
IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 1

Resisting Skew-accumulation for
Time-stepped Applications in the Cloud via

Exploiting Parallelism
Yu Zhang, Xiaofei Liao, Member, IEEE, Hai Jin, Senior Member, IEEE, and Geyong Min

Abstract—Time-stepped applications are pervasive in scientific computing domain but perform poorly in the cloud because
these applications execute in discrete time-step or tick and use logical synchronization barriers at tick boundaries to ensure
correctness. As a result, the accumulated computational skew and communication skew that were unsolved in each tick can
slow down time-stepped applications significantly. However, the existing solutions have focused only on the skew in each tick
and thus cannot resist the accumulation of skew. To fill in this gap, an efficient approach to resisting the accumulation of skew
is proposed in this paper via fully exploiting parallelism among ticks. This new approach allows the user to decompose much
computational part (also called asynchronous part) of the processing for an object, into several asynchronous sub-processes
which are dependent on one data object. Each sub-process from different ticks can then proceed in advance using the idle time
whenever the needed data object is available, redressing the negative effects caused by accumulated unsolved computational
and communication skew. To efficiently support such an approach, a data-centric programming model and also a runtime system,
namely AsyTick, coupled with an ad hoc scheduler are developed. Experimental results show that the proposed approach can
improve the performance of time-stepped applications over a state-of-the-art computational skew-resistant approach up to 2.53

times.

Index Terms—Time-stepped applications, computational skew, communication skew, asynchronous execution, parallelism

F

1 INTRODUCTION

MANY important scientific applications are orga-
nized into logical time steps or ticks. Examples

of such time-stepped applications include behavioral
simulations [1], [2], [3], [4], and n-body problem [5],
[6], [7], [8] and also are pervasive in graph algorithm-
s [9], [10], [11], [12], scientific computing [13], [14]
and so on. Recently, these applications have again
attracted much attentions because they are becom-
ing instrumental in characterizing physical, ecologi-
cal, and societal systems. For example, transportation
simulations are used to predict road condition and
help with transportation engineering. This proves to
be very helpful in mitigating traffic congestion, which
costed $12.1 billions in 2011, and produced 56 billion
pounds of carbon dioxide (CO2) pollution [15].

Currently, in order to better understand real-world
phenomena, the data sets needed to be processed by
time-stepped applications become even larger scale
than before. To redress this challenge, the Cloud [16]

• Yu Zhang, Xiaofei Liao and Hai Jin are with Service Computing
Technology and System Lab, Cluster and Grid Computing Lab, School
of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan, 430074, China.
E-mail: zhang yu9068@163.com; {hjin, xfliao}@hust.edu.cn

• G. Min is with the Department of Computing, School of Computing,
Informatics and Media, University of Bradford, Bradford BD7 1DP,
U.K.
E-mail: g.min@brad.ac.uk

is evolving as a new platform to support such large-
scale applications for its inexpensive cost and highly
scalability.

However, these applications perform poorly in the
Cloud due to the use of logical synchronization barri-
ers at tick boundaries, despite the proposition of par-
allel dataflow frameworks including MapReduce [17],
Dryad [18]. Although these applications are typically
highly data parallel within each tick, the end of each
tick is a logical barrier to ensure correctness. The com-
putation in the next tick can only proceed after the end
of the previous tick. As a result, the completion time
of straggler in each tick and the time to send its results
for the next tick dominate the execution efficiency of
these applications. Unsolved computational skew and
communication skew in each tick are accumulated
and thus slow down these applications.

The current solutions [5], [19], [20], [21], [22] pri-
marily aim to resist computational skew among tasks
via partitioning data in consideration of their charac-
teristics and then resist computational skew among
workers via migrating the straggler or redistributing
tasks. On the other hand, other solutions aim at the
communication skew caused by network jitter [23],
[24], [25] via fine grained synchronization and com-
putational replication. However, for time-stepped ap-
plications subject to these approaches, unsolved com-
munication skew caused by network jitter or unsolved
computational skew in each tick is still accumulated
with the increase of ticks because of barriers.

zhangyu
高亮

zhangyu
高亮

zhangyu
高亮

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 2

In reality, for some time-stepped applications, there
is amount of parallelism existing among ticks, espe-
cially for the applications with localized effect proper-
ty. In these applications, much computational part, or
called asynchronous part, of the processing for data
objects in each tick can be asynchronously executed in
advance, whenever its needed data object is available.
Furthermore, for some time-stepped applications with
localized effect property, such as behavioral simula-
tion, a data object’s value can only affect a few other
data objects within a single tick and its value may only
affect some data objects after several ticks. In other
words, the process of an object in subsequent ticks
may only be dependent on a few objects’ information
at current tick. Therefore, for these applications, sub-
processes from numerous different ticks can be asyn-
chronously executed in a parallelism way, whenever
its needed data object is available. Then the idle time
caused by unsolved skew can be used to execute these
asynchronous parts, relieving the negative effects of
skew-accumulation caused by barriers.

In this paper, we propose a data-centric program-
ming model to exploit these asynchronous parts in
each tick, resisting the accumulation of skew. It pro-
vides users several interfaces to make them easily ex-
press what parts can be asynchronously executed and
also ensure the correctness of applications at the same
time. Then the asynchronous part of the processing for
an object is decomposed into several sub-processes.
Whenever a data object needed by such a sub-process
is available, this sub-process of subsequent tick can
be executed in advance via utilizing the idle time
of workers caused by unsolved skew in current tick,
resisting the accumulation of negative effects caused
by skew in each tick. When the information of all its
needed data objects is available and processed, the
synchronous part of the processing for this object will
be executed and immediately outputs its current state
information to asynchronous sub-process of related
objects for the next tick to process, ensuring the
correctness.

Experimental results show that the computation-
al imbalance degree and communication imbalance
degree of current solutions are even up to 3.3 and
0.61, respectively. The ratio of asynchronous part is
more than 85.7%, and our approach can improve
the performance of time-stepped applications with a
state-of-the-art approach up to 2.53 times via resisting
the accumulation of its unsolved skew.

The major contributions of this paper include:
1) An efficient approach is proposed for time-

stepped applications to exploit asynchronous
parts and achieve more parallelism, redressing
the negative effects caused by accumulated un-
solved computational and communication skew.

2) We propose a data-centric programming model
allowing users to easily express asynchronous
parts and also implement a runtime system cou-

pled with an ad hoc scheduler for time-stepped
applications to support the efficient execution of
asynchronous parts.

3) This study reveals quantatively how much un-
solved computational skew and communication
skew exist in time-stepped applications subjec-
t to the current solutions in the Cloud. Then
it presents the ratio of asynchronous parts in
each benchmarks and also shows how much un-
solved skew can be eliminated by our proposed
approach, followed by thorough performance
comparison against state-of-the-art solutions.

The rest of this paper is organized as follows: Sec-
tion 2 presents a survey of the related work. Section 3
illustrates the motivation, main ideas and challenges
of our approach. The implementation details of this
approach are described in Section 4, followed by the
thorough analysis of experimental results in Section 5.
Finally, the paper is concluded in Section 6.

2 RELATED WORK

Logical barriers that are employed to ensure the
correctness of time-stepped applications make their
performance suffer from computational skew and
communication skew. Currently, many solutions have
been proposed to eliminate computational skew and
communication skew respectively.

Solutions for computational skew: Numerous ap-
proaches have been proposed to balance computation-
al skew. For example, PowerGraph [21] tried to tackle
the challenges of highly skewed power-law graphs
for distributed graph applications, via partitioning
and processing edges for each vertex over machines.
SkewReduce [5] aimed at the scientific applications,
where different partitions take vastly different amount
of time to run even if their input datasets have the
same size. SkewReduce proposed to determine how
to partition the input data with user defined cost
function to minimize the impact of computational
skew for these applications.

When some nodes in the cluster become idle, Skew-
Tune [20] identified the task with the greatest expect-
ed remaining processing time for MapReduce, then
proactively repartitioned unprocessed input data of
this straggling task to fully utilize the nodes in the
cluster. Pearce et al. [26] proposed a load model for
load balance algorithms based on application ele-
ments and their interactions to guide the selection of
load balance algorithms.

Lifflander et al. [22] proposed persistence-based
load balancers to redistribute the work to be per-
formed in a given iteration based on measured per-
formance profiles from previous iterations. They al-
so presented retentive work stealing for applications
with significant load imbalance within a phase, or
applications with workloads that cannot be easily pro-
filed. Ananthanarayanan et al. [19] proposed a mantri

zhangyu
高亮

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 3

system, which classifies the reason of the skew for
MapReduce task into three classes. Then this system
monitors and analyses these reasons in advance, and
takes related actions to reduce the negative effects
caused by these reasons respectively via restarting,
migrating and replication.

Solutions for communication skew: Significant
efforts have been made in the HPC community to
optimize communication for time-stepped applica-
tions [27], [28], [29]. However, these optimization tech-
niques were developed using a model of fixed and un-
avoidable latency for sending a message across a ded-
icated network, but not for the unstable and unpre-
dictable latency that characterizes the Cloud. Asyn-
chronous communication primitives facilitate commu-
nication hiding, and many bulk synchronous applica-
tions use these primitives to overlap computation and
communication. These optimizations work best when
communication latency is uniform and predictable,
and it is difficult in practice to characterize their
effectiveness [30].

Some studies [31] proposed to avoid communica-
tion at the expense of performing some redundant
computation. While communicating less often certain-
ly helps, this technique alone cannot deal with latency
spikes. Furthermore, it can only be applied to appli-
cations whose computational logic can be formulated
as a sparse linear algebra problem. This specialization
significantly impairs the productivity of scientists who
want to develop new applications without regard of
which optimizations to use for communication.

Zou et al. [23] tried to tolerate network jitter via
fine grained synchronization and computational repli-
cation, which replaces global barriers with local syn-
chronization, and also introduces the idea of compu-
tational replication to get needed data and completes
the current tick in the absence of incoming messages.
However, it still needs much synchronization between
iterations and causes serious accumulation of skew.

Speculative execution: For the straggler problem
in BSP model, some works [32], [33] propose to
support it based on speculative execution. However,
they either need to give up the computation which is
based on stale value or just are best-effort approaches,
in which its results may have error. For example,
FastTrack [32] needs to give up the computation
which is based on stale value. Thus, for large-scale
algorithms, it may cause significant runtime overhead.
The best-effort approaches [33] are calculating approx-
imate results and are only suitable to the algorithms
accepting approximate results. Unfortunately, the ap-
proximately results are useless for time-stepped appli-
cations, such as behavioral simulation. Our proposed
approach is not based on speculative execution. The
results of our sub-processes are bound to be used for
the calculation of the final results of a data object,
although it is only a partial result.

Compared with current solutions: In summary,

the current solutions only focus on computational
skew and communication skew in each tick. On one
hand, they partition data in consideration of their
characteristics to resist skew among tasks and mi-
grate the straggler or redistributing tasks to resist
skew among workers. On the other hand, they resist
communication skew via fine grained synchroniza-
tion, computational replication and so on. However,
for time-stepped applications with these approaches,
unsolved computational skew or unsolved commu-
nication skew in each tick will be accumulated with
the increase of ticks because of barriers. To address
this problem, this paper proposes a data-centric pro-
gramming paradigm for time-stepped applications to
exploit asynchronous parts and get more parallelism,
resisting the accumulation of skew.

3 THE PROPOSED APPROACH

This section firstly describes the benefits of extract-
ing and asynchronously executing asynchronous part
to resist the accumulation of skew via an example.
Other time-stepped applications also have the similar
property and thus can get such benefits in the same
way. We then present the main ideas and challenges of
the proposed method. The goal of this paper is to en-
able scientists to easily express and efficiently execute
those asynchronous parts for each tick, resisting the
accumulation of negative effects caused by unsolved
skew in each tick.

3.1 Motivation
In this part, we take fish school simulation as an
example to show the benefits of extracting and asyn-
chronously executing the asynchronous part with re-
gard to resisting skew-accumulation.

Fish school simulation is employed by Couzin et
al. [1] to study information transfer in schools of fish.
Within a tick, each fish agent inspects the current
velocities of other visible fish to determine its new
velocity for the next tick, where two parameters V
(visibility) and R (reachability) determine how far
a fish can see or move within a tick. In addition,
informed individuals balance these social interactions
with a preferred direction (e.g., a food source) to
determine movement.

The processing of a tick is data parallel as in Al-
gorithm 1. Each worker executes the tick logic for
each fish agent independently, calculating its new
state round by round, where the processing of a fish
requires access to the state of all neighbor fish within
its context C, which is a set of fish in a scope specified
by parameter V . Note that Algorithm 1 just describes
the fish school simulation with a fish, to simplify
the description of benefits. In practice, objects are
processed in blocks.

However, as described in Algorithm 1, the pro-
cessing for each fish can be executed only when the

zhangyu
高亮

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 4

Algorithm 1 The fish school simulation algorithm
Require: Fish f , State C
Ensure: f //Information of fish f for the next tick.

1: for each fish g in context C do//where g is visible
to f

2: . . . //Computes influence of g to f .
3: end for
4: . . . //Computes the preferred direction for fish f .
5: return f

Algorithm 2 Asynchronous fish school simulation
algorithm

1: #define Begin Ad
2: #define End(f) if(Barrier(f)) Jump //If a fish in

context of fish f is not processed, it jumps to the
address Ad described as in Line 1.

Require: Fish f
Ensure: f //Information of fish f for the next tick.

3: Begin
4: Fish g ← Get(f)
5: . . . //Computes the partial contribution value

PartialStatenew of g to f .
6: Update(f , PartialStatenew)
7: End(f)
8: . . . //Computes the preferred direction for fish f .
9: Set(f , value)

10: //Spreads the new calculated information of fish
f to related fish for the processing of the next tick.

11: Diffuse(f).

information of all fish at the previous tick is available.
If the information of a fish is unavailable because of
computational skew or communication skew in cur-
rent tick, the execution of this function in subsequent
ticks needs to wait, and the processing of fish f for
subsequent ticks can not proceed. Then the execution
of subsequent ticks is delayed. Consequently, the neg-
ative effect of skew caused in each tick is accumulated.

In reality, the mobility of a fish is limited and may
only affect some fish’s behavior after several ticks. In
other words, the process of a fish in subsequent ticks
may only be dependent on a few fish’s information at
current tick. Therefore, we can consider whether this
accumulation of unsolved skew can be redressed by
exploiting the idle time of workers to asynchronously
execute some computation of its subsequent ticks in
advance. For example, the code from Line 1 to Line 3
of Algorithm 1 can be asynchronously executed as in
Algorithm 2. In this way, the asynchronous part (from
Line 3 to Line 7) at subsequent ticks can be executed in
advance whenever the information of a fish in context
C is available. Moreover, as shown in Section 5,
its asynchronous part is up to 85.7%, showing the
fact that much computation in subsequent ticks can
be executed in advance, compensating the negative
effects of unsolved skew in current tick and resisting

the accumulation of skew.

3.2 Main ideas

As discussed in Section 3.1, due to logical barriers,
the performance of time-stepped applications suf-
fers from the accumulation of computational skew
and communication skew unsolved by current skew-
resistant approaches. Fortunately, this problem can
be tackled via executing asynchronous part of sub-
sequent ticks in advance as discussed in Section 3.1.

Consequently, we propose an efficient approach for
time-stepped applications to express asynchronous
parts and fully exploit its inherent parallelism, re-
dressing the negative effects caused by accumulated
unsolved computational and communication skew.
This approach then allows the user to decompose
the asynchronous part of the processing for an ob-
ject into several asynchronous sub-processes. The idle
time caused by unsolved skew in each tick can be
employed to execute asynchronous sub-processes at
subsequent ticks, whenever the required data object
is available.

In this way, the negative effects of unsolved compu-
tational skew or communication skew in the current
tick can be redressed via executing asynchronous
part of its subsequent ticks in advance. When the
information of all data objects required for an object is
available, the remaining synchronous part (e.g. Line 8
to Line 11 as in Algorithm 2) will be executed for
this object and immediately output its current state
information to asynchronous sub-processes of related
objects for the next tick, ensuring the correctness.

3.3 Challenges and solutions

As shown in the above discussion, to ensure the cor-
rectness of our approach, synchronous part of objects
can be executed only when the information of all
the needed objects is available. In this section, we
show how to make an object efficiently know when
its synchronous part can be executed.

Although an object does not know exactly what
objects are needed by it, fortunately, it can easily know
the objects of which partition are needed through
location and given application parameters. Take the
fish school simulation as the example, a fish can
easily know these partitions via the parameters R
and V , because the scope where a fish can move
or see is limited, and a fish only interacts with fish
in this scope. So, our approach uses the completion
condition of these partitions to determine whether the
synchronous part of an object can be executed. Note
that in our approach all objects are range-partitioned
across nodes just to leverage the better data locality
and reduce communication cost, because each object
only interacts with the objects in its context C, which
is a set of objects specified by users.

zhangyu
高亮

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 5

Receive the information coming from its a

neighbor piece

Process this received information in an

asynchronous way

Merge calculated contribution of the received

information into its objects

Execute synchronous part of all its objects to get

the new information of its objects for the next tick

Diffuse the new calculated information of its
objects to its neighbor pieces for the next tick

Judge whether the

information of all its

specified neighbor

pieces is available

No

Yes

Fig. 1. Execution progress overview of a tick for a
piece.

However, in this way, an object may wait for the
end of the processing for many unnecessary objects
in its neighbor partitions. Moreover, objects even in
the same partition also need an individual notifica-
tion respectively, inducing strict synchronization and
much communication cost.

To increase parallelism and reduce communication
cost for the above method, we further divide the
partition into several pieces for each worker, and
make them synchronize with piece as unit. That is to
say, it divides the partition processed in each worker
into several pieces. When all objects in a piece are pro-
cessed, this piece notifies all pieces that are dependent
on it. Then all asynchronous parts of objects in these
notified pieces can be executed in advance. Note that
the piece itself is also taken as an exotic piece and
notifies itself to calculate its own contribution to its
objects for the next tick. After all needed pieces are
processed for a piece, all synchronous parts of those
objects in this piece can be executed, and output the
results to related pieces for the next tick to process
as above discussed again. The execution progress
overview of a tick is described in Fig. 1.

Take the fish school simulation as the example, a
partition for a worker is further divided into many
pieces. Each piece tries to get information of its neigh-
bor pieces, and then processes related asynchronous
parts of all its fish together whenever a needed piece
is available. Note that the information of fish in
each piece is always available to this piece itself for
processing of the current tick. After the information
of all its needed pieces is available and processed,
synchronous part of all its fish is processed together
and outputs the information of all its fish to its
neighbor pieces for the next tick to process.

4 IMPLEMENTATION

This section presents the implementation details of
the approach discussed above. It mainly presents a

TABLE 1
Programming interface

Interface
Get(piece P)
Get the object information of a piece needed by piece P .
Update(object O, state)
Merge the new calculated partial state into object O. Its results
are stored in an intermediate value list, described in the next
part.
Diffuse(piece P)
Spread the information of objects in piece P to its neighbor
pieces for the next tick.
Barrier(piece P)
Check whether the information of all pieces needed by piece
P are available.
Set(object O1, object O2)
Set the value of O1 with the value of O2.
Termination()
Check whether the user specified termination condition is met
after each tick.
Divide(space S)
Divide all objects in simulation space S into several sized
partitions. Then all these partitions are automatically assigned
to different workers to process.
Partition(partition P)
It is used to further divide partition P into several equal sized
pieces for each worker.

data-centric programming model and also develops
an efficient runtime system to make the asynchronous
part of time-stepped applications easily expressed and
efficiently executed.

4.1 Programming model
This part describes the data-centric programming
model that is used to easily express and extract the
asynchronous part.

In each tick, the processing of each piece, in real-
ity, can be mainly abstracted as follows: 1) it asyn-
chronously receives and processes the information
coming from its neighbor pieces to get the contribu-
tion of the received information to the final results
of this piece, then merges this calculated contribution
into its objects; 2) Judge whether all the needed infor-
mation of its neighbor pieces is available; 3) When all
the information is available, it executes synchronous
parts of all its objects to get the new information of
its objects for the next tick, and then diffuses its new
final information to its neighbor pieces for the next
tick to process. Otherwise, it goes back to Step 1 again
for processing of the remained neighbor pieces in the
future.

So, the processing of each piece needs Get() op-
eration to asynchronously get the information of its
a neighbors piece. Then it processes this received
information and calculates the partial contribution of
this received information to objects in its piece. Later,
it uses Update() operation to asynchronously merge
the new calculated partial contribution into objects in
its piece. Finally, Diffuse() is used to spread the new
information of this piece to its neighbor pieces for the
next tick.

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 6

Asynchronous execution()

{

 Begin

 get() //Gets the information of its a neighbor piece

 … //Processes the received information

 update() // Merges the calculated value into its objects

 End //The code between Begin and End is the asynchronous part

 … // Executes the remaining synchronous part of all its objects

 // Diffuses the new information of all its objects for the next tick

 Diffuse()

}

Fig. 2. A general example of employing the proposed
programming model to process a piece in a tick.

Those functions that require application developers
to instantiate are summarized in Table 1. Fig. 2 gives
a general example to employ such a programming
model. The asynchronous part is abstracted by the
block between macro Begin and End. The Barrier()
in macro End is used to determine whether the code
needs to go back to Begin. When the information of
needed pieces is not all available, macro End will
make the executing code go back to Begin, to process
the information of the unprocessed pieces that will be
received in the future. Otherwise, the code following
End of this piece can be executed. In reality, the
code following macro End is the code that cannot be
asynchronously executed or called synchronous parts.

Now, we show how to employ such a programming
model to express the above discussed fish school sim-
ulation. The details are described as in Algorithm 3.
From this algorithm, we can observe that the code
from Line 3 to Line 11 is the asynchronous part. It
can be executed whenever its needed information is
available. Moreover, the asynchronous part of the next
tick can be executed in advance via employing the
idle time caused by unsolved skew in the current
tick. However, because the remained code following
Line 11 needs that the information of all fish is avail-
able, the negative effects caused by this synchronous
part still exist. Fortunately, the asynchronous part
occupies most of the total execution time of each tick
as discussed in the following section. Consequently,
our approach can efficiently resist the accumulation
of unsolved skew in each tick.

4.2 AsyTick
To efficiently support the above discussed program-
ming model and the execution of asynchronous part,
a running system, namely AsyTick, is presented in
this part. AsyTick also provides an efficient scheduler
based on the characteristics of time-stepped applica-
tions in order to further reduce the negative effects
caused by the accumulation of unsolved skew.

4.2.1 Architecture
AsyTick framework contains a master and multiple
workers. Its architecture is presented as in Fig. 3.

Algorithm 3 Refined asynchronous fish school simu-
lation algorithm

1: #define Begin Ad
2: #define End(G) if(Barrier(G)) Jump //If a piece in

context of group G is not completed, it jumps to
the address Ad described as in line 1.

Require: FishGroup G //G contains the information
of all fish in a piece.

Ensure: FishGroup G
3: Begin
4: FishGroup Gget ← Get(G)
5: for each fish g in Gget do
6: for each fish f in G, and g is visible to f do
7: . . . //Computes the partial contribution

value of g to fish f .
8: Update(f , PartialStatenew)
9: end for

10: end for
11: End(G)
12: for each fish f in G do
13: . . . //Computes the preferred direction for fish

f .
14: Set(f , value)
15: end for
16: //Spreads the information of each fish in G to

related pieces for the processing of the next tick.
17: Diffuse(G)

The master coordinates the workers and monitors
the status of workers, each of which contains and
schedules several user tasks (user code) to process
different pieces, respectively. Moreover, these user
tasks are executed in threads and communicate with
others via passing messages. Those tasks in the same
worker communicate with each other through logical
messages, which is simulated by the shared memory
of this worker.

Logical messages are used to communicate so as
to make the execution of tasks message-driven and
enable an object to know whether all objects on which
it depends on have been processed. This is because it
is different from periodical information pulling that
causes much delay even if the information is already
available, and also is unlike arbitrarily information
pulling that induces frequent communication and
much overhead. In order to reduce its communication
overhead, AsyTick also aggregates those messages
that are sent to the same node.

AsyTick works as follows. At the beginning, each
worker loads a subset of data objects into memory,
and makes them shared by its tasks. These data objects
are grouped into units of pieces, according to their
locality. That is to say, all data objects in the same
piece are stored in the same piece element. All pieces
in the same worker are maintained in a local in-
memory key-value store, namely state table.

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 7

Worker

Master

Worker

User code

R
eceiv

e

M
essa

g
es

d
istrib

u
tio

n

User code

G
et

D
iffu

se

B
a
rrier

User code

Synchronization

Table

...

Fig. 3. AsyTick Architecture Overview.

Each entry of the state table corresponds to a piece
indexed by its key. And each table entry contains three
fields. The first field stores the key value j of a piece;
the second field stores its tick number; the third field
stores a value list of contained data objects for this tick
and a related intermediate value list for each object.
This intermediate value list contains several values
needed by the synchronous parts of each object. Note
that these intermediate values are calculated by those
asynchronous sub-processes, and will finally be used
to calculate the new value of each object for the next
tick by the synchronous parts.

Whenever a message is received by a worker, it
picks up a piece of data objects recorded in this mes-
sage, uses Messages distribution Module to redistribute
the information of these data objects to related user
tasks and then immediately trigger the execution of
these tasks. When a task is triggered, it immediately
processes its received data objects and merges calcu-
lated contribution of these data objects’ information
into the intermediate value list of related data objects.
Later, the function Barrier() in macro End judges
whether all needed pieces are available for the piece
processed by this task.

To know when all needed pieces are available for
a piece, the synchronization table is employed to
record which pieces are already available. All this
information can be gained according to the message
received by this worker. When a message is received
by a worker, its Messages distribution Module makes
the synchronization table record the key value of all
those pieces contained in this message. Then, these
records are employed by Barrier() in each user task to
determine whether all its needed pieces are processed.

After all needed pieces are available for a piece,
the synchronous part of all objects in this piece can
be executed. It calculates the new value of objects
for the next tick based on the value recorded in
the intermediate value list. At the same time, for
some applications, some data objects also need to be
inserted into related piece for the next tick. This is
because some objects of a piece may move to another
piece at the new tick for some applications, e.g. fish
school simulation. Then the process of this piece for
the current tick ends.

TABLE 2
The summary of notations

Notation Description
P A piece containing many objects.
Pri(P) The priority of piece P .
D(P) The shortest distance of piece P to one boundary of

the partition containing it. This value is calculated
once only, when runtime initially divides partition
into pieces for each worker.

N (P) The tick number of piece P .

4.2.2 Scheduler

AsyTick also provides an ad hoc scheduler to effi-
ciently support the execution of asynchronous part
and to further reduce the negative effects caused by
accumulation of skew, based on the characteristics of
time-stepped applications.

In AsyTick, each worker owns a scheduler, which
schedules the asynchronous part processing order of
all its pieces. It realizes this scheduling via assigning
the processing order of pieces that are waited by asyn-
chronous parts. If a worker needs the asynchronous
part of a piece to be executed, it just needs to make the
information of its needed piece available via Messages
distribution Module. Then it can wake up the thread,
which is executing the asynchronous part of this piece.
The details of priority definition are described as
follows.

Firstly, we present what factors should be in the
consideration of the priority definition. Because time-
stepped applications have strong data locality, each
object only interacts with its nearby objects. The pro-
cessing of each object in time-stepped applications
always only needs the information of its neighbor ob-
jects. Then it can parallelize the processing of objects
inside this partition and more objects in its neighbor
partitions for the next tick via firstly processing the
piece that is the nearest one to boundaries of this
partition. Then more workers can process objects
of their own partition in parallel, further redressing
skew accumulation. Consequently, the scheduler can
employ the distance between the centre of piece and
boundaries of partition as a factor of the priority.

Because some objects of different ticks may need
to be processed on the same worker, the scheduler
should firstly schedule the objects of the earlier ticks,
and make the partition of the earlier ticks completed
quicker, reducing the waiting time of the processing
for its subsequent ticks.

Now, we present how to define the priority for each
piece. From the above discussion, we can find that
the priority for each piece is mainly related to the
following two factors: 1) its distance to the boundaries
of the partition containing it; 2) its tick number. Conse-
quently, we can define the priority Pri(P) of piece P as

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 8

follows, and all notations are summarized in Table 2.{
Pri(P) = α×D(P) + β × N(P)
α+ β = 1

, (1)

where α and β are constant value to adjust the pro-
portion of D(P) and N (P) in Equation (1). Note that
because D(P) of some time-stepped applications, such
as PageRank, is difficult to be calculated, it is selected
as a part of priority for scheduler, thus α may be
assigned with the value of 0. Obviously, the value
N (P) is more important than D(P), and β should be
set larger than α. In this way, it can firstly process the
piece with the earliest tick. If there are several pieces
of the same tick in a partition processed by a worker,
this worker tries to firstly process the piece that is the
nearest one to boundaries of the partition owning this
piece.

5 EXPERIMENTAL RESULTS AND EVALUA-
TION

In this section, we first investigate how much un-
solved computational skew and communication skew
still exist in time-stepped applications subject to the
current solutions, and then show how much such
unsolved skew can be eliminated by the proposed
AsyTick. Finally, the performance of AsyTick is evalu-
ated thoroughly, followed by the investigation of the
impact of data size and the number of pieces on its
performance.

Platform and benchmarks: The hardware platform
used in our experiments is a Cluster with 256 cores
residing on 16 nodes, while the network intercon-
nection is a 2 Gigabit Ethernet. Each node is a 2-
way octuple-core with Intel(R) Xeon(R) CPU E5-2670
at 2.60 GHz CPUs and 64 GB memory. Each node
has 16 cores and thus a maximum of 16 workers
are spawned for each node to run applications. In
order to evaluate the system performance, four typical
benchmarks described as follows are implemented:

1) Fish school simulation (FS). It is a typical exam-
ple of behavioral simulation applications, which
model complex systems of individual, intelli-
gent agents, such as transportation networks
and animal swarms, to better understand real-
world phenomena. Its details are described in
Section 3.1.

2) PageRank. It is a popular algorithm initially pro-
posed for ranking web pages. Later on, this
algorithm has found a wide range of applica-
tions, such as link prediction. During each time-
step, each worker updates the ranking score for
a page based on ranking score of other pages
being linked to it.

3) N-body. It simulates the dynamics of a set
of interactional particles over many discrete
time-steps, where particles apart further than a
threshold distance(r) are assumed to have no

TABLE 3
Data sets summary

Benchmarks Data Sets
Fish school simulation # Fish: 5 billions
PageRank # Nodes: 4,847,571; # Edges: 68,993,773
N-body # Points: 500 millions
Jacobi method # Rows: 50,000; # Columns: 50,000

effects on each other. During each time-step,
each worker updates a particle’s velocity and
position based on its current velocity and the
positions of other particles within r distance
away.

4) Jacobi method. It is a popular scientific comput-
ing algorithm to solve a large system of linear
equations and eigenvalue problems. In this al-
gorithm, each diagonal element is solved with
an approximate value, which then used for the
next iteration until it converges.

The data sets used for these algorithms are de-
scribed in Table 3. The data sets for PageRank al-
gorithm are real graphs data downloaded from web-
site [34].

Performance metrics: The performance evaluation
mainly uses the following metrics.

1) Computational imbalance degree λL: The computa-
tional imbalance degree

λL = Lmax/Lavg − 1 (2)

is adopted to evaluate the computational skew,
where Lmax is the maximum computation time
on any processor and Lavg is the mean compu-
tation time over all processors.

2) Communication imbalance degree λC : The commu-
nication imbalance degree

λC = Cmax/Cavg − 1 (3)

is used to evaluate the communication skew,
where Cmax and Cavg are the maximal and mean
communication time wasted on diffusing the
result of current tick to the next tick, respectively.

The schemes to be compared: To demonstrate the
efficiency of our approach, we realize three other
systems in order to compare their performance.

1) OriTick, which is modified by Piccolo [35] and
does not employ any method to resist skew.

2) ComTick, leveraging persistence-based load bal-
ancer [22] on OriTick.

3) AsyTick-PLB, leveraging persistence-based load
balancer on AsyTick.

Persistence-based load balancer is state-of-the-art bal-
ancer for iterative applications. It redistributes tasks
based on the performance profiled from previous tick-
s. The difference between AsyTick-PLB and ComTick
is whether or not adopting our approach. Note that
our approach is proposed to resist the accumulation of

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 9

F S P a g e R a n k N - b o d y J a c o b i
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

Com
puta

tiona
l imb

alan
ce d

egre
e

B e n c h m a r k s

 t i c k 5 0
 t i c k 5 1

(a) Computational skew for ComTick

F S P a g e R a n k N - b o d y J a c o b i
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

Com
mun

icati
on im

bala
nce

degr
ee

B e n c h m a r k s

 t i c k 5 0
 t i c k 5 1

(b) Communication skew for ComTick

Fig. 4. Computational and communication skew for ComTick.

F S P a g e R a n k N - b o d y J a c o b i
5 0

6 0

7 0

8 0

9 0

1 0 0

Rati
o (%

)

B e n c h m a r k s

 R a t i o

Fig. 5. Ratio of asynchronous part in a tick.

F S P a g e R a n k N - b o d y J a c o b i
5 0

6 0

7 0

8 0

9 0

1 0 0

Rati
o (%

)
B e n c h m a r k s

 R u n t i m e w a s t e d t i m e
 C o m m u n i c a t i o n t i m e b e t w e e n t i c k s
 D a t a p r o c e s s i n g t i m e

Fig. 6. Execution time breakdown of AsyTick.

skew, and also can work together with all the current
skew-resist solutions. So, we just test its performance
with the persistence-based load balancer.

5.1 Computational skew and communication
skew for current solutions
To show the necessity of resisting the accumulation of
skew, we firstly test the condition of computational
skew and communication skew for the above four
benchmarks with ComTick.

Fig. 4(a) and Fig. 4(b) respectively show the com-
putational and communication skew situation for suc-
cessive two ticks of the above four benchmarks with
ComTick. From these two figures, we can observe that
there is much unsolved computational and communi-
cation skew in each tick. The computational imbalance
degree of n-body benchmark with ComTick is even up
to 3.3 at tick 51. The communication imbalance degree
of n-body benchmark with ComTick is also up to 0.61
at tick 51 for network jitter. They are two reasons
may induce so much high computational skew and
serious network jitter. First, it is difficult to profile the
workloads of some time-stepped applications, such
as behavioral simulations. A distinguishing feature
of behavioral simulations is their frequent and high-
volume group migration, the phenomenon in which
simulated objects traverse domains in groups at mas-
sive scale in each tick. This results in continual and
significant load imbalance among tasks, which are dif-
ficult to be profiled in advance. Second, many factors,
such as multi-tenancy, imbalance service utilization,
hardware variability, imbalance among tasks of the
same applications, all may result in serious network
jitter and significant variation of the load imbalance
statuses in the cloud.

Moreover, from Fig. 4(a), we can also observe that
the computational imbalance degree even increases
with ticks for ComTick. Take the n-body benchmark
as an example, the computational imbalance degree
of ComTick is only 3.1 at tick 50, yet becomes 3.3 at
tick 51. Based on the detailed analysis, we find that
this is because simulated objects in n-body benchmark
frequently migrate in the simulated space in massive
volume. The frequent and massive load change makes
ComTick invalid for such applications like n-body.

5.2 Ratio of asynchronous part and runtime over-
head
In this part, we firstly show the ratio of asynchronous
part execution time against the total execution time of
a tick. Later, the runtime breakdown of our approach
is presented, followed by the computational and com-
munication overhead of our approach.

Fig. 5 shows the execution time ratio of asyn-
chronous part in a tick against the total execution time
of this tick on the above four benchmarks. Note that
this execution time does not include the time to trans-
fer intermediate results between ticks. From Fig. 5, we
can observe that the ratio of asynchronous part on the
above four benchmarks are all more than 85.7%. For
the Jacobi method, the ratio of asynchronous part is
even up to 96.4%, which means that much idle time
caused by unsolved skew of previous ticks can be em-
ployed to asynchronously execute these asynchronous
parts in advance. Then the negative effects caused by
the accumulation of unsolved skew can be redressed.

Fig. 6 shows the execution time breakdown of
AsyTick. We can observe from this figure that the
maximum time wasted by our approach only occu-
pies 19.2% of the total execution time. For n-body

zhangyu
高亮

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 10

F S P a g e R a n k N - b o d y J a c o b i
0
1
2
3
4
5
6

Re
lat

ive
 co

mp
uta

tio
na

l co
st

B e n c h m a r k s

 C o m T i c k
 A s y T i c k - P L B

(a) Relative computational overhead

F S P a g e R a n k N - b o d y J a c o b i
0
1
2
3
4
5
6
7

Re
lat

ive
 co

mm
un

ica
tio

n c
os

t

B e n c h m a r k s

 C o m T i c k
 A s y T i c k - P L B

(b) Relative communication overhead

Fig. 7. Runtime overhead of AsyTick-PLB against ComTick.

9 1 0 1 1 1 2 1 3 1 4 1 5
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Fin
ish

ed
 co

mp
uta

tio
na

l ra
tio

 (%
)

I t e r a t i o n n u m b e r s

 F i n i s h e d c o m p u t a t i o n a l r a t i o

Fig. 8. The completion situation of
subsequent ticks for the FS.

F S P a g e R a n k N - b o d y J a c o b i
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Ra
tio

 (%
)

B e n c h m a r k s

 A b s o r b e d s k e w

Fig. 9. The ratio of ComTick’s un-
solved skew absorbed by AsyTick-
PLB on each benchmark.

F S P a g e R a n k N - b o d y J a c o b i
0

5

1 0

1 5

2 0

2 5
Ra

tio
 co

ntr
ibu

ted
 by

 sc
he

du
ler

 (%
)

B e n c h m a r k s

 R a t i o c o n t r i b u t e d b y s c h e d u l e r

Fig. 10. The impact of scheduling
algorithm to the skew-absorbing a-
bility of AsyTick.

F S P a g e R a n k N - b o d y J a c o b i
0

1

2

3

4

5

Sp
ee

du
p

B e n c h m a r k s

 O r i T i c k
 C o m T i c k
 A s y T i c k - P B L

Fig. 11. The speedup of AsyTick-
PLB and ComTick against OriTick
on each benchmark.

benchmark, the time wasted in our approach even
occupies only 4.1% of the total execution time of a
tick. Moreover, the time to process data objects and
the time to communicate intermediate results between
ticks are up to 92.7% and 3.2%, respectively.

Fig. 7(a) presents the relative computational over-
head of AsyTick-PLB against ComTick. It can be seen
that the relative computational overhead of AsyTick-
PLB against ComTick is up to 6.08. Fortunately, as
shown in Fig. 6, the time wasted in our approach is
negligible against the total execution time. Moreover,
as the discussion below, the benefits gained from
resisting the accumulation of unsolved skew are much
more than the costed runtime overhead.

Fig. 7(b) presents the relative communication over-
head of AsyTick-PLB against ComTick. Although
AsyTick-PLB needs the intermediate results of the cur-
rent tick to be immediately transferred to the related
worker and makes this worker process them for the
next tick, we can observe that the communication
cost of AsyTick-PLB is less than 6.72 times higher
than the communication overhead of ComTick. This is
because AsyTick-PLB can gather and compress many
messages. Note that we just test the computational
overhead and communication overhead of AsyTick-
PLB, not including the storage overhead. This is
because AsyTick-PLB can immediately process inter-
mediate results whenever receiving it. Then there
is no necessity to record it. So, the storage cost of
AsyTick-PLB is almost the same as ComTick, although
AsyTick-PLB needs a synchronization table.

5.3 Performance Comparison
In this part, we firstly test how much computation can
be executed in advance and then evaluate how much
unsolved skew of ComTick can be absorbed by our
approach. After that the performance of AsyTick-PLB,
ComTick and OriTick is presented for comparison, fol-
lowed by the scalability evaluation of our approach.

Fig. 8 shows the completion situation of subsequent
ticks for the FS benchmark when its ninth iteration
has a significant load imbalance issue. From this
figure, we can observe that the completion ratios of
its successive five iterations are 80.2%, 52.6%, 28.4%,
16.5% and 4.3%, respectively. It means that there is
amount of parallelism among ticks can be exploited
by our approach, since the localized mobility property
of fish school simulation algorithm.

Fig. 9 shows how much unsolved skew of ComTick
can be eliminated by AsyTick-PLB on the above four
benchmarks. In reality, it shows the ratio of spared
time in successive ticks via AsyTick-PLB against the
extra execution time caused by unsolved computa-
tional and communication skew in a tick of ComTick.
From Fig. 9, we can observe that AsyTick-PLB can
absorb 74.3% and 88.5% unsolved skew of FS and
n-body benchmarks with ComTick respectively, and
even absorb all unsolved skew of PageRank and jacobi
method with ComTick.

The impact of scheduling algorithm on the skew-
absorbing ability of AsyTick is shown in Fig. 10. To
investigate this impact, we make the computational
imbalance degree of benchmarks very high, until the

zhangyu
高亮

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 11

0 2 4 6 8 1 0 1 2 1 4 1 6
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0
5 . 5
6 . 0

Sp
ee

du
p

N u m b e r o f n o d e s

 N - b o d y

Fig. 12. The scalability of AsyTick
on n-body benchmark.

3 0 M 6 0 M 1 2 0 M 2 4 0 M 5 0 0 M
0

5

1 0

1 5

2 0

2 5

Re
lat

ive
 ex

ec
uti

on
 tim

e

D a t a s i z e

 N - b o d y

Fig. 13. The impact of data size on
AsyTick above benchmark n-body.

6 4 * 6 4 1 2 8 * 1 2 8 2 5 6 * 2 5 6 5 1 2 * 5 1 2 1 0 2 4 * 1 0 2 4 2 0 4 8 * 2 0 4 8 4 0 9 6 * 4 0 9 6
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Re
lat

ive
 ex

ec
uti

on
 tim

e

T h e n u m b e r o f p i e c e s

 N - b o d y

Fig. 14. The impact of the number
of pieces on AsyTick above n-body.

skew of these benchmarks cannot be all absorbed
by AsyTick. Then we test the results via turning-on
and turning-off scheduler of AsyTick. In this way, it
can present how much ratio of all absorbed skew is
contributed by the scheduling algorithm of AsyTick.
As shown in Fig. 10, we can observe that 23.4% of
all absorbed skew is contributed by the scheduling
algorithm of AsyTick on FS benchmark. It can also
be seen that both the ratio of PageRank and jacobi
method are less than FS and n-body, because the
scheduler for PageRank and jacobi method only takes
tick number in consideration of the priority definition.

Fig. 11 shows the performance of AsyTick-PLB and
ComTick against OriTick. As shown in the figure,
for the n-body benchmark, the speedup of ComTick
against OriTick is only 1.45. Yet, the speedup of
AsyTick-PLB against OriTick can achieve up to 3.67
for the n-body benchmark. In other words, our ap-
proach can improve the performance of persistence-
based load balancer up to 2.53 times. This is because
AsyTick-PLB can execute much asynchronous part of
subsequent ticks in advance via exploiting the idle
time caused by the unsolved skew still existing in each
tick. Then AsyTick-PLB can resist the accumulation of
the skew unsolved by ComTick in each tick.

Finally, Fig. 12 shows the scalability of AsyTick
on n-body. From this figure, we can observe that
our solution has a good scalability owing to the low
computational skew and low communication skew
with low runtime overhead.

5.4 Impact of system parameters

In this part, we examine the impact of data size and
the number of pieces on the performance of AsyTick
using the above n-body benchmark. Fig. 13 reveals
that the execution time of n-body is almost linear with
the data size for AsyTick. In other words, the data size
has very little impact on the performance of AsyTick.

Fig. 14 reveals the impact of the number of pieces on
the performance of AsyTick. From this figure, we can
observe that the execution time of n-body decreases
as the number of pieces for AsyTick increases. Yet,
when the number of pieces is more than 1024× 1024,
the completion time is even increasing because more

pieces carry more runtime overhead, although it ben-
efits more from resisting the accumulation of skew,
showing the tradeoff between the benefits gained
from our approach and its cost runtime overhead.

6 CONCLUSION
Time-stepped applications need logical synchroniza-
tion to ensure its correctness. But the logical synchro-
nization between ticks makes the negative effects of
unsolved skew accumulated in each tick. However,
the current approaches can not resist the accumulation
of skew. This paper reveals that much computational
part of the processing for objects in each tick can
be asynchronously executed in advance via utilizing
the idle time of workers caused by unsolved skew
in the current tick. An efficient approach is then
proposed to exploit these asynchronous parts and
achieve more parallelism, redressing the negative ef-
fects caused by accumulated unsolved computational
and communication skew. Furthermore, we develop
a data-centric programming model allowing users to
easily express asynchronous parts and also implement
a runtime system coupled with an ad hoc scheduler
for time-stepped applications to support the efficient
execution of asynchronous parts. Experimental results
show that our approach can improve the performance
of time-stepped applications compared to a state-of-
the-art computational skew-resistant approach up to
2.53 times. The experiments also demonstrate that our
approach can work well together with current skew-
resist solutions.

Now, we have provided an approach to efficiently
support the execution of time-stepped applications
which can be decomposed. In the future work, we
will discuss which time-stepped applications can be
decomposed and how to correctly decompose these
applications. At the same time, we will also incorpo-
rate our approach into other skew-resistant approach-
es and analyse their performance together to show its
efficiency, and also employ it to more time-stepped
applications to demonstrate its feasibility.

ACKNOWLEDGMENTS
This paper is supported by China National Natu-
ral Science Foundation under grant No. 61272408,

zhangyu
高亮

IEEE TRANSACTIONS ON CLOUD COMPUTING, 2013 12

61322210, National High-tech Research and Develop-
ment Program of China (863 Program) under grant
No.2012AA010905, CCCPC Youngth Talent Plan, Doc-
toral Fund of Ministry of Education of China under
grant No. 20130142110048.

REFERENCES

[1] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective
leadership and decision-making in animal groups on the
move,” Nature, vol. 433, no. 7025, pp. 513–516, 2005.

[2] G. Wang, M. V. Salles, B. Sowell, X. Wang, T. Cao, A. Demers,
J. Gehrke, and W. White, “Behavioral simulations in mapre-
duce,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
952–963, 2010.

[3] V. Springel, S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida,
L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly et al.,
“Simulations of the formation, evolution and clustering of
galaxies and quasars,” nature, vol. 435, no. 7042, pp. 629–636,
2005.

[4] “Biological modeling and simulation,” http://zool33.uni-
graz.at/schmickl/index.html, 2012.

[5] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skew-resistant
parallel processing of feature-extracting scientific user-defined
functions,” in Proceedings of the 1st ACM symposium on Cloud
computing. ACM, 2010, pp. 75–86.

[6] Y. Kwon, D. Nunley, J. Gardner, M. Balazinska, B. Howe, and
S. Loebman, “Scalable clustering algorithm for n-body simu-
lations in a shared-nothing cluster,” in Scientific and Statistical
Database Management. Springer, 2010, pp. 132–150.

[7] J.-M. Alimi, V. Bouillot, Y. Rasera, V. Reverdy, P.-S. Corasaniti,
I. Balmes, S. Requena, X. Delaruelle, and J.-N. Richet, “First-
ever full observable universe simulation,” in Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC). IEEE Computer Society
Press, 2012, pp. 1–11.

[8] S. Byna, J. Chou, O. Rübel, H. Karimabadi, W. S. Daughton,
V. Roytershteyn, E. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin
et al., “Parallel i/o, analysis, and visualization of a trillion par-
ticle simulation,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis
(SC). IEEE Computer Society Press, 2012, pp. 1–12.

[9] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec, “Hadi: Mining radii of large graphs,” ACM Trans-
actions on Knowledge Discovery from Data (TKDD), vol. 5, no. 2,
p. 8, 2011.

[10] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Computer networks and ISDN systems,
vol. 30, no. 1, pp. 107–117, 1998.

[11] D. Liben-Nowell and J. Kleinberg, “The link-prediction prob-
lem for social networks,” Journal of the American society for
information science and technology, vol. 58, no. 7, pp. 1019–1031,
2007.

[12] H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu,
“Scalable proximity estimation and link prediction in online
social networks,” in Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference. ACM, 2009, pp.
322–335.

[13] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst,
Templates for the solution of linear systems: building blocks for
iterative methods. Society for Industrial Mathematics, 1987,
no. 43.

[14] G. M. Shroff, “A parallel algorithm for the eigenvalues and
eigenvectors of a general complex matrix,” Numerische Mathe-
matik, vol. 58, no. 1, pp. 779–805, 1990.

[15] D. Schrank, B. Eisele, and T. Lomax, “Tti’s 2012 urban mobility
report,” 2012.

[16] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration re-
search: A systematic review,” IEEE Transactions on Cloud Com-
puting, vol. 99, no. PrePrints, p. 1, 2013.

[17] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Communications of the ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” ACM SIGOPS Operating Systems Review, vol. 41, no. 3,
pp. 59–72, 2007.

[19] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in
map-reduce clusters using mantri,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementa-
tion. USENIX Association, 2010, pp. 1–16.

[20] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune:
Mitigating skew in mapreduce applications,” in Proceedings of
the 2012 international conference on Management of Data. ACM,
2012, pp. 25–36.

[21] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on nat-
ural graphs,” in Proc. of the 10th USENIX conference on Op-
erating systems design and implementation (OSDI). USENIX
Association, 2012, pp. 17–30.

[22] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Work stealing
and persistence-based load balancers for iterative overdecom-
posed applications,” in Proceedings of the 21st international sym-
posium on High-Performance Parallel and Distributed Computing.
ACM, 2012, pp. 137–148.

[23] T. Zou, G. Wang, M. V. Salles, D. Bindel, A. Demers, J. Gehrke,
and W. White, “Making time-stepped applications tick in the
cloud,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011, p. 20.

[24] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime mea-
surements in the cloud: observing, analyzing, and reducing
variance,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2,
pp. 460–471, 2010.

[25] G. Wang and T. E. Ng, “The impact of virtualization on net-
work performance of amazon ec2 data center,” in INFOCOM,
2010 Proceedings IEEE. IEEE, 2010, pp. 1–9.

[26] O. Pearce, T. Gamblin, B. R. de Supinski, M. Schulz, and N. M.
Amato, “Quantifying the effectiveness of load balance algo-
rithms,” in Proceedings of the 26th ACM international conference
on Supercomputing. ACM, 2012, pp. 185–194.

[27] R. Alpert and J. Philbin, “cbsp: Zero-cost synchronization in
a modified bsp model,” NEC Research Institute, 4 Independence
Way, Princeton NJ, vol. 8540, 1997.

[28] O. Bonorden, B. Juurlink, I. Von Otte, and I. Rieping, “The
paderborn university bsp (pub) library,” Parallel Computing,
vol. 29, no. 2, pp. 187–207, 2003.

[29] C. Jhon, “Efficient barrier synchronization mechanism for the
bsp model on message-passing architectures,” in Proceedings of
the 12th. International Parallel Processing Symposium on Interna-
tional Parallel Processing Symposium. IEEE Computer Society,
1998, p. 255.

[30] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis, “Quan-
tifying the potential benefit of overlapping communication
and computation in large-scale scientific applications,” in SC
2006 Conference, Proceedings of the ACM/IEEE. IEEE, 2006, pp.
17–17.

[31] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick,
“Avoiding communication in sparse matrix computations,”
in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on. IEEE, 2008, pp. 1–12.

[32] K. Kelsey, T. Bai, C. Ding, and C. Zhang, “Fast track: A
software system for speculative program optimization,” in
Proceedings of the 7th annual IEEE/ACM International Symposium
on Code Generation and Optimization. IEEE Computer Society,
2009, pp. 157–168.

[33] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson,
K. Keeton, and E. Xing, “Solving the straggler problem with
bounded staleness,” in Proceedings of the 14th USENIX confer-
ence on Hot Topics in Operating Systems. USENIX Association,
2013, pp. 22–22.

[34] “Stanford dataset,” http://snap.stanford.edu/data/, 2009.
[35] R. Power and J. Li, “Piccolo: building fast, distributed pro-

grams with partitioned tables,” in Proceedings of the 9th
USENIX conference on Operating systems design and implemen-
tation (OSDI). USENIX Association, 2010, pp. 1–14.

