
UC Riverside
UC Riverside Previously Published Works

Title
Multi-Aspect, Robust, and Memory Exclusive Guest OS Fingerprinting

Permalink
https://escholarship.org/uc/item/9sm8v3zh

Journal
IEEE Transactions on Cloud Computing, 2(4)

ISSN
2168-7161

Authors
Gu, Yufei
Fu, Yangchun
Prakash, Aravind
et al.

Publication Date
2014

DOI
10.1109/tcc.2014.2338305

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sm8v3zh
https://escholarship.org/uc/item/9sm8v3zh#author
https://escholarship.org
http://www.cdlib.org/

Multi-Aspect, Robust, and Memory
Exclusive Guest OS Fingerprinting

Yufei Gu, Yangchun Fu, Aravind Prakash, Zhiqiang Lin,Member, IEEE, and Heng Yin,Member, IEEE

Abstract—Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such

as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The

existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability.

As the physical memory of a VM always exists in all these applications, in this article, we present OS-SOMMELIER
þ, a multi-aspect,

memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory

dump of a guest OS, OS-SOMMELIER
þ first uses a code hash based approach from kernel code aspect to determine the guest OS

version. If code hash approach fails, OS-SOMMELIER
þ then uses a kernel data signature based approach from kernel data aspect to

determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results

show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the

code signature approach and can fingerprint even unknown kernels.

Index Terms—Operating system fingerprinting, virtual machine introspection, memory forensics

Ç

1 INTRODUCTION

OPERATING system (OS) fingerprinting aims to identify
the exact version of the OS running on a target

machine. Such information is extremely useful for many
applications, such as penetration testing, system adminis-
tration (e.g., kernel updates), virtual machine management,
and digital forensics. For example, with knowledge of the
exact OS version, we can launch various targeted probes
and attacks for the purpose of penetration testing. It is also
helpful in administration, as administrators can often per-
form regular OS fingerprinting to keep their OS inventory
clean and updated with the most recent patches.

Meanwhile, with the rapid deployment of cloud comput-
ing, we are facing an increasing need for fingerprinting the
guest OS for virtual machine (VM) management in the
cloud, especially for IaaS cloud providers. One typical
example for cloud management and security is the virtual
machine introspection (VMI) [17]. To obtain the semantic-
level view of the VM and interpret the system states and
events [8], [13], [22], [29], we often have to know in advance
the precise kernel version of the guest OS (such that we can
use the corresponding kernel data structure to interpret the
kernel memory). However, the information of kernel ver-
sion may not be immediately available to the cloud provider
or, even if available, may not be accurate.

To alleviate the manual effort involved in bridging the
semantic gap in VMI, we recently have developed a set of
dual-VM, binary code reuse based systems (e.g., [13], [14],
[15], [31]) to automatically bridge the semantic gap. These
systems rely on the corresponding trusted kernel installed
in a secure VM and perform an on-line kernel data redirec-
tion to introspect the guest VM. That is, without the precise
guest OS kernel information, all of them would not work.
Also, we have to perform precise OS kernel fingerprinting,
as any minor differences between the two kernels will stop
these systems.

In addition, the knowledge of the precise OS version is
also crucial to many other applications such as memory
forensic analysis, which aims to collect evidence of digital
crimes from a physical memory dump of a live system. Sim-
ilar to VMI, the memory forensic tools (e.g., [38]) often have
to know the precise OS version in advance in order to parse
the memory dump correctly. This knowledge may not be
immediately available, or may be tampered by the attackers
to thwart forensic analysis.

Unfortunately, the existing OS fingerprinting techniques
fall short in precision and usability. More specifically, net-
work-based fingerprinting (e.g., nmap [16], [18] and
Xprobe2 [4]) recognizes the discrepancies in network proto-
col implementations by sending crafted packets and analyz-
ing the differences in the responses. This network-based
approach is often imprecise and cannot pinpoint the minor
OS differences such as Linux-2.6.35 versus Linux-2.6.36.
Moreover, the network-based approach becomes less usable
since modern OSes (e.g., Windows 7) disable many network
services by default.

Two other recent systems explore the host based infor-
mation such as CPU register values [30] and the interrupt
handler code hashes [10] for guest OS fingerprinting. They
are still not precise enough to pinpoint the different service
packs for Windows and minor revisions for Linux and BSD

� Y. Gu, Y. Fu, and Z. Lin are with the Department of Computer Science,
The University of Texas at Dallas, 800 W. Campbell RD, Richardson, TX
75080. E-mail: {yufei.gu, yangchun.fu, zhiqiang.lin}@utdallas.edu.

� A. Prakash and H. Yin are with the Department of Computer Science
Syracuse University, 400 Ostrom Avenue, Syracuse, NY 13210.
E-mail: {arprakas, heyin}@syr.edu.

Manuscript received 15 Dec. 2013; revised 14 May 2014; accepted 4 June
2014. Date of publication 10 July 2014; date of current version 30 Jan. 2015.
Recommended for acceptance by D.S.L. Wei, S. Pearson, K. Matsuura,
P.P.C. Lee, and K. Naik.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2014.2338305

380 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2014

2168-7161� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

families. File system based fingerprinting is another
approach. Tools like virt-inspector [23] examine the file sys-
tem of the VM, look for main kernel code, and determine
the OS version. This approach is straightforward, but is not
feasible for a VM with encrypted file system, resulting from
privacy concerns of cloud customers.

Therefore, to provide a strong support for security and
forensics tasks in the cloud, we need to revisit the OS finger-
printing problem. Since the memory state of a VM is always
available to the cloud provider, we propose to take a mem-
ory exclusive approach for OS fingerprinting. This new
approach needs to be precise enough to recognize the minor
versions of an OS kernel, and robust enough to counter the
evasions. To make this technique as generic as possible, we
choose not to rely on other inputs. As a result, our memory
exclusive fingerprinting can provide a direct support to
many other applications such as memory forensics and ker-
nel dump analysis.

To answer these needs, we have developed a new,
multi-aspect, memory exclusive guest OS fingerprinting
system, called OS-SOMMELIER

þ, which is an extension of
our prior system OS-SOMMELIER [19]. It works as follows:
given a physical memory dump of a guest OS, OS-
SOMMELIER

þ first uses a code hash based approach from
kernel code aspect to determine the guest OS version. If
code hash approach fails, OS-SOMMELIER

þ then uses a ker-
nel data signature based approach from kernel data aspect
to determine the version. The reason to have both
approaches is that code signature approach is fast, but too
sensitive (any recompilation of the same kernel might
lead to different hashes); data signature approach is vice-
versa, namely, it is agnostic to the kernel code changes
(for the same version), but too slow.

However, it is non-trivial to compute the kernel code
hash given only the physical memory of a guest OS, espe-
cially for the widely used �86 architecture in the cloud. For
instance, how to distinguish the main kernel code from the
rest of code and data, and how to tolerate real-world issues
such as address space layout randomization (ASLR [6], [7],
[37], [39]), and the dynamic kernel code patches (i.e., hot-
patches [35]). It is also non-trivial to compute robust kernel
data signatures. For instance, given the significant amount
of kernel data structures, how many we should use to effi-
ciently fingerprint a kernel, and what kind of robust signa-
tures we should derive.

To address these challenges, we have devised a suite of
techniques including core kernel code identification, correlative
disassembling, and normalized signature matching in our code
signature approach, and point-to invariant (or structural
invariant), loop invariant, and size invariant in our data sig-
nature approach. Our experimental results with 27 Linux
kernels show that our code hash based approach can
quickly fingerprint all the known OSes we tested without
any false positives and false negatives, but when recompil-
ing the same OS with different flags, it cannot recognize
them. In contrast, data signature based approach is able to
infer those unknown OSes but it runs too slow (two order
of magnitude slower).

The main contribution of this paper is highlighted as
follows:

� We present a multi-aspect approach to precisely
fingerprint an OS kernel when provided with only
a physical memory dump. Our approach is gen-
eral without relying on any heuristics for particu-
lar OSes, and it uniformly works for all the
kernels we tested.

� We devise a set of novel techniques to automatically
identify core kernel code in the physical memory to
compute kernel code hash signatures, by exploring
the direct control flow transfer pattern in kernel code
and the unique kernel code (i.e., system level)
instructions, and normalize the kernel code pages by
retaining the op-code and register operand of the
disassembled instructions and hashing them as the
signatures.

� We also devise an array of novel techniques to auto-
matically compute robust kernel data signatures, by
exploring the point-to relation between data struc-
tures, and the strong loop invariant and size invari-
ant among them.

� We have implemented our system OS-SOMMELIER
þ,

and tested it with over a variety of recent Linux ker-
nels. Our experimental results show that the code
aspect approach is very precise and fast to the
known kernels but too sensitive, whereas data aspect
approach is less sensitive but slow. These two can be
combined together to offer a best result for memory
exclusive OS fingerprinting.

2 BACKGROUND AND OVERVIEW

2.1 Problem Statement

Given a memory snapshot of a running VM in the cloud, we
aim to precisely determine its OS version. In particular, we
have three major design goals: precision, efficiency and
robustness.

� Precision. We need to determine the OS family and
the exact version. For instance, given a Linux ker-
nel, not only we need to know its major version
(e.g., 2.6 or 3.0) but also its minor version. This is
because many security tasks (e.g., [13], [22], [29])
have to rely on the exact OS version to make OS-
specific decisions.

� Efficiency. Given that the cloud provider usually
manages a large volume of live VMs, it becomes nec-
essary to obtain the information of the OS version
within a short period of time for each VM.

� Robustness. A VM running in the cloud may have
been compromised and attackers may manipulate
the memory state of the VM to mislead the finger-
printing system. Thus, our technique needs to be
robust to counter various attacks, or at least raise a
significant high bar for adversaries.

Threat model and our assumption. We assume the integrity of

the main kernel code. Recent advance in trusted computing

techniques (e.g., [27], [33]) and virtual machine security (e.g.,

[5], [9], [41]) can easily ensure the integrity of the kernel code

pages. For this reason, we focus on the main kernel code to

achieve robustness in memory-based OS fingerprinting. Conse-

quently, since the main kernel code is not modified, attackers

GU ET AL.: MULTI-ASPECT, ROBUST, AND MEMORY EXCLUSIVE GUEST OS FINGERPRINTING 381

cannot modify (e.g., shuffling the pointer fields) the main data

structure as well. Otherwise, when trusted kernel dereference

certain pointer fields, it might lead to crashes.

2.2 Challenges and Key Techniques

A program in general contains both code and data at run-
time, and there is no exception for an OS kernel. As such,
we propose to fingerprint an OS kernel from both code and
data perspectives. More specifically, we propose computing
core kernel code hashes as code signatures (Section 2.2.1),
and deriving data structure invariants for data signatures
(Section 2.2.2). In the following, we describe the challenges
we encountered and briefly sketch our solutions.

2.2.1 Code Signature Based Approach

To compute code signature, our key idea is to correctly iden-
tify the core kernel code from a physical memory dump, and
then calculate hashes to precisely fingerprint an OS. To real-
ize this idea, we have to address the following challenges:

Correctly disassembling the kernel code. To compute hash val-
ues of the kernel code in memory, we must correctly disas-
semble it. Unfortunately, it is widely known that correct code
disassembly is still an open problem for �86 architecture.
There are two main reasons: (i) it is common to have code
and data interleaved, and it is hence hard to differentiate
code and data; and (ii) because �86 instructions have varied
lengths, a completely different instruction sequence will be
disassembled if starting from awrong instruction location.

To address this challenge, we propose a novel correlative
disassembling technique by leveraging the correlation
between a call instruction and the function prologue of the
call target. More specifically, we believe a location to be a
function entry point if and only if: (i) a function prologue
exists starting from this location; and (ii) a call instruction is
found, where this location is exactly the call target. Based
on this correlation, we are confident that the identified func-
tion body is truly a function. However, we may not be able
to identify all the kernel code. Some functions may not have
well-defined function prologues. Fortunately, we can accept
this situation, as there is a large amount of kernel code and
the correctly identified portion is sufficient enough to serve
the purpose of our fingerprinting.

Differentiating the main kernel code from the rest of code and
data. The kernel code includes the code of the main kernel,
as well as the code of the device drivers (i.e., kernel mod-
ules). We aim to compute the hashes for the main kernel
code only, because the presence of the other kernel modules
is mainly determined by the hardware configuration of a
system. Two systems may have the same OS version
installed, but due to different hardware configurations, they
may have completely different sets of kernel modules.

To this end, we propose a direct call based clustering tech-
nique, to group identified function bodies into clusters, each
ofwhich is either themain kernel code or the code for a kernel
module. Our insight is that the target of a direct function call
has to be located in the same code module as the direct func-
tion call itself. This is because the target of a direct function
call is determined at compilation time, the call target and the
call site must be present in the same module. Based on this
insight, we cluster the disassembled code into codemodules.

Then, to tell which code module is the main kernel, we
have another insight: certain instructions have to appear
in the main kernel to implement some important func-
tionality (such as context switch and cache flushing), and
it is unlikely for the other kernel modules to have these
instructions.

2.2.2 Data Signature Based Approach

Unlike kernel code that tends to have smaller size, there are
huge amount of kernel data. To derive data signatures for
OS fingerprinting, we have to address the following
challenges:

Selecting the robust data signatures. Intuitively, we might
need to select those data with constant values as signatures.
For instance, if we find certain strings exclusively exist in
certain versions of an OS, these strings would be ideal can-
didates. However, it would be too easy to generate bogus
strings to evade or mislead this fingerprinting. Therefore,
we have to look for robust signatures.

Among all the data inside memory, we notice that it is
challenging to modify the values of pointers because of the
constraints from the pointer shapes. In particular, pointers
usually have specific types, changing a pointer value may
lead to change the target address type, and thus rendering
kernel crashes. It is also harder to be evaded than purely
value-based approach. For example, one has to change the
entire points-to shape, including the data structure shape
of the corresponding target address. Moreover, adversary
also has to change all the data structure instances; other-
wise we can still find the true instance to fingerprint the
kernel. In contrast, in value-based approach, one only
needs to change a single value. As such, we propose
exploring the point-to constraints, or structural invariant as
the signatures.

Also, the size of a data structure is also harder to be
forged than purely values, as adversary has to spent signifi-
cant more efforts. For instance, to forge a task_struct,
adversary has to allocate a real task_struct and allocate
other necessary data structures to evade the structural invari-
ant. Therefore, size invariant can be considered as another
orthogonal dimension of a data signature. Intuitively, when
more signatures are used to fingerprint an OS, it will be
more precise and robust.

Minimizing signatures to improve efficiency. An OS kernel
usually has tens of thousands of data structures. An ideal
case would be to build the entire data structure graph con-
strained by the point-to relation as the signature. However,
this would be inefficient given the huge amount of kernel
data. Therefore, we have to minimize the size of the struc-
tural invariant.

Fortunately, we have a new observation that there
often exists a special structural invariant called loop invari-
ant enforced by the pointer fields among data structures,
and such a loop invariant can be well-modeled for data fin-
gerprinting and can significantly reduce the number of
checks when validating a structural invariant. In particu-
lar, this loop invariant is a loop-shaped data reference
path starting from a given memory address x and reach-
ing back x through pointer dereferencing. In addition,
such a loop invariant widely exists in an OS kernel, and it
is non-trivial to be modified as pointers are hard to be

382 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2014

manipulated. For example, in Linux kernel, if A is an
instance of task_struct, then (A->thread_info)-

>task==A. Other interesting cases include a circular list
or a doubly-linked list which has pointer to point back.
More formally, it could be defined as a fixed pointer func-
tion f where x ¼ fðxÞ because of the convergence, and
our goal is to automatically identify the unique f which
can fingerprint a particular OS.

2.3 System Overview

An overview of OS-SOMMELIER
þ is presented in Fig. 1.

There are six key components in our system: (1) Kernel
Code Identification, (2) Code Signature Generation, (3) Code
Signature Matching, (4) Structural Invariant Extraction, (5)
Structural Invariant Scanning, and (6) Data Signature
Matching. The first three components belong to code sig-
nature based approach, and the last three belong to data
signature based approach.

More specifically, given a physical memory snapshot
(Step�1), OS-SOMMELIER

þ first invokes the Kernel Code Identi-
fication to traverse the kernel page tables and identify only
the kernel code pages (based on the page directory entry
and page table entry bit properties), and further it splits the
kernel code based on the virtual addresses and the internal
caller-callee relation to identify the “core” kernel code pages.

Next (Step�2), Code Signature Generation will use a cor-
relative disassembling technique to neutralize the side effect
of ASLR, and then hash (MD5) each disassembled page and
store it in an array based on the normalized virtual address
of each hashed page. Step�1 and Step�2 can also be used
in the training phase to generate the ground truth MD5 of
the guest OS. Then (Step�3), Code Signature Matching
adopts a string matching algorithm to compare the MD5-
array with a database that contains the array-signatures for
all the possible OSes. If the signature matches, it directly
output the result (Step�4).

Otherwise (Step�5), OS-SOMMELIER
þ then looks into the

data aspect of the OS kernel, and invokes Structural Invariant
Scanning to scan, and match (Step�6) with the signatures
produced in the training phase by Structural Invariant
Extraction component, and output (Step�7) the final results
(either matched with a known OS with specific version, or
returns unknown). The structural invariants, size invariants,

and loop invariants are generated by Structural Invariant
Extraction component.

To simplify the paper presentation, we focus our discus-
sion on the widely used 32-bit �86 architecture, running
Linux kernel. However, we believe our techniques can be
generalized and adapted to support other CPU architec-
tures, and other OSes (e.g., Windows, FreeBSD and Minix).

3 CODE SIGNATURE BASED APPROACH

3.1 Kernel Code Identification

OS kernel is composed with core kernel code and kernel
modules. Because a kernel module can exist in multiple dif-
ferent kernels, we have to exclude the kernel module code
in our code hash computation. Given a physical memory
snapshot, there are three steps to reach the core kernel code:
(Step-I) we will perform the virtual to physical (V2P)
address translation for kernel space by checking each Page
Directory Entry (PDE), whose base address is pointed by
control register CR3, and Page Table Entry (PTE), and group
them based on the page table properties to a number of clus-
ters; (Step-II) we will further search from the clusters to
identify the possible kernel code by searching the special
kernel instruction sequences; and (Step-III) finally we will
further narrow down the kernel code. The first two steps
are used to identify the possible kernel code, and the third
step is to identify the “core” kernel code from the kernel
code identified in Step-II.

Step-I: Searching possible kernel code and clustering.With the
Page Global Directory (PGD) identification approach we
developed in OS-Sommelier [19], we first identify PGDs
from a given memory snapshot, from which to find the
entire kernel space by checking the system bit in the page
table entries. We group these kernel pages into clusters,
based on the PDE and PTE properties. In particular, we put
contiguous pages into one cluster, if these pages share the
identical page properties. The output of this step is a num-
ber of clusters, denoted as CK , and each cluster (CKi) con-
tains the pages whose virtual addresses have been resolved
and these pages share the identical PTE bits and the page
size bit in PDE.

Step-II: Identifying the possible kernel code. Next, we aim to
identify which cluster contains the main kernel code. One

Fig. 1. Overview of OS-SOMMELIER
þ.

GU ET AL.: MULTI-ASPECT, ROBUST, AND MEMORY EXCLUSIVE GUEST OS FINGERPRINTING 383

possible solution would be to search for the page which con-
tains instructions based on the code distributions [12]. How-
ever, this approach tends to be computation-intensive,
contradicting our design goal of efficiency. Then an intuitive
approach would be to search for the special system instruc-
tion sequences that (1) often appear in main kernel code, (2)
have unique pattern (short sequence will have false posi-
tive), and (3) not in kernel modules.

According to the �86 instruction set [21], there are in
total 28 system instructions and their instruction length and
distributions in Linux, Windows, BSD UNIX, and Minix are
summarized Table 1. We could observe that not all of them
can be used as the searching sequence, such as SLDT and
RDMSR3 as they only appear few times and are distributed
in few pages. Therefore, eventually, we decide to choose
MOV CR3 instruction (as it is related to PGD update and
process context switch). Moreover, a closer investigation
with this instruction yields the following 6 bytes unique
instruction sequence:

0f 20 d8: mov EAX, CR3;

0f 22 d8: mov CR3, EAX;

In fact, these two consecutive instructions are used by the
modern OS to force a TLB flush, avoiding problems related
to implicit caching [21]. We confirm that this sequence (0f
20 d8 0f 22 d8) appears in all the kernels we tested.

Very often (as shown in Table 3), the output of Step-II
is a single cluster for the main kernel code. Considering
that there may still exist some noise, we accept the

possibility that the output may be a small number of clus-
ters, denoted as CKk.

Step-III: Narrowing down the core kernel code. In these possi-
ble kernel code clusters, only one cluster has the core kernel
code. Such a cluster may still include the code for the other
kernel modules and the data, due to the imprecision in pre-
vious steps. To precisely narrow down the core kernel code,
we leverage an insight from direct function calls.

More specifically, as the target of a direct function call
has been resolved at compilation time, this target is either
within the same code module, or from a static library. For
an OS kernel whose main kernel code can be relocated, any
function call between the main kernel and a device driver
must be indirect, because the call target cannot be deter-
mined at compilation time. That is, the direct call instruction
and the call target have to be located in the same code mod-
ule. Therefore, by checking direct calls, we can further nar-
row down the core kernel code.

The situation is more complicated when the main kernel
code is static (e.g., Linux). In this case, a device driver (i.e.,
kernel module) can invoke a direct function call (e.g.,
printk) into the main kernel, as its target address (i.e., the
entry point of printk) can be easily resolved (and this tar-
get address is dynamically patched by the driver loader).
Nevertheless, the main kernel cannot make a direct function
call into a device driver, because its address can only be
determined at load time. To identify the main kernel code
in this case, we rely on another insight: the main kernel always
occupies the lowest kernel space, leaving the higher kernel space

TABLE 1
X86 System Instruction Distributions in Kernel Code Pages

System Inst. Linux-2.6.32 Windows-XP FreeBSD-9.0 OpenBSD-5.1 NetBSD-5.1.2 Minix-3.2.1

Instructions Length #Inst. #pages #Inst. #pages #Inst. #pages #Inst. #pages #Inst. #pages #Inst. #pages

LLDT 3 17 10 4 3 5 3 5 4 2 2 2 2
SLDT 3 1 1 1 1 1 1 2 2 1 1 0 0
LGDT 3 10 8 1 1 1 1 3 2 3 2 2 2
SGDT 3 4 4 5 4 1 1 2 2 1 1 2 2
LTR 3 2 2 2 2 6 5 5 3 2 2 2 2
STR 3 2 2 2 2 1 1 1 1 2 2 0 0
LIDT 3 7 6 2 2 5 4 5 3 2 2 4 2
SIDT 3 2 2 5 4 1 1 2 2 1 1 2 2
MOV CR0 3 68 16 65 21 33 8 45 12 14 5 4 2
MOV CR2 3 5 5 2 2 2 2 12 5 5 2 6 2
MOV CR3 3 70 18 24 10 49 12 17 6 16 7 14 2
MOV CR4 3 94 23 22 7 25 7 24 8 12 5 4 2
SMSW 4 0 0 0 0 5 1 0 0 0 0 0 0
LMSW 3 0 0 0 0 5 1 0 0 0 0 0 0
CLTS 2 6 5 3 1 6 1 7 2 1 1 2 2
MOV DRn 3 0 0 262 8 0 0 0 0 0 0 0 0
INVD 2 0 0 0 0 5 1 2 1 2 1 0 0
WBINVD 2 28 14 6 3 15 8 14 8 1 1 0 0
INVLPG 3 7 3 4 3 24 10 14 4 3 2 2 2
HLT 1 12 6 1 1 5 5 4 1 4 3 2 2
RSM 2 0 0 0 0 0 0 0 0 0 0 0 0
RDMSR3 2 113 25 1 1 76 17 79 16 2 1 2 2
WRMSR3 2 111 28 1 1 51 15 54 17 2 1 2 2
RDPMC4 2 0 0 0 0 0 0 1 1 1 1 0 0
RDTSC3 2 26 12 21 7 14 4 5 3 3 2 2 1
RDTSCP7 3 0 0 0 0 0 0 0 0 0 0 0 0
XGETBV 3 0 0 0 0 0 0 0 0 0 0 0 0
XSETBV 3 3 3 0 0 0 0 0 0 0 0 0 0

384 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2014

for the device drivers. This is because the OS cannot predict
how many drivers will be loaded and how much kernel
space is to be allocated for the drivers. In our experiments,
this observation holds true for all the kernels whose main
kernel code are static. Therefore, we propose to explore the
direct forward function call relation.

A direct forward function call is a call instruction whose
operand is a positive value (e.g., the case for e8 2a 25 38

00), and a direct backward function call is a call instruction
whose operand is a negative value (e.g., e8 2a 25 38 ff

where 2a 25 38 ff is a negative value). As the main kernel
occupies the lowest kernel space, a direct forward function
call has to be within the same code module. Thus, as illus-
trated in Fig. 2, by searching direct forward calls, we can
exclude the device drivers. To identify and verify the exis-
tence of a direct call instruction, we use the correlative disas-
sembling approach, which will be discussed in the next
subsection (Section 3.2).

Our detailed clustering algorithm is presented in Algo-
rithm 1. For each page in CKk, we will check whether there
is a direct forward function call (line 9), and if so, we will
update the ending boundary (C:end) for the current cluster
(line 11). We will also check whether the current cluster
ends (line 14), if so we will store the current cluster to a tem-
porary cluster set T (line 15), and allocate a new cluster
(lines 16-19).

Finally, we will search for the largest size cluster which
contains the 6-byte instruction sequence for TLB flushing,
and we identify this cluster to be the main kernel code.

3.2 Code Signature Generation

An intuitive signature generation scheme is to hash (MD5)
each page in CCK as a signature. This approach would work
if there is no code relocation, or kernel ASLR. However, such
an approach will fail for some modern OSes such as the
recent Windows-7, which actually randomizes the kernel
instruction addresses, and during the randomization some
code and data labels for some instructions are changed.

Thus, we have to neutralize the randomization. To this
end, we introduce a code normalization that distills the mem-
ory and immediate operands and only hashes the opcode
and register operand, based on a robust disassembly. In
addition, we also observe that the operand for a direct call
instruction remains identical, because the target is refer-
enced as a relative offset. That explains why the direct for-
ward call based clustering is general enough to deal with
the randomized kernels.

Correlative disassembling. Robust disassembling in general
is a challenging task in �86, since code and data could be

mixed, and code could start at arbitrary location (may not
be aligned). In OS-SOMMELIER

þ, we take a special and robust
approach by exploring the constraint from the direct call
instruction and its targeted function prologue.

Algorithm 1. Core Kernel Code Identification

Require: Vaddr(t) returns the virtual address for t. Page

(t) returns the page in which virtual address t resides.

FunTarget(i) returns the target address for

instruction i.
Input: The kernel code cluster CKk that contains a

number of pages whose virtual address has
been resolved;

Output: CCK , which is a subcluster of CKk that contains
the core kernel code part.

1: CoreKernelCodeIdentification(CKk){
2: C new Cluster
3: C:start Vaddrðp0Þ
4: C:end Vaddrðp0Þ þ 4096
5: C:page ;
6: T ;
7: for each pi 2 CKk do
8: C:page C:page [fpig
9: for each DirectForwardFunCall f 2 pi do

10: if FunTarget(f) > C:end then
11: C:end FunTarget(f)
12: end if
13: end for
14: if Vaddr(pi) þ4096 > C:end then
15: T T [C
16: C new Cluster
17: C:start VaddrðpiÞ
18: C:end VaddrðpiÞ þ 4096

19: C:page ;
20: end if
21: end for
22: T T [C
23: CCK T ½0�
24: for each c 2 T do
25: if (TlbFlush 2 c and jcj >jCCK j) then
26: CCK c
27: end if
28: end for
29: return CCK

30: }

More specifically, considering a direct call instruction
call0xc108a8b0 (with the machine code e8 25 2c 00 00)
shown in Fig. 3 as an example, the operand of this instruction
25 2c 00 00 (0� 2c25) is the displacement to the target callee
address (0� c108a8b0), which can be computed from the PC
of the direct call instruction (0xc1087c86) plus the

Fig. 2. Illustration of core kernel code clustering.

Fig. 3. Exploring the constraint between a caller instruction and the
callee prologue for robust disassembling.

GU ET AL.: MULTI-ASPECT, ROBUST, AND MEMORY EXCLUSIVE GUEST OS FINGERPRINTING 385

displacement (0x2c25) and the instruction length (5). Mean-
while, the function prologue of the callee instruction also has
a unique pattern, namely, with a machine code 55 89 e5

which is the instruction sequence of push ebp, move ebp,

esp. As a result, by searching for machine code e8 x x x x

and computing its callee target address, as long as the tar-
geted callee address has the pattern of a function prologue,
we will start to disassemble the target page from the callee
prologue.When encountering a ret or a direct or an indirect
jmp instruction, we stop disassembling this function. In
other words, our disassembling adopts a linear sweep algo-
rithm [32]. We have tested this correlative disassembly
approach with many binary programs including the OS ker-
nel (to be presented in Section 5) and user level binary (c.f.,
[20]), andwe did not encounter any false positives.

We devise this disassembling algorithm specially for our
fingerprinting: (1) it is simple and efficient; and (2) the dis-
sembled instructions are correct with high confidence.
These benefits are achieved at the cost of a lower coverage.
For a better coverage, we could have taken a recursive dis-
assembling approach (e.g., [25]). We do not choose this
sophisticated approach because the disassembly coverage is
not a crucial factor for OS fingerprinting and it would incur
significant performance impact.

Algorithm 2. Code Signature Generation

Require: LinearSweepDisass(p) returns one or more
page that contains disassembled code which has distilled
the memory operand and un-disassembled code with 0.
Vaddr(t) returns the virtual address for t. FunTarget
(f) returns the target address for function f . Prologue
(t) returns true if the virtual address starting at t is a
function prologue. WinthinPage(p,q) returns whether p
and q are within the same page. MD5(d) returns the hash
value of d.
Input: The core kernel code cluster CCK that contains a

number of pages whose virtual addresses have
been resolved;

Output: A signature array S in which each element is a
MD5 for the disassembled page.

1: SignatureGeneration(CCK){
2: for each pi 2 CCK do
3: pi:dis ;
4: for each DirectFunCall f in pi do
5: taddr FunTarget(f)
6: if WithinPage(taddr, f) and Prologue(taddr)

then
7: pi:dis pi:dis [ftaddr mod 4096}
8: end if
9: end for

10: data LinearSweepDisass(pi)
11: index Vaddr(pi)-Vaddr(p0)
12: S½index� MD5(data))
13: end for
14: return S }

The detailed signature generation algorithm is presented
in Algorithm 2. In particular, for all the pages whose virtual
addresses have been resolved in CCK , we first search all the

possible starting addresses for disassembly (because within
one page there could be multiple function prologues) in
each page by verifying the direct function call instruction
and its prologue (lines 5-8). After we have identified all the
starting addresses for disassembly in a page, we next disas-
semble it (line 10). Our linear sweep disassembler will stop
when we encounter a ret or a direct or indirect jmp

instruction. For the rest of un-disassembled code and data,
we will clear it with 0. We will also zero out the memory
operands and immediate operands of the disassembled
instructions. Eventually, we will have a new page data (or
more than one if the disassembling end point is in the other
pages) which contains all the opcode of the disassembled
instructions and some of its operands such as registers.

Note that we could have generated just one MD5 for the
entire data in S. But to support a sensitive detection of any
kernel code modification, and the tolerance of possible ker-
nel page swap, we introduce a signature normalization tech-
nique. Our signature normalization will order the MD5-
signatures from each disassembled page and store them in
an array indexed on the normalized virtual address of
the page (lines 11-12). Thus, for the swapped page, only
the array element indexed by that particular missing page
will not have a hit in the signature matching. Meanwhile,
our experiment with the real world OSes shows that our
final array-organized signatures are extremely strong and
only a few hash values are unique enough to precisely fin-
gerprint an OS.

3.3 Code Signature Matching

As a final step, to identify the precise OS version, the signa-
ture of the memory snapshot is “string” matched against
the database of signatures where the “string” is composed
with 32-bytes MD5 values. Here, we use the standard KMP
[24] string matching algorithm. The slightly tweak is that
we have to represent the original single character of a
string with a 32-bytes MD5 value. For the comparison of the
32-bytes MD5 value, we just sequentially compare each
byte since the hash function tends to have normal distribu-
tions for each character. The details are elided (as the KMP
string matching is a standard algorithm).

4 DATA SIGNATURE BASED APPROACH

Code signature based approach is very sensitive to the ker-
nel code: even a recompilation of the same kernel with dif-
ferent compilation option might lead to different signatures.
To tolerate such sensitivity, we need to explore other aspect
of OS kernel to fingerprint the OS kernel. In this section,
we first present our observation with data signatures in
Section 4.1, and then present the detailed design of our tech-
niques from Sections 4.2 to 4.3.

4.1 Key Observation

As we have discussed in Section 2.2.2 that we eventually
decide to use pointer values, especially the loop invariant, a
special case of structural invariant (exhibited by kernel data
structure when following pointer dereference) as one of the
data signatures. The fundamental reason of why we can use
the loop invariant is that (1) they widely exist, (2) they are
unique, and (3) they are self-certifying.More specifically.

386 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2014

Loop invariants widely exist. When we follow the pointer
path to traverse kernel object, we often find loop invariants
widely exist. For example, as illustrated in Fig. 4, for a
task_struct instance at address 0xc57ad780 from
Linux kernel 2.6.26, we could have a loop path from mm

field, to get an instance 0xcf96e820, from which we follow
its owner field and come back to the original task_struct
instance at 0xc57ad780. Meanwhile, we could have
another loop by traversing the task list, that is the next task
of its previous task is this task, and similar favor for children
list and sibling list. Moreover, not only just task_struct
has such a loop path, but also many other kernel data struc-
tures such as memory, file system, network communication,
and device drivers all do contain such invariants.

Loop invariants are distinct across different kernels. To be
used as signatures, the loop-invariant must be distinctive
across different kernels. Our observation with a wide range
of OS kernels confirms that these loop invariants are unique.
Note that adding/removing one single offset in a data struc-
ture will lead to an entirely different loop.

Loop invariants are self-certifying. More importantly, we
observe that a loop invariant is self-certifying. In particular,
it has a mathematic foundation from the fixed point function
x ¼ fðxÞ view. While testing whether x is true, we could test
whether fðxÞ is true by simply comparing the value of x and
fðxÞ. Note f could be defined using pointer dereferencing (�)
and arithmetic operations (þ;�). For example, for a task_

struct instance xwhen following the mm_struct path, we
could have a fðxÞ ¼ �ð�ðxþ 468Þþ 396Þ ¼ x. Theoretically, it

is unlikely with a probability of ð1=232Þ2 for a 32 bit machine
that there are two memory chunks which happen to have
such a loop.

Summary. Therefore, the essential goal of our data signa-
ture approach in OS-SOMMELIER

þ is to automatically identify
these loop invariants, derive distinctive signatures, and
make them faster for fingerprinting OS. Next, we present
the detailed design of how to extract the loop invariant in
the training phase, and how to scan the loop invariant in the
matching phase.

4.2 Structural Invariant Extraction

As loop invariant represents a fact for a data structure and
our goal is to extract them for kernel fingerprinting. To this
end, we first need to extract the kernel data structure infor-
mation (Section 4.2.1), from which to build the data

structure graph (Section 4.2.2) and derive the loop invari-
ants (Section 4.2.3). While we could use a compiler to extract
the data structure definition from source code, we use a
debugger assisted approach. In the following, we present
our detailed design.

4.2.1 Data Structure Extraction

To extract the kernel data structure in the training phase,
we assume we have debug information which is generated
when compiling Linux kernel, and all the address map-
pings of global variables which comes from the System.

map file. The data structure graph is rooted from kernel
global variable. To achieve this, we leverage a debugger, in
particular the crash [1] tool, to manage the debug symbol
and return the data structure types, and we call this inter-
nal component Type Querier. We cannot directly use crash

for a number of reasons: (1) crash does not expand the
embedded struct when querying the data structure
types, and does not expand the array as well; (2) crash

does not tell how to type the union field and the destina-
tion of void pointers; and (3) crash only returns the syn-
tactic definition of a field. Thus, we have to extend crash

to achieve our goals. In particular, we extend crash with
the following new capabilities:

1) Expanding the embedded struct. The goal of expand-
ing the embedded structure is to get a global offset
starting from 0 for the first field, for all the field
within a structure. To expand the embedded struc-
ture, we check each field Fi, which is the ith-field
returned by crash when querying the data struc-
ture definition. If Fi is an embedded structure, we
then recursively check whether the next layer field in
Fi is an embedded structure or not. If so, we update
their offset for each field using a global offset. To
identify a field is embedded, we check the size of
that field: if it is greater than 4, we will normalize the
type for that field, and further check if it is a user
defined composite data type or not. The intuitions is
that the primitive type except double are always
within the size of 4 bytes (note our software running
on a 32-bits �86 architecture), and hence all others
with size greater than 4 need to be further checked.

2) Expanding the array element. When querying crash,
the returned array type is also encapsulated. Similar
to the embedded struct expanding, we expand the
array element as well, and we annotate each element
with their detailed types and a global offset.

3) Cloning the union type—Since each field in a union

type begins at the same location in memory, if Fi is a
union type, we need to copy each field to the loca-
tion of Fi. In other words, each field in union gets a
slot at the same offset. Also, if a union contains
user-defined structure, we will expand that structure
as well.

4) Identifying the pointer field. To identify pointer field,
we have to normalize Fi to its primitive form or one
standard form for user-defined types. We cannot
directly identify pointers just based on the syntactic
form of a field because programmers could use
typedef to define pointer field and type aliases,

Fig. 4. Some loop path invariant examples for task_struct instances
0xc57ad780 in Linux kernel 2.6.26. Note that [i] annotates the ith offset
of the specific field in the corresponding data structure definition.

GU ET AL.: MULTI-ASPECT, ROBUST, AND MEMORY EXCLUSIVE GUEST OS FINGERPRINTING 387

and we need to normalize each type to the known
primitive type or user-defined struct type (i.e., elimi-
nate the type alias), which is stored in K. Then, we
could just check the existence of � in the normalized
form to identify the pointer field.

5) Resolving the specific type for void pointers. When a
memory holds a void pointer, we have to stop
because we do not know the data structure type at
the destination address. Fortunately, if the destina-
tion address is within the known data object, we can
still type the void pointers. Therefore, we maintain
a data object pool. Whenever we resolve a memory
address with concrete types, we will insert the
instance of this data structure to our object pool. If
the void pointer points to the object which does not
exist when we query the type, we will return its type
unresolved temporarily, and push it to a work-list
for future resolution (because the pool increases
whenever we identify a new object). If in the end, we
still cannot resolve its type, we will delete it from the
work-list and return its type cannot be resolved.

As a result, every time when asking for a data structure
definition, we will return a flattened data structure type defi-
nition, which has expanded all the embedded data structure
and array element with global offset for each field, cloned
all the union field, identified all the pointer field, and
resolved the void pointer as much as it can at that moment,
for a given memory address. These information will be
used in our memory graph builder.

4.2.2 Memory Graph Builder

As illustrated in Section 4.1, to extract the loop invariant, we
have to traverse a memory graph, which reflects a point-to
relation between objects and their fields. The root of
our memory graph is the data object address defined in
System.map file, a symbol table file used by Linux kernel.
While a symbol is a variable name or a function name of a
program, and System.map contains the symbol address,
symbol type (such as data or code symbol), and symbol
name. After we get all the global addresses for each object
from System.map, we keep them in a work list. Next, we
iterate to pick up one and build a memory graph.

We also use an algorithm shown in Algorithm 3 to illus-
trate how to build the memory graph for Linux kernel data
structures. When given a memory address a and its type t,
our Graph_Builder first allocates space for G (line 2),
keeps the address, type and size (lines 3-5), and then
updates the object pool to contain the newly identified
object (line 6) with the memory address and its type. Next
it calls our type querier to return a data structure definition
for a (TQða; tÞ at line 11)), and then we iterate each field Fi

returned in TQða; tÞ (Type Querier described in Section
4.2.1) to store the type and address of each field in the allo-
cated space nodei (lines 8-10). Also, we check whether or
not Fi is a pointer field (line 11). If so, we keep the point-to
value (i.e., the destination address) of this field (line 13).
Note the daddr is acquired by deference the memory
address in the snapshot. For the graph edge, there are two
cases: (1) if there is a graph containing daddr, then we just
connect the two nodes (line 15), (2) otherwise, we will first

recursively call Graph_Builder to build a sub-graph G0

for daddr with type T ðFiÞ (line 17), and then connect the
nodek in G0 with nodei (line 18). Why there exist two cases
is because not all the edge is connected to the root of a
graph, for example, the next pointer at offset 180 of
task_struct shown in Fig. 4.

Algorithm 3.Memory Graph Builder

Require: TQða; tÞ returns the type definition for destina-
tion address a, with the type t of a; OðFiÞ returns the off-
set of Fi in the checked data structure.
Input: the memory address a and its type t;
Output: G, which is a memory graph reachable from a;
1: G Build_Graph(a; t)
2: G new G
3: G:type t
4: G:addr a
5: G:size sizeofðaÞ
6: ObjPool ObjPool [f<a; t> g
7: for each Fi 2 TQða; tÞ do
8: G:nodei new node
9: G:nodei:type T ðFiÞ

10: G:nodei:addr aþOðFiÞ
11: if P ðFiÞ then
12: daddr ð�ðaþOðFiÞÞÞ
13: G:nodei:value daddr
14: if 9G0 s:t: daddr � G0:nodej:addr then
15: G:nodei:edge <G:nodei, G

0:nodej>
16: else
17: G0 Build_Graph(daddr; T ðFiÞ)
18: G:nodei:edge <G:nodei, G

0:nodek>,
where G0:nodek:addr � daddr

19: end if
20: end if
21: end for
22: return G

As presented in Algorithm 3, we use a depth-first search
(DFS) to build the memory graph (line 17). However, in
practice, we cannot keep searching because of the scalability
issues, as kernel usually has a large number of connected
objects from a given object. Thus, we limit our search depth
to a threshold of 4 when we building the memory graph for
each kernel global variable exported in System.map. This
threshold is chosen based on the recent result from Sig-
Graph [26] that demonstrates we can use a two layer signa-
ture of a task_struct to infer a unique task_struct

object. Once we have built a memory graph G for each data
object, our next step is to extract the loop invariants from G.
The details on how to extract them is presented next.

4.2.3 Loop Invariant Extractor

Since a loop invariant identifies a loop path in a memory
graph, our Loop Invariant Extractor then performs a graph
traversal to extract them. To make our system simple and
scalable, we use a limited length of breadth-first search
(BFS) algorithm to identify the loop. To be more specific, we
outline our BFS based loop path detection in Algorithm 4.
At a high level, given a graph node G for data structure

388 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2014

instance, we incrementally check if a newly connected path
whether or not can lead to a loop path to G; if so, we output
such a loop path, otherwise, we keep checking until no
connected node can be added or the path length exceeds
the threshold.

Algorithm 4. Loop Invariant Extraction

Input: a memory graph G (of object awhose type is t);
Output: all loop path starting from and ending to Gwith

the path length limited to L;
1: for each nodei 2 G:node do
2: Conn node Conn node [fnodeig
3: end for
4: path length 0
5: while path length < L do
6: for each nodei 2 Conn node do
7: if 9edgek ¼ <nodei; G

0:nodej> then
8: if G0:nodej =2 Conn node then
9: Conn node Conn node [fG0:nodejg

10: else
11: if G0 � G then
12: output the loop path from

<G:nodem;G
00:nodeu > to

<G000:nodev; G:nodej >
where G00:nodeu 2 Conn node ^
G000:nodev 2 Conn node

13: end if
14: end if
15: end if
16: end for
17: if no nodei added to Conn node then
20: return

19: end if
20: path length ++
21: end while

As illustrated in Algorithm 4, we first use a set
Conn node to keep all the initial node of G (lines 1-3), then
we examine the newly checked edge (line 7), if the
connected to node is a new node (line 8), we add it to
Conn node (line 7); otherwise, we then check if the graph G0

this node belongs to is G or not (line 11), if so, we output the
loop path, which is starting from and end to G (line 12).
Note, every time we aim to detect the loop which is ended
with G; for those other loop path, we will detect them when
we check that particular graph node, and all the graph node
G will be visited to detect the loop path for them. Also, all
the data object will have a correspondingG created by using
our Algorithm 3.

To detect all the loop path of a data structure instance,
rooted from a graph G, suppose each graph node has N
number of pointer fields, then the worst case complexity

of our loop detection will be OðN þN2 þN3 þ 	 	 	 þNLÞ ¼
OðNLÞ, where L is the threshold of the maximum path
length. Suppose we have M number of objects, then the
total complexity to detect all loop for all object will be

OðM �NLÞ. Note in practice, N is usually less than 5, and
also our system is used in an offline fashion to extract the
loop invariant and it is a one time execution.

4.2.4 Adding More Signatures

As discussed in Section 2.2.2, we also extract the size invari-
ant of a data structure as one of the signatures. For instance,
the task_struct of Linux kernel usually has over hun-
dreds of fields, up to thousands of bytes. If we can precisely
identify the size of this data structure in memory, it could
be served as a strong signature.

However, the challenging lies in how to identify the
size of a data structure (e.g., task_struct). Fortunately,
we have an observation that the same type of kernel data
structure tends to be allocated in a pool, the size of a data
structure can be determined based on the minimum dis-
tance between two identified data structures of the same
type. For instance, suppose we have identified all instan-
ces of task_struct, we can then compute the shortest
distance between these instances. The minimum value
would be the upper bound of the task_struct. Then,
we need to have an approach to identify the instance of
task_struct. Fortunately, it has many loop invariants.
Therefore, our design is to first scan the instances of
task_struct by using the loop invariant, and then com-
pute the size.

4.3 Structural Invariant Scanning and Matching

We use a brute force scanning of the structural invariant (in
particular loop invariant) to identify the data structure
instances, and derive other signatures (such as the size
invariant). The scanning is pretty straightforward: starting
from the beginning of kernel address space, we check
whether a given address contains a loop invariant by follow-
ing the pointer dereference and the offset information
encoded in the signatures. If it matches, we output this
instance. After we have scanned all the instances, we then
derive size invariant. By combining all the invariants, we can
pin-point the OS versions.

Note that the loop invariant extraction is done during a
training phase. After we extracted all the invariants for all
the kernels, we will organize them in a decision tree. When
we scan the guest OS memory, we can then quickly tell
which signature the kernel matches.

5 EVALUATION

We have implemented OS-SOMMELIER
þ, with 7.5 K lines of

code. In particular, we implemented the code signature
approach with 4.5 K lines of C code and its correlative disas-
sembler is built on top of XED [3] library, and we imple-
mented the data signature approach with 3 K lines of
python code, atop a kernel dump analysis tool crash [1]. In
this section, we present our experimental result. We first
tested its effectiveness in Section 5.1, with 27 Linux kernels
from 2.6.26 to 3.12.0, and then we report the performance of
OS-SOMMELIER

þ in Section 5.2

5.1 Effectiveness

To test OS-SOMMELIER
þ, we have to execute it in two phases

and have the following experimental setup:

� Ground-truth collection phase. To generate the
ground-truth signature for each testing OS kernel,
we used one physical memory dump for both code

GU ET AL.: MULTI-ASPECT, ROBUST, AND MEMORY EXCLUSIVE GUEST OS FINGERPRINTING 389

signature and data signature approach. Normally
the ground truth is collected by a cloud provider or
a forensics examiner with a one-time effort. To
obtain the physical memory dumps, we run each of
the OSes in a QEMU [2] VM with 512M bytes RAM
(131,072 pages with 4 K bytes each). After the guest
OS booted up, we took a memory dump to compute
the ground truth.

� Testing phase. For the deployment testing, we col-
lected five memory dumps for each testing OS with
different VMs (including VMware Workstation,
KVM, Xen and VirtualBox) at different moments
after OS booted. As shown in Table 2, we also varied
the VM configurations with different physical mem-
ory size (from 256 M to 1 G) and took the snapshot at
different time after the VM is power on. The page
swapping is enabled for these memory dumps in
order to evaluate the robustness of our signature
scheme in real scenario. Our host machine has an

Intel Core i7 CPU with 8 G memory machine, instal-
ling a Ubuntu 11.04 with Linux kernel 2.6.38-8.

In the following, we present the detailed experimental
results for these two phases.

5.1.1 Ground-Truth Collection

Table 3 presents the detailed experimental results for each
tested OS in our ground truth collection. We start the Linux
kernel from version 2.6.26, and end at the version 3.12.0.
These are the kernels released in the past five years. For
each kernel, we collect its code signature, and data signa-
ture. These signatures will be used in our testing phase (Sec-
tion 5.1.2). More specifically.

Code signature approach. To generate the code signatures,
there are two key components involved, namely Kernel Code
Identification and Code Signature Generation. We report the
step-by-step output by these two components below:

� Kernel code identification. There are three steps
involved in kernel code identification (Section 3.1).
We report the output of these steps respectively. As
presented in column jCK j, we usually could identify
28.93 clusters based on whether any two contiguous
kernel pages share identical PTE and PDE bits, and
by searching whether the cluster contains the 6-bytes
TLB flushing sequence, we can further narrow down
the core kernel code to at most two clusters (column

TABLE 2
Testing Memory Snapshot Configuration

Configuration VMware QEMU KVM Xen VirtualBox

Mem Size (MB) 256 512 512 768 1024
Time (min) 5 10 10 15 20

Time is calculated right after the VM is power on.

TABLE 3
Experimental Result of OS-SOMMELIER

þ during the Ground Truth Signature Generation

OS-kernels Code Signature Approach Data Signature Approach

jCK j jCKkj #Pages jT j #Pages’ #DisPage Pr% Dr% jSj jS0j #Loop
Invariant

jtask structj #Reached
Struct

Linux-2.6.26 69 1 812 2 811 526 64.86 9.48 526 1 179 3180 40
Linux-2.6.27 72 1 845 2 844 548 64.93 9.57 548 1 75 3180 42
Linux-2.6.28 109 1 885 2 884 575 65.05 9.78 575 1 72 3188 40
Linux-2.6.29 106 1 908 2 907 597 65.82 9.76 597 1 75 3132 37
Linux-2.6.30 119 1 1446 2 1445 918 63.53 11.1 918 1 75 3184 37
Linux-2.6.31 26 1 1545 3 1098 976 88.89 10.99 976 2 89 3220 35
Linux-2.6.32 26 1 1589 2 1588 1005 63.29 11.33 1005 2 89 3236 33
Linux-2.6.33 28 1 1606 3 1152 1039 90.19 11.23 1039 2 89 3248 33
Linux-2.6.34 28 1 1617 2 1616 1043 64.54 11.19 1043 2 88 3280 41
Linux-2.6.35 28 1 1640 3 1175 1056 89.87 11.35 1056 1 139 3244 41
Linux-2.6.36 28 1 1641 3 1183 1071 90.53 11.15 1071 2 88 3244 41
Linux-2.6.37 3 2 768 1 767 700 91.26 11.49 700 2 242 3228 42
Linux-2.6.38 3 2 768 1 767 697 90.87 11.51 697 2 133 3228 41
Linux-2.6.39 3 2 768 1 767 687 89.57 11.72 687 2 88 3228 41
Linux-3.0.0 3 2 768 1 767 689 89.83 11.87 689 1 88 3236 41
Linux-3.1.0 3 2 768 1 767 682 88.92 11.73 682 2 88 3232 43
Linux-3.2.0 3 2 768 1 767 680 88.66 11.6 680 2 88 3224 53
Linux-3.3.0 3 2 768 1 767 680 88.66 11.83 680 2 88 3236 55
Linux-3.4.0 3 2 768 1 767 679 88.53 11.74 679 2 88 3228 54
Linux-3.5.0 5 2 768 1 767 676 88.14 11.87 676 2 90 3232 53
Linux-3.6.0 5 2 768 1 767 690 89.96 11.82 690 1 88 3216 53
Linux-3.7.0 5 2 768 1 767 679 88.53 11.74 679 1 88 3224 56
Linux-3.8.0 5 2 768 1 767 674 87.87 11.53 674 1 159 3252 42
Linux-3.9.0 7 2 768 1 767 660 86.05 11.9 660 1 160 3256 43
Linux-3.10.0 8 2 768 1 768 687 89.45 11.72 687 1 157 3260 43
Linux-3.11.0 8 2 768 1 768 688 89.58 11.81 688 1 155 3256 43
Linux-3.12.0 75 1 1942 1 1942 1243 64.01 11.37 1243 1 133 3268 42
Mean 28.93 1.56 1036.89 1.56 968.60 772.04 81.91 11.27 772.04 1.49 110.78 3227.41 43.15

390 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2014

jCKkj). The largest cluster in CKk contains on average
1,641 kernel code pages, and this number is reported
in the fourth column.

� Code signature generation. We report seven categories
(from the fifth to 11th column) of data for this com-
ponent. In particular, in the fifth column, we report
the total number of clusters jT j identified by connect-
ing the pages with direct forward function call con-
straint; the sixth column (#pages’) reports the total
number of pages in the largest cluster of jT j. For
these pages, how many of them (i.e., #DisPage) can
be disassembled is reported in the seventh column,
and this ratio Pr reported in the eighth reflects the
effectiveness of our correlative disassembling. For
the disassembled pages, how many bytes in each
page can be disassembled (i.e., the disassembled
byte ratio Dr) is reported in the 9th column and this
ratio estimates how much information we eventually
retained after all of our transformations. Finally, we
report the total number of signatures generated in
column jSj (the 10th column). Among all of these sig-
natures, at least how many of the signatures jS0j
(reported in 11th column) we need to check in order
to determine the corresponding kernel version.

From the table, we could see that on average we
will further divide the core kernel code into 1.56
clusters. The largest cluster contains on average
968.60 pages. Among these pages, on average 772.04
of them can be disassembled with a ratio (Pr) of
81.91 percent. For each disassembled page, we cov-
ered 11.27 percent of bytes during the disassembling.
We have to emphasize that our goal is not for accu-
rate disassembly, and the disassembling rate is not a
crucial factor for the quality of our OS fingerprinting.
In comparison, the disassembled page ratio (Pr)
make more sense, because it shows howmany differ-
ent pages have contributed to the signatures. The
final signature cluster size on average is 772.04 MD5-
hashes. Meanwhile, for all the hashes we generated,
the majority of them only needs one of the page hash
to uniquely identify the target OS.

Data signature approach. In ground truth generation, OS-SOM-

MELIER
þonly involves the Structural Invariant Extractioncom-

ponent. We also reported the statistics of the extracted

structural invariant in the last three columns of Table 3. As

discussed in Section 4.1, loop invariant is so strong, and it can

be used to fingerprint OS kernel, when combined with other

strong signatures such as size invariant (Section 4.2.4).

Nearly for all the running Linux kernels, it must contain
the process control structure, namely, task_struct.
Therefore, we extracted all the possible loop invariants start-
ing from task_struct. This number is reported in the
12th column of Table 3. We can see on average, we could
have 110.78 number of the loop invariants for task_-

struct. For the size of the task_struct, it is reported in
the 13th column. We can notice that task_struct often
has a very large size, with an on average of 3,227.41 bytes.
We also report how many other data structures can be
reached by the loop invariants, and they are presented in
the last column. We can notice that the loop invariants of
task_struct can often reach 43.15 other data structures.

Again, we would like to emphasize that there could be
other loop invariants from other data structures. Because
they are usually so strong, in this paper, we only derived the
ones from task_struct. When combined with the strong
size invariants, they can be used to precisely fingerprint all
of these kernels we used for the derivation.

5.1.2 Testing Phase

In our testing phase, we used two sets of kernels to evaluate
OS-SOMMELIER

þ. The first set contains the exact 27 kernel in
our ground-truth generation, and the second set contains
the same kernel as in the first set but recompiled with stack
frame omission option (this is to test the code agnostic fea-
ture of our data signature). As a result, in total we have
54 kernels. We execute these kernels in a diversified VMs
using different configurations, as reported in Table 2.

We then took a snapshot for each kernel, and sent to OS-
SOMMELIER

þ for the fingerprinting. Without any surprise, our
code signature approach successfully identified the 27 known
kernels in the training set. However, it cannot identify these
recompiled one. Fortunately, out data signature identified all
the kernels without any false positive and false negatives.

5.2 Performance Evaluation

Next, we measured how fast to execute OS-SOMMELIER
þ to

fingerprint a kernel. As illustrated in Fig. 1, OS-SOMMELIER
þ

will first invoke code signature approach to determine the
kernel version (because of its fast speed). Only when it fails,
it then invokes the data signature approach.

Code signature approach. To match a given kernel, code
signature approach first needs to identify the core kernel
code, perform the robust assembly, hash the distilled
code, and then perform the matching. The execution time
for all the identified 27 kernels is reported in Fig. 5. We
can notice that on average it took 9.9 seconds to finger-
print a known kernel.

Note that while our OS-SOMMELIER
þ uses KMP string

matching algorithm [24] to match the final signature string
with the ground truth signature string (which has hundreds
of page hash values), we can in fact use only few page
hashes to uniquely pinpoint the exact OS. We confirmed
this observation and verified that in most cases, we can just
use one MD5 to differentiate the kernel (as shown in the jS0j

Fig. 5. Scanning time of OS-SOMMELIER
þ w/ code sig.

GU ET AL.: MULTI-ASPECT, ROBUST, AND MEMORY EXCLUSIVE GUEST OS FINGERPRINTING 391

column in Table 3), thanks to our strong, sensitive code hash
based signatures.

Data signature approach. When our code signature cannot
tell the kernel version, OS-SOMMELIER

þ then invokes the data
signature approach. This component took much longer time
than that of code signature. This is because it uses a brute
force memory scanning to test each potential memory
address whether or not matching with an existing known
loop invariant. Also, it has to test with all the known loop
invariants in the signature data base. Therefore, it took on
average 137.8 seconds for the 27 unknown kernels which is
reported in Fig. 6, and this overhead also includes the time
spent by the code signature approach because it only gets
involvedwhen code signature approach fails.

6 DISCUSSION

Given the threat model described in Section 2.1, in this sec-
tion, we discuss the possibility of various evasion attacks
and the limitations of OS-SOMMELIER

þ.
Creating extra noisy data. As discussed in our threat model,

we assume that the integrity of main kernel code in the VM
can be enforced by the cloud provider. After compromising
a VM, the adversary cannot directly modify the main kernel
code to evade our OS fingerprinting. She can only generate
extra fake data to mislead our system. For example, by
exploiting our kernel code identification process, the adver-
sarymaymake up some data to make OS-SOMMELIER

þ believe
that some of the fake pages are kernel code.

To counter this kind of attack, we can configure OS-
SOMMELIER

þ to examine all possible kernel code clusters. As
the true kernel code remains intact, it will still be correctly
identified to be one of the clusters. Then instead of picking
the biggest cluster for signature matching, we can check all
the clusters one by one and report the recognized OS ver-
sion respectively.

Obfuscating the kernel code or data structure. If a VM user is
uncooperative or malicious, she can obfuscate the kernel
code or data structure to bypass our fingerprinting. To name
a few, she can mess with function prologues to disrupt our
correlative disassembling if the adversary can access the ker-
nel source code. She can alsomanipulate direct function calls
and indirect function calls to confuse our kernel code identi-
fication process. She can even applies for kernel data struc-
ture randomization if she has the source code.

In general, this kind of evasion attacks is equivalent to
fingerprinting a completely new and unknown OS, which
we consider to be out of our current scope. Meanwhile,
cloud providers need to maintain an up-to-date signature
database for all the kernels including with new patches.
Otherwise, OS-SOMMELIER

þ may not be able to recognize it.

7 RELATED WORK

Network protocol based fingerprinting. OS fingerprinting has
initially been investigated from a network protocol perspec-
tive. Inspired by earlier efforts leveraging TCP stacks to find
(1) protocol violations, (2) vendor-specific design decisions
[11], and (3) TCP implementation differences [28], TCP
based fingerprinting was proposed. The basic approach is
to actively send carefully created TCP/IP or ICMP packets
to the target machine, analyze the differences in the
response packets, and derive fingerprints and match the
database with known OS fingerprints. Nmap [16], Xprobe2
[4]/Xprobe2++ [40], and synscan [36], are all such tools
based on network based fingerprinting. Besides the active
packet probing fingerprinting, there are other passive OS
fingerprinting techniques through sniffing network packets
such as p0f [34].

The rationale behind network-based fingerprinting is that
different OSes tend to have different implementations for
certain network protocols and services. While this rationale
is often true, it is not accurate enough to distinguish the
minor versions of an OS kernel, because minor OS versions
may have the same protocol implementations. Moreover, the
network-based fingerprinting may not be applicable in
many new application scenarios, such asmemory forensics.

CPU-based fingerprinting. Recently Quynh proposed a
system called UFO [30] to fingerprint the OS of a virtual
machine in the cloud computing environment. It explores
the discrepancies in the CPU state for different OSes. The
intuition is that in protected mode, many CPU registers
such as GDT, IDT, CS, CR, and TR, often have unique values
with respect to different OSes. Thus, by profiling, extracting,
and differing these values using a VM monitor (VMM),
UFO generates unique signatures for each OS.

While UFO is effective and efficient in fingerprinting cer-
tain OS families (e.g., Linux kernels, it does not work well
for many other OS families, such as the Windows OS and
close versions of Linux kernels. Moreover, the requirement
of access to the CPU state cannot be always met for various
application scenarios (such as memory forensics and kernel
dump analysis).

Filesystem-based fingerprinting. In a cloud VM manage-
ment scenario, it would be straightforward to identify the
OS version by examining the file system of the virtual
machine. For example, one can look for the kernel code on
the file system and check its hash. In fact, tools such as virt-
inspector [23] already support this capability.

However, this approach is not feasible for a machine
with encrypted file systems. Also, the requirement of access
to the file system may not be viable for some applications
such as memory forensics when only having a physical
memory dump.

Memory-based fingerprinting. Recently a couple of techni-
ques were proposed to utilize the memory data for OS

Fig. 6. Scanning time of OS-SOMMELIER
þ w/ data sig.

392 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2014

fingerprinting, but none of them can simultaneously
achieve all of the three design goals: efficiency, accuracy,
and robustness. In particular, Christodorescu et al. [10] pro-
posed to use the interrupt handler for OS fingerprinting,
because the interrupt handler varies significantly across dif-
ferent OSes. While efficient, this approach is not accurate
enough to differentiate Windows XP kernels with different
service packs, and it also cannot pinpoint some of the
FreeBSD and OpenBSD kernels [19]. Meanwhile, this
approach also requires access to CPU registers because they
directly identify the interrupt handler from the IDT register.
Again, it is not directly suitable for applications such as
memory forensics when only memory is available.

Most recently, SigGraph [26] was proposed as a graph
signature scheme to reliably identify kernel data struc-
tures from a memory dump. As different OSes tend to
have different data structure definitions, it has been dem-
onstrated that SigGraph has the potential for OS finger-
printing [26]. However, SigGraph is far from being
efficient, as it scans every pointer and non-pointer field
and examines the data structures in many hierarchical lev-
els. In contrast, OS-SOMMELIER

þ employs loop invariant
which significant reduces the verification time when scan-
ning data structure instances. Also, OS-SOMMELIER

þ sup-
ports the derivation of size invariant which is another
strong signatures.

8 CONCLUSION

We have presented the design, implementation, and evalua-
tion of OS-SOMMELIER

þ, a multi-aspect, memory exclusive,
and robust approach for precise and efficient OS finger-
printing in the cloud. The key idea is to first compute the
core kernel code signatures to precisely fingerprint an OS,
and the precision and efficiency are achieved by our core
kernel code identification, correlative disassembling, code
and signature normalization, and resilient signature match-
ing techniques. If code hash fails, it then uses a strong loop
invariant and size invariant to fingerprint the OS from the
data perspective. Our experimental result with 27 Linux
kernels shows that the code signature of OS-SOMMELIER

þ can
precisely fingerprint all known OSes in a fast fashion, but it
is too sensitive to kernel code changes, and the data signa-
ture of OS-SOMMELIER

þ complements the code signature and
can fingerprint even unknown kernels (e.g., the kernel with
different code but the same data structure).

REFERENCES

[1] Crash. (2014) [Online]. Available: http://mclx.com/projects/
crash/

[2] QEMU: An open source processor emulator. (2014) [Online].
Available: http://www.qemu.org/

[3] Xed: X86 encoder decoder. (2014) [Online]. Available: http://
www. pintool.org/docs/24110/Xed/html/

[4] O. Arkin, F. Yarochkin, and M. Kydyraliev, “The present and
future of xprobe2: The next generation of active operating system
fingerprinting. sys-security group,” Jul. 2003.

[5] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C.
Skalsky, “Hypersentry: Enabling stealthy in-context measure-
ment of hypervisor integrity,” in Proc. 17th ACM Conf. Comput.
Commun. Secur., 2010, pp. 38–49.

[6] E. Bhatkar, D. C. Duvarney, and R. Sekar, “Address obfuscation:
an efficient approach to combat a broad range of memory error
exploits,” in Proc. 12th USENIX Security Symp., 2003, pp.105–120.

[7] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient techniques for
comprehensive protection from memory error exploits,” in Proc.
14th Conf. USENIX Security Symp., 2005, p. 17.

[8] P. M. Chen and B. D. Noble, “When virtual is better than real,” in
Proc. 8th Workshop Hot Topics Operating Syst., 2001, pp. 133–138.

[9] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports,
“Overshadow: A virtualization-based approach to retrofitting
protection in commodity operating systems,” in Proc. 13th Int.
Conf. Archit. Support Program. Lang. Operating Syst., 2008, pp. 2–13.

[10] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, and
D. Zamboni, “Cloud security is not (just) virtualization secu-
rity: A short paper,” in Proc. ACM Workshop Cloud Comput.
Security, 2009, pp. 97–102.

[11] D. E. Comer and J. C. Lin, “Probing tcp implementations,” in
Proc. USENIX Summer 1994 Tech. Conf., Boston, MA,
USA, 1994, pp. 245–255.

[12] G. Conti, S. Bratus, B. Sangster, R. Ragsdale, M. Supan, A.
Lichtenberg, R. Perez, and A. Shubina, “Automated mapping
of large binary objects using primitive fragment type classi-
fication,” in Proc. DFRWS Annu. Conf., 2010, pp. 3–12.

[13] Y. Fu and Z. Lin, “Space traveling across VM: Automatically
bridging the semantic-gap in virtual machine introspection via
online kernel data redirection,” in Proc. IEEE Symp. Security Pri-
vacy, San Francisco, CA, USA, May 2012, pp. 586–600.

[14] Y. Fu and Z. Lin, “Bridging the semantic gap in virtual machine
introspection via online kernel data redirection,” ACM Trans. Inf.
Syst. Security, vol. 16, no. 2, pp. 7:1–7:29, 2013.

[15] Y. Fu and Z. Lin, “Exterior: Using a dual-vm based external shell
for guest-os introspection, configuration, and recovery,” in Proc.
9th Annu. Int. Conf. Virtual Execution Environ., Houston, TX, USA,
Mar. 2013, pp. 97–110.

[16] Fyodor. (2007, Jan.). Remote os detection via TCP/IP finger-
printing (2nd generation). insecure.org [online]. Available:
http://insecure.org/nmap/osdetect/

[17] T. Garfinkel and M. Rosenblum, “A virtual machine introspection
based architecture for intrusion detection,” in Proc. Netw. Distrib.
Syst. Secur. Symp., Feb. 2003.

[18] L. G. Greenwald and T. J. Thomas, “Toward undetected operating
system fingerprinting,” in Proc. 1st USENIX Workshop Offensive
Technol., 2007, pp. 1–10.

[19] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin, “Os-sommelier:
Memory-only operating system fingerprinting in the cloud,” in
Proc. 3rd ACM Symp. Cloud Comput., San Jose, CA, USA, Oct. 2012,
pp. 5:1–5:13.

[20] S. Hand, Z. Lin, G. Gu, and B. Thuraisingham, “Bin-carver: Auto-
matic recovery of binary executable files,” in Proc. 12th Annu.
Digit. Forensics Res. Conf., Washington, DC, USA, Aug. 2012,
pp. 108–117.

[21] Intel-64 and IA-32 architectures software developer’s manual
combined volumes 3A, 3B, and 3C: System programming guide,
parts 1 and 2: 11-28, 2012.

[22] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection
through vmm-based out-of-the-box semantic view
reconstruction,” in Proc. 14th ACM Conf. Comput. Commun. Secu-
rity, Alexandria, VA, USA, Nov. 2007, pp. 128–138.

[23] R. W. Jones and M. Booth, Virt-inspector—Display operating sys-
tem version and other information about a virtual machine. (2012)
[Online]. Available: http://libguestfs.org/virt-inspector.1.html

[24] D. E. Knuth, J. H. Morris Jr, and V. R. Pratt, “Fast pattern matching
in strings,” SIAM J. Comput., vol. 6, no. 2, pp. 323–350, 1977.

[25] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disas-
sembly of obfuscated binaries,” in Proc. 13th Conf. USENIX Secu-
rity Symp., San Diego, CA, USA, 2004, pp. 255–270.

[26] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, “Siggraph:
Brute force scanning of kernel data structure instances using
graph-based signatures,” presented at the Proc. 18th Annual
Network and Distributed System Security Symp., San Diego, CA,
USA, Feb. 2011.

[27] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,”
in Proc. IEEE Symp. Security Privacy, 2010, pp. 143–158.

[28] V. Paxson, “Automated packet trace analysis of TCP
implementations,” in Proc. ACM SIGCOMM, 1997, pp. 167–179.

[29] B. D. Payne, M. Carbone, and W. Lee, “Secure and flexible moni-
toring of virtual machines,” in Proc. 23rd Annu. Comput. Security
Appl. Conf., Dec. 2007, pp. 385–397.

GU ET AL.: MULTI-ASPECT, ROBUST, AND MEMORY EXCLUSIVE GUEST OS FINGERPRINTING 393

[30] N. A. Quynh, “Operating system fingerprinting for virtual
machines,” in Proc. DEFCON 18, 2010.

[31] A. Saberi, Y. Fu, and Z. Lin, “Hybrid-bridge: Efficiently bridging
the semantic-gap in virtual machine introspection via decoupled
execution and training memoization,” presented at the 21st Annu.
Network and distributed system security symposium, San Diego,
CA, USA, Feb. 2014.

[32] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of execut-
able code revisited,” in Proc. 9th Working Conf. Reverse Eng., 2002,
pp. 45–54.

[33] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny
hypervisor to provide lifetime kernel code integrity for commod-
ity oses,” in Proc. 21st ACM SIGOPS Symp. Oper. Syst. Principles,
2007, pp. 335–350.

[34] C. Smith and P. Grundl, “Know your enemy: Passive fingerprint-
ing. Identifying remote hosts without them knowing,” Tech. Rep.,
Honeynet Project, Ann Arbor, MI, USA, 2002.

[35] A. Sotirov, “Hotpatching and the rise of third-party patches,” in
Proc. Black Hat Tech. Security Conf., Las Vegas, NV, USA, Aug.
2006.

[36] G. Taleck, “Synscan: Towards complete tcp/ip fingerprinting,”
presented at the Canada Security West Conf., Vancouver, BC,
Canada, 2004.

[37] P. Team, Pax address space layout randomization (ASLR). (2003)
[Online]. Available: http://pax.grsecurity.net/docs/aslr.txt

[38] A. Walters, The volatility framework: Volatile memory artifact
extraction utility framework. (2014) [Online]. Available: https://
www.volatilesystems.com/default/volatility

[39] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime ran-
domization for security,” in Proc. 22nd Int. Symp. Reliable Distrib.
Syst., 2003, pp. 260–269.

[40] F. Yarochkin, O. Arkin, M. Kydyraliev, S.-Y. Dai, Y. Huang, and
S.-Y. Kuo, “Xprobe2++: Low volume remote network information
gathering tool,” in Proc. IEEE/IFIP Int. Conf. Dependable Syst.
Netw., 2009, pp. 205–210.

[41] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor: Retrofitting
protection of virtual machines in multi-tenant cloud with nested
virtualization,” in Proc. 23rd ACM Symp. Operating Syst. Principles,
2011, pp. 203–216.

Yufei Gu is a third year PhD student in computer
sciences at the University of Texas at Dallas. His
research interests include memory forensics, pro-
gram analysis, cloud computing, and virtual
machine introspection.

Yangchun Fu is a fourth year PhD student with
computer sciences at the University of Texas at
Dallas. His research interests include systems
security with a focus on program analysis and
reverse engineering techniques, and their appli-
cations to virtual machine introspection (VMI)
and cloud management.

Aravind Prakash graduated with MS degree in
computer science from the University of Miami,
FL, in 2009 and is working toward the PhD
degree in system security at Syracuse University,
NY. His research interests include program anal-
ysis, memory forensics, exploit diagnosis, and
mobile security.

Zhiqiang Lin received the PhD degree from
Purdue University in 2011. He is an assistant pro-
fessor with the Computer Science Department,
University of Texas at Dallas. His current
research focuses on system and software secu-
rity with an emphasis on binary code reverse
engineering, vulnerability discovery, malicious
code analysis, and OS kernel protection. He is a
member of the IEEE.

Heng Yin received the PhD degree in computer
science from the College of William and Mary in
2009. He is an assistant professor at the Depart-
ment of Electrical Engineering and Computer Sci-
ence, Syracuse University, Syracuse, New York.
His research interests lie in computer and net-
work security. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

394 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

