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Learning from an Artificial Neural Network in
Phylogenetics

Alina F. Leuchtenberger and Arndt von Haeseler

Abstract—We show that an iterative ansatz of deep learning
and human intelligence guided simplification may lead to surpris-
ingly simple solutions for a difficult problem in phylogenetics.

Distinguishing Farris and Felsenstein trees is a longstanding
problem in phylogenetic tree reconstruction. The Artificial Neural
Network F-zoneNN solves this problem for 4-taxon alignments
evolved under the Jukes-Cantor model. It distinguishes between
Farris and Felsenstein trees, but owing to its complexity, lacks
transparency in its mechanism of discernment. Based on the
simplification of F-zoneNN and alignment properties we con-
structed the function FarFelDiscerner. In contrast to F-zoneNN,
FarFelDiscerner’s decision process is understandable. Moreover,
FarFelDiscerner is way simpler than F-zoneNN.

Despite its simplicity this function infers the tree-type almost
perfectly on noise-free data, and also performs well on simulated
noisy alignments of finite length. We applied FarFelDiscerner to
the historical Holometabola alignments where it places Strep-
siptera with beetles, concordant with the current scientific view.

Index Terms—Artificial neural networks, ANN simplification,
phylogenetics, Felsenstein zone, Farris zone, LBA, LBR

I. INTRODUCTION

RTIFICIAL Neural Networks (ANNs) are powerful

learning methods performing classifications, pattern
recognition tasks and more (see [l], [2] and references
therein). Fundamentally, they are mathematical functions
whose parameters are fitted such that these functions yield
the desired output [3]. Recently ANNs have been applied in
the field of phylogenetic inference [4]-[10], the process of
reconstructing phylogenetic trees depicting the evolutionary
history of contemporary taxa, based on e.g. an alignment of
their DNA sequences.

Over the years phylogenetics has benefited from increas-
ingly complex mathematical models as well as a dramatic
increase of available sequencing data (see e.g. [11]-[14]).
While phylogenetic inference is in general performing well,
it is computationally expensive and sometimes produces mis-
leading trees (see e.g. [15]).
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Fig. 1. Farris (A) and Felsenstein trees (B) for varying probabilities (p, ¢) of
observing a nucleotide substitution along a branch. The grey region in both
plots represents the Felsenstein zone. While MP tends for the grey region
towards reconstructing a Farris tree although the alignments evolved under
a Felsenstein tree, ML tends for the grey region towards reconstructing a
Felsenstein tree although the alignments evolved under a Farris tree.

Farris and Felsenstein trees are two tree types where in-
correct reconstructions can take place. That is to say, for any
alignment, that evolved under a Farris/Felsenstein tree a wrong
tree is inferred. More specifically, Farris/Felsenstein trees are
unrooted 4-taxon trees, i.e. trees with four external nodes
each representing one of the four contemporary taxa, and two
internal nodes representing their ancestors (Fig. 1). In this
paper we focus on the simplest form of Farris and Felsenstein
trees where the branches connecting the taxa have only two
different branch lengths p and q. These branch lengths are
measured by the probability of observing a nucleotide substi-
tution along the respective branch and are therefore indicating
the evolutionary distance between the taxa. For both tree types
the internal branch (the branch between the internal nodes)
and two external branches (branches between an external and
an internal node) have length ¢ while the other two external
branches have length p.

Farris and Felsenstein trees differ in their pairing of the
branches (Fig. 1): Farris trees pair the two branches with length
p with each other (see Fig. 1A), while Felsenstein trees pair
each branch with length p with a branch of length ¢ (see Fig.
1B).

We consider all trees where p and ¢ range between 0 and
0.75 (see Fig. 1).

If p and ¢ are from the grey region in Figure 1 then an
alignment evolved under a Felsenstein tree will be incorrectly
reconstructed under the reconstruction method Maximum Par-
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Fig. 2. The two debated placements of Strepsiptera: Maximum Parsimony
places Strepsiptera as sister to flies (A) and Maximum Likelihood places
Strepsiptera as sister to beetles (B).
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simony (MP). The resulting tree will look like a Farris tree.
On the other hand for an alignment evolved under a Farris
tree with p and ¢ being from the grey region in Figure 1
the reconstruction method Maximum Likelihood (ML) will
reconstruct a tree similar to a Felsenstein tree.

The incorrect reconstruction of Farris trees has been coined
long branch attraction (LBA) by Felsenstein in 1978 [15]
and was further explored by e.g. Hendy and Penny in 1989
[16]. The branch length parameter space where LBA leads to
incorrect tree reconstruction was coined the Felsenstein zone
[17] (see Fig. 1, grey regions). The zone depends only on
the values of p and ¢, and is independent of the alignment
length. More precisely, MP is statistically inconsistent in the
Felsenstein zone, that is MP will incorrectly reconstruct a
Farris tree for infinitely long alignments.

The second phenomenon was later described as long branch
repulsion (LBR), which biases Maximum Likelihood (ML)
towards reconstructing a Felsenstein tree (Fig. 1B) for finite
alignments which evolved under a Farris tree (Fig. 1A) [18],
[19]. The parameter space where LBR takes place was called
the Farris zone [19]. Unlike MP, ML is statistically consistent.
The Farris zone depends on the alignment length. If the
alignment length approaches infinity the Farris zone will
disappear and ML will reconstruct the correct tree in spite
of the effect of LBR [20].

However, biological alignments have finite lengths. If ML
and MP yield discordant results, it is unclear whether LBR or
LBA takes place and which method is correct. A well-studied
empirical example is the reconstruction of the Holometabola
phylogeny based on alignments of Strepsiptera, flies, beetles
and other Holometabola [21], [22]. While MP reconstructs a
Farris tree which pairs Strepsiptera with flies (Fig. 2A), ML
reconstructs a Felsenstein tree as it places Strepsiptera with the
beetles and distant to the flies (Fig. 2B). For a long time there
was lively discussion about which of these trees is correct.

The disputed placement of Strepsiptera is only one example
of the problem of distinguishing Farris and Felsenstein trees,
many other examples exist and reliably distinguishing Farris
and Felsenstein trees remains an important open problem in
phylogenetics [15], [18], [19].

To resolve such discordant placements, Leuchtenberger et
al. [6] developed the ANN F-zoneNN for four-taxon align-
ments evolved under the Jukes-Cantor model [23]. F-zoneNN

infers whether a given alignment stems from a Farris or a
Felsenstein tree. Thus, it classifies the unknown tree type
rather than reconstructing a tree and uses this classification to
select the appropriate tree reconstruction method. This strategy
reduces the danger of artefacts [6].

The ANN F-zoneNN is a feed-forward neural network
composing 9 linear and 9 non-linear functions with more
than 1.2 million parameters. Consequently, F-zoneNN acts as
a black-box and we do not understand how it distinguishes
between the two tree-types.

To counteract the lack of interpretability, in recent years
ANN interpretation methods like LIME [24], Partial Depen-
dence Plots [25] or the Activation Maximisation proposed by
Erhan et al. [26] were developed. However, they only provide
incomplete descriptions of the decision process of an ANN
and so ANNs like F-zoneNN remain by and large black-
boxes. This lack of interpretability is for many applications
not problematic as the user is more interested in the output of
an ANN. Still, an interpretable method is desirable as it does
not only solve a task, but also provides theoretical insights.

In the following, we simplify F-zoneNN by taking suitable
properties of alignments into account. We combine the capa-
bility of ANNs with the rich theory on phylogenetic inference
and construct the simple function FarFelDiscerner which suc-
cessfully distinguishes between Farris and Felsenstein trees.
FarFelDiscerner allows us to understand how the alignments
evolved under Farris trees and those evolved under Felsen-
stein trees differ from each other. Moreover, FarFelDiscerner,
applied to the empirical Holometabola alignments [21], places
the Strepsiptera with respect to flies and beetles concordant to
the current scientific view.

The outline of this paper is as follows. We will first
describe the ANN F-zoneNN [6] in detail. Next, we will
simplify F-zoneNN and define equivalence classes based on
this simplification. From these equivalence classes we then
construct the function FarFelDiscerner and evaluate it on
simulated alignments as well as on the empirical Holometabola
alignments [21].

II. BACKGROUND: F-ZONENN

The ANN F-zoneNN [6] whose simplification is the subject
of this paper infers whether a four-taxon alignment evolved
under a Farris or a Felsenstein tree. A four-taxon alignment
(Aij)i=1,... 4;j=1,...,n, displays in each row ¢ the DNA sequence
of a taxon, and in every column j one of the n alignment sites.
Each alignment can be succinctly described by the frequencies
of its site-patterns i.e. the frequencies of the 4* = 256 possible
arrangements of 4 nucleotides on the 4 positions of each
alignment site: AAAA, AAAC, AAAG, ..., TTTT.

An ANN benefits parameter-wise from a less complex input,
thus F-zoneNN uses an input which describes the alignments
succinctly. To further reduce the 256 site-patterns, it is taken
into account that the sequences evolved under the Jukes-Cantor
model [23] and therefore that the nucleotide frequencies and
mutation rates are uniform. Due to these assumptions the
probability of a site-pattern is only influenced by which
sequences show the same nucleotide in the pattern and which
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do not. For example AAAC and TT'T'G occur with the same
probability as both describe sites where all but the last position
show the same nucleotide. Thus, the 256 site-patterns collapse
to 15 distinct site-patterns. Each site-pattern

s € {1234,1]234, 2134, 3|124, 4|123, 12|34, 13|24, 14/23,
1)2(34,1|3|24, 1|4]23, 2|3|14, 2|4/13, 34|12, 1|2|3]4}

where 1, 2, 3 and 4 represent the row indices of the alignment
and | indicates that the sequences with row indices to the
left and right of | have different nucleotides. Thus, 1]2|34
represents alignment columns where the 1st, 2nd and 3rd row
contain mutually different nucleotides and the 4th row contains
the same nucleotide as the 3rd row. The site-patterns 1]234,
2|134, 3|124 and 4|123 represent alignment columns where
one sequence has another nucleotide than the other three.
Their frequencies indicate how different a sequence is from
the others and thus, reflect the branch lengths leading to the
corresponding taxa within the tree. Similarly, the frequencies
of 12|34, 13|24 and 14|23 measure how different two sequence
pairs are from each other and can indicate the existence or
length of an internal branch between the corresponding taxa
pairs.

f(s) denotes the relative frequency of site-pattern s for an
alignment and f = (f(1234), ..., f(1]2]3|4)) € [0,1]*® is the
vector of all site-pattern frequencies of this alignment. Thus,
the elements of f always sum up to 1. f serves as input for F-
zoneNN and is processed through 9 layers. Each layer [ takes
the data from the previous layer (except for layer 1 which
takes f as input) and applies a linear affine function A; and
a nonlinear function o; to it. We denote the dimension of the
output of layer [ with n;.

The linear function of layer I, A;(z) = W; - x + b for
x € R™-1 includes a weight matrix W; € R™*™~1 and an
offset vector b, € R™. In contrast, the nonlinear functions
act on the elements of the vectors and do not alter the vector
dimensions. For the first 8 layers o; is a Rectified Linear Unit
(ReLU) and for the last layer a sigmoid function:

B 1
T 14e 7’

Thus, F-zoneNN is the composition of 9 linear affine and
9 non-linear functions:

F-zoneNN : [0, 1]*® — [0, 1],
F-zoneNN(f) = g9 0 Ag o ... 0 05 0 Ay 0 01 0 Ay(f).

oi(z) = maz(0,z) for L =1,...,8, o9(x)

6]

If F-zoneNN’s output is > 0.5, F-zoneNN infers a Farris tree
and otherwise it infers a Felsenstein tree.

The training and testing of F-zoneNN took place on four-
taxon alignments simulated under the Jukes-Cantor model [23]
for Farris and Felsenstein trees with varying branch length
parameters p and ¢ [6]. Thus, for each training and each testing
alignment the correct tree type is known.

The 1.2 million parameters of the weight matrices W; and
the offsets b; were optimised on training data. This huge
number of trainable parameters together with F-zoneNN’s
complex structure make it impossible to understand what
drives F-zoneNN’s decisions. Therefore, we will reduce the
complexity of F-zoneNN in the next section.

A Row ‘Taxon name | Sequences Row | Taxon name | Sequences
1 Taxon A AGTT 1 Taxon B CGAT
2 |TaonB |CG AT OWIOOW2Z 5 lgonA AG T T
Gl
3 Taxon C CATC 3 Taxon C CATC
4 Taxon D CGAT 4 Taxon D CGAT
B Taxon B Taxon D Taxon B Taxon D
row 2 row 4 row 1 row 4
Taxon A N Taxon C Taxon A N Taxon C
row 1 row 3 row 2 row 3
C f(1]234) . L f(2]134)
f(13]24) is exchanged with f(14]23)

Fig. 3. Row permutation of a sample alignment (A), the corresponding trees
with taxon labelled by name and alignment row number of their sequences (B)
as well as site-patterns whose frequencies are exchanged due to the swapping
of row 1 and 2 (C).

III. SIMPLIFICATION OF F-ZONENN

We diminish the complexity of F-zoneNN by studying the
ANN itself as well as incorporating knowledge on phyloge-
netic inference.

As a first step we gradually reduced the number of layers. A
network with 3 layers still achieved a sufficient performance
whereas reducing to only 2 layers resulted in a much lower
performance. Therefore, we decided to use a network with 3
layers. Then we removed the activation function of the last
layer, all offsets b; for [ € {1,2,3} and replaced the ReLU
activation functions with square functions (see Section 1 in
the supplemental material) resulting in the function

F-zonePoly(f) = W5 - (Wa - (W - £)?)%. )

As opposed to F-zoneNN (1) which outputs a value in [0, 1]
F-zonePoly (2) assumes real numbers and infers a Farris tree
if the output > 0.

F-zonePoly (2) can be rewritten as a polynomial of degree
four. Each term is a product of one of the

15+4-1 (I5+4—1)!
< 4 > 4 (15— 1)! = 3060

possible combinations of 4 out of the 15 site-pattern frequen-
cies with repetitions [27]. For the reminder of the paper a
combination is a multiset with cardinality four, where the
elements do not necessarily have multiplicity one. These
terms are multiplied by the unknown coefficients c; with
k € {1,...,3060} which are functions of entries of the weight
matrices W, for [ € {1,2,3}. Thus, we obtain:

F-zonePoly : [0,1]*® — R,
F-zonePoly(f) =c; - f(1234)*
+co - £(1234)% - £(1]234)
+ ... + €3060 ° f(1|2‘3|4)4
To further simplify F-zonePoly, we note that 24 permuta-
tions of the four rows of an alignment are possible.
The tree is invariant under such a row permutation as a row
permutation does not change the relation of the sequences to

each other, it only changes their order within the alignment
(see Fig. 3A,B). However, the site-pattern frequencies f are

3)
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Fig. 4. The w|zyz- (A), wz|yz- (B) and w|z|yz-patterns (C). An edge connects two patterns if a swap of rows (blue) exists to transform one pattern into
the other. Note, that any combination of swaps reflects a possible row permutation and so each w|zxyz- (A), wz|yz- (B) and w|z|yz-pattern (C) can be

transformed to any pattern of the same form.

1234,12|34,

11234, 2|134 ‘&*"4

304 1234, 14|23,
11234, 4[123

2(—)3/'
1234, 13|24,
1]234,3|124

12 ( ) 12
1234, 14|23, 1234, 13|24,
2|134,3|124 2|134, 4]123

zk 1234,12(34, Aa

3|124, 41123

Fig. 5. Site-pattern combinations which are transformed to each other under
row permutations. Grey arrows between two combinations indicate that a swap
of two rows transforms one combination to the other.

not invariant under row permutations. If for example the Ist
and 2nd row of an alignment are swapped the sites with
pattern 1|234 are changed to sites with pattern 2|134 and vice
versa such that f(1]234) and f(2|134) are exchanged (see Fig.
3C). Thus, permutations of rows lead to a permutation of f
and to possibly different values of the terms in F-zonePoly
(3). To ensure that F-zonePoly produces the same values
for different permutations of the same alignment, there are
several strategies. We could train F-zonePoly by considering
all permutations as it was done for F-zoneNN [6] or we could
transform F-zonePoly’s architecture such that it is invariant
under row permutations (see e.g. [7]). However, we construct
in the following invariant input features for F-zonePoly.

Generally, each w|zyz-pattern (a site-pattern of form w|xyz
where w,x,y,z € {1,2,3,4} are pairwise distinct) can be
transformed to any other w|xyz-pattern by a row permutation
(see Fig. 4A). Similarly, each wz|yz-pattern and each w|z|yz-
pattern can be transformed to any other wz|yz-pattern and
wlx|yz-pattern, respectively (see Fig. 4B,C). Only the patterns
1234 and 1|2|3|4 do not change under row permutations.

As row permutations transform site-patterns, they also trans-
form all 3060 combinations. If, for example, the 2nd and
4th sequence in an alignment are swapped, the combination
{1234, 12|34,1|234, 2|134} is transformed to the combination
{1234,14|23,1|234, 4|123}.

To take advantage of the transformations induced by the

row permutations, we call two combinations equivalent if a
row permutation transforms them into each other. This way we
partition the 3060 combinations into 269 equivalence classes
(equivalence_classes.tsv in the online supplemental material).
For example the combinations {1234, 12|34, 1]234, 2|134} and
{1234,14|23,1|234,4|123} belong to the same equivalence
class comprising six combinations (see Fig. 5). [e] denotes a
representation of the equivalence class containing combination
e.

With this notation we can simplify F-zonePoly (3) by
summing all site-pattern frequency products whose combina-
tions are in the same equivalence class. So the 6 site-pattern
frequency products of the combinations depicted in Fig 5
are summed, i.e. the associated coefficients in F-zonePoly
are equal. Thus, we don’t need to train 269 coefficients and
therefore, the number of terms of F-zonePoly is reduced by
91%. However, a polynomial with 269 coefficients is still
complex.

To achieve a further reduction, we performed a variant
of backward elimination (see Section 2 in the supplemental
material). After 11 iterations this process converged to 21
equivalence classes (column equis_after_iterative_elimination
in the supplemental file equivalence_classes.tsv).

Subsequently, we trained a network including these 21
equivalence classes. This network is linear in the 21 sums of all
site-pattern frequency products whose combinations are part of
the same of the 21 equivalence classes. Next, we eliminated
the equivalence classes in this network one by one. In each
step the equivalence is removed which reduces the networks
accuracy the least. 1, Eo, E4 and E5 (see Table 1) were the
last four equivalence classes that were removed. Thus, F, Es,
E, and Ej5 are important for the networks accuracy.

Interestingly, Fq = [{1234, 13|24, 2|134,2|134}] and E5 =
[{1234,13|24,2|134,4]134}] look very similar. Indeed, the
combination {1234,13|24,2|134,2|134} in F; and the com-
bination {1234, 13|24, 2|134,4|134} in E» differ only by their
respective last site-pattern, which is a w|zyz-pattern. This
holds true for all combinations of F; and Fs. If we look
up the 269 equivalence classes, E'3 (see Table I) shows the
same structure as £y and FEs.
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TABLE I
THE SIX FINAL EQUIVALENCE CLASSES OBTAINED TOGETHER WITH THEIR CARDINALITY AND A DESCRIPTION OF THE PATTERNS OF EACH
COMBINATION OF THE RESPECTIVE EQUIVALENCE CLASS.

Equivalence class E

|E| | Patterns of the combination

E1 = [{1234,13]24,2]|134,2|134}] 12
multiplicity two

the wayz-pattern, one of the three wx|yz-patterns and one of the four w|zyz-patterns with

Ey = [{1234,13]24,2]134,4]134}] | 6
(see Fig. 5)

the wzyz-pattern, one of the three wz|yz-patterns and two w|zyz-patterns which isolate taxa
that are paired in the wx|yz-pattern (of which there are two choices for each wx|yz-pattern)

Es = [{1234, 13[24, 2[134, 3[134)] | 12

the wxyz-pattern, one of the three wx|yz-patterns and two w|xyz-patterns which isolate taxa
that are not paired in the wz|yz-pattern (of which there are four choices for each wz|yz-pattern)

E4 = [{4]123,4[123, 3124, 4]123}] | 12

one of the four w|zyz-patterns with multiplicity three and one of the remaining three w|zyz-

patterns
Es = [{4]123,4]123, 3]124, 3]123} two different of the four w|xyz-patterns, both with multiplicity two
Es = [{4]123,4]123, 3]124, 2]123} 12 | three different of the four w|xyz-patterns, one pattern with multiplicity two and two patterns

with multiplicity one

The combinations of F4 and Es have the same relation to
each other: For each combination in Fy, there is a combina-
tion in E5 (and vice versa) such that the two combinations
differ only in one w|xyz-pattern. And again, we find a third
equivalence class with the same structure: Fg (see Table I).

After an extensive analysis we found six equivalence classes
FE, Es, Es, By, F5 and Eg that are important to infer if an
alignment evolved under a Farris or a Felsenstein tree. In the
following, we will therefore focus on these classes and how
we can use them to distinguish between the two tree types.

IV. FROM EQUIVALENCE CLASSES TO FARFELDISCERNER

In this section we construct the simple function FarFelD-
iscerner based on Ej, Es, Fs, E4, E5 and Eg. We start by
analysing these equivalence classes. We do this with respect to
the expected site-pattern frequencies of Farris and Felsenstein
trees with varying branch length parameters p and ¢ [28].

While F-zonePoly (3) works on site-pattern frequency prod-
ucts which are straightforward to compute, FarFelDiscerner
operates on equivalence classes containing multiple combi-
nations, each of them providing one site-pattern frequency
product. To get a unique value for each equivalence class,
we compute the maximal product of E

max(E) = max{llsc.f(s)|e € E}
and the argmax
argmaz(E) = argmax{Ilsc.f(s)|e € E}.

The argmaz(E) hints on which site-patterns are large. With
the information which site-pattern is large among same struc-
tured site-patterns we can infer properties of the tree. If,
for example, 1|234 is the maximal w|zyz-frequency, then
the branch leading to the taxon of the first row is probably
comparatively long as the expected frequency of a w|ryz-
pattern is larger the longer the branch leading to the taxon of
oW w.

We first analyse E4, E5 and Eg containing only w|xyz-
patterns. Their argmax are those combining the most frequent
w|zyz-patterns.

For simplicity, we call the maximal w|zyz-frequency 41, the
second largest o, the third largest ¢3 and the smallest i4. Then
the maxima of Fy4, E5 and Eg are

maz(Ey) = i - ia,
mazx(Es) = i3 - i3,
max(Eg) = Z% . ig 'i3.

The longer the branch of a taxon w the larger the w|zyz-
frequency. Farris and Felsenstein trees include two long exter-
nal branches and two comparatively short external branches.
Therefore, i; and 7o are the expected frequencies of the
patterns isolating the long-branched taxa, while i3 is the
frequency of a pattern isolating a comparatively short branch.

Thus,
max(Es5) i

max(Ey) iy
describes the ratio of the frequencies of the w|zyz-patterns
isolating the long-branched taxa. Here, this ratio is 1 as we
assume that the two long branches are equal. On the other
hand,

max(Eg) i3

mazx(Ey) i

describes the ratio of the frequencies of a w|xyz-pattern
isolating a short-branched taxon (i3) and that isolating a long-
branched taxon (i1).

As a result the difference of the two quotients

maz(Es)  max(Es) _da i3 @
mazx(Ey) - j

max(Ey) i1 i1
increases as the difference in lengths of the long and short
branches increases. Thus, equation (4) measures the differ-
ences of the external branch lengths, but can not distinguish
between tree-types.

Now, we show that the remaining equivalence classes F1,
FEs and FE3 can distinguish between the tree-types. These
equivalence classes combine w|xyz- and wx|yz-patterns.
Therefore, argmax(E1), argmax(Es) and argmaxz(Es3) de-
pend on which branches are long and which branches are
paired. Thus, we examine the most frequent w|zyz- and
wz|yz-patterns (Fig. 6A,E) and the patterns in argmaxz(E;)
(Fig. 6B.F), argmax(Es) (Fig. 6C,G) and argmax(FE3) (Fig.
6D,H).
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Fig. 6. The plot (A-H) depict three Farris (A-D) and Felsenstein (E-H) trees with various branch lengths. Taxa highlighted green are those isolated in those
w|zyz-patterns which are most frequent (A,E), which are part of argmaxz(F1) (B,F), argmaxz(E2) (C,G) or argmaz(E3) (D,H). The green rectangles
indicate which taxa are paired in the wx|yz-pattern which is most frequent (A,E), part of argmaxz(E1) (B.,F), argmaz(E2) (C,G) or argmax(E3) (D,H).
In each plot the grey region represents the Felsenstein zone and along the dashed line p = q.

To simplify the subsequent notation, we name the taxa of
the trees A, B, C and D, the row indices of their sequences we
call a, b, ¢ and d, respectively, where a,b,c,d € {1,2,3,4}
are pairwise different. While the branches leading to taxa C
and D have length p, those leading to A and B and the internal
branch have length ¢. The Farris trees pair taxa with equally
long branches i.e. taxon A with taxon B and taxon C with
taxon D (Fig. 6A-D). In contrast the Felsenstein trees pair
taxon A with taxon C and taxon B with taxon D (Fig. 6E-
H). To treat Farris and Felsenstein trees as distinct groups, we
assume p # ¢ in the subsequent analysis.

E, = [{1234,13|24,2|134,2[134}] includes all com-
binations of a w|xyz-pattern and a wax|yz-pattern. Thus,
argmax(FE) combines the most frequent w|zyz-pattern with
the most frequent wx|yz-pattern (cf. Fig. 6 A,B,E,F). For
Farris and Felsenstein trees the w|xyz-patterns with the largest
expected frequency are the patterns isolating the taxa with the
longest branches: a|bcd and blacd if ¢ > p and c|abd and d|abe
if p > ¢ (Fig. 6A,E). Thus, one of these patterns is also the
wl|xyz-pattern of argmax(F;) (Fig. 6B,F). The most frequent
wz|yz-pattern and so the wz|yz-pattern of argmax(E7) is
for each Farris tree the pattern ab|cd which corresponds to
the taxa pairing in the tree (Fig. 6A,B). For Felsenstein trees
outside the Felsenstein zone the most frequent wzx|yz-pattern
and thus the wax|yz-pattern of argmax(E1) is ac|bd which
again corresponds to the taxa pairing in the tree (Fig. 6E,F,
white region). However, for Felsenstein trees in the Felsenstein
zone the most frequent wz|yz-pattern does not reflect the
taxa pairing in the tree (Fig. 6E, grey region). Instead, the

most frequent wx|yz-pattern and so the wx|yz-pattern of
argmax(FE;) for Felsenstein trees in the Felsenstein zone
is abled which pairs the two long branches (Fig. 6EF, grey
region).

Therefore, we can infer the pairing and the long branches
of a tree from argmax(F;) based on expected site-pattern
frequencies unless this tree is a Felsenstein tree in the Felsen-
stein zone. For these trees the wz|yz-pattern of argmaz(E)
does not hint on the taxa pairing in the tree, but on a pairing
of the two long branches. This mismatch also causes MP
to reconstruct a Farris tree for alignments evolved under a
Felsenstein tree in the Felsenstein zone [15].

The combinations of Ey = [{1234,13]24,2|134, 4]|123}]
include two w|xyz-patterns isolating those taxa that are paired
in the wzx|yz-pattern of the combination. Thus, not all combi-
nations of two w|xyz-patterns and one wz|yz are included
in Fs. Still the combination of the most frequent w|zyz-
and wzx|yz-patterns of Farris trees are in Eo as their most
frequent w|zyz-patterns isolate those taxa which are paired in
their most frequent wz|yz-pattern (Fig. 6A,C). The same holds
for Felsenstein trees in the Felsenstein zone (Fig. 6E,G, grey
region). However, unlike for Farris trees, for Felsenstein trees
in the Felsenstein zone the most frequent wz|yz-pattern does
not reflect the taxa pairing in the tree (Fig. 6E, grey region).

For Felsenstein trees outside the Felsenstein zone the two
most frequent w|zyz-patterns isolate taxa which are separated
in the most frequent wz|yz-pattern (Fig. 6E, white region).
Thus, the combination of the two most frequent w|zyz-
patterns and the most frequent wz|yz-pattern is not in Es.
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Instead, for most Felsenstein trees outside the Felsenstein
zone argmax(FEs) combines the most frequent wa|yz-pattern,
ac|bd, with one of the two most frequent w|xyz-patterns and
one of the two less frequent w|xyz-patterns (Fig. 6E,G, white
region). There are also Felsenstein trees outside but close to
the Felsenstein zone whose argmaxz(E>) combines the most
frequent w|xyz-pattern, clabd and d|abc, with abled which is
less frequent than ac|bd.

Therefore, argmax(E>) reveals the tree structure only for
Farris trees. For Felsenstein trees either the taxa pairing or the
long branches are not correctly indicated.

The combinations in E5 = [{1234,13|24,2|134, 3|124}]
include two w|xyz-patterns isolating those taxa that are sep-
arated in the wx|yz-pattern of the combination. Thus, the
combination of the two most frequent w|xyz-patterns with the
most frequent wzx|yz-pattern of a Farris tree is not included
in Fs. For Farris trees in the Felsenstein zone argmax(Es3)
combines the two most frequent w|xyz-patterns with the
pattern ac|bd pairing taxa which are separated in the Farris
tree (Fig. 6A,D, grey region). The same holds for Farris
trees outside but close to the Felsenstein zone. However, for
most Farris trees outside the Felsenstein zone argmax(Es3)
combines the most frequent wz|yz-pattern, ab|cd, with one of
the most frequent and one of the less frequent w|xyz-patterns
(Fig. 6A,D, white region). In contrast, for Felsenstein trees
outside the Felsenstein zone argmaxz(E3) combines the two
most frequent w|xyz-patterns with the most frequent wx|yz-
pattern which corresponds to the taxa pairing in the tree (Fig.
6E,H, white region). For Felsenstein trees in the Felsenstein
zone argmax(FE3) combines ac|bd, c|labd and d|abc (Fig. 6H,
grey region). This reflects the tree structure although ac|bd is
not the most frequent wz|yz-pattern (Fig. 6E,H, grey region).
Thus, argmax(E3) only reveals the tree structure for expected
site-pattern frequencies of Felsenstein trees.

Altogether, we can infer the tree structure from
argmax(FE7) as long as the expected site-pattern frequencies
are not of a Felsenstein tree in the Felsenstein zone.

From argmaz(Es) and argmaz(Es) one of the two tree-
types each is inferred correctly. Thus, argmaz(Es) and
argmax(FE3) do not help to distinguish the tree-types.

However, with the maximal products of E;, Es and Ej
we can distinguish the tree-types outside the Felsenstein zone.
For Farris trees maxz(E2) = max(E;) > max(E3) as
argmax(F) and argmax(FEy) combine the most frequent
w|zyz- and wx|yz-patterns, but argmaxz(E3) does not. The
same principle applies for Felsenstein trees in the Felsen-
stein zone. For Felsenstein trees outside the Felsenstein zone
mazx(Es) = maz(Ey) > maz(E2) holds, as argmaz(E2)
does not combine the most frequent w|xyz- and wx|yz-
patterns, but argmax(FE1) and argmax(E3) do.

Thus,

maz(Ep)  max(E3)
maz(E;1)  maz(Er)

> ( for Farris trees

NaiveDiscerner(f) =

—1_ max(E3)

mawEElg
=1- % > ( for Felsenstein trees in Fel. zone
_ maz(E3)

= man(B) 1 < 0 for Felsenstein trees outside Fel. zone.
1)

®)

If we infer a Farris tree for expected site-pattern frequencies
with NaiveDiscerner(f) > 0 and a Felsenstein tree otherwise,
then we infer the correct tree-type outside the Felsenstein zone.
However, in the Felsenstein zone a Farris tree is inferred.
Therefore, the tree-type inference with NaiveDiscerner(f)
mimics MP.

To infer the correct tree-type of a Felsenstein tree in
the Felsenstein zone, we need to reduce the value of
NaiveDiscerner(f). We do this by involving the maximal
products of E4, E5 and Eg: The term

maz(Es)  maz(Eg)
maz(Ey)
is larger the more different the branch length parameters p and
q are (see equation (4)). Thus, this difference is particularly
large for trees in the Felsenstein zone.

When incorporating this correction in NaiveDiscerner (5)
we get the function:

F-zoneRatio(f)

max(Ey)

= NaiveDiscerner(f) — ¢ <max(E5) B Inax(E6)>

max(Fy) max(Ey)
_ <max(E2) B max(E3)> . <max(E5) B max(E6)>
max(F;) max(E;) max(Fy) maX(E4)(6)

with the coefficient ¢ > 0. F-zoneRatio infers a Farris tree if
F-zoneRatio(f) > 0 and a Felsenstein tree otherwise.

The larger c the more trees are inferred as Felsenstein trees.
We want c to be large enough to infer as many Felsenstein trees
as possible correctly, but at the same time ¢ needs to be small
enough to not incorrectly infer Farris trees as Felsenstein trees.
F-zoneRatio correctly infers all trees outside the Felsenstein
zone if and only if ¢ € (0,0.9356); all Farris trees in the
Felsenstein zone if only if ¢ < 0.9286; and all Felsenstein
trees in the Felsenstein zone if and only if ¢ > 1 (Theorem
3.1, 3.2 and 3.3, online supplemental material).

Thus, there is no ¢ such that F-zoneRatio (6) correctly
infers the tree-type of all trees. However, with ¢ = 0.9286
the tree-types of all Farris trees are inferred correctly as well
as all Felsenstein trees outside the Felsenstein zone and many
Felsenstein trees in the Felsenstein zone.

Therefore, we finally define

FarFelDiscerner(f)
FEs E
_ NaiveDiscerner(£) — 0.9286 ( 22X(Fs) _ max(Fo)
max(E;) max(Ey)
_ max(Ep) max(E3) 0.9286 max(FE5)  max(Eg
- max(E;) max(E;) max(E;) max(Fy)

)

which infers a Farris tree if the FarFelDiscerner(f) > 0 and a
Felsenstein tree otherwise.

According to the previous analysis of the equivalence
classes FarFelDiscerner bases its inference on whether the
most frequent wz|yz-pattern pairs long branches with each
other (Farris tree) or with a short branch (Felsenstein tree).
However, in contrast to MP, FarFelDiscerner corrects this
inference in case the long branches are much longer than the
short branches.
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Fig. 7. Tree-type inference on expected site-pattern frequencies of Farris
(A,B) and Felsenstein (C,D) trees with varying branch lengths. We infer
a Farris tree if the first term of FarFelDiscerner, NaiveDiscerner, (A,C) or
FarFelDiscerner itself (B,D) are > 0 and a Felsenstein tree otherwise. The
correctness of the inference is indicated by the colour. In each plot the region
above the curve represents the Felsenstein zone. The values above and below
the curve represent the average accuracy in and outside the Felsenstein zone,
respectively.

V. APPLICATION OF FARFELDISCERNER

A. Expected Site-Pattern Frequencies

We numerically evaluated the accuracy of FarFelDiscerner
on the expected site-pattern frequencies of Farris and Felsen-
stein trees whose branch length parameters p and ¢ are
independently varied between 0.01 and 0.74 with a step size
of 0.01. A tree with p = ¢ is both a Farris and a Felsenstein
tree (see Fig. 1 dashed lines). To account for this property, we
also count the inference of a Felsenstein tree with p = ¢ as
correct if FarFelDiscerner outputs 0 (output rounded to 10th
decimal place).

FarFelDiscerner infers the correct tree-type for 97.5% of
the expected site-pattern frequencies (see Table II). While
the NaiveDiscerner (5) infers all Farris trees and Felsenstein
trees outside the Felsenstein zone correctly, it is always wrong
for Felsenstein trees in the Felsenstein zone (see Fig. 7A,C).
FarFelDiscerner which is the sum of the NaiveDiscerner (5)
and the correction term

B max(Fs) B max(Fg)
09286 (max(E4) max(E4)>

also infers all Farris trees and all Felsenstein trees outside the
Felsenstein zone correctly (see Fig. 7B, D below the curve).
Moreover, FarFelDiscerner infers 81.3% of Felsenstein trees in
the Felsenstein zone correctly (see Fig. 7D above the curve).

As a result FarFelDiscerner achieves a 6% greater accuracy
than the original ANN F-zoneNN [6] (see Tab. II) in the
Felsenstein zone and on average. Therefore, the simple func-
tion FarFelDiscerner outperforms the more complex function
F-zoneNN if we use the expected site-pattern frequencies as
input.

TABLE II
ACCURACY OF FARFELDISCERNER AND F-ZONENN ON EXPECTED
SITE-PATTERN FREQUENCIES OF ALL FARRIS AND FELSENSTEIN TREES
AND THOSE IN THE FELSENSTEIN ZONE.

Method Data Farris Felsenstein | Average
Trees Trees Accuracy
FarFelDiscerner | All 100.0% 95.1% 97.5%
F-zoneNN All 87.8% 94.2% 91.0%
FarFelDiscerner | Fel. zone | 100.0% 81.3% 90.6%
F-zoneNN Fel. zone | 96.4% 71.0% 83.7%
TABLE III

ACCURACY OF FARFELDISCERNER AND F-ZONENN ON ALL ALIGNMENTS
OF THE TEST DATA STEMMING FROM FARRIS OR FELSENSTEIN TREES AND
ON THOSE ALIGNMENTS OF TREES IN THE FELSENSTEIN ZONE.

Method Data Farris Felsenstein | Average
‘ ‘ Trees ‘ Trees Accuracy
FarFelDiscerner | All 78.9% 84.4% 81.7%
F-zoneNN All 83.0% 91.8% 87.4%
FarFelDiscerner | Fel. zone | 72.7% 70.9% 71.8%
F-zoneNN Fel. zone | 86.6% 68.6% 77.6%

B. Simulated Test Data

We also evaluated FarFelDiscerner on the test alignments
of F-zoneNN [6]. These test alignments were simulated under
Farris and Felsenstein trees with various branch lengths such
that the correct tree type is known. Each of the alignments has
a length of 1,000 base-pairs (bp), i.e. has 1,000 sites.

Whereas FarFelDiscerner performs better than F-zoneNN
on the expected site-pattern frequencies, this is not the case
on the test alignments of F-zoneNN [6]. On these alignments
F-zoneNN achieves a 6% larger accuracy than FarFelDiscerner
(see Table III).

The reason is F-zoneNN’s more complex structure in com-
parison to FarFelDiscerner and that it was already trained on
alignments of finite length. While F-zoneNN learned to distin-
guish noise and true signal, FarFelDiscerner relies on certain
properties of expected site-pattern frequencies which are not
always true for finite alignments. For example, f(w|zyz) >
f(z|wyz) always holds for expected site-pattern frequencies of
a tree whose branch leading to w is longer than that leading
to x. This is not necessarily the case for finite alignments
of such a tree as the noise can influence the site-pattern
frequencies such that f(w|xyz) < f(z|wyz). Nevertheless,
FarFelDiscerner achieves an average accuracy of more than
80% on the simulated test alignments (Table III).

FarFelDiscerner infers the type of tree under which an
alignment evolved, it is not able to reconstruct a tree. However,
we can involve FarFelDiscerner in the tree reconstruction by
defining a Mixed Strategy: If FarFelDiscerner infers a Farris
tree for an alignment, we use MP for the tree reconstruction
and if FarFelDiscerner infers a Felsenstein tree, we use ML.

We compared the accuracies of the Mixed Strategy using
FarFelDiscerner with several tree reconstruction methods on
the test alignments of length 1,000 bp (see Table IV). These
tree reconstruction methods are the four methods evaluated in
Leuchtenberger et al. [6]: the classical reconstruction methods
ML and MP, the Mixed Strategy using F-zoneNN (which
works analogously to the Mixed Strategy using FarFelDis-
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TABLE IV
ACCURACY OF THE MIXED STRATEGY (MIX) USING FARFELDISCERNER,
THAT USING F-ZONENN, OF NOGAP300K [5], ML AND MP ON THE TEST
DATA. THE ACCURACY IS GIVEN FOR ALIGNMENTS STEMMING FROM
FARRIS, FROM FELSENSTEIN TREES AND FOR ALL ALIGNMENTS. FOR
EACH SET-UP ALSO THE ACCURACY OF THE ALIGNMENTS STEMMING
FROM TREES IN THE FELSENSTEIN ZONE IS GIVEN.

Method Data Farris Felsenstein | Average
Trees Trees Accuracy
Mix FarFelDiscerner | All 91.7% | 84.9% 88.3%
Mix F-zoneNN All 94.0% | 84.9% 89.4%
nogap300k All 97.5% | 81.1% 89.3%
ML All 80.1% | 87.0% 83.6%
MP All 97.5% | 75.0% 86.2%
Mix FarFelDiscerner | Fel. zone | 86.7% | 59.1% 72.9%
Mix F-zoneNN Fel. zone | 90.1% | 59.5% 74.8%
nogap300k Fel. zone | 98.5% | 33.1% 65.8%
ML Fel. zone | 67.9% | 71.2% 69.6%
MP Fel. zone | 99.8% | 8.0% 53.9%

cerner) as well as nogap300k (an ANN trained by Suvorov
et al. [5] to infer quartet trees).

In comparison to the Mixed Strategy using F-zoneNN, the
accuracy of the Mixed Strategy using FarFelDiscerner is 1%
lower on average and 2% lower in the Felsenstein zone (Table
IV). Thus, the tree reconstruction accuracies of the Mixed
Strategies are more similar to each other than the tree-type
inference accuracies of F-zoneNN and FarFelDiscerner are
similar.

The ANN of Suvorov et al. [5], nogap300k, performs on
average 1% better than the Mixed Strategy of FarFelDiscerner,
but 7% worse in the Felsenstein zone (Table IV). The accu-
racies of ML and MP are, respectively, 2% and 5% lower
than the accuracy of the Mixed Strategy using FarFelDiscerner
(Table 1V).

Taken together, the Mixed Strategy using the relatively
simple function FarFelDiscerner can keep up with the black-
box-like ANNs on alignments evolved under the Jukes-Cantor
model [23] and outperforms the classical tree reconstruction
methods ML and MP.

Previously, we evaluated FarFelDiscerner on alignments
evolved on trees with two branch length parameters under
the Jukes-Cantor model [23]. To evaluate FarFelDiscerner’s
performance under more general circumstances, we next apply
it to resolve the placement of Strepsiptera with respect to flies
and beetles (see Fig. 2).

C. Empirical Holometabola Alignments

1) Background: The placement of Strepsiptera with respect
to flies and beetles (see Fig. 2) was one of the earliest
discussed cases of LBA [21], [22]. The original sequence
data gathered by Carmean and Crespi [21] consists of 18S
ribosomal DNA sequences of Strepsiptera, Coleoptera (bee-
tles), Diptera (flies) and other Holometabola. From these
Holometabola sequences 24 quartet-alignments were formed
i.e. alignments of four sequences: Each quartet-alignment in-
cludes the Strepsiptera sequence, one of two beetle sequences,
one of two fly sequences and one of six sequences of other
Holometabola. In contrast to other sequences considered in this
paper, the Holometabola sequences most likely didn’t evolve

TABLE V
ACCURACY OF FARFELDISCERNER AND STREPSIPTERANN ON THE TEST
DATA OF STREPSIPTERANN.

Method Farris Felsenstein | Average
Trees Trees Accuracy

FarFelDiscerner | 78.5% 91.5% 85.0%

StrepsipteraNN 90.9% 87.3% 89.1%

under the Jukes-Cantor model [23] or on a tree with only two
different branch lengths.

To resolve the placement of Strepsiptera, Leuchtenberger
et al. [6] trained the ANN, StrepsipteraNN, on simulated
alignments resembling the original 24 quartet-alignments. The
input of StrepsipteraNN are the frequencies of all 256 site-
patterns instead of the 15 collapsed site-pattern frequencies,
as it can not be assumed that the Holometabola sequences
evolved under the Jukes-Cantor model [23]. The greater
complexity of the input data also affects the total number
of parameters in StrepsipteraNN. With around 5.9 million
parameters, StrepsipteraNN has more than four times as many
parameters as F-zoneNN.

2) Evaluation of FarFelDiscerner on Holometabola Align-
ments: We identified the equivalence classes of FarFelDis-
cerner by simplifying F-zoneNN, an ANN trained and de-
signed on alignments evolved under a Jukes-Cantor model
[23] and on trees with only two different branch lengths.
However, FarFelDiscerner’s decision process is based on
properties of the expected site-pattern frequencies which are
mostly not specific to those assumptions. We therefore applied
FarFelDiscerner without further adaption to the test data of
StrepsipteraNN i.e. the alignments simulated to resemble the
Holometabola sequences gathered by Carmean and Crespi
[21].

On this test data FarFelDiscerner performs on average with
an accuracy of 85% only 4% worse than StrepsipteraNN (Table
V). This is especially striking as StrepsipteraNN (in contrast
to FarFelDiscerner) was specifically trained to resolve the
placement of Strepsiptera.

As FarFelDiscerner successfully distinguishes between Far-
ris and Felsenstein trees based on simulated alignments, we
also applied it to the 24 empirical quartet alignments of
Holometabola sequences.

For all 24 quartets FarFelDiscerner < 0 and thus infers a
Felsenstein tree. This is only due to the correction term

max(F5) max(FEg)
09286 (max(E4) a max(E4)>

of FarFelDiscerner. The other part of FarFelDiscerner, the
NaiveDiscerner (5), is greater than 0 as the most frequent
wz|yz-pattern of all quartets induces a pairing of the long-
branched taxa, Strepsiptera and flies. Therefore, FarFelDis-
cerner suggests that all quartet alignments stem from Felsen-
stein trees in the Felsenstein zone and places Strepsiptera with
the beetles and distant to the flies (cf. Fig. 2B).

This result is concordant with that of StrepsipteraNN (in-
ferred a Felsenstein tree for 99.7% of the quartets [6]) as well
as with the current scientific view (see [29], [30]). Altogether,
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this implies that FarFelDiscerner is not specific for the Jukes-
Cantor model [23] or for trees with only two different branch
lengths, but that it can also be applied to alignments evolved
under a more complex model of evolution and/or on trees with
multiple different branch lengths.

VI. CONCLUSION

In this study we constructed the simple function FarFelD-
iscerner (7) which distinguishes Farris from Felsenstein trees.
Starting with the complex ANN F-zoneNN [6] we iteratively
reconstructed a simple function FarFelDiscerner. Based on F-
zoneNN we reduced the problem to a fourth-degree poly-
nomial. However, without F-zoneNN we would never have
had the idea that a fourth-degree polynomial can be used
to distinguish Farris and Felsenstein trees. Only the desire
to simplify the structure of F-zoneNN to the point where
the underlying function is human understandable led to the
construction of the fourth-degree polynomial F-zonePoly (3).
And without the polynomial structure of F-zonePoly, in turn,
we would not have identified the equivalence classes of site-
pattern combinations underlying FarFelDiscerner. Thus, only
the simplification of F-zoneNN enabled us to construct the
simple function FarFelDiscerner.

This simple function is essentially using six equivalence
classes and their maximal products to relate w|xyz- and
wz|yz-patterns and thus which branches are long and which
are paired. This way FarFelDiscerner can distinguish between
alignments stemming from trees pairing the long branches
(Farris trees) and those pairing long with rather short branches
(Felsenstein trees).

On the expected site-pattern frequencies FarFelDiscerner
achieves an almost perfect accuracy in distinguishing the tree
types. Moreover, FarFelDiscerner can also distinguish Farris
and Felsenstein trees based on finite alignments simulated
under the Jukes-Cantor model [23]. A Mixed Strategy choos-
ing the tree reconstruction method based on FarFelDiscerner’s
output is even more accurate than ML or MP and similar to the
significantly more complex ANNs F-zoneNN and nogap300k.

Further, we demonstrated that the mechanism of FarFelDis-
cerner works also for the empirical Holometabola alignments
whose sequences evolved naturally rather than according to a
theoretical substitution model.

Therefore, we showed that the construction, training and
subsequent simplification of an ANN led to a simple function
performing the same task as the ANN but whose decisions are
understandable.

We are aware of the fact, that F-zoneNN is a rather simple
feed-forward neural network acting on data with specific prop-
erties. The simplification process is not directly transferable
to other ANNSs. Nevertheless, based on our results, we believe
that a simplification can also work for other ANNs. A simpli-
fication is especially promising if there is a lot of knowledge
available regarding the ANN task and the structure of the
input data. As shown in our case a successful simplification,
even if laborious, is worthwhile as it can provide valuable new
insights. Without using F-zoneNN as a starting point we would
not have identified FarFelDiscerner.
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