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Abstract— With the increasing popularity of the cloud computing model and rapid proliferation of cloud 

infrastructures there are increasing concerns about energy consumption and consequent impact of cloud computing 

as a contributor to global CO2 emissions. To date, little is known about how to incorporate energy consumption and 

CO2 concerns into cloud application development and deployment decision models. In this respect, this paper 

describes an eco-aware approach that relies on the definition, monitoring and utilization of energy and CO2 metrics 

combined with the use of innovative application scheduling and runtime adaptation techniques to optimize energy 

consumption and CO2 footprint of cloud applications as well as the underlying infrastructure. The eco-aware 

approach involves measuring or quantifying the energy consumption and CO2 at different levels of cloud computing, 

using that information to create scheduling and adaptation techniques that contribute towards reducing the energy 

consumption and CO2 emissions, and finally testing and validating the developed solutions in a multi-site cloud 

environment with the help of challenging case study applications. The experimental and validation results show the 

potential of the eco-aware approach to significantly reduce the CO2 footprint and consequent environmental impact 

of cloud applications. 
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1 INTRODUCTION

Cloud computing offers an approach for running applications in cost effective and highly scalable manner. 

However, despite the several business and technical advantages of the cloud-computing model, there are increasing 

concerns about the rising costs (resulting from considerable energy consumption) and the significant impact of 

cloud computing as a contributor to global CO2 emissions [25].  

In Europe energy consumption and consequent environmental implications are particularly attracting attention 

as ICT related CO2 emissions approach 4% of EU’s total CO2 emissions [2]. The consideration for energy effi-

ciency and CO2 awareness becomes paramount in the wake of increasing demand for cloud resources resulting in 

exponential growth of cloud facilities.In this respect, this is not just financial but also a political, regulatory and 

ethical issue, which raises significant questions about the overall environmental sustainability of the cloud compu-

ting model as its uptake expands. The environmental implications of vast energy consumption are likely to result 

in CO2 constraints being imposed by regulators and environmental agencies on cloud providers (such as [4]). 

Moreover, the environmental awareness and the pressure by regulatory authorities can influence consumers’ se-

lection criteria for cloud sourcing. Thus, it is no longer sufficient to optimize cloud sourcing models based solely 

on functional features, quality of services and low costs without considering their energy consumption and overall 

CO2 impact. 

With this backdrop, there is an ever increasing need for innovative solutions to address the issues concerning 

energy consumption and CO2 emissions at different levels of cloud computing. For instance, the transparency in 

measuring energy consumption and CO2 footprint can enable users to make informed choices while souring cloud 

services. Some other areas where such issues can be addressed include energy and CO2 awareness at application 

design and deployment phases, development of energy and CO2 aware cloud monitoring mechanisms and more 

transparency of the energy mix that goes into powering the cloud infrastructure. 

In this paper we provide a timely, challenging and highly innovative approach to energy efficient and CO2 

aware cloud sourcing. The proposed approach brings togethers the following contributions: 

 Quantification of energy consumption and environmental impact at different levels of cloud computing e.g. 

application, virtual machine and infrastructure level. 
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 Eco-aware scheduling of applications on cloud  

 Eco-aware management of running cloud applications 

With these key contributions, some complementary topics covered in the paper include consideration for ener-

gy and CO2 aspects in application design, eco-aware monitoring in the cloud and finally validating the feasibility 

of energy and CO2 aware solutions in the actual cloud environment.  

By addressing some of the key issues in cloud sourcing our holistic eco-aware approach aims to bridge the gap 

between the availability of energy consumption data linked to cloud computing platforms and the capability to 

leverage this data in the formulation of an eco-aware cloud application deployment and management solution. The 

rest of the paper is structured as follows. Section 2 provides an overview of existing work in the area of energy 

efficient and CO2 aware cloud computing. Section 3 introduces the details of our proposed approach and the dif-

ferent solutions developed to address some key issues. Section 4 provides details concerning the experimental 

validation of the eco-aware approach. Section 5 presents the results of experimental validation of our approach. 

Finally, we conclude the paper in Section 6 with a discussion about the results, their impact and setting out direc-

tions for future work in this area. 

2 BACKGROUND ON ENERGY EFFICIENT AND CO2 AWARE CLOUD COMPUTING 

Existing research efforts in the area of cloud computing focuses on security, interoperability and other SLA re-

lated issues, but generally overlooks energy consumption and resulting environmental implications as relevant 

context information for workload deployment and management on the cloud. Early research on energy efficiency 

originated from grid and datacenter environments. For example, the use of game theoretical methods were ex-

plored to optimize energy consumption with system performance in a grid [27], and the use of data migration was 

explored in [31] where data migration techniques move data from one device to another in order to reduce the 

number of active storage or memory resources, and consequently the energy consumption. However, the above 

approaches are more suitable for datacenter environment as they address the need for reducing energy consump-

tion of underlying infrastructure, without any emphasis on energy consumption and/or environmental impact of 

running applications.  

To consider the application perspective some research efforts focus on the estimation of the energy consump-

tion of applications based on their architecture. For example, [30] examine software methodologies and develop-

ment tools that can be employed to enhance energy efficiency of application in mobile systems. However, while 

highlighting contributing factors for creating energy-aware applications such as computational efficiency and con-

text awareness energy efficiency and CO2 reduction of applications in cloud environment are not explored or qual-

ified. To this end, the Greenhouse Gas (GHG) protocol provides calculation tools and guidelines for quantifying 

and managing emissions in the cloud platforms. The GHG guidelines [35] can provide abstract grounding for de-

veloping a metric aimed at quantifying and tackling energy consumption and CO2 emissions in the cloud. Such 

metrics can support approaches that aims to reduce the energy and CO2 in cloud computing.  

Similar to the GHG protocol, various energy benchmarks are proposed as ecological parameters or eco-

metrics. These eco-metrics are typically seen as an extension to the general concept of Key Performance Indica-

tors (KPIs). For example, [22] defines eco-metrics also termed as Green Performance Indicators (GPIs) and dis-

cuss how monitoring of service applications from an energy perspective can reveal peaks and leakages of energy 

particularly in high performance computing (HPC) environments. However, the scope of the metrics in [22] is 

beyond typical cloud computing environments as it considers elements mostly relevant in the HPC.  

Furthermore, the Greenpeace report [25] highlights several factors that can contribute towards environmental 

impact of cloud computing e.g. Carbon Utilization Effectiveness (CUE) is one of the parameters that is starting to 

be considered by some of the public cloud providers. Another contribution of the Greenpeace report is the clean 

energy index, which considers the energy mix of the utilized energy as well as siting and reuse of energy in cloud 

infrastructure. However, while these metrics serve as important reference; there is no standard or widely accepted 

metric set allowing for easy measuring and monitoring of energy consumption in cloud computing e.g. some other 

efforts  propose different ways of monitoring and representing energy and other QoS parameters [28], [29]. While 

the above mentioned work focuses on the IT infrastructure, there is no clear indication on how energy efficiency 

and CO2 can be evaluated at the level of application already deployed or running on the cloud. 

In other related work, a comprehensive survey of the existing energy efficient approaches in the cloud envi-

ronment is presented in [23]. The survey discusses dynamic power management approaches, both at the hardware 

and at the software level. At software level, the approaches range from management of workloads at the level of 
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the single server, to overall workload management at cloud site level. However, most of the surveyed approaches 

either require specific hardware support or insight into the application execution behavior, both of these are diffi-

cult to expect in typical cloud sourcing scenarios. For more general workloads [18] shows that multi-factor opti-

mization can balance efficiency with quality of service and significantly outperform the typical levels of under-

provisioning and drop in performance of highly consolidated VMs (virtual machines) caused by shared resources. 

A routing framework in [12] aims to dynamically control user traffic to different datacenters based on their carbon 

footprint. The framework also allows the three way trade-off between access latency, carbon footprint and elec-

tricity cost to determine optimal datacenter upgrade plan in response to increases in traffic. However, the frame-

work is more suitable for infrastructure providers who own the hosted applications, for others the framework is 

only suitable for monitoring of application resource utilization. Further, [19] explores the effect of the inclusion of 

CO2 intensity in a simulated multi-cloud scenario. However, the simulated scenario may not consider the unex-

pected behavior of an actual cloud infrastructure e.g. influence of other running applications on the shared re-

sources.  

Another strand of related work focuses on allocating virtual machines with the primary goal of improving en-

ergy efficiency in cloud infrastructure and also to reduce the environmental impact of cloud applications [11], 

[20], [22], [24]. One such approach [7] evaluates the performance-per-watt achieved by a range of VM allocation 

heuristics and shows that the best available algorithms offer substantial reductions in energy usage. In common 

with many such approaches, these results do not translate energy consumption into environmental impact, were 

obtained from simulation rather than experimentation and do not address the need for post deployment manage-

ment of applications.  

In terms of industrial drive for energy efficiency and CO2 reductions, in the UK the Carbon Reduction Com-

mitment Energy Efficiency Scheme [4] requires organisations to pay a charge for carbon emissions related to elec-

tricity usage. In US Google announced its adoption of the ISO 50001 standard for energy management systems 

[5]. Unlike the widely adopted ISO 9001 (quality) and ISO 14001 (environmental performance) standards, ISO 

50001 actually requires continual improvement in energy performance itself, rather than merely of the manage-

ment system itself. E.g., Google maintained a long downward trend by reporting a fleet average PUE of 1.11 

compared to 1.13 a year ago [6]. Here, the developments in alternative fuel sources (e.g. fuel cell generation) can 

help organizations to achieve more in terms of reducing CO2 emissions by diverting or distributing traffic or 

workload to data centers that use eco-friendly energy sources [13]. Commercial cloud offering e.g. Amazon and 

GreenQloud promote the use of green or renewable energy with little or no emphasis on quantification of energy 

consumption at VM level or the use of application deployment and management techniques that can contribute 

towards energy efficiency in cloud computing.     

In terms of current research projects, while there are a number of new projects in the area of energy-efficient 

computing, most appear to be concentrating on HPC rather than cloud computing. For example, EXCESS (Execu-

tion Models for Energy-Efficient Computing Systems) is an EU FP7 project aiming to provide new, holistic mod-

els for energy-efficient computing in future HPC systems [8]. Similarly, Exa2Green [9] is a multi-disciplinary 

project under EU FP7 programme that aims to develop the advanced energy monitoring, profiling and optimiza-

tion techniques needed to enable sustainable exa-scale HPC. In the US, Argo [10] will, amongst other objectives, 

incorporate energy management at the OS level of future supercomputers. Meanwhile ADEPT [14] is investigat-

ing the effect of parallel software on energy efficiency in HPC. Another noteworthy trend in HPC systems is the 

increasing domination of the Green500 list [15] of energy efficient supercomputers by GPU/accelerator based 

systems. As an increasing number of codes are becoming able to take advantage of such accelerators, many Cloud 

providers are now offering GPUs, e.g. Amazon EC2 GPU Instances [16], and GPU vendors are providing new 

features targeting the virtualization market [17].  

In the work presented in this paper we complement many existing efforts e.g. definition of metrics for quantify-

ing energy consumption and environmental impact of cloud computing as well as eco-aware scheduling of VMs to 

achieve best CO2 and performance ratios for cloud applications. We then introduce runtime adaptation of cloud 

applications and validate our solutions in real world scenarios by experimenting in an actual federated cloud infra-

structure using a set of challenging case study applications. 

3 A HOLISTIC APPROACH FOR ENERGY EFFICIENT AND CO2 AWARE CLOUD COMPUTING 

This paper adopts a more CO2 focused approach to bring about key advances in cloud computing and the way 

applications are designed and deployed on the cloud. Our eco-approach involves three key phases namely Meas-
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ure, Create and Test. The Measure phase focuses on quantification of energy consumption and environmental 

impact of cloud computing, the Create phase develops techniques and software artefacts to reduce energy con-

sumption and CO2 emissions of cloud applications, and the Test phase tests the outcome of previous two phases 

on an existing multi-site federated cloud facility known as BonFIRE (www.bonfire-project.eu).  

BonFIRE platform came up as a suitable choice for implementation and testing of our approach as it allowed 

us to augment the existing infrastructure with Power Distribution Units at different cloud sites, thus enableing us 

to measure the electricity consumption at different levels of the cloud infrastructure. BonFIRE also allowed us to 

work on the cloud software stack in order to update the functionality of BonFIRE services, e.g. BonFIRE monitor-

ing mechanism was extended to also expose the eco-metrics information.  In this respect, the control and flexibil-

ity offered by BonFIRE, to support the implementation and testing of our approach cannot be expected from a 

commercial cloud platform. 

The three phased approach addresses important research questions concerning quantification of environmental 

impact of cloud computing, enacting deployment and runtime adaptation actions that can decrease the energy con-

sumption and CO2 footprint of cloud applications as well as considering environmental implications in the design 

and subsequent execution of cloud applications.  

Figure 1 provides an overview of implementation and execution aspects of our approach. The first step is trig-

gered by an application deployment request. A deployment request typically entails the requirements for certain 

number of virtual machines with certain characteristics or the combination of CPU, memory and storage capacity. 

By providing such information users (as designers, developers or owners of cloud applications) can scale the re-

sources in a VM to suit the requirements of their workloads. Resource requirements can be an estimate (based on 

the nature of workload) or drawn from scientific models e.g. the model in [38] can provide decision support for 

the deployment of workload on suitable resources by calculating the instantaneous power consumption of the 

workload. In our approach, the deployment of virtual machines is determined by an eco-aware Scheduler, a key 

decision making component in the cloud infrastructure. 

Figure 1: Implementation of the proposed approach 

In step 2, the Scheduler collects eco-metrics from different levels of the cloud infrastructure. Eco-metrics is a 

term used here to refer to parameters that provide information concerning energy consumption and CO2 footprint 

at different levels of the cloud infrastructure – further discussed in Section 3.1. The information provided by eco-

metrics is used in the eco-aware scheduling of applications on the federated cloud resources, as shown in step 3 – 

further discussed in Section 3.2. Once deployed the (VMs hosting the) applications are constantly monitored to-

gether with the underlying infrastructure e.g. considering spikes in resource utilization, deployment of new appli-

cations and termination of already running applications to evaluate opportunities for further improvements in en-

ergy consumption and CO2 footprint of running applications. The monitoring information is taken into account 

http://www.bonfire-project.eu/
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when deciding and triggering certain adaptation actions that can reduce the energy consumption and CO2 footprint 

of running applications – Step 4 is discussed in Section 3.3. After the application execution, the detailed monitor-

ing information is compiled in an eco-report. 

The eco-report informs users (e.g. application designer and developers) about the total energy consumption 

and CO2 footprint of their applications.  The link between step 5 and step 1 in Figure 1 reveals the reinforcement 

learning model of our approach where the user is encouraged to use the information from eco-report to improve 

the design and execution aspects of their applications in a bid to make them more energy efficient and eco-

friendly.  

 

3.1. Quantification of Energy Consumption and Environmental Impact 

In order to achieve energy efficiency in cloud infrastructure and reduce the CO2 footprint of cloud applica-

tions, it is necessary to assess the energy efficiency and environmental impact of the overall system. This requires 

that a set of key metrics is established that expose energy consumption at various levels in the cloud infrastructure 

and enable quantification of the ecological impact of cloud sourcing. While the metrics developed in previous 

work (such as [22]) can be adopted as a basis, these focus mainly on the infrastructure.  Ideally the metrics should 

reflect the energy efficiency from a holistic perspective and should allow the derivation of the interrelation be-

tween different components of cloud computing. Therefore, we have developed a layered approach for the defini-

tion of usage based and power/energy based metrics (named eco-metrics) for each component as follows: 

 Application layer 

 VM layer 

 Infrastructure layer 

The layered structure of our eco-metrics is designed to unravel information from different levels of the cloud 

infrastructure, making it suitable for use in single site or multi-site cloud platforms, as shown in Figure 1. Our 

eco-metrics captures not only aspects about the environmental impact, but also the performances of the system. 

This allows our solution to mediate between improvements with respect the environmental sustainability and the 

performances. It is important to note that the set of metrics used in our work include a mix of metrics from exist-

ing literature (e.g. [32]) that we have implemented in our monitoring framework, customized metrics for the ana-

lyzed context and newly defined metrics such as VM energy consumption, application PUE, application energy 

productivity and application green efficiency. The newly defined metrics complement the existing and customized 

metrics to provide a complete view of the environmental impact of the cloud applications.  

Task execution 
time
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consumption
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Application 
execution time

Throughput A-PUE A-GEC

CPU usage Storage usage
Energy 
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I/O usage Memory usage
IOPS/Energy 
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Site saturation

Availability GEC
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Host 

IOPS/Energy 
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CPU utilization
Energy 

consumption

Availability
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Figure 2: Layered set of eco-metrics 

3.1.1. Infrastructure layer 

The infrastructure level considers that the VMs are deployed on physical hosts and the hosts reside at a spe-

cific cloud site. More specifically, the infrastructure layer includes metrics that measure the behavior of the cloud 

resources ranging from the single physical machine to the entire cloud site. Especially for the energy or power 

metrics, this layer is fundamental as it is the place where we can measure the power consumption of physical hosts 

using PDU (Power Distribution Units). In our experimentation we augmented the existing federated cloud infra-

structure by attaching PDUs with the physical hosts of the three cloud sites. Also, since the cloud sites (used in 
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our experimentation) were located in three different countries (UK, France and Germany) the different energy mix 

consumed by each site helped in determining the CO2 footprint of the cloud site along with the GEC (Green Ener-

gy Efficiency) [32] i.e., the percentage of the power coming from renewable source. In addition to the site and 

host metrics, each site exposes the energy mix metrics, generally available from their energy grid. Table 

1describes the metrics concerning the energy mix, the site metrics are presented in Table 2, the host metrics are 

presented in Table 3 

Table 1: Infrastructure energy metrics 

Metric Definition 

Energy Mix (%) This metric measures the amount of different types of energy mix provid-

ed by the power grid such as: 

Biomass, CCGT (Combined Cycle Gas Turbine), Coal, Cogeneration (of 

heat and power), Fossil, Gas, Geothermal, Hydraulic, NPS hydro, Nucle-

ar, OCGT (Open Cycle Gas Turbine), Oil, Other, Solar, Total green, Water 

and Wind generated energy. 

Produced CO2   (g/kWh)  This metric calculates the site emission factor revealing the amount of 

CO2 generated by 1 kWh. It results from considering weighted sum of the 

percentage of usage of the different sources multiplied by their own emis-

sion factors.  

Grid total (MW) Grid total measures the total amount of produced power by the power 

provider 

 

Table 2: Infrastructure layer site metrics 

Metric Definition 

Site utilization (%) Current utilization of a single site. The metric is defined as the ratio of 

available free cores of all worker nodes; over the total number of cores of 

all worker nodes.  

Storage utilization (%) The percentage of the frontend storage usage gives a good representation 

of the storage site usage (as the frontend hosts all permanently stored im-

ages). If necessary, this metric can be implemented for single worker hosts 

as well. 

Availability (Boolean) A site will be available if the Cloud API server provides a reasonable and 

well-defined answer to a request. Furthermore, at least one worker host 

has to be available (see definition in Table 3). 

Power Usage Effective-

ness - PUE 

The Power Usage Effectiveness metric is used to determine the energy 

efficiency of a site. It is measured as the ratio of power used by computing 

equipment over total facility power  

Table 3: Infrastructure layer host metrics 

Metric Definition 

Power consumption (W) The power consumed by a specific host at a given time. 

Disk IOPS (OPS/s) This metric checks the rate of input / output operations of the disk within a 

physical host. This metric includes the operations of all virtual instances 

running on the host and those of the underlying operating system. 

CPU utilization (%) The utilization of the processor(s) inside a physical host. For each host this 

metric indicates how much processor capacity is used for the underlying 

operating system and all the virtual instances at a given time. 

Availability (Boolean) A host is available if it is seen as “online” within the cloud manager. 

 

 

3.1.2. VM layer  

The VM layer focuses on the metrics able to evaluate the performance and energy consumption of the VMs 
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running on the physical host (see Table 4). At this layer, most of the metrics are derived from the metrics meas-

ured at the infrastructure layer. For example, to calculate the environmental impact the energy consumed to run a 

VM is computed by considering the amount of resources (CPU, memory etc) used by the VM in order to subdi-

vide the energy consumed by the physical host among other VMs running on it. This is similar to inferring energy 

from resource usage in [39]; however our approach is better tuned for the actual cloud scenario where more than 

one VM is expected to run on one physical host, whereas the direct measurement of VM energy consumption in 

[39] cannot be used to derive the overall energy consumed by the underlying host. Further details of the VM met-

rics can be gathered from [40]. 

Table 4: VM layer metrics 

Metric Definition 

CPU usage (%) Current processor utilization rate measured / as seen by the running virtual ma-

chine. 

Storage usage (%) 

Storage utilization (𝑆𝑢𝑠𝑎𝑔𝑒) on the corresponding virtual storage device is de-

fined as the ratio of the used disk space Sused to the total amount of disk space 

Stotal 

Power consumption (%) The power consumed by the analyzed VM at a given time.  

Our virtual machine power consumption formula defines the consumed power 

per virtual machine 𝑃𝑉𝑀 as the sum of the VM contribution to keep the host run-

ning plus the actual VM consumption, as follows: 

The first term is calculated by dividing: the idle power of the physical host 

(𝑃𝐻𝑜𝑠𝑡𝐼𝑑𝑙𝑒); by the number of running VMs (#𝑉𝑀). For the actual VM consump-

tion term, the net physical host power consumption (𝑃𝐻𝑜𝑠𝑡 − 𝑃𝐻𝑜𝑠𝑡𝐼𝑑𝑙𝑒) is calcu-

lated and multiplied by the CPU utilization of the VM as seen from the physical 

host (𝐶𝑃𝑈%𝑉𝑀). In order to assess this term, the CPU utilization of the VM as 

seen by the physical host is calculated by dividing: the average CPU usage of the 

analyzed VM in the last measurement interval (∆𝐶𝑃𝑈𝑉𝑀); by the sum of the av-

erage CPU usage of each VM in the same measurement interval. 

  

 

 

 

 

3.1.3. Application layer 

At the top-most layer, there are the metrics that evaluate the resource consumption of applications running on 

the VMs. Assuming that an application can be distributed among several VMs and these VMs can be hosted on 

different sites, the metrics included at this layer, compute the environmental impact as well as the performances 

starting from the metrics at the lower levels. For instance, the energy consumption of the application is obtained 

considering the execution time and energy consumed by all the VMs used by the application.  

In this layer we have newly defined a metric A-PUE (Application PUE) that is inspired by the classical PUE. As 

the latter is defined as the quantity of power used by the site divided by the power used by the IT devices, the A-

PUE is defined as the quantity of power used by all the VMs involved in the application divided by the power used 

for running the application. Here the numerator counts the amount of power really consumed by the application. 

While the denominator takes into account several other processes that run in the VM alongside the application e.g., 

operating system processes. Assuming that the power consumed by each process is proportional to its CPU usage, 

the power Pijk = Pik * CUijk, where CUijk is the percentage of CPU used by the process j associated to the 

application i running on the VM k. In this respect, the goal of A-PUE is to make the user aware of this fraction of 

power that is not consumed specifically for the application. Table 5 shows the key eco-aware application layer 
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metrics that are adopted and customized [22] [25] and defined by us [34]. 

Table 5: Application layer eco-metrics 

Metric Definition 

Power consumption (W) The power currently consumed by the application. This metric is derived by 

aggregating the power consumption of the VMs hosting the application.  

A-PUE (Application PUE) The application power usage effectiveness (PUE) is the ratio between the total 

amount of power (P) required by all VMs of an application i and the power 

used to execute the j-th application task:  

Application Energy 

Productivity  

(Transaction/Wh) 

The Application Energy Productivity is the ratio between the number of execu-

tions of the tasks hosted by all VMs of application i and the total energy for the 

execution of the VM: 

Application Green Effi-

ciency – AGE 

(W) 

The Application Green Efficiency metric measures how much green energy is 

used to run application i. We multiply the power consumed by all VMs of ap-

plication i by the percentage of used green energy.  

 

3.1.4. Implementation and collection of eco-metrics 

The definition of layered eco-metrics was the basis for the design of a monitoring infrastructure to extract 

relevant data and its implementation in the BonFIRE cloud infrastructure, as shown in Figure 3. The monitoring 

infrastructure collects, calculates and stores monitoring data. It was implemented by customizing the Zabbix
1
 

monitoring API used in BonFIRE. All BonFIRE Cloud sites were instrumented with PDUs to expose the required 

metrics. 

 
Figure 3: Monitoring infrastructure for eco-metrics 

 

As shown in Figure 3, a monitoring infrastructure collects eco-metric data from the BonFIRE cloud sites, and 

sends it to a persistent monitoring database (DB) from where it is made available on-demand to other solutions 

using a dedicated web service.  

 

3.2. Eco-Aware Scheduling of Applications  

The availability of the monitoring data from the layered set of eco-metrics allowed us to quantify energy 

consumption and CO2 emissions at different levels of cloud infrastructure. The monitoring data also provides use-

 

11 www.zabbix.com 
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ful information about the availability and performance aspects of cloud resources. Having access to such infor-

mation from different levels of cloud infrastructure enabled us to devise a set of application deployment strategies 

that take into account not only the resource level parameters of cloud resources but also their energy and CO2 pro-

files. Our deployment strategies can be characterized as eco-aware heuristics that perform decision making at two 

different levels (i.e. at cloud site and physical host level) to work with the single site as well as within federated 

cloud infrastructure. The strategies are implemented (as Phase 3 in Figure 1) by an eco-aware Scheduler that rep-

resents the central deployment decision making entity in the cloud infrastructure.  

Cloud Site Selection: In line with the underlying multi-site cloud infrastructure the first scheduling step is to 

select a suitable cloud site. This step is realized by switching our eco-aware Scheduler into one of the following 

modes: 
Individual Deployment (IDM) performs the selection of a site (in a cloud federation) for each individual VM in 

the deployment request. In this mode, the VMs in a single deployment request (representing a distributed 

application) may be deployed on different sites. For example, after the allocation of a single VM, the suitability of a 

site may change and thus, the next VM in the same deployment request may be allocated to another site that fits the 

suitability criteria. The pseudo-code of this strategy is: 

 

Pseudo-code: Cloud Site Selection 
1. Get VM resource requirements 
2. IF a site does not meet requirement THEN 

Remove site from the next steps 
3. Apply load balancing function on each site 
4. IF site does not pass load-balancing test THEN 

Remove site form the next steps 
5. Assign weights to site level optimization parameters  
6. Normalize the weighted parameters 
7. Calculate weighted sum of normalized parameters 
8. Select a cloud site with highest weighted sum 
 

Bulk Deployment (BDM) performs the selection of a site for all VMs in a particular deployment request. In 

this mode, all VMs (belonging to an application) will be deployed on a single suitable site. The pseudo-code for 

this mode is the same as shown below,  the only difference being in Step 1, where the aggregate resource require-

ments of all VMs (in a deployment request) are considered, which means the workflow (above) is done once for 

each deployment request. This is different to the previous case (i.e. Individual Deployment) where the workflow is 

repeated for each VM in the deployment request. 

In these two modes, the ‘suitability’ of a cloud site is determined by a combination of multi-criteria optimiza-

tion (weighted sum approach) and load balancing techniques. Typically, in the multi-criteria weighted sum ap-

proach, weights are assigned to different criteria based on the priority or importance of one criterion over another. 

For example, the weight Wx>Wy if one unit of criterion CX is worth more than one unit of CY considering both 

criteria (x and y) are measured in the same unit. The weighted sum approach aggregates multiple criteria into a 

single preference function representing a feasible decision with the highest preference function value being identi-

fied as suitable solution. In line with the objective of reducing the CO2 footprint of applications, weights are as-

signed by giving more preference (upto 80%) to energy and CO2 related parameters exposed by the cloud sites, 

leaving the rest for the resource level parameters such as a load balancing operator that represents the capacity of 

suitable resources (e.g. available CPU and number of running VMs) at the site. More specifically, in our experi-

mentation we assigned 20% weightage to site power consumption, 30% to CO2 emissions, 15% to PUE and 35% 

to load balancing operator.    

As it has been stated that the eco-awareness in the Scheduler enables it to route the workload to optimized 

(in terms of energy efficiency and CO2 footprint) cloud sites, however when workload spikes occur on a specific 

(e.g. optimized) site, the load balancing function in the eco-aware Scheduler directs the spill over to other sites 

that represent a good option. When deploying over a federated cloud environment (such as BonFIRE) effective 

load balancing is a critical task since based on their locality different cloud sites may rely on different energy 

sources with consequent implications on their CO2 footprint. For example, a cloud site in France may have a low-

er CO2 footprint compared to a site in UK since France utilizes mainly nuclear energy sources whereas the energy 

mix in UK has a large proportion of fossil fuel based energy that has a relatively higher CO2 footprint. Thus, op-
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timizing workload distribution solely on CO2 footprint criteria may result in overloading a particular cloud site. To 

solve this problem, the load balancing solution (of the eco-aware Scheduler) takes into consideration multiple pa-

rameters in its decision making model in order to achieve energy and CO2 related objectives while assuring opti-

mal utilization and performance of available resources.  

To validate the effectiveness of the site selection strategies we designed and carefully conducted some exper-

iments in similar settings/circumstances. In addition to the two eco-aware strategies (as discussed above), experi-

ments were also conducted with a non-eco-aware deployment strategy to get the baseline measures of the applica-

tion CO2 footprint. The non-eco-aware deployment strategy performs random selection of a cloud site.  

During the experimentation, a sample distributed application was deployed and executed multiple times on 

BonFIRE infrastructure using different site selection strategies. The mean of the application CO2 footprint under 

each deployment strategy is plotted against the application execution time – as shown in Figure 4. 

The results of the experimentation reveal clear differences in the CO2 footprint of non-eco-aware deployment 

and the two eco-aware deployment strategies (IDM and BDM). In Figure 4 the close proximity of CO2 footprint 

achieved by IDM and BDM can be attributed to the fact that both use the same criteria to select a CO2 friendly 

site. It is expected that the difference between the two eco-aware deployment strategies may only become radical-

ly visible when one cloud site is not able to deploy a complete application, hence some VMs of the application 

may be deployed in another site under IDM, whereas BDM will deploy the complete application on one site thus 

ignoring the possibility of deploying some VMs on a more CO2 friendly site that cannot accommodate all VMs of 

an application. Furthermore it is important to note that the deployment decision is made at the VM level, the 

Scheduler does not interact with the application or what goes on inside a VM.  

Figure 4: Initial test results of the site selection strategies 

 

Physical Host Selection: Once a site is selected, the following deployment policies of the eco-aware Scheduler 

aim to determine physical host level deployment configuration of new VMs/applications.  

Max-Utilization or VM Consolidation tries to maximize the utilization of individual physical hosts by de-

ploying VMs on fewer hosts within a site e.g. hosts with highest energy consumption. Although there was no sup-

port from the underlying BonFIRE infrastructure to take advantage of this, in principle any idle hosts can be 

switched off or switched to hibernate mode to save energy at infrastructure level and max-utilization is conductive 

to this scenario. 

Min-Utilization or VM Dispersal tries to minimize the utilization of individual hosts by deploying VMs even-

ly on all available hosts within a site e.g. host with lowest energy consumption. This approach favors VM perfor-

mance. The pseudo-code of host selection policies is: 

 
Pseudo-code: Host Selection 
1. Get VM resource requirements 
2. IF host does not have enough capacity for the VM THEN remove host from next steps 
3. Assign weights to host level optimization parameter 
4. Normalize optimization parameters 
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5. Calculate weighted sum of normalized parameters 
6. Select the host with highest weights 
 

Apart from direct energy consumption information (gathered directly from individual hosts) the host level pol-

icies also take into account some resource level parameters that influence the energy consumption of hosts e.g. 

CPU utilization, Memory and running VMs. 

 

 

Figure 5: Initial results of physical host selection strategies 

Where the traditional cloud schedulers such as OpenNebula Scheduler
2
 determine placement of VMs based on 

resource level parameter of available physical hosts e.g., free CPU, the distinctive feature of our eco-aware sched-

uling strategies (Max/Min-Utilization) is their consideration for energy consumption of physical hosts, which can-

not be solely determined by the number of running VMs or a single resource-level parameter. With energy con-

sumption as the most weighted optimization parameter, our eco-aware host selection policies consider a mix of 

resource level parameters e.g. CPU, Memory and number of running VMs to determine suitable physical hosts for 

VM(s). 

As we did for the site selection strategies, experimentation was carried out to determine the behavior of the 

physical host selection policies and their impact on underlying cloud infrastructure. The reason for focusing on 

cloud infrastructure was the fact that the energy mix remains same within a site and CO2 is directly derived from 

the energy consumption of cloud resources or physical hosts. Thus any improvement in the energy consumption of 

physical hosts can directly impact on the CO2 footprint at site and application levels. During the experimentation, 

a sample application was executed multiple times under the two eco-aware host selection policies in a single cloud 

site. The power consumption of the cloud site (i.e. all host power consumption) was recorded throughout the ex-

periment duration and the median was plotted against the experiment timeline. A third non-eco-aware host selec-

tion strategy was introduced in the experimentation for comparison and baseline measures. The non-eco-aware 

strategy selects a physical host based only on the availability of resources e.g. the host that has the most free re-

sources gets preference for VM allocation.  

As shown in Figure 5 the eco-aware Min-Utilization and Max-Utilization policies perform better in minimiz-

ing the power consumption of the overall cloud site due to their consideration for eco or energy related parameters 

in deployment decision making. Between these two eco-aware policies, Max-Utilization gives the better perfor-

mance proving that by stressing only a subset of available physical hosts the power consumption of the cloud site 

remains low during the application execution time. 

The initial testing of the eco-aware site and host selection strategies helped in determining their effectiveness 

over non-eco-aware deployment strategies. In this respect, the consideration of environmental impact (by means 

of considering energy consumption as well as CO2 emission derived from energy sources) allowed us to move a 

step forward towards realizing ecologically aware cloud computing. 

 
 

2http://archives.opennebula.org/documentation:rel4.4:schg#pre-defined_placement_policies 
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3.3. Adaptation of Running Applications 

Once the applications are deployed using eco-aware deployment strategies, there are opportunities to further 

improve their CO2 footprint and energy efficiency by fine tuning their execution behavior. However, in our study 

we found out that at runtime or during the execution of application any changes in the deployment configuration 

of the application may affect the execution behavior or performance of the application, unless there is adequate 

support from within the application. To address this concern, we have devised an application design framework. 

The main feature of our framework is a component called Application Controller (AC) that allows the analysis of 

the status of application and the enactment of certain adaptation actions to reduce application energy consumption 

and CO2 footprint. 

Assuming that an application might run not only on a single VM but also on several VMs, the AC acts as a 

middleware layer to communicate with the underlying cloud infrastructure in order to allow the application to 

both monitor the status of the infrastructure and to enact some adaptation actions to adjust or tune the application 

execution behavior at run time. More specifically, using the (eco-metrics) monitoring data the AC defines the ad-

aptation logic and an adaptation plan to improve energy efficiency and to reduce emissions. The adaptation ac-

tions are enacted after detecting a violation of certain predefined threshold. The use of following adaptation ac-

tions has been investigated: 

 Changing load distribution between the active VMs: this action changes the workload among the VMs for an 

application aiming to reach a configuration where the response time might increase and the power consump-

tion decreases, or the power consumption remains stable but distributed in sites where the energy mix is 

preferable in order to reduce the CO2 emissions. 

 Turning off a VM: if the work of a VM is no longer required, the VM is stopped to reduce the energy con-

sumption of the application; 

 Application execution time-shifting: aims to reduce the CO2 emissions by running the application, or a part 

of it, later in time when the energy mix is preferable. 

The AC can enact the above adaptation actions by considering certain application and VM level metrics (e.g. 

CPU load and Power consumption). In addition, some task
3
 level metrics (i.e., task CPU load, task energy, and 

task response time) can be considered as they are here required to calculate the Application level metrics.The al-

gorithm used by the AC consists of the following steps: 

 The state of the application is evaluated and indicators (preset at application deployment stage) that needs to 

be improved are identified; 

 Starting from this set of indicators, the action that best fit the problem is selected using the information 

available about the actions impact over indicators and the Adaptive Action Selection Algorithm as described 

in [33]. The algorithm evaluates the actions which have higher probability of improving the selected indica-

tors while evaluating side effects on others. 

 The selected action is enacted and the new state of the system is evaluated. The algorithm also exploits 

knowledge about correlations among variables when evaluating the set of indicators to be improved.  

It is worth noting that the adaptation actions taken at application level are focused on the reduction of CO2 

emissions specifically for a given application, thus the AC aims to find the local optimum in terms of the CO2 

reduction. 

Figure 6: Effects of adaptation on A-PUE 

 

3 Assuming applications are composed of different tasks that can be deployed different VMs 
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Initial testing of the AC and adaptation actions reveals encouraging results in terms of energy consumption 

and CO2 reductions during the execution of applications [37].  

Furthermore, based on to the results obtained during the initial experimentation concerning runtime adapta-

tion actions, we verified how the A-PUE metric could be a good indicator to figure out if a waste of energy is oc-

curring. A-PUE computes the ratio between the energy consumed by the VMs involved in the application and the 

energy really used by these VMs to run the application. A-PUE equals 1 when all the energy is used to run the 

application and this corresponds to the ideal situation. On the contrary a value greater than 1 means that there is a 

fraction of energy consumed by something different than the application. In our case, possible sources of wasting 

can be the processes running on a VM that are not directly associated to the application (e.g., system daemons).  

An example of A-PUE trend is shown in Figure 6 where the effect of the adaptation (i.e., switching off the no 

longer used VMs) is clear. Here a spike of the A-PUE corresponds to the termination of one application tasks and, 

as adaptation is enacted, the power consumed of the host is not wasted. 

4 VALIDATION OF THE ECO-AWARE SOLUTION 

The approach and its proposed components have been evaluated within four case study applications. All case 

study applications were distributed, long running, compute intensive in nature and were designed (in previous EU 

projects or commercial initiatives) to solve complex problems specifically within cloud or HPC environment, in 

this respect they were considered to represent typical cloud workloads: 

 The Eels case study refers to a computation intensive HPC application, initially monolithic that it has been 

adapted to run in a cloud environment in order to exploit the scalability and computation power on offer.  

 The eBusiness case study is a SOA based simulation of a common e-business application. It uses web ser-

vice to implement cross-organizational workflows. 

 The Bones case study is a computation intensive and long running HPC application computing finite ele-

ment simulations which has been ported to a federated cloud environment. 

 Data Analytics as a Service (DAaaS) is a commercial cloud application that receives input data from differ-

ent sources in a marketplace and allows users to configure different analytics procedures that can be per-

formed over the data. The results of the analytics are generated graphically for the users. 

4.1. Experimental Design 

The AC has been adopted only for the Eels case study and the eBusiness case study since they allow individ-

ual controlling of their components/modules without disturbing the overall execution of the application. The case 

studies selected for the validation of our eco-aware approach can be divided into two main groups: 

A. Case studies that support only the eco-aware scheduling: Bones and DAaas. 

B. Case studies supporting both eco-aware scheduling and run-time adaptation: Eels, E-Business. 

This distinction depends on the nature of the application i.e. the Eels and E-Business applications can be 

modelled as business processes and their structure can be altered during the execution without compromising the 

soundness of the application. In the Bones and the DAaaS case studies, the existing code does not allow the sys-

tem to modify the behavior of the application. As a consequence, this difference in the nature of case studies pro-

vides a good way for analyzing the effectiveness of our eco-aware scheduler (with the help of case studies in 

group A) and the Scheduler + AC (as in the case of group B case studies). 
As the goal of the experimentation is to verify the effectiveness of our solutions in reducing CO2 emissions as 

a consequence of minimizing energy consumption and other contributing factors, we compare the CO2 emission 

of a baseline scenario where applications are executed using traditional or existing scheduling techniques, and an 

optimized scenario where our eco-aware mechanisms are switched on. Regardless of the case study, the baseline 

scenario is obtained as follows: 

 Submission of an application deployment request to the existing or traditional cloud scheduler. 

 Then, executing the experiment (i.e. application) and monitoring its CO2 emissions. 

Having the eco-aware Scheduler disabled means that each of the VMs requested by the application is random-

ly deployed on one of three available cloud sites (i.e., UK, Germany and France). Then, within a site, the VM is 

assigned to a host according to the internal policies of the cloud manager currently installed on the site e.g., Bon-

FIRE uses OpenNebula. 
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For the optimized scenario, two distinct approaches were followed depending on the case study: 

 The experimentation procedure for Group A follows: 

o Sending an application deployment request (with number of VMs and specific resource requirements) 

to the eco-aware Scheduler enabling the eco-aware deployment. 

o Running the experiment (the AC is not invoked in this case) 

 The experimentation procedure for Group B follows: 

o Sending an application deployment request (with number of VMs and their specific resource require-

ments) to the eco-aware Scheduler enabling the eco-aware deployment. 

o Running the experiment enabling the AC. 

In addition to the comparison between the baseline scenario and optimized scenario involving the three cloud 

sites, we also compare: 

 For the case studies in Group A, a baseline scenario and optimized scenario where individual cloud sites are 

considered. Experimentation in the single site configuration allowed us to validate that the optimization of 

energy consumption and CO2 footprint was indeed possible within single site configuration i.e. by selecting 

specific physical hosts in a cloud site in a way that can contribute towards minimizing the energy consump-

tion and CO2 footprint of the cloud site. 

 For the case studies in Group B, the baseline scenario and optimized scenario are computed excluding the 

cloud site in France as a possible deployment option for the VMs. This was needed because the cloud site in 

France reports CO2 emissions that are extremely lower than the other two sites. In this way, we aim to verify 

that the eco-aware optimization techniques at scheduling and application level really work with sites that 

have comparable energy mix factors 

To obtain reliable results, for both the baselines and the optimized versions, the experiments with all case 

study applications have been executed up to 300 times to consider different site utilization scenarios and different 

values for the energy mix factor as this factor changes by the day. Although the case studies applications can be 

scaled up to use large number of VMs, the experimentation was conducted using a moderate number of VMs to 

ensure uninterrupted execution of applications within the resource constraints of the BonFIRE production infra-

structure.    

5 RESULTS 

The results of the experimental validation of the case study application are described next. 

 

5.1. Eels Case Study 

The Eels case study is an HPC application that simulates the trajectories followed by Eels during their travel 

in the Atlantic Ocean from where they were born (Sargassi Sea) to the European Coast. This application imple-

ments a parameterized model providing a biologically reasonable description of the life-cycle of Eel larvae based 

on the current knowledge of the species and the predictions of metabolic ecology. The necessary data is already 

stored on a cloud storage resource (Oceanographic Data Block). 

 

Unit grCO2eq Baseline Optimized Sites  

CO2 Application 150.556 9.315 3 sites 

CO2 Overhead 10.98 2.353 3 sites 

Figure 7:  Eels case study CO2 footprint reduction of 93.90% considering the three cloud sites 

To test this application, for each run, we reserve five VMs; 3 VMs (2 CPUs, 2 GByte memory) for the actual 

execution of the application, 1 VM (0.5 CPU, 256 MByte memory) for the execution of the application controller 

(for the optimized scenario) and 1 VM (1 CPU, 1 GByte memory) for monitoring the experiment. 



AUTHOR:  TITLE 15 

 

Comparison between the baseline scenario and the optimized scenario involving all the three cloud sites is 

shown in Figure 7. Overhead is an addition level of details that we studied in our experimentation, which may not 

be relevant in production settings. Overheads refer to the CO2 emissions of the VM where the AC and the Moni-

toring of the experiment are running. These represent the additional CO2 emissions that can be attributed to the 

overall application CO2 footprint. In case of the baseline, only the monitoring is considered, as the AC is not re-

quired. As reported in Figure 7 the CO2 reduction is of 93.90% in the optimized scenario. This set of experiments 

considered the site located in France as possible deployment option where, as mentioned above, the energy mix 

factor is very low. However, the CO2 emissions related to the overhead remain the same (21.39% for the baseline, 

20.16% the optimized running). Figure 8 reports the CO2 emissions excluding the site in France from being a pos-

sible deployment option for the VMs. 

 

Unit grCO2eq Baseline Optimized Sites  

CO2 Application 235.763 91.892 Germany 

CO2 Overhead 57.786 43.752 Germany 

Figure 8:  Eels case study CO2 footprint reduction of 32.25% while excluding France as deployment option 

As reported in the figure, even in this case, the CO2 emission are significantly reduced, i.e., 53.80%, with re-

spect to the baseline,  with an impact of the overhead of 32.25% (19.68% for the baseline by not including VM for 

the AC). 

 

5.2. Bones Case Study 

The Bones case study application is concerning the simulation of human bones to model and support diagnos-

tic decisions with respect to the type and positioning of implants used for certain pathologies.  

 

Unit grCO2eq Baseline Optimized Sites  

CO2 Application 0.205 0.046 3 sites 

CO2 Overhead 0.032 0.005 3 sites 

Figure 9: Bones case study CO2 footprint reduction of 77.52% considering the three cloud sites 

 

The Bones case study is parallel in nature and may be of interest for the HPC community to study how HPC 

oriented programs can be executed on a cloud infrastructure. The total experiment’s duration was set to 2 hours 

while the actual intense computation took abound half of this time. This case study application requires 3 VMs 

with 2 CPUs, 4096 MBytes RAM and 5 VMs with 2CPUs, 2048 MBytes RAM.  

While analyzing the experimental results we have observed that the eco-aware scheduling results in CO2 sav-

ings when compared to non-optimized values, both where the VMs are set to be all deployed at either of the three 

sites as shown in Figure 9 or distributed across the three sites, as shown in Figure 10. This validates our rational 

for experimentation in single site configurations since the heterogeneity of hosts even in a single site provides the 

Scheduler with considerable optimization opportunities.  

For this case study the single-site experiments was conducted using the cloud site in UK due to lack of ade-

quate resources at other BonFIRE sites. In a way this further validates our scheduling and alleviates concerns of 

any association with the underlying infrastructure.  

 

Unit grCO2eq Baseline Optimized Sites  

CO2 Application 0.015 0.008 UK 
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CO2 Overhead 0.253 0.04 UK 

 
Figure 10: Bones case study CO2 footprint reduction of 56.41% in a single cloud site.  

 

5.3. eBusiness Case Study 

The eBusiness case study is a simulation of web services that uses certain benchmarks to mimic business op-

erations with different characteristics e.g. CPU and Memory intensive operations and I/O intensive operations. 

The case study simulates web services by randomized queries running on different hosts. Further, different pro-

cesses are called simultaneously after randomized time intervals and various kinds of load (CPU, I/O, memory) 

are stressed.  

 

Unit grCO2eq Baseline Optimized Sites  

CO2 Application 0.156 0.068 3 sites 

CO2 Overhead 0.033 0.015 3 sites 

 

Figure 11: eBusiness case study CO2 footprint reduction of 68.21% considering the three cloud sites 

 

The eBusiness experiments were performed using similar configuration as for the Bones case study i.e. 3 

VMs with 2 CPUs, 4096 MBytest RAM and 5 VMs with 2 CPUs, 2048 MBytest RAM). The experimental results 

show significant reduction in CO2 footprint of the application in multi-site  (Figure 11) and in single site deploy-

ment (Figure 12).  

 

Unit grCO2eq Baseline Optimized Sites  

CO2 Application 0.014 0.007 Germany 

CO2 Overhead 0.111 0.035 Germany 

 

Figure 12: eBusiness case study CO2 footprint reduction of 84% in a single cloud site (Germany) 

 

5.4. DAaaS Case Study 

Data Analytics as a Service is a proof of concept analytical platform delivered using a cloud-based model, 

where various tools for data analytics are available and can be configured by the user to efficiently process and 

analyze huge quantities of heterogeneous data. 

For the testing in this case study we simulated the behavior of a user that connects to the DAaaS page, up-

loads a small collection of data, executes some simulations over it using Apache Hadoop and sees the different 

results. This test with the same input data and same user behavior was repeated all over again in simulated set-

tings. A complete deployment of the DAaaS case study was composed of 5 VMs (1 CPU, 1 GB of RAM). 

 

Unit grCO2eq Baseline Optimized Sites  

CO2 Application 30.641 3.658 3 sites 

CO2 Overhead 6.644 1.354 3 sites 

 

Figure 13: DAaaS case study CO2 footprint reduction of 88% considering the three cloud sites 
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Figure 13 presents the results of the experiments concerning the DAaaS case study in multi-site deployment 

mode of eco-aware Scheduler i.e. using physical hosts available at the three different sites. 

 

Unit grCO2eq Baseline Optimized Sites  

CO2 Application 280.401 52.281 Germany 

CO2 Overhead 67.934 20.242 Germany 

 

Figure 14: DAaaS case study CO2 footprint reduction of 82% in a single cloud site (Germany) 

 

It is important to note that the DAaaS case study does not involve the use of the AC, hence the reduction of 

CO2 footprint can only be attributed to the eco-aware scheduler, and we are observing a reduction of CO2 usage of 

up to 88%. The overhead for both cases is quite high, of around 21% for the baseline case and 37% for the opti-

mized case. Figure 14 represents 82% reduction of the CO2 footprint of the DAaaS application deployed in a sin-

gle site.  

6. CONCLUSION AND FUTURE WORK   

In the wake of increasing popularity of cloud computing, achieving energy efficiency has been highlighted as 

one of the key challenges in this area [36]. Tracing energy consumption and CO2 footprint of cloud applications 

becomes more difficult when applications span multiple clouds and use heterogeneous resources.  

In this respect, the contribution of this paper is an approach that brings together a set of innovations such as 

eco-metrics, eco-aware scheduling, eco-aware monitoring and eco-aware adaptation mechanisms to not only 

quantify the environmental impact but also to deliver significantly reductions in CO2 emissions of cloud applica-

tions. We have shown that an eco-aware scheduler can have a positive impact on the CO2 footprint of cloud appli-

cations and the adaption actions enacted by the application controller can add further efficiency at run-time, sup-

ported by an eco-aware monitoring that measures and collects eco-metrics.  

We have performed real experiments of our approach over an experimental federated cloud facility called 

BonFIRE. BonFIRE allowed us to implement eco-metrics and extend the existing monitoring mechanism, ena-

bling us to quantify the environmental impact of cloud computing. These features are now part of the BonFIRE 

Open Access offerings. The flexibility and control offered by BonFIRE cannot be expected from any commercial 

cloud provider. For example, experimentation of our eco-aware scheduling mechanism in BonFIRE has demon-

strated the ability to significantly reduce the energy consumption and CO2 footprint of cloud applications, as com-

pared to the baseline scenario using the scheduling mechanism currently in place at the BonFIRE sites. In some 

cases, such a reduction reaches over 80%, which can be considered a big achievement of our work. The eco-aware 

scheduling has been tested with different kinds of applications including HPC, cloud and interactive applications. 

The results of our experiments also validate that the eco-aware Scheduler provides substantial reduction of CO2 

emissions not only for multi-site experiment deployment but also for one-site deployment where the scheduling 

logic leads to the selection of more efficient hosts for VMs. If the site has significant heterogeneity in its computa-

tional resources, this makes a bigger difference e.g. we noticed that the eBusiness case study achieves larger CO2 

emission reduction at single-site deployment in Germany than single-site deployment in UK since the site in UK 

provides less heterogeneous resources. The results described in the paper can be useful for cloud application de-

velopers and infrastructure providers that are interested in decreasing the CO2 emissions and improving energy 

efficiency in cloud computing. The solutions discussed in this paper have been made available as open source 

resources
4
. Further, the eco-metrics are already incorporated in BonFIRE offering

5
 to enable users to monitor the 

energy consumption and CO2 emissions of their VMs. The eco-aware scheduler and application controller are cur-

rently being exploited in order to unravel their potential in other cloud environments.  

In our future work, we aim to provide support for our open source solutions and extend our work by (a) devis-

ing reliable CO2 based accounting models for cloud providers, and (b) developing the Application Controller as a 

formal framework for developing CO2 aware applications.  

 

4 https://github.com/ECO2Clouds/r2 
5 http://www.bonfire-project.eu/home 
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