various practical application for CUA. One of the most
earliest review works on practical usage of CUA was done by P. M. Sharp and Cowe
1991. The work by Nesti et al. 1995 also brought forward the usage of CUA for
studying the phylogenetic relation of 31 organisms. But these works were tedious
in nature because of lack of softwares. Most of the calculations had to be done by
hand and only the complex calculations are done by computer. This was partially
due to technological constrains of that time.

Correspondence Analysis is a part of principal component analysis. This in
term is part of Multi variate analysis. In early 80s or 90s, after the advancements
in computers, various computer programs were written by scholars for solving the
problems of mentioned field. But they were also complex and time taking. One
of the famous programs named DECORANA (DEtrended CORrespondence ANAlysis) for
correspondence analysis was written by Hill 1979. Later DECORANA was updated and
put forward by Hill and Gauch 1980. Now DECORANA is also available as R package
(Oksanen 2022). Another software named CORAN was also popular for COA. It
was developed and described by Lebart, Morineau, and Warwick 1984, and was
popularized by a review on it by Duncombe 1985. But no dedicated software for
using Correspondence Analysis in Codon Usage Analysis was developed at that time.

3.2 Tools for Visualizing COA

Researchers who were working on CUA needed the visualization of the COA data
rather than just the numerical values. The proposal for building softwares which
can help visualize the COA data was done by many but the proposal of Thioulouse
1989 was most popular. Within a year of the proposal, two softwares named MacMul

and GraphMu was announced by Thioulouse 1990. The former was a software for
Macintoshmachines, which can calculate the COA data. The latter, one of first of its
kind, was a software which can help visualize the data and produce graphics. With
the advancements of world wide web, the developers put their effort in developing

7

Chapter 3. Literature Survey

a variant of the program which can work online. As a result of their dedication and
effort, NetMul was finally developed by Thioulouse and Chevenet 1996.

3.3 Early Databases

Despite the upgradation in computational tools, the usage of such tools were scarcely
noticed for CUA. One of the problems was integrating two ends of the distant fields.
A common parser was needed for reading the sequence data and then manipulat-
ing it. Also the availability of genetic data had caused serious hindrance in such
analyses. This problem was later mitigated with the development of the database
GenBank by NCBI 1992. A more specific database for CUA was proposed when
genbank database was set up, and shortly it was initiated Wada et al. 1990. After
more than half a decade of its announcement, the database named CUTG (available
at http://www.kazusa.or.jp/codon/) for CUA was developed by Yasukazu Naka-
mura, Wada, et al. 1996, quite the same time when NetMul was developed. It
became popular among researchers and a detailed report including the vision and
future implementations was published in a series of works by Yusuke Nakamura,
Gojobori, and Ikemura 1997; Yusuke Nakamura, Gojobori, and Ikemura 1998; Ya-
sukazu Nakamura, Gojobori, and Ikemura 1999; Yasukazu Nakamura, Gojobori, and
Ikemura 2000.

3.4 Early Tools for CUA

Some programs were written to to calculate various statistical measures viz. CAI,
CBI etc. However, feeding data to these tools were complex. Most general programs
for this usage was done by CODONS by Lloyd and P. Sharp 1992 written in FORTRAN

(ANSI 1978). One of the most promising softwares for analysis of biological data and
make it publishable was GCG developed by university of Wisconsin in 1994 (Womble
1999).

First breakthrough for softwares in CUA was CodonW by Peden 1999. A soft-
ware named GCUA was developed a year earlier by McInerney 1998 but was not that
much popular as CodonW. In the 2000s, with growing popularity of web servers, SMS
(Sequence Manipulation Suite) was implemented by Stothard 2000. The suite is de-
veloped in JS, which was optimal for implementation. In this suite, Codon Usage

(available at https://www.bioinformatics.org/sms2/codon usage.html) was imple-
mented which can calculate the usage bias. During the same time, famous suite for
bioinformatics analysis named EMBOSS was developed by Rice, Longden, and A. J.
Bleasby 2000. Coderet mentioned earlier is a part of this suite.

One problem with softwares and web servers at this point was the absence of
GUI. For mitigating this problem, Jemboss was developed by Carver and A. J.
Bleasby 2003. This was the GUI based EMBOSS. Another GUI based tool named
ACUA (Automated Codon Usage Analysis) was implemented by Vetrivel, Arunkumar,
and Dorairaj 2007.

8

http://www.kazusa.or.jp/codon/
https://www.bioinformatics.org/sms2/codon_usage.html

Chapter 3. Literature Survey

3.5 New Tools for CUA

With advancements in computational power and popularity of modern program-
ming languages, various researchers tried to implement softwares for CUA with new
philosophies. There were various problems with previously used tools. Most of them
were written in FORTRAN or C. They work fine but is not efficient if seen from the
perspective of time consumption. Also, with advancements in hardware, old tools
became hard to use. The popular CodonW was developed for the 32 bit machines.
Also new generation of researchers are habituated with modern programming lan-
guages. Hence it is hard for them to upgrade the old tools. Rather, development
of new tools are easy for them. Some of recent advancements in the field are the
proposal and implementation of CUBAP (Codon Usage Biases Across Populations) web
tool developed by Hodgman et al. 2020. It is an interactive web portal for analyzing
codon usage bias. Various programs like codon-usage (Diament 2023) now exist for
CUA but most of them are difficult to work with and written in languages that are
not very common to the researchers of CUA.

9

Part II

Theoretical Analysis

10

Chapter 4

Statistical Measures

4.1 Biological Viewpoint

The genetic code consists of 64 codons including 3 stop codons (viz. UAA, UAG,
UGA). Out of 61 codon, Met and Trp, are encoded by a single codon (AUG and
UGG, respectively). The remaining 59 codons encode 18 amino acids. This subset
of codons that encode for the same amino acid is known as synonymous codons.
Within the subset of synonymous codons, a bias may be observed for the preference
of a single codon, which can be species-specific and is referred to as the preferred
codon. When analyzing codon bias, two hypothetical events are often considered.
These are:

• No Bias (H0): The first hypothetical event assumes that all 20 amino acids
are encoded equally by the 61 codons. In this scenario, there is no observed
bias in the codon usage for encoding amino acids, hence the term “no bias”
event.

• Extreme Bias (H∗): The second hypothetical event assumes that all 20 amino
acids are encoded by only 20 codons, with extreme bias in the codon usage
for encoding amino acids. This scenario is referred to as the “extreme bias”
event.

4.2 Statistical Measures for Nuc Sequence

For Nuc sequence, the measures which are taken account of are RSCU, CAI, CBI
and ENc. Details about these measures are discussed in section.

4.2.1 Relative Synonymous Codon Usage

Theoretical Aspect

The concept of RSCU was introduced by P. M. Sharp and Li 1987. RSCU is cal-
culated as the ratio of the observed frequency of a codon to the expected frequency
of the codon, assuming no bias in the codon usage. This metric is widely used to

11

Chapter 4. Statistical Measures

evaluate codon bias and is often used as a starting point for further analyses. Hence,

RSCUij =
xij

1
ni

∑ni

j=1 xij

(4.1)

where xij is the observed frequency of jth codon for ith amino acid. ni is the number
of other codons present in the subset of synonymous codons for ith amino acid. The
minimum value of RSCU is 0. If RSCU > 1, it indicates a positive bias for that
particular codon, while RSCU < 1 indicates a negative bias. If RSCU = 1, it
indicates that the codon is used as expected under the assumption of no bias.

Values of RSCU

Proof. Let’s consider a H0 situation. Hence in complete random state all codons
for a SF group will be used equally. So for ith amino acid, if there exists n codon
(SFn), then

1

n

n∑
j=1

xij =
n× xij

n
= x̄ = xij

Hence from Equation 4.1 and the above mentioned result,

RSCUH0 =
xij

1
n

∑n
j=1 xij

=
xij

x̄

=
xij

xij

= 1

If RSCU > 1, then xij > x̄ and there exists a positive correlation and vice-versa.
Hence,

RSCU =

{
> 1, +ve correlation

< 1, −ve correlation

4.2.2 Codon Adaptation Index

Theoretical Aspect

CAI is a quantitative measure that provides a more precise assessment of codon
usage bias in comparison to RSCU. It is computed as the ratio of the geometric
mean of the observed RSCU values to the maximum possible geometric mean of
RSCU. This measure of bias was first proposed by P. M. Sharp and Li 1987. Hence,

CAI =
CAIobs
CAImax

(4.2)

where

CAIobs =

(
L∏

k=1

RSCUk

) 1

L
(4.3)

12

Chapter 4. Statistical Measures

and

CAImax =

(
L∏

k=1

RSCUkmax

) 1

L
(4.4)

where RSCUk is the RSCU value for kth codon, RSCUkmax is the maximum RSCU
value for the amino acid encoded by kth codon. L is the number of codons present
in the gene. The value of CAI lies between 0 (extreme bias) to 1 (no bias).

Values of CAI

Proof. Let’s consider aH0 situation. Then as discussed in previous section, RSCUH0 =
1. Hence from Equation 4.3 and Equation 4.4,

CAIobsH0 = CAImaxH0 = 1

Hence form Equation 4.2 and previously discussed results,

CAIH0 =
CAIobsH0

CAImaxH0

=
1

1
= 1

Again let’s consider a H∗ situation. Then, for a subset of synonymous codons, only
the preferred codon will be present and rest of elements will have a frequency of 0.
Hence, if k is a synonymous but not preferred codon,

RSCUH∗ = 0
1
n

∑ni
j=1 xij

= 0

=⇒ CAIobsH∗ = 0

=⇒ CAIH∗ = 0
CAImaxH∗

= 0

Hence,

CAI =

{
0, if H∗

1, if H0

4.2.3 Codon Bias Index

Theoretical Aspect

The CBI is a measure of codon bias from the perspective of a specific AA. It was
initially proposed by Bennetzen and Hall 1982. Due to its quantitative nature and
ease of interpretation, it gained popularity quickly. CBI is calculated as the ratio of
the occurrence of the preferred codon minus the occurrence of the preferred codon
in a non-biased situation to the occurrence of synonymous codons minus the latter
part of the numerator. Hence,

CBI =
nopt − n0

nsyn − n0

(4.5)

where nopt is the occurrence of preferred codon, nsyn is the total occurrence of other
codons in the synonymous subset, and n0 is expected occurrence in no bias situation.
The value of CBI lies between 0 (extreme bias) to 1 (no bias).

13

Chapter 4. Statistical Measures

Values of CBI

Proof. Let’s consider a H0 situation. Then by the consideration we assume that
every codon can be considered as the preferred codon. Hence, if there are n codons
present, then

nopt = nsyn = n0 = n and lim
n→0

n

n
= 1

Hence from Equation 4.5 and the above stated fact,

CBIH0 =
n0 − n0

n0 − n0

= 1

Again let’s consider a H∗ situation, and our codon of interest is not the preferred
codon. Then nopt = 0 and nsyn >> n0 considering nsyn >> 1 . Hence from
Equation 4.5,

CBIH∗ =
0− n0

nsyn − n0

= − n0

nsyn − n0

< 0

≈ 0

Hence

CBI =

{
0, if H∗

1, if H0

4.2.4 Effective Number of Codon

ENc is a measure of codon usage bias that takes into account both the number of
synonymous codons for each AA and their relative frequencies. It was first intro-
duced by Wright 1990 and has since been widely used in bioinformatics research.
Codons can be classified into different groups based on the number of synonymous
codons that encode a particular AA. This grouping is known as the synonymous
family or SF categorization. For example, AAs encoded by only one synonymous
codon belong to SF1, while those encoded by two synonymous codons belong to SF2,
and so on. The number of elements in each SF category is denoted by F1, F2, F3,
etc.

ENc is defined as the effective number of codons used by a gene, taking into
account the different frequencies of codons in each SF category. Mathematically, it
is calculated as:

ENc =
2

F1

+
9

F2

+
1

F3

+
5

F4

+
3

F6

(4.6)

where Fi is the arithmetic mean of homozygosity for SF type i, and is defined as:

Fi =
n
∑k

i=1 p
2
i − 1

n− 1
where pi =

ni

n
(4.7)

14

Chapter 4. Statistical Measures

where k is the number of codons present in the subset and n is total number of
codons present. If there are total 4 synonymous codons present in the subset (SF4)
then, k = 4 n1 + n2 + n3 + n4 = n, k = 4, p1 =

n1

n
and so forth.

It is worth noting at this point that SF3 contains only Ile which is encoded from
AUU, AUC and AUA. It is not highly unlikely that any of the mentioned codons
may be absent in a gene. This is known as missing codon problem. Wright proposed
to compute F3 by calculating the average of F2 and F4. But no proof was provided
by him, and it was based on intuition. Later it was pointed out that though it looks
correct at first glance, but is wrong by Fuglsang 2004. He proposed that, in case of
missing codon,

F3 = (2
F2

− 1)−1 if F2 ̸= 0

F3 =
(2
F2

−1)−1+(2
3F4

+ 1
3
)−1

2
if [F2, F4] ̸= 0

F3 =
(2
F2

−1)−1+(2
3F4

+ 1
3
)−1+(2

5F6
+ 3

5
)−1

3
if [F2, F4, F6] ̸= 0

CodonU implements this function. The value of ENc lies between 20 (extreme bias)
to 61 (no bias).

Values of ENc

Proof. Let’s consider a H0 situation. If there exists k (SFk) codons in the subset
and total number of codons is n, then

k∑
i=1

ni = n and pi =
ni

n
=

ni

k × ni

=
1

k

Hence for that subset according to Equation 4.7,

F =
n
∑k

i=1 p
2
i − 1

n− 1

=
k∑

i=1

p2i as n >> 1

= k × p2i

= k ×
(
1

k

)2

=
1

k

Hence F1 = 1, F2 =
1
2
, F3 =

1
3
, F4 =

1
4
, F6 =

1
6
. Then by Equation 4.6,

ENcH0 =
2

F1

+
9

F2

+
1

F3

+
5

F4

+
3

F6

= 2 + 18 + 3 + 20 + 18

= 61

15

Chapter 4. Statistical Measures

Again let’s consider a H∗ situation. For SFk, in this case,

pi =

{
0, if codon is not preferred

1, if codon is preferred

Hence for the subset according to Equation 4.7,

F =
n
∑k

i=1 p
2
i − 1

n− 1

=
k∑

i=1

p2i as n >> 1

= 1

Then by Equation 4.6,

ENcH∗ =
2

F1

+
9

F2

+
1

F3

+
5

F4

+
3

F6

= 2 + 9 + 1 + 5 + 3

= 20

Hence

ENc =

{
20, if H∗

61, if H0

4.3 Statistical Measures for AA Sequence

4.3.1 Overall hydrophobicity of protein Score

Gravy score is a measure of the hydrophobicity of a protein sequence. While the
measures mentioned previously apply to nucleotide sequences, the gravy score is
specifically for protein sequences. There are various scales available to compute this
score, but the most widely used scale was proposed by Kyte and Doolittle 1982.
CodonU implements this scale to calculate the gravy score.

4.3.2 Over all aromaticity of the protein Score

Aromaticity score is a metric used to assess the abundance of aromatic amino acids,
such as Phe, Tyr, and Trp, in a protein sequence. This score provides insight into
the aromatic nature of the protein. Various scales have been proposed to calculate
this score, and CodonU employs the scale developed by Lobry and Gautier 1994.

16

Chapter 5

Correspondence Analysis

5.1 Introduction

Correspondence Analysis (COA) and Principal Component Analysis (PCA) are part
of multivariate calculus. These techniques are widely used in various fields, including
statistics, data science, social sciences, and marketing research. Below is an overview
of COA and PCA, followed by a step-by-step explanation of their methodologies.
The discussion on interpretation of results, applications, and practical considerations
are after that. Later we will discuss its application in the field of CUA.

5.2 Correspondence Analysis

COA is a technique used to analyze categorical data and explore the relationships
between different categories. It is particularly useful when dealing with large con-
tingency tables, where rows and columns represent categories and cells contain fre-
quency counts or proportions. COA aims to summarize and visualize the association
patterns within the data (Greenacre 2017; Husson and Josse 2010).

5.2.1 Methodology

COA involves the following steps:

• Preprocessing: Transforming the original contingency table into an appropri-
ate format (e.g., frequency counts or proportions).

• Computing row and column profiles: Calculating the marginal frequencies or
proportions for rows and columns.

• Calculating standardized residuals: Assessing the deviations between observed
and expected cell frequencies.

• Dimensionality reduction: Constructing a low-dimensional space using singu-
lar value decomposition (SVD) or other matrix factorization techniques.

• Visualizing results: Plotting the row and column points in the reduced space
using scatter plots or biplots.

17

Chapter 5. Correspondence Analysis

5.2.2 Interpretation

The interpretation of COA results involves analyzing the proximity of categories in
the plot, the relative positions of points, and the contribution of variables to the
dimensions. CA is commonly applied in market research, linguistics, social sciences,
and ecology. It helps identify underlying patterns, relationships, and associations in
categorical data.

5.2.3 One Example

Figure 5.1: Example of COA

The picture shows the results of a correspondence analysis on a contingency
table that shows the frequency of occurrence of two categorical variables, gender
and political party affiliation. The rows of the contingency table are represented by
the blue points in the biplot, and the columns are represented by the red points.
The distances between the points are proportional to the association between the
variables.

5.3 Principal Component Analysis

PCA is a dimensionality reduction technique used to transform high-dimensional
data into a lower-dimensional space while preserving the most important informa-
tion. PCA aims to identify the principal components that capture the maximum
variability in the data (Jolliffe 2002; Abdi and Williams 2010).

18

Chapter 5. Correspondence Analysis

5.3.1 Methodology

PCA involves the following steps:

• Data standardization: Scaling variables to have zero means and unit variances.

• Computing the covariance matrix: Calculating the covariance or correlation
matrix of the standardized data.

• Eigenvalue decomposition: Obtaining eigenvalues and eigenvectors of the co-
variance matrix.

• Selection of principal components: Sorting eigenvectors based on eigenvalues
and selecting the top components.

• Dimensionality reduction: Constructing the reduced-dimensional space by pro-
jecting the data onto the selected components.

5.3.2 Interpretation

Interpreting PCA results involves understanding the contribution of variables to
each principal component, analyzing loadings, and examining the variance explained
by each component. PCA is widely used in fields such as finance, genetics, image
processing, and pattern recognition. It aids in data visualization, data compression,
and feature extraction.

5.4 COA in CUA

Codon usage refers to the frequency of occurrence of different codons in the cod-
ing sequences of genes. Understanding codon usage patterns provides insights into
various biological processes such as gene expression, translation efficiency, and evo-
lutionary dynamics. COA offers a powerful statistical approach to analyze and
visualize codon usage data, aiding in the identification of underlying patterns and
factors influencing codon preferences (P. M. Sharp and Li 1987; Angov 2011).

5.4.1 Methodology

The steps involved in performing COA for CUA are as follows:

• Data preparation: Create a codon usage table where rows represent genes and
columns represent codons. The table entries can be counts, relative frequen-
cies, or other appropriate measures.

• Preprocessing: Normalize the data to remove biases arising from gene lengths
or other factors. Common normalization methods include RSCU and CAI.

• Dimensionality reduction: Apply COA to the codon usage table, typically
using singular value decomposition or other matrix factorization techniques.

• Visualization: Plot the genes and codons in a low-dimensional space, such as a
scatter plot or biplot, to explore the relationships between codons and genes.

19

Chapter 5. Correspondence Analysis

5.4.2 Interpretation

The interpretation of COA results in codon usage analysis involves analyzing the
proximity of codons and genes in the plot, identifying clusters or groups of genes
with similar codon usage patterns, and exploring the contributions of codons to the
dimensions. COA helps in understanding the factors shaping codon usage prefer-
ences, such as mutational biases, selection pressures, or gene expression levels.

5.5 Categorization of COA Based on Sequence

The application of COA differs for Nuc and AA sequences (Lobry 2018).

• In the case of DNA or RNA, COA works by calculating the relative frequencies
of the nucleotides or codons and plotting them in a multidimensional space.
The distances between the points in the space represent the degree of similarity
between the sequences. Mathematically, this works as a R59 → R2 projection.
CodonU implements this projection in terms of codon frequency and codon
RSCU value.

• In the case of AA sequences, COA works by calculating the frequency of occur-
rence of each AA and plotting them in a multidimensional space. The distances
between the points in the space represent the degree of similarity between the
sequences based on their AA composition. Mathematically, this works as a
R20 → R2 projection. CodonU implements this projection in terms of AA
frequency.

5.6 Application of COA in CUA

The application COA in specific contexts of codon usage analysis, such as:

• Comparative Genomics: Exploring codon usage variations across different
species or genomes, identifying evolutionary trends, and understanding the
impact of selective pressures.

• Gene Expression Analysis: Investigating codon usage patterns in relation to
gene expression levels, translational efficiency, or regulatory mechanisms.

• Viral Evolution and Vaccine Development: Analyzing codon usage biases in
viral genomes, identifying codon preferences for efficient protein expression,
and designing synthetic genes for vaccine development.

• Phylogeny Analysis: With the help of D2 statistics, phylogeny analysis can be
done.

20

Part III

Implementation

21

Chapter 6

Implementation

6.1 Introduction

CodonU is implemented in Python. The package is further divided in 6 parts or
subpackages for easy usage and maintenance. The role of each subpackage is to
perform a special type work which can be reflected in their names. The sub-
packages are: extractor, file handler, analyzer, correspondence analysis,
phylogenetic analysis, vizualizer.

6.2 Required Packages

Preference for using Python has already been discussed and most of used packages
have also been discussed. Apart from them, Bio.Phylo (Talevich et al. 2012) is used
for displaying and constructing phylogenetic trees. CAI (Lee 2018b; Lee 2018a) is
used for calculating CAI and RSCU. SciPy (Virtanen et al. 2019; Scipy Dev Team
2023) is used for calculating the trends. Prince (Halford 2020) is used for PCA.

6.3 Third Party Softwares

CodonU does not implement phylogenetic analysis directly. Instead, it utilizes popu-
lar and readily available software, namely Clustal by Larkin et al. 2007; Sievers and
Higgins 2018. CodonU supports two variants of Clustal, namely, ClustalW (also
known as ClustalX) and ClustalΩ. Users can perform phylogenetic analysis us-
ing these software variants, by having the corresponding binary files in their system,
which can be obtained from the official website of Clustal at http://www.clustal.org.
The choice of not implementing phylogenetic analysis from scratch and using popu-
lar software ensures the reliability and accuracy of the analysis, while also reducing
the burden of implementation and maintenance on the developers.

22

http://www.clustal.org

Chapter 7

Extractor

7.1 Introduction

The objective of this package is to extract CDS and AA information. The details
are discussed below. Basic function names and some code snippets are provided for
ease of readers.

7.2 Functions

extract cds: This is used to extract the CDS from a given sequence.

1 def extract_cds(record: SeqRecord , feature_location: FeatureLocation , cds_no: int =

0) -> SeqRecord:

2 """

3 Returns the CDS as a Sequence Record object

4 """

5 cds = SeqRecord(

6 seq=extract_cds_seq(record.seq , feature_location),

7 id=f"{record.id} {record.annotations[’organism ’]}",

8 name=f"{record.annotations[’organism ’]}",

9 description=f"CDS_{cds_no}"

10)

11 return cds

Code Snippet 7.1: extract cds

extract cds lst: This is used to extract the CDS location list from a given se-
quence.

1 def extract_cds_lst(record: SeqRecord) -> tuple[Any , ...]:

2 """

3 Extracts the list of features if their type is CDS

4 """

5 cds_lst = [cds for cds in record.features if cds.type == ’CDS’ and ’pseudo ’ not

in cds.qualifiers.keys()]

6 return tuple(cds_lst)

Code Snippet 7.2: extract cds lst

extract exome: This is used to extract the exome.

1 def extract_exome(nuc_file_path: str , organism_name: str) -> SeqRecord:

2 """

3 Extracts the exome from given nucleotides

4 """

5 records = parse(nuc_file_path , ’fasta ’)

6 m_seq = MutableSeq(’’)

23

Chapter 7. Extractor

7 for record in records:

8 m_seq += record.seq[:-3]

9 records = parse(nuc_file_path , ’fasta ’)

10 *_, lst_record = records

11 m_seq += lst_record.seq[-3:]

12 exome = SeqRecord(

13 seq=m_seq ,

14 id=lst_record.id ,

15 name=organism_name ,

16 description=f’whole exome of {organism_name}’

17)

18 return exome

Code Snippet 7.3: extract exome

extract prot: This is used to extract the protein sequence.

1 def extract_prot(feature: SeqFeature , organism_name: str , cds_no: int = 0) ->

SeqRecord:

2 """

3 Extracts protein sequences and return them for writing

4 """

5 if ’product ’ in feature.qualifiers.keys():

6 description = f"{feature.qualifiers[’product ’][0]} CDS_{cds_no}"

7 else:

8 description = f"{feature.qualifiers[’note ’][0]} CDS_{cds_no}"

9 prot = SeqRecord(

10 seq=extract_prot_seq(feature),

11 id=f"{feature.qualifiers[’protein_id ’][0]}",

12 name=f"{organism_name}",

13 description=description

14)

15 return prot

Code Snippet 7.4: extract exome

24

Chapter 8

File Handler

8.1 Introduction

The objective of this package is to handle files. The details are discussed below.
Basic function names and some code snippets are provided for ease of readers.

8.2 Functions

get gb: This is used to retrieve gbk file.

1 def get_gb(accession_id: str) -> SeqRecord:

2 """

3 Gets the Sequence Record object from a given accession number

4 """

5 handle = Entrez.efetch(db=’nucleotide ’, id=accession_id , rettype=’gb’, retmode=

’text’)

6 record = read(handle , ’gb’)

7 return record

Code Snippet 8.1: get gb

write exome fasta: Creates fasta file of exome.

1 def write_exome_fasta(file_name: str , nuc_file_path: str , organism_name: str) ->

None:

2 """

3 Creates a fasta file of exome if not exists previously or is empty

4 """

5 if not is_file(file_name) or is_file_empty(file_name):

6 with open(file_name , ’w’) as out_file:

7 exome = extract_exome(nuc_file_path , organism_name)

8 write(exome , out_file , ’fasta’)

9 print(f"Exome file for {organism_name} created successfully")

Code Snippet 8.2: write exome fasta

write nucleotide fasta: Creates fasta file of nucleotide.

1 def write_nucleotide_fasta(file_name: str , cds_lst: tuple , record: SeqRecord ,

organism_name: str) -> None:

2 """

3 Creates a fasta file of nucleotides if not exists previously or is empty

4 """

5 if not is_file(file_name) or is_file_empty(file_name):

6 with open(file_name , ’w’) as out_file:

7 for i in range(len(cds_lst)):

8 cds = extract_cds(record , cds_lst[i], i + 1)

9 write(cds , out_file , ’fasta ’)

25

Chapter 8. File Handler

10 print(f"Nucleotide file for {organism_name} created successfully")

Code Snippet 8.3: write nucleotide fasta

write protein fasta: Creates fasta file of protein.

1 def write_protein_fasta(file_name: str , cds_lst: tuple , organism_name: str) -> None

:

2 """

3 Creates a fasta file of proteins if not exists previously or is empty

4 """

5 if not is_file(file_name) or is_file_empty(file_name):

6 with open(file_name , ’w’) as out_file:

7 for i in range(len(cds_lst)):

8 cds = extract_prot(cds_lst[i], organism_name , i + 1)

9 write(cds , out_file , ’fasta ’)

10 print(f"Protein file for {organism_name} created successfully")

Code Snippet 8.4: write protein fasta

set entrez param: Set entrez parameter.

1 def set_entrez_param(email: str | None = None , api_key: str | None = None) -> None:

2 """

3 Sets entrez parameters

4 """

5 set_entrez_email(email)

6 set_entrez_api_key(api_key)

Code Snippet 8.5: set entrez param

26

Chapter 9

Analyzer

9.1 Introduction

The objective of this package is to analyze sequence data and calculate various
statistical measures. The details are discussed below. Basic function names and
some code snippets are provided for ease of readers.

9.2 Functions

calculate cai: This is used to calculate CAI.

1 def calculate_cai(handle: str , genetic_code_num: int , min_len_threshold: int = 200,

gene_analysis: bool = False ,

2 save_file: bool = False , file_name: str = ’CAI_report ’,

folder_path: str = ’Report ’) -> \

3 dict[str , float | dict[str , float]]:

4 """

5 Calculates cai values for each codon

6 """

7 filterwarnings(’ignore ’)

8 cai_dict = dict()

9 records = parse(handle , ’fasta’)

10 reference = filter_reference(records , min_len_threshold)

11 if gene_analysis:

12 for i, seq in enumerate(reference):

13 cai_val_dict = dict()

14 for codon in unambiguous_dna_by_id[genetic_code_num]. forward_table:

15 cai_val = CAI(codon , reference =[seq], genetic_code=genetic_code_num

)

16 cai_val_dict.update ({codon: cai_val })

17 cai_dict.update ({f’gene_{i + 1}’: cai_val_dict })

18 if save_file:

19 name = file_name + ’.xlsx’

20 make_dir(folder_path)

21 file_path = join(folder_path , name)

22 if is_file_writeable(file_path):

23 df = pd.DataFrame.from_records(

24 [

25 (gene , codon , cai_val)

26 for gene , cai_vals in cai_dict.items()

27 for codon , cai_val in cai_vals.items()

28],

29 columns =[’Gene’, ’Codon’, ’CAI_vals ’]

30)

31 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

32 print(f’The CAI score file can be found at: {abspath(file_path)}’)

33 else:

27

Chapter 9. Analyzer

34 for codon in unambiguous_dna_by_id[genetic_code_num]. forward_table:

35 cai_val = CAI(codon , reference=reference , genetic_code=genetic_code_num

)

36 cai_dict.update ({ codon: cai_val })

37 if save_file:

38 name = file_name + ’.xlsx’

39 make_dir(folder_path)

40 file_path = join(folder_path , name)

41 if is_file_writeable(file_path):

42 df = pd.DataFrame(cai_dict.items(), columns =[’Codon ’, ’CAI_vals ’])

43 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

44 print(f’The CAI score file can be found at: {abspath(file_path)}’)

45 return cai_dict

Code Snippet 9.1: calculate cai

calculate cbi: This is used to calculate CBI.

1 def calculate_cbi(handle: str , genetic_code_num: int , min_len_threshold: int = 66,

gene_analysis: bool = False ,

2 save_file: bool = False , file_name: str = ’CBI_report ’,

folder_path: str = ’Report ’) -> \

3 dict[str , tuple[float , str] | dict[str , tuple[float , str]]]:

4 """

5 Calculates cbi values for each amino acid

6 """

7 records = parse(handle , ’fasta’)

8 reference = filter_reference(records , min_len_threshold)

9 filterwarnings(’ignore ’)

10 cbi_dict = dict()

11 if gene_analysis:

12 for i, seq in enumerate(reference):

13 cbi_val_dict = dict()

14 for aa in unambiguous_dna_by_id[genetic_code_num]. protein_alphabet:

15 cbi_val = cbi(aa, reference =[seq], genetic_code=genetic_code_num)

16 cbi_val_dict.update ({aa: cbi_val })

17 cbi_dict.update ({f’gene_{i + 1}’: cbi_val_dict })

18 if save_file:

19 name = file_name + ’.xlsx’

20 make_dir(folder_path)

21 file_path = join(folder_path , name)

22 if is_file_writeable(file_path):

23 df = pd.DataFrame.from_records(

24 [

25 (gene , aa, cbi_val [0], cbi_val [1])

26 for gene , cbi_vals in cbi_dict.items()

27 for aa, cbi_val in cbi_vals.items()

28],

29 columns =[’Gene’, ’AA’, ’CBI_vals ’, ’Preferred_Codon ’]

30)

31 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

32 print(f’The CBI score file can be found at: {abspath(file_path)}’)

33 else:

34 for aa in unambiguous_dna_by_id[genetic_code_num]. protein_alphabet:

35 cbi_val = cbi(aa, reference , genetic_code_num)

36 cbi_dict.update ({aa: cbi_val })

37 if save_file:

38 name = file_name + ’.xlsx’

39 make_dir(folder_path)

40 file_path = join(folder_path , name)

41 if is_file_writeable(file_path):

42 df = pd.DataFrame.from_records(

43 [

44 (aa , cbi_vals [0], cbi_vals [1])

45 for aa, cbi_vals in cbi_dict.items ()

46],

47 columns =[’AA’, ’CBI_vals ’, ’Preferred_Codon ’]

48)

49 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

50 print(f’The CBI score file can be found at: {abspath(file_path)}’)

28

Chapter 9. Analyzer

51 return cbi_dict

Code Snippet 9.2: caululate cbi

calculate enc: This is used to calculate ENc.

1 def calculate_enc(handle: str , genetic_code_num: int , min_len_threshold =200,

gene_analysis: bool = False ,

2 save_file: bool = False , file_name: str = ’ENc_report ’,

folder_path: str = ’Report ’) -> \

3 float or dict[str , float]:

4 """

5 Calculates ENc value for a given sequences

6 """

7 records = parse(handle , ’fasta’)

8 references = filter_reference(records , min_len_threshold)

9 filterwarnings(’ignore ’)

10 if gene_analysis:

11 enc_dict = dict()

12 for i, seq in enumerate(references):

13 enc_dict.update ({f’gene_{i + 1}’: enc([seq], genetic_code_num)})

14 if save_file:

15 name = file_name + ’.xlsx’

16 make_dir(folder_path)

17 file_path = join(folder_path , name)

18 if is_file_writeable(file_path):

19 df = pd.DataFrame(enc_dict.items(), columns =[’Gene’, ’ENc_val ’])

20 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

21 print(f’The ENc score file can be found at: {abspath(file_path)}’)

22 return enc_dict

23 else:

24 if save_file:

25 name = file_name + ’.xlsx’

26 make_dir(folder_path)

27 file_path = join(folder_path , name)

28 if is_file_writeable(file_path):

29 df = pd.DataFrame ({’Genome ’: enc(references , genetic_code_num)}.

items(), columns =[’Genome ’, ’ENc_vals ’])

30 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

31 print(f’The ENc score file can be found at: {abspath(file_path)}’)

32 return enc(references , genetic_code_num)

Code Snippet 9.3: calculate enc

calculate rscu: This is used to calculate RSCU.

1 def calculate_rscu(handle: str , genetic_code_num: int , min_len_threshold: int =

200, gene_analysis: bool = False ,

2 save_file: bool = False , file_name: str = ’RSCU_report ’,

folder_path: str = ’Report ’) -> \

3 dict[str , float | dict[str , float]]:

4 """

5 Calculates rscu values for each codon

6 """

7 records = parse(handle , ’fasta’)

8 references = filter_reference(records , min_len_threshold)

9 if gene_analysis:

10 rscu_dict = dict()

11 for i, seq in enumerate(references):

12 rscu_dict.update ({f’gene_{i + 1}’: RSCU([seq], genetic_code_num)})

13 if save_file:

14 name = file_name + ’.xlsx’

15 make_dir(folder_path)

16 file_path = join(folder_path , name)

17 if is_file_writeable(file_path):

18 df = pd.DataFrame.from_records(

19 [

20 (gene , codon , rscu_val)

21 for gene , rscu_vals in rscu_dict.items()

22 for codon , rscu_val in rscu_vals.items()

23],

29

Chapter 9. Analyzer

24 columns =[’Gene’, ’Codon’, ’RSCU_vals ’]

25)

26 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

27 print(f’The RSCU score file can be found at: {abspath(file_path)}’)

28 else:

29 reference = filter_reference(records , min_len_threshold)

30 rscu_dict = RSCU(reference , genetic_code_num)

31 if save_file:

32 name = file_name + ’.xlsx’

33 make_dir(folder_path)

34 file_path = join(folder_path , name)

35 if is_file_writeable(file_path):

36 df = pd.DataFrame.from_records(

37 [

38 (codon , rscu_val)

39 for codon , rscu_val in rscu_dict.items()

40],

41 columns =[’Codon’, ’RSCU_vals ’]

42)

43 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

44 print(f’The RSCU score file can be found at: {abspath(file_path)}’)

45 return rscu_dict

Code Snippet 9.4: calculate rscu

calculate aromaticity: This is used to calculate Aromaticity.

1 def calculate_aromaticity(handle: str , min_len_threshold: int = 66, gene_analysis:

bool = False ,

2 save_file: bool = False , file_name: str = ’Aroma_report

’, folder_path: str = ’Report ’) -> \

3 dict[str , float] | float:

4 """

5 Calculates the aromaticity score for a given protein sequence

6 """

7 records = parse(handle , ’fasta’)

8 references = filter_reference(records , min_len_threshold)

9 if gene_analysis:

10 aroma_dict = dict()

11 for i, seq in enumerate(references):

12 aroma_dict.update ({f’prot_seq{i + 1}’: aromaticity(seq)})

13 if save_file:

14 name = file_name + ’.xlsx’

15 make_dir(folder_path)

16 file_path = join(folder_path , name)

17 if is_file_writeable(file_path):

18 df = pd.DataFrame(aroma_dict.items(), columns =[’Protein_name ’, ’

Aroma_score ’])

19 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

20 print(f’The Aromaticity score file can be found at: {abspath(file_path)

}’)

21 return aroma_dict

22 else:

23 seq = ’’.join([str(_seq) for _seq in references])

24 if save_file:

25 name = file_name + ’.xlsx’

26 make_dir(folder_path)

27 file_path = join(folder_path , name)

28 if is_file_writeable(file_path):

29 df = pd.DataFrame ({’Prot_seq ’: aromaticity(seq)}.items(), columns =[

’Protein_name ’, ’Aroma_score ’])

30 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

31 print(f’The Aromaticity score file can be found at: {abspath(file_path)

}’)

32 return aromaticity(seq)

Code Snippet 9.5: calculate aromaticity

calculate gravy: This is used to calculate GRAVY.

30

Chapter 9. Analyzer

1 def calculate_gravy(handle: str , min_len_threshold: int = 66, gene_analysis: bool =

False , save_file: bool = False ,

2 file_name: str = ’GRAVY_report ’, folder_path: str = ’Report ’)

-> dict[str , float] | float:

3 """

4 Calculates the gravy score for a given protein sequence

5 """

6 records = parse(handle , ’fasta’)

7 references = filter_reference(records , min_len_threshold)

8 filterwarnings(’ignore ’)

9 if gene_analysis:

10 gravy_dict = dict()

11 for i, seq in enumerate(references):

12 gravy_dict.update ({f’prot_seq{i + 1}’: gravy(seq)})

13 if save_file:

14 name = file_name + ’.xlsx’

15 make_dir(folder_path)

16 file_path = join(folder_path , name)

17 if is_file_writeable(file_path):

18 df = pd.DataFrame(gravy_dict.items(), columns =[’Protein_name ’, ’

Gravy_score ’])

19 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

20 print(f’The GRAVY score file can be found at: {abspath(file_path)}’)

21 return gravy_dict

22 else:

23 seq = ’’.join([str(_seq) for _seq in references])

24 if save_file:

25 name = file_name + ’.xlsx’

26 make_dir(folder_path)

27 file_path = join(folder_path , name)

28 if is_file_writeable(file_path):

29 df = pd.DataFrame ({’Prot_seq ’: gravy(seq)}. items(), columns =[’

Protein_name ’, ’Gravy_score ’])

30 df.to_excel(file_path , float_format=’%.4f’, columns=df.columns)

31 print(f’The GRAVY score file can be found at: {abspath(file_path)}’)

32 return gravy(seq)

Code Snippet 9.6: calculate gravy

31

Chapter 10

Correspondence Analysis

10.1 Introduction

The objective of this package is to help in correspondence analysis. The details are
discussed below. Basic function names and some code snippets are provided for ease
of readers.

10.2 Functions

mca codon freq: This is used to perform COA with codon frequency data.

1 def mca_codon_freq(handle: str , genetic_table_num: int , min_len_threshold: int =

200, n_components: int = 59) -> \

2 tuple[pd.DataFrame , np.ndarray]:

3 """

4 Calculates the contingency table and the inertia from codon frequency of gene

5 """

6 records = parse(handle , ’fasta’)

7 references = filter_reference(records , min_len_threshold)

8 codons = [codon for codon , _ in unambiguous_dna_by_id[genetic_table_num].

forward_table.items()]

9 gene_names = [f’gene_{i}’ for i in range(len(references))]

10 contingency_table = pd.DataFrame(index=gene_names , columns=codons)

11 for idx , gene in enumerate(references):

12 sequences = ((sequence[i:i + 3]. upper() for i in range(0, len(sequence), 3)

) for sequence in [gene])

13 _codons = chain.from_iterable(sequences)

14 counts = Counter(_codons)

15 for codon in codons:

16 try:

17 contingency_table[codon][gene_names[idx]] = counts[codon]

18 except KeyError:

19 warn = NoCodonWarning(codon)

20 warn.warn()

21 contingency_table[codon][gene_names[idx]] = 0

22 pca = PCA(random_state =42, n_components=n_components)

23 pca.fit(contingency_table)

24 print(’The inertia for respective components are:’)

25 for idx , inertia in enumerate(pca.explained_inertia_):

26 print(f’Axis {idx + 1}: {inertia}’)

27 return contingency_table , pca.explained_inertia_

Code Snippet 10.1: mca codon freq

mca codon rscu: This is used to perform COA with codon RSCU data.

32

Chapter 10. Correspondence Analysis

1 def mca_codon_rscu(handle: str , genetic_table_num: int , min_len_threshold: int =

200, n_components: int = 59) -> \

2 tuple[pd.DataFrame , np.ndarray]:

3 """

4 Calculates the contingency table and the inertia from RSCU of every codon of

every genes

5 """

6 codons = [codon for codon , _ in unambiguous_dna_by_id[genetic_table_num].

forward_table.items()]

7 rscu_dict = calculate_rscu(handle , genetic_table_num , min_len_threshold ,

gene_analysis=True)

8 gene_names = list(rscu_dict.keys())

9 contingency_table = pd.DataFrame(index=gene_names , columns=codons)

10 for gene in gene_names:

11 for codon in codons:

12 contingency_table[codon][gene] = rscu_dict[gene][codon]

13 pca = PCA(random_state =42, n_components=n_components)

14 pca.fit(contingency_table)

15 print(’The inertia for respective components are:’)

16 for idx , inertia in enumerate(pca.explained_inertia_):

17 print(f’Axis {idx + 1}: {inertia}’)

18 return contingency_table , pca.explained_inertia_

Code Snippet 10.2: mca codon rscu

mca aa freq: This is used to perform COA with AA frequency data.

1 def mca_aa_freq(handle: str , genetic_table_num: int , min_len_threshold: int = 66,

n_components: int = 20) -> \

2 tuple[pd.DataFrame , np.ndarray]:

3 """

4 Calculates the contingency table and the inertia from amino acid frequency of

protein

5 """

6 records = parse(handle , ’fasta’)

7 references = filter_reference(records , min_len_threshold)

8 aas = [aa for aa, _ in unambiguous_dna_by_id[genetic_table_num]. back_table.

items()]

9 aas.remove(None) # as None is also returned to the back_table

10 prot_names = [f’prot_{i}’ for i in range(len(references))]

11 contingency_table = pd.DataFrame(index=prot_names , columns=aas)

12 for idx , prot in enumerate(references):

13 for aa in aas:

14 contingency_table[aa][prot_names[idx]] = prot.count(aa)

15 pca = PCA(random_state =42, n_components=n_components)

16 pca.fit(contingency_table)

17 print(’The inertia for respective components are:’)

18 for idx , inertia in enumerate(pca.explained_inertia_):

19 print(f’Axis {idx + 1}: {inertia}’)

20 return contingency_table , pca.explained_inertia_

Code Snippet 10.3: mca aa freq

33

Chapter 11

Phylogenetic Analysis

11.1 Introduction

The objective of this package is to help in phylogenetic analysis. The details are
discussed below. Basic function names and some code snippets are provided for ease
of readers.

11.2 Functions

generate phylo input: This is used to generate the input for phylogenetic analysis.
1 def generate_phylo_input(file_lst: list[str], file_name: str = ’phylo_input ’,

folder_path: str = ’Report ’):

2 """

3 Generates the alignment input file

4 """

5 make_dir(folder_path)

6 file_path = join(folder_path , file_name) + ’.fasta’

7 if is_file_writeable(file_path):

8 for in_file in file_lst:

9 records = read(in_file , ’fasta’)

10 write(records , open(file_path , ’a’), ’fasta’)

11 print(f’The alignment input file can be found at {abspath(file_path)}’)

Code Snippet 11.1: generate phylo input

phy clustal w: This is used to perform phylogenetic analysis with ClustalW.
1 def phy_clustal_w(bin_path: str , handle: str , res_folder_path: str = ’Report ’):

2 """

3 Makes the multiple sequence alignment with ClustalW. For details visit http ://

www.clustal.org/clustal2

4 """

5 make_dir(res_folder_path)

6 identifier = handle.split(’/’)[-1]. split(’.’)[0]

7 report_file_name = f’{identifier}_aligned_w.nex’

8 report_file_path = join(res_folder_path , report_file_name)

9 if not is_file(report_file_path) or is_file_empty(report_file_path):

10 clustalW_cline = ClustalwCommandline(bin_path , infile=handle , outfile=

report_file_path , output=’NEXUS’,

11 outputtree=’nexus’)

12 cmd = clustalW_cline.__str__ ()

13 subprocess.run(cmd , shell=True , stdout=subprocess.PIPE , stderr=subprocess.

PIPE , text=True)

14 print(f’The alignment file can be can be found at: {abspath(

report_file_path)}’)

Code Snippet 11.2: phy clustal w

34

Chapter 11. Phylogenetic Analysis

phy clustal o: This is used to perform phylogenetic analysis with ClustalΩ.

1 def phy_clustal_o(bin_path: str , handle: str , res_folder_path: str = ’Report ’):

2 """

3 Makes the multiple sequence alignment with ClustalO. For details visit http ://

www.clustal.org/omega

4 """

5 make_dir(res_folder_path)

6 identifier = handle.split(’/’)[-1]. split(’.’)[0]

7 report_file_name = f’{identifier}_aligned_o.fasta’

8 report_file_path = join(res_folder_path , report_file_name)

9 if not is_file(report_file_path) or is_file_empty(report_file_path):

10 clustalO_cline = ClustalOmegaCommandline(bin_path , infile=handle , infmt=’

fasta’, outfile=report_file_path ,

11 outfmt=’fasta ’, seqtype=’DNA’)

12 cmd = clustalO_cline.__str__ ()

13 subprocess.run(cmd , shell=True , stdout=subprocess.PIPE , stderr=subprocess.

PIPE , text=True)

14 print(f’The alignment file can be can be found at: {abspath(

report_file_path)}’)

Code Snippet 11.3: phy clustal o

35

Chapter 12

Vizualizer

12.1 Introduction

The objective of this package is to help in visualizing the data. The details are
discussed below. Basic function names and some code snippets are provided for
ease of readers.

12.2 Function

plot enc: This is used to plot ENc.

1 def plot_enc(handle: str | Any , genetic_table_num: int , min_len_threshold: int =

200, organism_name: None | str = None ,

2 save_image: bool = False , folder_path: str = ’Report ’,

gene_analysis: bool = True):

3 """

4 Plots ENc curve from given fasta file

5 """

6 filterwarnings(’ignore ’)

7 records = parse(handle , ’fasta’)

8 reference = filter_reference(records , min_len_threshold)

9 enc_val_lst = []

10 gc3_val_lst = []

11 for seq in reference:

12 enc_val_lst.append(enc([seq], genetic_table_num))

13 gc3_val_lst.append(gc_123(seq)[-1] / 100)

14

15 _plot_enc(enc_val_lst , gc3_val_lst , organism_name , save_image , folder_path ,

gene_analysis)

Code Snippet 12.1: plot enc

plot neutrality: This is used to plot neutrality.

1 def plot_neutrality(handle: str | Any , min_len_threshold: int , organism_name: str |

None = None ,

2 save_image: bool = False , folder_path: str = ’’, gene_analysis:

bool = True):

3 """

4 Plots neutrality plot from given fasta file

5 """

6 filterwarnings(’ignore ’)

7 records = parse(handle , ’fasta’)

8 reference = filter_reference(records , min_len_threshold)

9 gc_12_lst = []

10 gc_3_lst = []

11 for seq in reference:

36

Chapter 12. Vizualizer

12 _, gc_1 , gc_2 , gc_3 = gc_123(seq)

13 # taking avg of gc_1 and gc_2

14 gc_12_lst.append ((gc_1 + gc_2) / 2 / 100)

15 gc_3_lst.append(gc_3 / 100)

16

17 _plot_neutrality(gc_12_lst , gc_3_lst , organism_name , save_image , folder_path ,

gene_analysis)

Code Snippet 12.2: plot neutrality

(a) ENc Plot
(b) Neutrality Plot

Figure 12.1: ENc and Neutrality Plot

plot pr2: This is used to plot parity rule 2.

1 def plot_pr2(handle: str | Any , min_len_threshold: int , organism_name: str | None =

None , save_image: bool = False ,

2 folder_path: str = ’’, gene_analysis: bool = True):

3 """

4 Plots A3/AT3 values against G3/GC3 values from given fasta file

5 """

6 filterwarnings(’ignore ’)

7 records = parse(handle , ’fasta’)

8 reference = filter_reference(records , min_len_threshold)

9 gc3_val_lst = []

10 g3_val_lst = []

11 at3_val_lst = []

12 a3_val_lst = []

13 for seq in reference:

14 _, _, _, gc3 = gc_123(seq)

15 _, _, _, at3 = at_123(seq)

16 g_3 = g3(seq)

17 a_3 = a3(seq)

18 gc3_val_lst.append(gc3 / 100)

19 at3_val_lst.append(at3 / 100)

20 g3_val_lst.append(g_3 / 100)

21 a3_val_lst.append(a_3 / 100)

22

23 _plot_pr2(gc3_val_lst , at3_val_lst , g3_val_lst , a3_val_lst , organism_name ,

save_image , folder_path , gene_analysis)

Code Snippet 12.3: plot pr2

plot phy dnd: This is used to plot phylogenetic tree from .dnd file.

1 def plot_phy_dnd(handle: str , title: str = ’Phylogenetic Tree’, save_image: bool =

False , folder_path: str = ’Report ’):

2 """

3 Plots phylogenetic tree from dnd file

4 """

5 tree = read(handle , ’newick ’)

6 tree = tree.as_phyloxml ()

37

Chapter 12. Vizualizer

7 fig , ax = plt.subplots ()

8 fig.suptitle(title)

9 draw(tree , axes=ax)

10 if save_image:

11 make_dir(folder_path)

12 file_name = ’_’.join(title.split ()) + ’_dnd.png’

13 file_path = join(folder_path , file_name)

14 if is_file_writeable(file_path):

15 fig.savefig(file_path , dpi =500)

16 print(f’Saved file can be found as {abspath(file_path)}’)

17 plt.close(fig)

Code Snippet 12.4: plot phy dnd

(a) Parity Rule 2 Plot

(b) Phylogenetic Plot (.dnd)

Figure 12.2: Parity Rule 2 and Phylogenetic Tree Plot

plot phy fas: This is used to plot phylogenetic tree from .fasta file.

1 def plot_phy_fas(handle: str , title: str = ’Phylogenetic Tree’, save_image: bool =

False , folder_path: str = ’Report ’):

2 """

3 Plots phylogenetic tree from fasta file

4 """

5 cons = DistanceTreeConstructor ()

6 aln_file = read(open(handle), ’fasta’)

7 calc = DistanceCalculator(’identity ’)

8 distance_matrix = calc.get_distance(aln_file)

9 tree = cons.upgma(distance_matrix)

10 tree = tree.as_phyloxml ()

11 fig , ax = plt.subplots ()

12 fig.suptitle(title)

13 draw(tree , axes=ax)

14 if save_image:

15 make_dir(folder_path)

16 file_name = ’_’.join(title.split ()) + ’_fas.png’

17 file_path = join(folder_path , file_name)

18 if is_file_writeable(file_path):

19 fig.savefig(file_path , dpi =500)

20 print(f’Saved file can be found as {abspath(file_path)}’)

21 plt.close(fig)

Code Snippet 12.5: plot phy fas

plot phy nex: This is used to plot phylogenetic tree from .nexus file.

1 def plot_phy_nex(handle: str , title: str = ’Phylogenetic Tree’, save_image: bool =

False , folder_path: str = ’Report ’):

2 """

38

Chapter 12. Vizualizer

3 Plots phylogenetic tree from nexus file

4 """

5 cons = DistanceTreeConstructor ()

6 aln_file = read(open(handle), ’nexus’)

7 calc = DistanceCalculator(’identity ’)

8 distance_matrix = calc.get_distance(aln_file)

9 tree = cons.upgma(distance_matrix)

10 tree = tree.as_phyloxml ()

11 fig , ax = plt.subplots ()

12 fig.suptitle(title)

13 draw(tree , axes=ax)

14 if save_image:

15 make_dir(folder_path)

16 file_name = ’_’.join(title.split ()) + ’_nex.png’

17 file_path = join(folder_path , file_name)

18 if is_file_writeable(file_path):

19 fig.savefig(file_path , dpi =500)

20 print(f’Saved file can be found as {abspath(file_path)}’)

21 plt.close(fig)

Code Snippet 12.6: plot phy nex

(a) Phylogenetic Plot (.fasta) (b) Phylogenetic Plot (.nex)

Figure 12.3: Phylogenetic Tree Plot

plot mca codon freq: This is used to plot COA of codon frequency data.

1 def plot_mca_codon_freq(handle: str , genetic_table_num: int , min_len_threshold: int

= 200, n_components: int = 59,

2 organism_name: str | None = None , save_image: bool = False ,

folder_path: str = ’Report ’):

3 """

4 Plots the principal component analysis based on codon frequency

5 """

6 records = parse(handle , ’fasta’)

7 references = filter_reference(records , min_len_threshold)

8 len_lst = [len(gene) for gene in references]

9 max_len = max(len_lst)

10 s = [len(gene) / max_len * 100 for gene in references]

11 contingency_table , _ = mca_codon_freq(handle , genetic_table_num ,

min_len_threshold , n_components)

12 pca = PCA(random_state =42, n_components=n_components)

13 pca.fit(contingency_table)

14 plot_df = pca.row_coordinates(contingency_table)

15 x = plot_df.iloc[:, 0]

16 y = plot_df.iloc[:, 1]

17 plt.figure(figsize =(9, 5.25))

18 plt.scatter(x, y, s, alpha =0.5, c=len_lst , cmap=’viridis ’, zorder =2)

19 plt.grid(True , linestyle=’:’)

39

Chapter 12. Vizualizer

20 plt.axvline(0, color=’red’, zorder =1)

21 plt.axhline(0, color=’red’, zorder =1)

22 plt.xlabel(f’Axis 0 (inertia: {round(pca.explained_inertia_ [0] * 100, 4)}%)’)

23 plt.ylabel(f’Axis 1 (inertia: {round(pca.explained_inertia_ [1] * 100, 4)}%)’)

24 c_bar = plt.colorbar ()

25 c_bar.set_label(’Length of gene’)

26 plt.title(f’Total genes: {len(references)}’)

27 sup_title = f’Multivariate analysis of Codon Frequency of {organism_name}’ if

organism_name else ’Multivariate analysis of Codon Frequency ’

28 plt.suptitle(sup_title)

29 if save_image:

30 make_dir(folder_path)

31 name = f’Multivariate_analysis_codon_freq_{organism_name }.png’ if

organism_name else ’Multivariate_analysis_codon_freq.png’

32 file_name = join(folder_path , name)

33 if is_file_writeable(file_name):

34 plt.savefig(file_name , dpi =500)

35 plt.show()

36 plt.close()

Code Snippet 12.7: plot mca codon freq

plot mca rscu: This is used to plot COA of codon RSCU data.

1 def plot_mca_rscu(handle: str , genetic_table_num: int , min_len_threshold: int =

200, n_components: int = 59,

2 organism_name: str | None = None , save_image: bool = False ,

folder_path: str = ’Report ’):

3 """

4 Plots the principal component analysis based on codon RSCU value

5 """

6 records = parse(handle , ’fasta’)

7 references = filter_reference(records , min_len_threshold)

8 len_lst = [len(gene) for gene in references]

9 max_len = max(len_lst)

10 s = [gene_len / max_len * 100 for gene_len in len_lst]

11 contingency_table , _ = mca_codon_rscu(handle , genetic_table_num ,

min_len_threshold , n_components)

12 pca = PCA(random_state =42, n_components=n_components)

13 pca.fit(contingency_table)

14 plot_df = pca.row_coordinates(contingency_table)

15 x = plot_df.iloc[:, 0]

16 y = plot_df.iloc[:, 1]

17 plt.figure(figsize =(9, 5.25))

18 plt.scatter(x, y, s, alpha =0.5, c=len_lst , cmap=’viridis ’, zorder =2)

19 plt.grid(True , linestyle=’:’)

20 plt.axvline(0, color=’red’, zorder =1)

21 plt.axhline(0, color=’red’, zorder =1)

22 plt.xlabel(f’Axis 0 (inertia: {round(pca.explained_inertia_ [0] * 100, 4)}%)’)

23 plt.ylabel(f’Axis 1 (inertia: {round(pca.explained_inertia_ [1] * 100, 4)}%)’)

24 c_bar = plt.colorbar ()

25 c_bar.set_label(’Length of gene’)

26 plt.title(f’Total genes: {len(references)}’)

27 sup_title = f’Multivariate analysis of Codon RSCU of {organism_name}’ if

organism_name else ’Multivariate analysis of Codon RSCU’

28 plt.suptitle(sup_title)

29 if save_image:

30 make_dir(folder_path)

31 name = f’Multivariate_analysis_rscu_{organism_name }.png’ if organism_name

else ’Multivariate_analysis_rscu.png’

32 file_name = join(folder_path , name)

33 if is_file_writeable(file_name):

34 plt.savefig(file_name , dpi =500)

35 plt.show()

36 plt.close()

Code Snippet 12.8: plot mca rscu

40

Chapter 12. Vizualizer

(a) COA Plot of Codon Freq (b) COA Plot of Codon RSCU

Figure 12.4: COA Plots of Codon

plot mca aa gravy: This is used to plot COA of AA GRAVY data.

1 def plot_mca_aa_gravy(handle: str , genetic_table_num: int , min_len_threshold: int =

66, n_components: int = 20,

2 organism_name: str | None = None , save_image: bool = False ,

folder_path: str = ’Report ’):

3 """

4 Plots the principal component analysis based on amino acid frequency with GRAVY

score scale

5 """

6 records = parse(handle , ’fasta’)

7 references = filter_reference(records , min_len_threshold)

8 gravy = [ProteinAnalysis(str(prot_seq)).gravy () for prot_seq in references]

9 s = [(g ** 2) * 20 for g in gravy]

10 contingency_table , _ = mca_aa_freq(handle , genetic_table_num , min_len_threshold

, n_components)

11 pca = PCA(random_state =42, n_components=n_components)

12 pca.fit(contingency_table)

13 plot_df = pca.row_coordinates(contingency_table)

14 x = plot_df.iloc[:, 0]

15 y = plot_df.iloc[:, 1]

16 plt.figure(figsize =(9, 5.25))

17 plt.scatter(x, y, s, alpha =0.5, c=gravy , cmap=’viridis ’, zorder =2)

18 plt.grid(True , linestyle=’:’)

19 plt.axvline(0, color=’red’, zorder =1)

20 plt.axhline(0, color=’red’, zorder =1)

21 plt.xlabel(f’Axis 0 (inertia: {round(pca.explained_inertia_ [0] * 100, 4)}%)’)

22 plt.ylabel(f’Axis 1 (inertia: {round(pca.explained_inertia_ [1] * 100, 4)}%)’)

23 c_bar = plt.colorbar ()

24 c_bar.set_label(’GRAVY score ’)

25 plt.title(f’Total genes: {len(references)}’)

26 sup_title = f’Multivariate analysis of Amino Acid Frequency of {organism_name}’

if organism_name else ’Multivariate analysis of Amino Acid Frequency ’

27 plt.suptitle(sup_title)

28 if save_image:

29 make_dir(folder_path)

30 name = f’Multivariate_analysis_aa_gravy_{organism_name }.png’ if

organism_name else ’Multivariate_analysis_aa_gravy.png’

31 file_name = join(folder_path , name)

32 if is_file_writeable(file_name):

33 plt.savefig(file_name , dpi =500)

34 plt.show()

35 plt.close()

Code Snippet 12.9: plot mca aa gravy

41

Chapter 12. Vizualizer

plot mca aa aroma: This is used to plot COA of AA Aromaticity data.

1 def plot_mca_aa_aroma(handle: str , genetic_table_num: int , min_len_threshold: int =

66, n_components: int = 20,

2 organism_name: str | None = None , save_image: bool = False ,

folder_path: str = ’Report ’):

3 """

4 Plots the principal component analysis based on amino acid frequency with

aromaticity score scale

5 """

6 records = parse(handle , ’fasta’)

7 references = filter_reference(records , min_len_threshold)

8 aroma = [ProteinAnalysis(str(prot_seq)).aromaticity () for prot_seq in

references]

9 s = [a * 50 for a in aroma]

10 contingency_table , _ = mca_aa_freq(handle , genetic_table_num , min_len_threshold

, n_components)

11 pca = PCA(random_state =42, n_components=n_components)

12 pca.fit(contingency_table)

13 plot_df = pca.row_coordinates(contingency_table)

14 x = plot_df.iloc[:, 0]

15 y = plot_df.iloc[:, 1]

16 plt.figure(figsize =(9, 5.25))

17 plt.scatter(x, y, s, alpha =0.5, c=aroma , cmap=’viridis ’, zorder =2)

18 plt.grid(True , linestyle=’:’)

19 plt.axvline(0, color=’red’, zorder =1)

20 plt.axhline(0, color=’red’, zorder =1)

21 plt.xlabel(f’Axis 0 (inertia: {round(pca.explained_inertia_ [0] * 100, 4)}%)’)

22 plt.ylabel(f’Axis 1 (inertia: {round(pca.explained_inertia_ [1] * 100, 4)}%)’)

23 c_bar = plt.colorbar ()

24 c_bar.set_label(’Aromaticity score’)

25 plt.title(f’Total genes: {len(references)}’)

26 sup_title = f’Multivariate analysis of Amino Acid Frequency of {organism_name}’

if organism_name else ’Multivariate analysis of Amino Acid Frequency ’

27 plt.suptitle(sup_title)

28 if save_image:

29 make_dir(folder_path)

30 name = f’Multivariate_analysis_aa_aroma_{organism_name }.png’ if

organism_name else ’Multivariate_analysis_aa_aroma.png’

31 file_name = join(folder_path , name)

32 if is_file_writeable(file_name):

33 plt.savefig(file_name , dpi =500)

34 plt.show()

35 plt.close()

Code Snippet 12.10: plot mca aa aroma

(a) COA Plot of AA GRAVY (b) COA Plot of AA Aromaticity

Figure 12.5: COA Plots of AA

42

Part IV

Conclusion

43

Chapter 13

Conclusion

In conclusion, this thesis project aimed to develop CodonU, a comprehensive tool for
CUA. CodonU addresses the need for an efficient, user-friendly, and versatile software
package that integrates various steps of codon usage analysis, provides statistical
measures, and offers visualization capabilities. Through the implementation and
evaluation of CodonU, several key findings and achievements have been made.

Firstly, CodonU successfully handles various file formats, allowing users to input
organism names and accession IDs and automatically fetch gbk files, extract CDS,
and save them in the required format. This streamlines the data acquisition process
and eliminates the need for manual data retrieval and manipulation. Secondly,
CodonU incorporates essential statistical measures for codon usage analysis, including
CAI, CBI, etc. These measures provide valuable insights into the preferences and
biases in codon usage within an organism’s genome, aiding in the understanding of
genetic codes and their implications.

Furthermore, CodonU employs COA to explore associations between codon usage
patterns and factors of interest. Moreover, CodonU offers visualization capabilities,
generating high-resolution graphics suitable for publication. These graphics enable
researchers to effectively communicate and present their findings, enhancing the
visibility and impact of their research in the scientific community.

Looking ahead, CodonU holds great potential for future implications in genomic
research and evolutionary studies. Its modular architecture allows for further de-
velopment, expansion, and integration of additional features and functionalities.
Additionally, CodonU can serve as a valuable resource for researchers, enabling them
to perform comprehensive codon usage analysis and gain deeper insights into the
genetic codes and their evolutionary implications.

In conclusion, CodonU simplifies and enhances the process of codon usage anal-
ysis, providing researchers with a powerful and accessible tool. The development of
CodonU contributes to the advancement of genomic research and offers new avenues
for exploration in the field of codon usage analysis.

44

Part V

Bibliography

45

Bibliography

Articles

Abdi, Hervé and Lynne Williams (July 2010). “Principal component analysis”. In:
Wiley Interdisciplinary Reviews: Computational Statistics 2.4, pp. 433–459. doi:
10.1002/wics.101. url: https://doi.org/10.1002/wics.101.

Angov, E. (June 2011). “Codon usage: Nature’s roadmap to expression and folding
of proteins”. In: Biotechnology Journal 6.6, pp. 650–659. doi: 10.1002/biot.
201000332. url: https://doi.org/10.1002/biot.201000332.

Bennetzen, J L and B D Hall (Mar. 1982). “Codon selection in yeast.” In: Journal
of Biological Chemistry 257.6, pp. 3026–3031. doi: 10.1016/s0021-9258(19)
81068-2. url: http://dx.doi.org/10.1016/s0021-9258(19)81068-2.

Carver, Tim and Alan J. Bleasby (Sept. 2003). “The design of Jemboss: a graphi-
cal user interface to EMBOSS”. In: Bioinformatics 19.14, pp. 1837–1843. doi:
10 . 1093 / bioinformatics / btg251. url: https : / / doi . org / 10 . 1093 /

bioinformatics/btg251.
Cock, Peter J. A. et al. (June 2009). “Biopython: freely available Python tools for

computational molecular biology and bioinformatics”. In: Bioinformatics 25.11,
pp. 1422–1423. doi: 10.1093/bioinformatics/btp163. url: https://doi.
org/10.1093/bioinformatics/btp163.

Duncombe, P. (Jan. 1985). “Multivariate Descriptive Statistical Analysis: Corre-
spondence Analysis and Related Techniques for Large Matrices.” In: Journal of
the Royal Statistical Society. doi: 10.2307/2981514. url: https://doi.org/
10.2307/2981514.

Fuglsang, Anders (May 2004). “The ‘effective number of codons’ revisited”. In: Bio-
chemical and Biophysical Research Communications 317.3, pp. 957–964. doi:
10.1016/j.bbrc.2004.03.138. url: http://dx.doi.org/10.1016/j.bbrc.
2004.03.138.

Harris, Charles B. et al. (Sept. 2020). “Array programming with NumPy”. In: Nature
585.7825, pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.
org/10.1038/s41586-020-2649-2.

Hill, Martin and Hugh G. Gauch (Oct. 1980). “Detrended correspondence analysis:
An improved ordination technique”. In: Vegetatio 42.1-3, pp. 47–58. doi: 10.
1007/bf00048870. url: https://doi.org/10.1007/bf00048870.

Hodgman, Matthew R et al. (Nov. 2020). “CUBAP: an interactive web portal for
analyzing codon usage biases across populations”. In: Nucleic Acids Research
48.19, pp. 11030–11039. doi: 10.1093/nar/gkaa863. url: https://doi.org/
10.1093/nar/gkaa863.

46

https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/biot.201000332
https://doi.org/10.1002/biot.201000332
https://doi.org/10.1002/biot.201000332
https://doi.org/10.1016/s0021-9258(19)81068-2
https://doi.org/10.1016/s0021-9258(19)81068-2
http://dx.doi.org/10.1016/s0021-9258(19)81068-2
https://doi.org/10.1093/bioinformatics/btg251
https://doi.org/10.1093/bioinformatics/btg251
https://doi.org/10.1093/bioinformatics/btg251
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.2307/2981514
https://doi.org/10.2307/2981514
https://doi.org/10.2307/2981514
https://doi.org/10.1016/j.bbrc.2004.03.138
http://dx.doi.org/10.1016/j.bbrc.2004.03.138
http://dx.doi.org/10.1016/j.bbrc.2004.03.138
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/bf00048870
https://doi.org/10.1007/bf00048870
https://doi.org/10.1007/bf00048870
https://doi.org/10.1093/nar/gkaa863
https://doi.org/10.1093/nar/gkaa863
https://doi.org/10.1093/nar/gkaa863

Bibliography

Hunter, J.D. (May 2007). “Matplotlib: A 2D Graphics Environment”. In: Computing
in Science and Engineering 9.3, pp. 90–95. doi: 10.1109/mcse.2007.55. url:
https://doi.org/10.1109/mcse.2007.55.

Kyte, Jack and Russell F. Doolittle (May 1982). “A simple method for displaying
the hydropathic character of a protein”. In: Journal of Molecular Biology 157.1,
pp. 105–132. doi: 10.1016/0022-2836(82)90515-0. url: http://dx.doi.
org/10.1016/0022-2836(82)90515-0.

Larkin, Mark A. et al. (Nov. 2007). “Clustal W and Clustal X version 2.0”. In:
Bioinformatics 23.21, pp. 2947–2948. doi: 10.1093/bioinformatics/btm404.
url: https://doi.org/10.1093/bioinformatics/btm404.

Lee, Benjamin D. (Oct. 2018b). “Python Implementation of Codon Adaptation In-
dex”. In: Journal of open source software 3.30, p. 905. doi: 10.21105/joss.
00905. url: https://joss.theoj.org/papers/10.21105/joss.00905.pdf.

Lloyd, Andrew T. and P. Sharp (June 1992). “CODONS: A Microcomputer Program
for Codon Usage Analysis”. In: Journal of Heredity 83.3, pp. 239–240. doi: 10.
1093/oxfordjournals.jhered.a111205. url: https://doi.org/10.1093/
oxfordjournals.jhered.a111205.

Lobry, Jean R. and Christian Gautier (Aug. 1994). “Hydrophobicity, expressivity
and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli
chromosome-encoded genes”. In: Nucleic Acids Research 22.15, pp. 3174–3180.
doi: 10.1093/nar/22.15.3174.

McInerney, J.O. (1998). “GCUA (General Codon Usage Analysis)”. In: Bioinfor-
matics 14.4, pp. 372–373. url: http://mcinerneylab.com/software/gcua/.

McKinney, Wes (Jan. 2010). “Data Structures for Statistical Computing in Python”.
In: Proceedings of the Python in Science Conferences. doi: 10.25080/majora-
92bf1922-00a. url: https://doi.org/10.25080/majora-92bf1922-00a.

Nakamura, Yasukazu, Takashi Gojobori, and Toshimichi Ikemura (Jan. 1999). “Codon
usage tabulated from the international DNA sequence databases; its status 1999”.
In: Nucleic Acids Research 27.1, p. 292. doi: 10.1093/nar/27.1.292. url:
https://doi.org/10.1093/nar/27.1.292.

— (Jan. 2000). “Codon usage tabulated from international DNA sequence databases:
status for the year 2000”. In: Nucleic Acids Research 28.1, p. 292. doi: 10.1093/
nar/28.1.292. url: https://doi.org/10.1093/nar/28.1.292.

Nakamura, Yasukazu, Ken-nosuke Wada, et al. (Jan. 1996). “Condon usage tabu-
lated from the international DNA sequence databases”. In: Nucleic Acids Re-
search 24.1, pp. 214–215. doi: 10.1093/nar/24.1.214. url: https://doi.
org/10.1093/nar/24.1.214.

Nakamura, Yusuke, Takashi Gojobori, and Toshimichi Ikemura (Jan. 1997). “Codon
usage tabulated from the international DNA sequence databases”. In: Nucleic
Acids Research 25.1, pp. 244–245. doi: 10.1093/nar/25.1.244. url: https:
//doi.org/10.1093/nar/25.1.244.

— (Jan. 1998). “Codon usage tabulated from the international DNA sequence data-
bases”. In: Nucleic Acids Research 26.1, p. 334. doi: 10.1093/nar/26.1.334.
url: https://doi.org/10.1093/nar/26.1.334.

47

https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1016/0022-2836(82)90515-0
http://dx.doi.org/10.1016/0022-2836(82)90515-0
http://dx.doi.org/10.1016/0022-2836(82)90515-0
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.21105/joss.00905
https://doi.org/10.21105/joss.00905
https://joss.theoj.org/papers/10.21105/joss.00905.pdf
https://doi.org/10.1093/oxfordjournals.jhered.a111205
https://doi.org/10.1093/oxfordjournals.jhered.a111205
https://doi.org/10.1093/oxfordjournals.jhered.a111205
https://doi.org/10.1093/oxfordjournals.jhered.a111205
https://doi.org/10.1093/nar/22.15.3174
http://mcinerneylab.com/software/gcua/
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.1093/nar/27.1.292
https://doi.org/10.1093/nar/27.1.292
https://doi.org/10.1093/nar/28.1.292
https://doi.org/10.1093/nar/28.1.292
https://doi.org/10.1093/nar/28.1.292
https://doi.org/10.1093/nar/24.1.214
https://doi.org/10.1093/nar/24.1.214
https://doi.org/10.1093/nar/24.1.214
https://doi.org/10.1093/nar/25.1.244
https://doi.org/10.1093/nar/25.1.244
https://doi.org/10.1093/nar/25.1.244
https://doi.org/10.1093/nar/26.1.334
https://doi.org/10.1093/nar/26.1.334

Bibliography

Nesti, C. et al. (Apr. 1995). “Phylogeny inferred from codon usage pattern in 31 or-
ganisms”. In: Bioinformatics 11.2, pp. 167–171. doi: 10.1093/bioinformatics/
11.2.167. url: https://doi.org/10.1093/bioinformatics/11.2.167.

Rice, Peter A., Ian Longden, and Alan J. Bleasby (June 2000). “EMBOSS: The
European Molecular Biology Open Software Suite”. In: Trends in Genetics 16.6,
pp. 276–277. doi: 10.1016/s0168-9525(00)02024-2. url: https://doi.org/
10.1016/s0168-9525(00)02024-2.

Sharp, Paul M. and Elizabeth Cowe (Oct. 1991). “Synonymous codon usage in
Saccharomyces cerevisiae”. In: Yeast 7.7, pp. 657–678. doi: 10 . 1002 / yea .
320070702. url: https://doi.org/10.1002/yea.320070702.

Sharp, Paul M. and Wen-Hsiung Li (1987). “The codon adaptation index-a measure
of directional synonymous codon usage bias, and its potential applications”. In:
Nucleic Acids Research 15.3, pp. 1281–1295. doi: 10.1093/nar/15.3.1281.
url: http://dx.doi.org/10.1093/nar/15.3.1281.

Sievers, Fabian and Desmond G. Higgins (Jan. 2018). “Clustal Omega for making ac-
curate alignments of many protein sequences”. In: Protein Science 27.1, pp. 135–
145. doi: 10.1002/pro.3290. url: https://doi.org/10.1002/pro.3290.

Stothard, Paul (June 2000). “The Sequence Manipulation Suite: JavaScript Pro-
grams for Analyzing and Formatting Protein and DNA Sequences”. In: BioTech-
niques 28.6, pp. 1102–1104. doi: 10.2144/00286ir01. url: https://doi.org/
10.2144/00286ir01.

Talevich, Eric et al. (Aug. 2012). “Bio.Phylo: A unified toolkit for processing, ana-
lyzing and visualizing phylogenetic trees in Biopython”. In: BMC Bioinformatics
13.1. doi: 10.1186/1471-2105-13-209. url: https://doi.org/10.1186/
1471-2105-13-209.

Tamura, Koichiro, Glen Stecher, and Sudhir Kumar (Apr. 2021). “MEGA11: Molec-
ular Evolutionary Genetics Analysis Version 11”. In: Molecular Biology and
Evolution 38.7, pp. 3022–3027. doi: 10.1093/molbev/msab120. url: https:
//academic.oup.com/mbe/article-pdf/38/7/3022/38827102/msab120.pdf.

Thioulouse, Jean (Oct. 1989). “Statistical analysis and graphical display of mul-
tivariate data on the Macintosh”. In: Bioinformatics 5.4, pp. 287–292. doi:
10.1093/bioinformatics/5.4.287. url: https://doi.org/10.1093/
bioinformatics/5.4.287.

— (Nov. 1990). “Macmul and graphmu: Two Macintosh programs for the dis-
play and analysis of multivariate data”. In: Computers and Geosciences 16.8,
pp. 1235–1240. doi: 10.1016/0098-3004(90)90058-2. url: https://doi.
org/10.1016/0098-3004(90)90058-2.

Thioulouse, Jean and François Chevenet (Mar. 1996). “NetMul, a World-Wide Web
user interface for multivariate analysis software”. In: Computational Statistics
and Data Analysis 21.3, pp. 369–372. doi: 10.1016/0167-9473(96)90065-1.
url: https://doi.org/10.1016/0167-9473(96)90065-1.

Vetrivel, Umashankar, Vijayakumar Arunkumar, and Sudarsanam Dorairaj (Oct.
2007). “ACUA: A software tool for automated codon usage analysis”. In: Bioin-
formation 2.2, pp. 62–63. doi: 10.6026/97320630002062. url: https://doi.
org/10.6026/97320630002062.

48

https://doi.org/10.1093/bioinformatics/11.2.167
https://doi.org/10.1093/bioinformatics/11.2.167
https://doi.org/10.1093/bioinformatics/11.2.167
https://doi.org/10.1016/s0168-9525(00)02024-2
https://doi.org/10.1016/s0168-9525(00)02024-2
https://doi.org/10.1016/s0168-9525(00)02024-2
https://doi.org/10.1002/yea.320070702
https://doi.org/10.1002/yea.320070702
https://doi.org/10.1002/yea.320070702
https://doi.org/10.1093/nar/15.3.1281
http://dx.doi.org/10.1093/nar/15.3.1281
https://doi.org/10.1002/pro.3290
https://doi.org/10.1002/pro.3290
https://doi.org/10.2144/00286ir01
https://doi.org/10.2144/00286ir01
https://doi.org/10.2144/00286ir01
https://doi.org/10.1186/1471-2105-13-209
https://doi.org/10.1186/1471-2105-13-209
https://doi.org/10.1186/1471-2105-13-209
https://doi.org/10.1093/molbev/msab120
https://academic.oup.com/mbe/article-pdf/38/7/3022/38827102/msab120.pdf
https://academic.oup.com/mbe/article-pdf/38/7/3022/38827102/msab120.pdf
https://doi.org/10.1093/bioinformatics/5.4.287
https://doi.org/10.1093/bioinformatics/5.4.287
https://doi.org/10.1093/bioinformatics/5.4.287
https://doi.org/10.1016/0098-3004(90)90058-2
https://doi.org/10.1016/0098-3004(90)90058-2
https://doi.org/10.1016/0098-3004(90)90058-2
https://doi.org/10.1016/0167-9473(96)90065-1
https://doi.org/10.1016/0167-9473(96)90065-1
https://doi.org/10.6026/97320630002062
https://doi.org/10.6026/97320630002062
https://doi.org/10.6026/97320630002062

Bibliography

Virtanen, Pauli et al. (July 2019). “SciPy 1.0: fundamental algorithms for scientific
computing in Python”. In: Nature Methods 17.3, pp. 261–272. doi: 10.1038/
s41592-019-0686-2. url: https://doi.org/10.1038/s41592-019-0686-2.

Wada, Ken-nosuke et al. (Apr. 1990). “Codon usage tabulated from the GenBank
genetic sequence data”. In: Nucleic Acids Research 18.suppl, pp. 2367–2411.
doi: 10.1093/nar/18.suppl.2367. url: https://doi.org/10.1093/nar/18.
suppl.2367.

Wright, Frank (Mar. 1990). “The ‘effective number of codons’ used in a gene”. In:
Gene 87.1, pp. 23–29. doi: 10.1016/0378- 1119(90)90491- 9. url: http:
//dx.doi.org/10.1016/0378-1119(90)90491-9.

Books

Greenacre, Michael (Jan. 2017). Correspondence Analysis in Practice. doi: 10.1201/
9781315369983. url: https://doi.org/10.1201/9781315369983.

Hameroff, Stuart R. (Aug. 1987). Ultimate Computing: Biomolecular Consciousness
and NanoTechnology. Elsevier Science. isbn: 978-0444600097. url: https://
shop.elsevier.com/books/ultimate-computing/hameroff/978-0-444-

70283-8.
Hill, Martin (Jan. 1979). DECORANA - A FORTRAN program for detrended corre-

spondence analysis and reciprocal averaging. url: http://repositories.tdl.
org/tamug-ir/handle/1969.3/24717?show=full.

Husson, François and Julie Josse (Jan. 2010). Multiple Correspondence Analysis.
doi: 10.4135/9781412993906. url: https://doi.org/10.4135/9781412993906.

Jolliffe, I.T. (Oct. 2002). Principal Component Analysis. Springer Science and Busi-
ness Media. doi: 10.1007/b98835. url: https://doi.org/10.1007/b98835.

Lebart, Ludovic, Alain Morineau, and Kenneth M. Warwick (Jan. 1984). Multivari-
ate Descriptive Statistical Analysis. John Wiley and Sons.

Lobry, Jean R. (Nov. 2018). Multivariate Analyses of Codon Usage Biases. ISTE
Press - Elsevier. doi: 10.1016/C2018-0-02165-9. url: https://doi.org/10.
1016/C2018-0-02165-9.

Book Chapters

Sieburg, Hans B. (Aug. 1990). “Physiological Studies in Silico”. In: 1990 Lectures
In Complex Systems. Ed. by Lynn Nadel and Daniel L. Stein. CRC Press. isbn:
978-0429503573. url: https://www.taylorfrancis.com/chapters/edit/10.
1201/9780429503573-15/physiological-studies-silico-hans-sieburg.

Womble, David D. (1999). “GCG:” in: Bioinformatics Methods and Protocols. Ed.
by Stephen Misener and Stephen A. Krawetz. Totowa, NJ: Humana Press, pp. 3–
22. isbn: 978-1-59259-192-3. doi: 10.1385/1-59259-192-2:3. url: https:
//doi.org/10.1385/1-59259-192-2:3.

49

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1093/nar/18.suppl.2367
https://doi.org/10.1093/nar/18.suppl.2367
https://doi.org/10.1093/nar/18.suppl.2367
https://doi.org/10.1016/0378-1119(90)90491-9
http://dx.doi.org/10.1016/0378-1119(90)90491-9
http://dx.doi.org/10.1016/0378-1119(90)90491-9
https://doi.org/10.1201/9781315369983
https://doi.org/10.1201/9781315369983
https://doi.org/10.1201/9781315369983
https://shop.elsevier.com/books/ultimate-computing/hameroff/978-0-444-70283-8
https://shop.elsevier.com/books/ultimate-computing/hameroff/978-0-444-70283-8
https://shop.elsevier.com/books/ultimate-computing/hameroff/978-0-444-70283-8
http://repositories.tdl.org/tamug-ir/handle/1969.3/24717?show=full
http://repositories.tdl.org/tamug-ir/handle/1969.3/24717?show=full
https://doi.org/10.4135/9781412993906
https://doi.org/10.4135/9781412993906
https://doi.org/10.1007/b98835
https://doi.org/10.1007/b98835
https://doi.org/10.1016/C2018-0-02165-9
https://doi.org/10.1016/C2018-0-02165-9
https://doi.org/10.1016/C2018-0-02165-9
https://www.taylorfrancis.com/chapters/edit/10.1201/9780429503573-15/physiological-studies-silico-hans-sieburg
https://www.taylorfrancis.com/chapters/edit/10.1201/9780429503573-15/physiological-studies-silico-hans-sieburg
https://doi.org/10.1385/1-59259-192-2:3
https://doi.org/10.1385/1-59259-192-2:3
https://doi.org/10.1385/1-59259-192-2:3

Bibliography

Thesis

Peden, John F. (Aug. 1999). “Analysis of codon usage”. Nottingham, United King-
dom: University of Nottingham. url: http : / / codonw . sourceforge . net /
JohnPedenThesisPressOpt_water.pdf.

Softwares, Online Tools, etc.

ANSI (1978). American National Standard Fortran X3.9-1978 (FORTRAN 77). Pro-
gramming Language. url: https://www.ibm.com/docs/en/xl- fortran-
aix/16.1.0?topic=specifications-fortran-77.

Biopython Dev Team (June 2021). Biopython. Python software package. url: https:
//pypi.org/project/biopython.

Bleasby, Alan (Nov. 2000). coderet. Online Tool. European Bioinformatics Institute.
url: https://www.bioinformatics.nl/cgi-bin/emboss/coderet.

Diament, Alon (2023). Codon-Usage. MATLAB software package. url: https://
github.com/alondmnt/codon-usage.

Halford, Max (Oct. 2020). Prince. Python software package. url: https://pypi.
org/project/prince.

IBM. Corp (2009). SPSS. Software. New Orchard Road, Armonk, NY. url: https:
//www.ibm.com/products/spss-statistics.

Lee, Benjamin D. (Oct. 2018a). CAI. Python software package. url: https://
pypi.org/project/CAI.

Matplotlib Dev Team (Jan. 2023).Matplotlib. Python software package. url: https:
//pypi.org/project/matplotlib.

MEGA Dev Team (2021). Mega 11. Software. url: https://www.megasoftware.
net/home.

NCBI (1992). GenBank. Database. National Library of Medicine. url: https://
www.ncbi.nlm.nih.gov/genome/.

NumPy Dev Team (Feb. 2023). NumPy. Python software package. url: https:
//pypi.org/project/numpy.

Oksanen, Jari (Oct. 2022). decorana. R software package. url: https : / / www .
rdocumentation.org/packages/vegan/versions/2.6-4/topics/decorana.

Pandas Dev Team (Aug. 2022). Pandas. Python software package. url: https:
//pypi.org/project/pandas.

Pedan, John F. (2005). CodonW. Software. url: https://sourceforge.net/
projects/codonw/.

Python Dev Team (2001). Pyhton: A Dynamic, Clear, Object Oriented and Open
Source Language. Programming Language. Wilmington, Delaware, United State.
url: https://www.python.org/.

Scipy Dev Team (Jan. 2023). SciPy. Python software package. url: https://pypi.
org/project/scipy.

50

http://codonw.sourceforge.net/JohnPedenThesisPressOpt_water.pdf
http://codonw.sourceforge.net/JohnPedenThesisPressOpt_water.pdf
https://www.ibm.com/docs/en/xl-fortran-aix/16.1.0?topic=specifications-fortran-77
https://www.ibm.com/docs/en/xl-fortran-aix/16.1.0?topic=specifications-fortran-77
https://pypi.org/project/biopython
https://pypi.org/project/biopython
https://www.bioinformatics.nl/cgi-bin/emboss/coderet
https://github.com/alondmnt/codon-usage
https://github.com/alondmnt/codon-usage
https://pypi.org/project/prince
https://pypi.org/project/prince
https://www.ibm.com/products/spss-statistics
https://www.ibm.com/products/spss-statistics
https://pypi.org/project/CAI
https://pypi.org/project/CAI
https://pypi.org/project/matplotlib
https://pypi.org/project/matplotlib
https://www.megasoftware.net/home
https://www.megasoftware.net/home
https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/genome/
https://pypi.org/project/numpy
https://pypi.org/project/numpy
https://www.rdocumentation.org/packages/vegan/versions/2.6-4/topics/decorana
https://www.rdocumentation.org/packages/vegan/versions/2.6-4/topics/decorana
https://pypi.org/project/pandas
https://pypi.org/project/pandas
https://sourceforge.net/projects/codonw/
https://sourceforge.net/projects/codonw/
https://www.python.org/
https://pypi.org/project/scipy
https://pypi.org/project/scipy

Part VI

Communication

51

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 1

CodonU:
A Python Package for Codon Usage Analysis

Souradipto Choudhuri , Keya Sau

Abstract—Codon Usage Analysis has been accompanied by several web servers and independent programs written in several
programming languages. Also this diversity speaks for the need of a reusable software that can be helpful in reading, manipulating and
acting as a pipeline for such data and file formats. Most popular software for these kind of analyses is CodonW. But it has its limited
scopes and a complex pipeline for data analysis. So, we propose CodonU, a package written in python language. It is compatible with
existing file formats and can be used solely or with a group of other such packages. The proposed package incorporates various
statistical measures necessary for codon usage analysis. The measures vary with nature of the sequences, viz. for nucleotide, codon
adaptation index (CAI), codon bias index (CBI) etc. and for protein sequences Gravy score etc. Users can also perform the
correspondence analysis (COA). This package also provides the liberty to generate graphics to users, and also perform phylogenetic
analysis which is out of scope for CodonW. Capabilities of the proposed package were checked thoroughly on a diverse genomic set.
Detailed documentation and some examples for this open-source project is available at GitHub:
https://www.github.com/SouradiptoC/CodonU

Index Terms—Codon Bias, Codon Usage, CodonW, Codon Usage Analysis, Correspondence Analysis, Phyogenetic Analysis

✦

1 INTRODUCTION

S YNONYMOUS codons are sets of codons that code for the
same amino acid. While the resulting protein remains

unchanged, the preferential usage of particular codons can
vary across species, genes, and even within different re-
gions of a single gene. This phenomenon has been the
subject of investigation in the field of bioinformatics for
several decades. The first insilico analysis of codon usage
was conducted by John F. Pedan in his PhD thesis [1]
in the late 1990s. Pedan tackled this issue by creating a
C language project called ‘CodonW’ [2]. However, with
the rapid advancement of computational technology, the
CodonW software has become complex and challenging for
new users. Furthermore, its supported functionalities are
limited to a certain extent.

Moreover, one couldn’t directly feed the data to
CodonW. It required pre-processing. A general workflow
may had been consistent of following steps:

• Pre-processing

– Finding and downloading the data in genbank
(.gb or .gbk) file format from NCBI, or creating
a .gb file if working in a customized manner.

– Upload the downloaded file to coderet [3]
for extracting Coding Sequence (CDS) and/or

• S. Choudhuri, at the time of working on the project was a bachelor’s
student at Department of Biotechnology, Haldia Institute of Technology,
Haldia, West Bengal, India, 721657
E-mail: souradipto.choudhuri@hithaldia.ac.in

• K. Sau, Ph.D., at the time the project was developed was an asso-
ciate professor with specialization in bioinformatics at Department of
Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India,
721657
E-mail: keyasau@hithaldia.ac.in

(Correspondence: Both authors)

translated mRNAs (essentially proteins) in
fasta (.fasta or .fa) file format.

• CodonW

– Feeding the extracted CDS and/or protein se-
quences to CodonW. CodonW itself is a cmd
or terminal based tool. And, the users need
to specify which operation(s) they want to
perform. At last the results can be exported in
various file formats such as .coa etc which are
specific to CodonW. For more on various files
generated by CodonW, please visit the thesis
[1].

• Statistical significance and plot generation

– The exported values need to be checked
for statistical significance. This can be done
through popular softwares such as SPSS [4].

– Graphics can not be directly generated from
CodonW. The user must do with third-party
software(s) (at least in this context) like Mi-
crosoft Excel.

• Phylogeny analysis

– For phylogeny analysis, users must perform
multiple sequence alignment first.

– Once done, they can use third-party web-
server (e.g. ClustalW2-Phylogeny etc.) or soft-
ware (e.g. Mega [5] etc.) for tree generation.

Consequently, there is a growing need for an integrated
workflow that can efficiently and accurately analyze codon
usage. CodonU can perform all the aforementioned oper-
ations with minimal memory consumption. Furthermore,
CodonU offers the added benefit of allowing users to per-
form multiple operations and save only the final results for
various analyses and graphics generation.

	Approval
	Certification By Supervisor
	Declaration
	Acknowledgement
	Abstract
	Acronyms
	I Introduction
	Motivation
	Introduction
	CodonW
	Workflow
	Proposal

	Objective
	Introduction
	Using Python Programming Language
	Objectives

	Literature Survey
	Tools for Correspondence Analysis
	Tools for Visualizing COA
	Early Databases
	Early Tools for CUA
	New Tools for CUA

	II Theoretical Analysis
	Statistical Measures
	Biological Viewpoint
	Statistical Measures for Nuc Sequence
	Relative Synonymous Codon Usage
	Codon Adaptation Index
	Codon Bias Index
	Effective Number of Codon

	Statistical Measures for AA Sequence
	Overall hydrophobicity of protein Score
	Over all aromaticity of the protein Score

	Correspondence Analysis
	Introduction
	Correspondence Analysis
	Methodology
	Interpretation
	One Example

	Principal Component Analysis
	Methodology
	Interpretation

	COA in CUA
	Methodology
	Interpretation

	Categorization of COA Based on Sequence
	Application of COA in CUA

	III Implementation
	Implementation
	Introduction
	Required Packages
	Third Party Softwares

	Extractor
	Introduction
	Functions

	File Handler
	Introduction
	Functions

	Analyzer
	Introduction
	Functions

	Correspondence Analysis
	Introduction
	Functions

	Phylogenetic Analysis
	Introduction
	Functions

	Vizualizer
	Introduction
	Function

	IV Conclusion
	Conclusion

	V Bibliography
	Bibliography
	Articles
	Books
	Book Chapters
	Thesis
	Softwares, Online Tools, etc.

	VI Communication

