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Exploiting Renewable sources: when Green SLA
becomes a possible reality in Cloud computing

Md Sabbir Hasan, Yousri Kouki, Thomas Ledoux, and Jean Louis Pazat

Abstract—While the proliferation of Cloud services have greatly impacted our society, how green are these services is yet to be
answered. Although, demand escalation for green services has grown due to societal awareness, the approaches to provide green
services and establish Green SLAs remain oblivious for cloud or infrastructure providers. The main challenge for cloud provider is to
manage Green SLAs with their customers while satisfying their business objectives, such as maximizing profits by lowering
expenditure for green energy. Since, Green SLA needs to be proposed based on the presence of green energy, the intermittent nature
of renewable sources makes it difficult to be achieved. In response, this paper presents a scheme for green energy management in the
presence of explicit and implicit integration of renewable energy in data center. More specifically we propose three contributions: i) we
introduce the concept of virtualization of green energy to address the uncertainty of green energy availability, ii) we extend the Cloud
Service Level Agreement (CSLA) language to support Green SLA by introducing two new threshold parameters and iii) we introduce
greenSLA algorithm which leverages the concept of virtualization of green energy to provide per interval specific Green SLA.
Experiments were conducted with real workload profile from PlanetLab and server power model from SPECpower to demonstrate that,

Green SLA can be successfully established and satisfied without incurring higher cost.

Index Terms—Cloud Computing, Sustainable Computing, Renewable Energy, Green Service Level Agreement, Cross-layer SLA

1 INTRODUCTION

N 2007, data centers in Western Europe consumed a

whopping 56 terawatt-hours (TWh) of power per year.
According to the EU, this figure is likely to almost double to
104TWh by 2020". This translates into high carbon emissions
as most of the electricity comes from fossil fuel or coals,
only exception in France where 85% electricity is produced
by nuclear plants, causing relatively lower carbon footprint
than any other country. Still, the amount of carbon footprint
is nowhere near to zero.
Subsequently, similar to other large consumers of power,
data centers find themselves increasingly pressured either
by legislation or by public opinion to find options to reduce
their carbon footprint. Therefore, demands for green prod-
ucts and services are ever increasing as social awareness
for being green is hiking. In response, the service providers
have started to set sustainability goals and create initiatives
to reduce carbon emissions by using renewable sources to
their services. Although several research efforts have been
made to reduce energy consumption by designing/imple-
menting server consolidation, hardware with better pow-
er/performance tradeoffs, workload migration and software
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technique for energy aware scheduling, still the goal for al-
leviating carbon footprint is being underachieved. Given the
circumstances, explicit or implicit integration of renewable
energy to the data center can be the only way to reduce
carbon footprint at an acceptable level. Besides that, demand
for green services is ever increasing, thus integrating renew-
able sources to the data center left no choice. Few smaller
green cloud providers, e.g., GreenQloud?, Green House
Data® and academic researchers [1] integrated renewable
sources to the data center explicitly which offers green com-
puting services. However, renewable sources are known to
be very intermittent in nature, thus providing Green services
or running Servers and Virtual machines (VMs) only by on-
site renewable energy becomes very unrealistic. Moreover,
some research efforts have also explored how to incorporate
off-site renewable energy to data center, as the best location
for producing renewable energy does not always have the
best potential to build a data center. Transporting the off-
site energy is arduous as wheeling charge imposed by the
Grid might be more than the expectation and power losses
through transmission lines are inevitable. Besides the above
explicit involvement, some implicit options for reducing
carbon footprint also exist through renewable energy cer-
tificate (REC) and power purchasing agreement (PPA). As
example, tech giant companies like Google and Apple are
investing to nearby big wind and solar plants through PPA
to reduce their carbon footprint. On the other hand, REC is a
tradable commodity proving that, electricity was generated
using renewable sources. Therefore, purchasing of a green
certificate equals to purchasing a claim that the certificate
owner consumed energy from the renewable portion of the

2. https://www.greenqloud.com/
3. http://www.greenhousedata.com/
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whole energy grid [2].

Considering all the above implicit and explicit green energy
integration option to data center, any service providers are
yet to propose Service Level Agreement (SLA) based on
green energy availability with their infrastructure. Haque
et al. [1] first proposed Green SLA based on green energy
availability from on-site renewable plant where environ-
mental conscious clients can ask for differentiated green
services with varied green energy requirement. However,
providing green service can be terminated or no additional
green service request will be entertained when green energy
is not available, which quantifies that, there is no evidence
of having formal contracts establishment between Software-
as-a-Service (SaaS) providers/clients and Infrastructure-as-a-
Service (IaaS) providers.

To address this problem, we investigated Cloud Energy
Broker in our previous work [4] and now are extending our
research to propose Green SLA based on the availability of
green energy by introducing the concept of Virtualization of
green energy. The energy can be virtually green for a specific
period of time if abundance of green energy is available
aperiodically in shorter time interval along with the deficit
of green energy in rest of the time frame. Therefore, the
virtualization concept can increase the greenness of energy,
rather increasing the amount of green energy. Concretely,
when the availability of green energy is more than demand,
we use the whole portion of available green energy but
characterize the interval as surplus interval. When green
energy is insufficient to meet the demand, we nullify the
degraded interval with the surplus interval. We use the
term virtualization because we nullify a degraded interval
(lack of green energy) with a surplus interval (excessive
green energy than demand), but from the client’s or SaaS
provider’s perspective, they realize both the interval as
ideal interval (when supply meet the demand), though the
green energy was not present instantaneously rather present
virtually. Figure 1 shows the visualization of our approach.
In our proposed approach, Green SLA can be monitored and
evaluated per interval (time slot) rather per-request or appli-
cation. Furthermore, we extend CSLA [3], the Cloud Service
Level Agreement language allowing to define SLA in any
language for any Cloud service (XaaS) to support Green SLA
based on the concept of virtualization of green energy. The
proposed new version expresses a Service Level Objective
(SLO) using two thresholds and supports a new class:'the
surplus’ that is characterized to nullify degraded interval.
Besides, the nullification process reflects the instability of
green energy as well. Furthermore, we introduce greenSLA
algorithm which leverages the concept of virtualization of
green energy and CSLA extension to validate our proposal.
For experiment purpose, real workload profile from Planet-
Lab and server power model from SPECpower benchmark*
were traced for conducting experiments. Results demon-
strate that, Green SLA can be successfully established and
satisfied without incurring higher cost for total energy ex-
penditure.

The rest of this paper is organized as follows. Section 2
illustrates the background and motivation, which is used to
ease the understanding of our approach. Section 3 describes

4. https://www.spec.org/power _ssj2008/
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Fig. 1: Concept of Virtualize green energy

the system model and the algorithmic solution. The results
obtained from experimental evaluation are presented and
discussed in Section 4. Section 5 provides a selection of rele-
vant work related to this paper. Finally, Section 6 concludes
this paper and provides some discussion on future work.

2 DBACKGROUND AND MOTIVATION

The Cloud architecture is usually composed of several XaaS
layers and SLAs are characterized at various levels in this
stack to ensure the expected QoS for different stakehold-
ers. As shown in Figure 2, an end-user is a client of the
SaaS provider, which is itself a client of the IaaS provider
and as well as for Energy-as-a-Service (EaaS) provider. We
investigated Service level objective (SLO) for every layer
and presented in the Figure 2. Availability of resource and
response time are treated as the basic SLO between end
client and SaaS provider. On the other hand, availability of
physical resources were the only objective so far in between
the SaaS and laa$S layer, but we proclaim to create a new
class of SLO, which should be treated based on green energy
availability. Depending on the requirement from the upper
layer, IaaS provider can have a formal contract with EaaS
providers to have a portion of brown and green energy
to fulfill its contracted SLA to the upper layers e.g., SaaS
provider, end client. Therefore, we discuss how SLA can
be established based on green energy, what are the green
energy sources we can exploit and how we can take leverage
the concept of virtualization of green energy to satisfy the
Green SLA.

2.1 Green power-driven SLA

Due to the dynamic nature of the Cloud, SLA between
consumers and providers emerge as a key aspect and SLA
enforcement becomes an important challenge. Today’s re-
search is more concentrated on Workload-driven SLA rather
than Power-driven SLA and Green power-driven SLA. Usu-
ally, Workload-driven SLA depends on end-users criteria
such as availability, response time, throughput, etc. In con-
trast, Power-driven approach implies, shifting or scheduling
the deferrable workloads to the time period when the price
of electricity is lower or migrating workloads to the different
region (data center) where the electricity price is cheaper
than the origin with respecting the deadline. On the con-
trary, Green power-driven SLA can be realized as: end-users
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or Saa$S providers shift their workloads in a renewable/green
energy powered data center having an agreement with IaaS
provider that some portion of their workload should run in
a greener environment. Existing literature does not provide
a clear idea about the advantages and disadvantages of
different integration option of renewable energy sources
in data centers. Although some research [5][6][7][8] have
explored the opportunity of integrating renewable sources
in data center, but lacks the explanation of how SLA should
be established between IaaS and SaaS providers based on
the green energy availability.

To address this problem, we propose a green power
driven SLA framework established between SaaS and IaaS
provider stating that, IaaS provider provides infrastructure
with proportional e.g., 30% green energy availability. For
instance, laaS provider will have a formal contract with SaaS
provider to provide green infrastructure based on a business
model. In Figure 2, SLAs_; contract used for showing two
SLO of this layer, namely availability of physical resource
and availability of green resource. Point to be noted that,
a substantial amount of research [9][10][11][12][17][18] has
been already done both in industry and academia about
efficient dynamic consolidation of PM, migration of VM
and scalability issues in Cloud infrastructure. In position to
these existing research, our work can be seen as complemen-
tary to their research since reducing energy consumption
in infrastructure level and associating green sources can
reduce carboon footprint in data center from the global
point of view. Therefore, we are concerned about how to
make a data center green and what are the options to make
it possible by penetrating available green energy sources
based on Green SLA, i.e., service level objectives about green
resource/energy. Indeed, we argue that Green SLA should
be established by taking into account the presence of green
energy rather just reducing the energy consumption in the
infrastructure level.

2.2 Green energy sources

From Figure 2, it can be shown that, the energy layer of the
Cloud computing infrastructure consists of a single Grid
where several Green Energy-as-a-Service (GEaaS) providers
from REC market and green energy provider from spot
market are connected. Additionally, on-site renewable en-
ergy plant can be associated to the data center internally or
externally through the same Grid.

o REC market: We exploit the REC market where mul-
tiple GEaaS providers produce energy and feed to
the Grid. Considering the Cloud infrastructure as
a stack of XaaS layers, a IaaS provider will buy
a portion of green energy dynamically from those
GEaaS providers to supply green computing services
to the SaaS providers or their clients. As renewable
energy sources are very intermittent in nature, the
renewable energy-feeding price would be very differ-
ent from one to another provider depending on the
location of site, availability of sources (wind speed,
solar irradiation, etc.) and capacity factor of the plant.
Committing to a single provider might result un-
availability of required green energy requirement for
certain time frame thus ensuring certain percentage

3

of green energy availability in data center can not
be met. Moreover, in deregulated electricity market,
prices vary significantly during the day depend-
ing on the energy generation and demand in the
wholesale market [20]. As a consequence, most of
the energy distribution company introduce different
non-flat tariffs. Day-ahead pricing (DAP) is one of the
many pricing methodology, which is widely used in
deregulated electricity pricing market. In our previ-
ous work [4], we consider different GEaaS providers,
which update DAP with information including prob-
able generation of Green energy, price and availabil-
ity. Usually, GEaaS provider add their green energy
production to the Grid and laaS provider consume
the purchased energy from the same Grid, since there
is only a single Global Grid in European electricity
market. How laaS and GEaaS provider can have
a formal contract regarding energy procurement, is
elaborately discussed in our previous work [4] as
well. Therefore, we purchased green energy before
hand by forecasting the green energy demand of SaaS
providers.

o Spot green energy market: Usually spot market posses
lesser amount of energy than regular energy or elec-
tricity market and price tends to be higher than
traditional or different non-flat tariffs. Spot market
is very important for consumer (IaaS provider), if
the real-time energy/power demand is excessive than
the forecasted demand. Moreover, the actual demand
cannot be known accurately in advance and any fore-
casting technique provides at least some error statis-
tics. So, for fulfillment of Green SLA, laaS provider
needs to purchase green energy from spot market if
it is required.

o On-site renewable energy: Due to the growing demand
of green services, most of today’s green data centers
adopted on-site renewable energy plant e.g., wind
turbine, solar panel to meet the green energy de-
mand. Nevertheless, the perfect place for construct-
ing a renewable energy plant might not have the true
potential to build a data center due the intermittent
nature of the renewable sources. But having a small-
scale renewable plant always gives the advantage to
incorporate green energy to data center to fulfill at
least the partial green energy demand if there is not
sufficient amount of energy in the REC or Spot green
energy market.

2.3 From energy storage to green energy virtualization

As renewable power sources are very intermittent in nature,
hence predicting the amount of renewable energy produc-
tion ahead of real time might demonstrate greater error
statistics in data center. Nonetheless, excessive production
of renewable energy can go to waste and sometimes might
imbalance the Grid if the production becomes greater than
the capacity. The later case doesn’t apply if the data cen-
ter has a small-scale renewable source e.g., wind turbine,
solar plant. One way to overcome the challenge is to use
energy storage or battery to store this superfluous green
energy which can be discharged later for peak shaving of
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Fig. 2: Cross layer SLA

data center power demand or for fulfillment Green SLA
between IaaS and SaaS providers when renewable energy is
needed but not available. Energy storage incurs additional
costs to data centers cap-ex and op-ex, hence it is not an
attractive solution for small-scale data centers. Moreover,
storages have finite capacities to recharge energy and their
lifetime is a decreasing function of depth-of-discharge (DoD)
and charge/discharge cycles [22]. Usually DoD refers, how
much energy the battery has delivered.> Therefore, if the
production of renewable energy is above the capacity of
storage, remaining energy goes to waste. Even the state of
the art batteries have 80-85% [35] efficiency on charging
and discharging capabilities, which implies 28-36% loss of
energy.

Then, how to manage unavailability of green resources
at run-time if the storage approach has several drawbacks, if
the on-site renewable energy or spot market productions are
insufficient? Our proposal is to smooth out the differences
between deficit and surplus of green energy production
during a certain time window with the objective to obtain an
summation superior to a certain threshold, which we refer
as Virtualization of green energy. Interestingly, this concept
does not increase the total energy consumption rather in-
creases the greenness of energy used in data center. In this
way real energy storage is not needed and neither of the
portion of renewable energy is wasted. Furthermore, total
expenditure for energy purchasing can be reduced as no
energy goes to waste and additional cost for using storage
is not needed. Obviously, Green SLA between IaaS and SaaS
providers can be fulfilled if the time-slot length is adapted.
For example, if IaaS provider has established a SLA to SaaS
provider to have some portion of green energy available for
each time slot e.g., T=30/60 minutes, it is possible to satisfy
the contract by using virtualization concept of green energy,
which is elaborately explained in the next section.

5. It is not recommended to fully discharge batteries to 100%, other-
wise it would shorten the life-cycle of batteries.

3 GREeN SLA ENFORCEMENT

In this section, we first summarize our previous work
and then sketch out the Cloud Service Level Agreement
language (CSLA)[3] to show how it has been extended to
support Green SLA and the concept of virtual energy. Then,
we describe the model parameters and investigate the goal
for cost reduction of spot green market as well as total
energy expenditure by proposed algorithmic solution based
on Green SLA.

3.1 Previous work

Due to two time-scale green energy market (REC and Spot)
and aperiodic spikes of workload we have divided our
proposed work in two phase named planning and run-
time phase. In planning phase [4], we proposed a Cloud
energy broker, which can adjust the availability and price
combination to buy green energy dynamically 24 hours
before from the REC market to make data center green for
a specific (as a example 30%) portion. We investigated a
simplified power model from where we could formulated
and predicted power demand of a data center for next
24 hours by evaluating 7 days of real data, traced from
PlanetLab [21]. Our monitoring window length was one
hour that provided almost accurate predicted information
with fewer error statistics. We also have taken a realistic
consideration that Green energy providers can publish a day
ahead green energy generation and price per hour, which
is a common practice at European electricity and energy
market along with smart-grid environment. Our energy
broker tried to maximize of using renewable energy under
strict budget constraint whereas it also tries to minimize
the use of brown energy by capping the limit of overall
energy consumption of data center. Furthermore, how we
manage the energy procurement and management in the
run-time phase based on our proposed Green SLA approach,
is discussed and analyzed in the following sections.
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3.2 CSLA language

CSLA[3], the Cloud Service Level Agreement language,
allows to define SLA in any language for any Cloud service
(XaaS). CSLA addresses intrinsically (i) QoS uncertainty in
unpredictable and dynamic environment; (ii) the cost model
of Cloud computing. Indeed, CSLA allows the expression
of sophisticated Service Level Objectives (SLOs) with new
features such as confidence and fuzziness to deal with
QoS uncertainty: (i) the fuzziness defines the acceptable
margin degree around the threshold of an expression; (ii) the
confidence defines the percentage of compliance of clauses.

In order to evaluate an objective (SLO), an initial evalu-
ation enables to classify the interval as ideal (i.e., threshold
is respected), degraded (i.e., threshold is respected using
fuzziness margin) or inadequate (i.e., threshold is not re-
spected even with fuzziness margin). We distinguish two
concepts: (i) per-interval evaluation, in which the evaluation
is performed at the end of each interval; (ii) per-request
evaluation, in which the objective is evaluated for each
request. A final evaluation, at the end of the time window,
allows one to verify an objective (SLO) by applying the
fuzziness and confidence percentages to the initial evalu-
ation. The final evaluation enables the identification of non-
accepted/accepted degradation and inadequate cases, that
is, that will/will not result penalties. In other words, the final
evaluation absorbs or notifies the violations.

In this paper, in order to allow energy virtualization
(since this concept is based on a certain time frame), we
consider per-interval evaluation. Further, we extend CSLA
language to support the Green SLA by taking the advantage
of the concept of virtualization of green energy. First, we
define an SLO by using two thresholds threshold,,, and
threshold . (see Figure 3). Secondly, beyond the threshold,y,,
we consider the intervals as surplus meaning that, excessive
green energy was present in that interval. Finally, we add an
intermediate step in the evaluation process. This step con-
sists to update the intervals classes using the nullification of
degraded intervals by surplus intervals i.e., for each surplus
interval we translate a degraded interval to ideal interval.

Listing 1: CSLA example.

1 <csla:terms>

2 <csla:objective id="GreenResourceSLO” actor="TaasProvider”>

3 <csla:expression metric="Gr” comparator="in" threshold—min="25"
threshold—max="30" unit="\"%" monitoring="Mon—1" Confidence=
"91,66” fuzziness—value="5" fuzziness—percentage="18,18"/>

</csla:objective>

</csla:terms>

<csla:penalties>

<csla:Penalty id="p—-Gr” objective="GreenResourceSLO” condition="
violation” obligation="provider”>

I VNN

o

9 </csla:Penalty>
10 </csla:penalties>

In the example (see Listing 1), we focus on only one
SLO about the percentage of green resources (lines 1-4). The
SLO states that the percentage of green resources should be
guaranteed between 25 and 30, with confidence, fuzziness
and percentage fuzziness of 91,66%, 5% and 18,18%, re-
spectively. In concrete terms, it means that the percentage of
green resource measured within an observation period may
be i) lower then 20% in 8.34% of the observation periods, ii)
between 20% and 25% in 16, 66% (91.66% of 18,18%) of the
observation periods and iii) greater or equal to 25% in 75%.
A violation of the GreenResourceSLO implies a penalty that
depends on the green percentage not respected (lines 7-9).

Using this objective for an evaluation window of 24
intervals, we accept 22 adequates intervals (18 ideal and
surplus, 4 degraded) and 2 inadequates.

3.3 Supply side characteristics

We consider our system operates in discrete time model.
From day ahead REC market, IaaS provider purchase green
energy for next suitable time period e.g., 12 hours or 24
hours. Furthermore, for evaluation and validation of SLA
by CSLA language we divide before mentioned time frame
int (t = 12 or 24 hours time period). Moreover, the total time
is divided into J(J € N*) coarse-grained time slots of each
length of T, accordance with the length of the day-ahead
REC market, e.g., minutes, hours in Figure 4. In addition,
each fine-grained time slots 7, (1 = 30 minutes) are treated
as monitoring window and t where, t = jT(j = 1,2,.....,]),
can be defined as evaluation window for SLA validation in
our model. IaaS provider purchase green energy from single
or multiple REC providers (discussed in our prior work) in
day ahead REC market for next 12 to 24 hours. So, for each
fine-grained time slot, we define d(7) where,r € (t,t + T — 1)
is purchased with Py, upper bound price. As we integrate
on-site renewable power source in our model, we consider
r(t) amount of renewable energy is produced and added to
each fine-grained time slot. As renewable energy sources are
very intermittent in nature, we suggest r(7) to be r(7) > 0 for
each fine-grained slot meaning, renewable energy will not
be available in some slots due to the sporadic nature of the
source. Hence, the supply side consists of two independent
parts, e.g., U(t) = d(t) + r(1). As we consider, two time scale
renewable energy market, if the demand of renewable/green
energy is greater than the supply, laaS provider has to buy
additional energy in real-time from REC market which tends
to have higher price on average than day-ahead or long-
term ahead market similar to real-time electricity market.
This additional energy is regarded as spot energy. We define
s(t) amount of renewable energy needs to be purchased
from real-time spot renewable energy REC market at price
B(T)(O < B(1) £ Puax) in each fine-grained time slot if
required.
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3.4 Virtual energy model

At each fine-grained time slot, workload arrives with the
requirement of green energy percentage e.g., 30%, that
needed to be served and we define the request process
as e(1). We assume, non renewable energy can be drawn
anytime from Grid if there is deficit of renewable energy
in spot renewable energy market. Discussing about energy
drawing from Grid market is out of the scope of this paper.
Considering the demand and supply side, the ideal condi-
tion would be meeting exact demand from the supply side :
U(1) + s(1) = e(t) or U(t) + s(1) > e(1) suggesting, supply
might exceed the actual green energy demand in some
slots. In our model, this superfluous energy will neither
be stored in a storage nor be wasted, rather will be used
as virtual energy in the data center. This additional energy
will increase the percentage of green energy of the total
energy. Hence, we characterize b(t) as the summation of all
available green energy [U(t) + s(t)] present in the slot and
define superfluous or virtual energy v(7) as:

(1) = {OU

3.5 Cost Minimization Problem of Spot Energy

if b(7) > thr ey
otherwise

M

As described in previous sub section, we consider, green
energy demand, available green energy purchased from
day-ahead renewable energy market and on-site plant, mar-
ket price of spot energy from a vector (e(t), U(7), f(7)) and
e(7),B(7) is i.i.d over slots with some unknown probability
distribution. Furthermore, U(7), e(t) and () are determin-
istically bounded by finite constraints Uyuax, €max and By, SO
that: 0 < U(t) < Ujax, 0 < (1) < epuax, and 0 < B(7) < Briax, V't

Now letting Q(t) represent the total green energy request
in the queue on slot t, we will have following update
equation,

Q(t + 1) = max[Q(t) — U(t) — s(t), 0] + e(t) )

Here s(t) is a decision variable chosen in every slot t to
stabilize the Q(t) depending on the current state of the queue
and vector(e(t), U(t), B(t)). We define a upper bound s, for
s(t) as 0 < s(t) < sy Hence, our objective is to design a
flexible and robust control policy for time varying systems
to formalize the stochastic cost optimization problem for
spot energy is mentioned below:

6
1 t—1
minimize ~ Costy, = lim - Y Eipm)s(x)) 3)
—00 T:o
subject to Q < o, 4)
0<5s(7) < Spax, VT (5)

where, Q is the time average expected queue backlog,
defined as:

-1
Q = limsup % Z E{Q(1)}
t=oe0 =0

Since the virtual energy can not be present in every
slot, the current control decision is coupled with the future
decisions. As example, the deficit of green energy in some
slots may be larger and hence laaS provider has to pay
penalty to SaaS provider or to the end client. We pre-
ferred Lyapunov optimization over dynamic programming
to solve this optimization problem as dynamic program-
ming requires significant statistics of demand and supply
probabilities [23]. In contrast,Lyapunov framework has been
proven to be efficient to design control algorithms for before
mentioned constrained optimization without requiring a
priori knowledge of demand and cost statistics.

We define a energy degraded aware virtual queue X(t)
and energy inadequacy aware virtual queue Y(t) to measure
the backlog of energy deficits in the queue by tracking the
number of slots when energy deficiency and virtual energy
is present. Moreover, for X(t), having energy deficiency and
presence of virtual energy can not occur simultaneously in a
slot. We propose two threshold parameter thr,;, and thr,,,
where thr,, < e(t) and e(t) < thry.. For instance, in our
framework, thry,;, and thr,,, are 25% and 30% respectively.
The idea behind introducing the threshold parameters is to
analyze whether any of the two events have occurred or
not in the slot. When the supply side has lesser amount of
energy than thr,,, value to meet green energy demand in a
slot, the slot is considered as a energy deficit slot. Hence, we
characterize b(t) such a way that, it can be either in between
the value of thr,,, and thty,, — fuzzinessValue or lower than
thtwmin — fuzzinessValue or above the value of tht,,;, and thrya
. Furthermore, in case of energy inadequacy aware virtual
queue, the maximum allowable slots when the value of b(t)
lies on b(t) < (thtin— fuzzinessValue), can be defined as Ny
Therefore, the functionality of b(t) will depend on thry,;,,
thtmax and fuzziness value which is constructed as:

surplus(v(t)) when  b(t) = tht
F(b(t) = ideal when  thtyi, < (b(t) < tht
degraded if (thtym — b(t)) < fuzziness value
inadequate otherwise
(6)

So, the functionality of b(t) indicates that when there is
excessive green energy available in a slot that demanded en-
ergy, we characterize those superflous energy slot as surplus
energy slot. Furthermore, the update equation for energy
degradation and energy adequacy aware virtual queue will
be:

X(t+1) = max[X(t) — yV(t), 0] + yb(t) (7)
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Y(t + 1) = max[Y(t) = Nyax, 0] + yb(t) 8)

where, y is a counter, which adds values to correspond-
ing parameter e.g., v(t), b(t) whenever it is present in the
queue. So, y can be represent as y{0,1}. In other sense,
yV(E+1) =[yV(E)+ (V) > 0)] and yb(t + 1) = [yb(t) + (b(t) >
0)], which explains broadly the construction of equation (7)
and equation (8).

3.6 Lyapunov Optimization

We define, O(t) [Q@), X(t)] as the concatenated vector
of actual and virtual queues. Moreover, the quadratic Lya-
punov function is L(O(t)) = 3[Q*(t) + X*(t) + Y?()]. So, the T
slot conditional Lyapunov drift is interpreted as:

A©(#)) = E[L(O(t + T)) - L(©(#))|O(1)]

)

Following the Lyapunov framework of drift-plus-
penalty algorithm [37], our algorithm designed to observe
the current queue states Q(t), X(f), Y(t) and the current
vector (e(t), U(7), f(7)) and to make a decision on s(t) where
0 < 5(t) < Syax, to minimize an upper bound on the following
expression in every T slots:

a©m) +vE(Y

L B@so)

where, V is defined as a control variable as V > 0
which is chosen accordingly to IaaS providers goal to give
different weights that affect operational cost and energy
deficiency trade-off. A large deficit of energy can reduce
the operational cost, but can have negative effects on green
energy requirement in data center resulting high percentage
of SLA violation contracted between IaaS and Saa$S provider.
So, our approach consider to minimize a weighted sum of
drift and penalty.

Theorem 1 (drift-plus-penalty bound). Let V > 0, T > 1
and t = jT, T € [t,t + T — 1]. For any control policy that

satisfies 0 < s(t) < sy for all t and the demand backlog
is Q(t) < Quuax, the drift-plus-penalty satisfies:

A@(h)) + V| Z
<BT+ VIE{Z;
B Qo) -
t+T-1
FE() . X@he) - yo@liom)
t+T-1
FE(Y. . Y@D() - Ny ]O()

where, B is a finite constant and compute the bound on
above drift-plus-penalty expression which is defined as:

ﬁ(T)S(T)I®(f)}
p(Ds(D)|O(H)}

U -s(mliemy  (10)

2 2

+ emux

1
B= Emax[(bmux - Vmux)z + (Dyax — Nmux)z + (Umax = Smax)

3.6.1

We minimize the right hand side of drift-plus-penalty at
each fine-grained time slot 7 € [t,t + T — 1] by observing
queue statistics Q(7), X(7), Y(7), green energy demand e(7),
renewable energy production (), spot green energy price
B(t) and choosing s(7) according to the following optimiza-
tion:

Dynamic Algorithm

71
minimize s(D)[VB(T) — Q(7)]
- t+T-1
+ ) IX@ + (@) (b(r) - yo(D)]
7=t
subject to 0<5(7) < Smax, VYT

t+T-1

Y yb(7) < Ninas
7=t

3.6.2 Algorithmic solution

The proposed Lyapunov framework runs Algorithm 1 in
the background in a repetitive manner to ensure Green SLA
according to the runtime context, namely the demand, the
budget, the spot market and SLA. The Algorithm 1 triggers
the purchasing method. More importantly, it indicates the
real situation to purchase energy from spot green market. It
gives an edge over only choosing V parameter by procuring
energy only when it is necessary to fulfill the contracted
SLA.

o interval class==inadequate: Line 2 of Algorithm 1 de-
scribes the interval.class for being at ((thry — b(t)) >
fuzziness wvalue) and if (yb(t) < Nyax), we update
the slot as green energy inadequate slot. Otherwise,
we purchase energy referring to line 6 by triggering
Algorithm 2.

o interval class==degraded: Line 9 of Algorithm 1 in-
dicates interval.class for being at ((thrmy, — b(f)) <
fuzziness wvalue) and if any previous slot posses vir-
tual energy v(t), we nullify one degraded slot. Con-
trarily, line 17 triggers to Algorithm 2 for purchasing
green energy if it is feasible.

o interval class==ideal: The interval.class in the line 20
indicates, if the value of b(t) lies between thry,
and thty,y, no procurement is needed. But if previ-
ous degraded slots exceeded the threshold number
(degmax), we need to move to Algorithm 2 to purchase
green energy. The number of degraded slots might
be greater than the targeted dega, only if there
is unavailability of green energy in the spot green
market.

At the end, the algorithm updates the current intervals/s-
lots status to either inadequate/degraded/ideal or surplus.
We propose one method to purchase green energy from
the spot green energy market named buySpotMinCost (see
Algorithm 2). As the label suggests, the buySpotMinCost
insists to minimize the cost by purchasing green energy to
switch from one class to the next in the order (inadequate,
degraded, ideal, surplus). In addition, the purchasing de-
cision is based on the penalty model, cost and available
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quantity of energy in the spot green energy market. It can
be observed from Algorithm 3 that, we support only static
penalty model in this work. We buy only if the available
green energy in the sport market is able to switch to the
demanded class. Since it is a linear time algorithm, the
average-case complexity and worst-case time complexity is

O(n).

Algorithm 1: greenSla

Input:
interval.class, (), Pspot, AVspot, Nimax, M curr, AZeurr, ileurr, SUT curr
Output: s(7), iacurr, deSeurr, ilcurr, SUcurr
s(t) =0;
if interval.class == inadequate then

if ina.,;r < Nygy then
| e ++;

BW N =

else
s(7) = b”y(ﬁ(T)/ Pspot/ Avspot);
interval.class = updateClass(s(t));
| (in8curr, deGeurr, idleurr, SUTeurr) = update(interval.class)

® 9 o w

9 else if interval.class == degraded then

10 if surq,, > 0 then

11 idley+=2;

12 SUTcyrr — —;

13 else

14 if degcur < degyax then
15 L degeur + +;

16 else

s(1) = buy(ﬁ(T), Pspof/ Avspof);
interval.class = updateClass(s(t));
(inacurr, AeGeurr, idleurr, SUTcuyr) = update(interval.class)

17
18
19

20 else if interval.class == ideal then
21 if degcurr > degmax then

22 s(1) = blly(ﬁ(T), Pspoir Avspot)}

23 interval.class = updateClass(s(t));

24 | (in8curr, degeurr, idleurr, SUTeurr) = update(interval.class)
25 else

2 L idleyyr + +;

27 else if interval.class == surplus then
28 L SUT gy + +;

29 return s(T), iNAcusr, AeSeurr, idleurr, SUT curr

Algorithm 2: buySpotMinCost

Input: interval.class, interval.val, f(t), Pspot, AVspor, penaltyModel
Output: class, cost

1 if interval.class == inadequate then
2 if degcurr < degmax then

3 | b= buySpot(Degraded, penaltyModel);
4 else if degyy > degyuqx then

5 | b = buySpot(Surplus, penaltyModel);
6 else

7 | b= buySpot(Ideal, penaltyModel);

8 else if interval.class == degraded then
9 if degeur > degyax then

10 | b = buySpot(Surplus, penaltyModel);
1 else

12 | b= buySpot(Ideal, penaltyModel);

13 else if interval.class == ideal then

14 | b= buySpot(Surplus, penaltyModel);

15 class, cost=update(b);
16 return class, cost

Algorithm 3: buySpot

Input: class, penaltyModel

Output: buy
1 buy = false;
2 if penaltyModel == static then
3 if demandedClass(class).isPossible() then
4 L if cost(class) < Penalty(class) then
5 | buy = true;

6 return buy

4 EvALuATION

This section presents the results obtained from some ex-
periments. In order to evaluate the proposed approach,
we first describe our experimental environment. Then, we
present cost analysis, SLA validation and how penalty
model can influence the purchase decision and reduction
of total expenditure in results section. Furthermore, insights
and critical analysis are presented in discussion section.

4.1
4.1.1

For a datacenter, Power usage effectiveness (PUE) is defined
as the ratio of the data centers total power consumption
to the data centers power consumption at the computer
servers [20]. Therefore, we consider a data center which
has an average PUE of 1.77. Though some of the state-of-
the-art techniques claim to have reduced this value closer
to 1.20, still most of today’s data center have higher PUE
values than 1.7 [24]. Therefore, in the planning phase [4],
for transforming CPU utilization to power consumption,
we traced CPU utilization for 7 days of 30 servers from
PlanetLab [21] where CPU utilization has been traced for
500 different servers from across the world. As, building
precise analytical models for modeling power consumption
by modern multi-core CPUs makes a complex research
problem, instead of using an analytical model of power
consumption by a server, we utilize real data on power
consumption provided by the results of the SPECpower
benchmark.

We have selected two server configurations with multi-
core CPUs published in November 2013: Dell Inc. Pow-
erEdge M620 (Intel Xeon E5-2660 8coresX2.2 GHz,64 GB),
and IBM NeXtScale nx360 M4 (2 Intel Xeon E5-2600,10
coresX2.2 GHz,256 GB). The configuration and power con-
sumption characteristics of the selected servers are shown in
Table 1. So, we model total data center power(t)= Server power
consumption(t) X PUE value. In addition, we use OpenFore-
cast® to forecast power demand for next 24 hours based on
last 7 days power consumption which was traced. As our
goal is to make data center 30% green, we scale down the
power requirement demand to 30% and dynamically buy
the required green energy from day-ahead REC market from
multiple providers. Furthermore, power requirements were
transformed to energy requirement (power integrated over
time), as energy is purchasable in Grid and REC market but
not the power (at which rate energy is transmitted).

Experimental Testbed
Real world power and workload traces

6. http://www.stevengould.org/software/openforecast/index.shtml
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TABLE 1: Power consumption by the selected servers at different load levels in Watt

Servers 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Dell Inc PowerEdge M620 688 1151 1322 1494 1671 1848 2061 2289 2499 2765 3239
IBM NeXtScale nx360 M4 550 873 999 1123 1251 1380 1525 1673 1887 2116 2404

We have presented 3 kinds of workload in Figure 9(a).
The first workload is a real workload traced from Planetlab
for 30 servers, which can be seen as interactive jobs (e.g.,
airline booking, e-commerce site), the second workload is
more characterized as an on/off pattern (e.g., scientific ap-
plication or batch jobs for same modeled server). However,
the third workload is created with greater forecasting error
statistics comparing to our predicted power workload in the
planning phase by OpenForecast to evaluate how we can
still propose a solution to fulfill green energy requirement
based on Green SLA. The predicted green workload and
above mentioned workload’s characteristics is presented in
Table 2. Furthermore, we take advantage of the local solar
irradiation data to calculate the amount of on-site green
energy presented in the Figure 9(b). As the spot market data
is not available, we produce synthetic data to validate our
experiment presented in Figure 9(c). There could be multiple
energy consumers who might need green energy from the
spot market, hence all the energy present in the spot market
will not be available for a single consumer, which makes a
realistic assumption.

TABLE 2: Workload characteristics

Workload Mean Standard deviation = Variance
Predicted Green workload  17.75 0.93 0.86
Experimental workload 1 20.26 2.98 8.89
Experimental workload 2 19.15 3.47 12.05
Experimental workload 3 23.95 4.24 18.01

4.1.2 Cost function and algorithms for comparison

Finding market prices of each kWh produced by green
sources are extremely difficult as most of the today’s wind
or solar power infrastructure or plants receive enormous in-
centives either from government or different policy making
organizations. Hence, to model a realistic price for energy
in the day-ahead REC market, we investigate information of
cap-ex, op-ex, levelized cost, fixed O&M cost, variable O&M
cost of different sources of energy (e.g., Nuclear, Wind, Solar,
Hydro etc)” and find that the ratio of energy consumption
cost between nuclear/brown and green energy is 1:1.68
approximately [4]. Since renewable sources are intermittent
in nature, we consider the price of green energy sold at REC
market will be in the range of 0.19-0.25 cents/kWh, which
is 31.57% in price variation, while the price of Nuclear or
mixed energy provided by EDF® is 0.14 cents/kWh. As prices
tend to be higher in the spot market, we have made an as-
sumption that green spot market price can be 30-35% higher
than the normal or day-ahead REC market. We compare
our greenSLA algorithm with purchase at deadline approach
and an energy storage approach that stores excessive on-
site renewable and other abundant energy. Recent empirical

7. http://www.eia.gov/forecasts/aeo/pdf/electricity generation.pdf
8. http://entreprises.edf.com/entreprises-45638.html

studies shows that, the charging/discharging efficiency of
a storage is 1 = 80% and cost per cycle is approximately
0.1 euro [35]. In addition, we use fixed penalty value 1.5 eu-
ro/interval for IaaS provider if Green SLA is violated. We will
analyze why do we choose this value and how it affects to
the total energy cost in the result section. So, we define total
energy cost as C,,C,,Cs respectively for greenSLA, “purchase
at deadline” and "using energy storage” as follows:

1) C; = grid energy cost + REC energy cost + spot
green energy cost + penalty if violated SLA.

C, = grid energy cost + REC energy cost + spot
green energy cost

Cs = grid energy cost + REC energy cost + spot
green energy cost + storage charging and discharg-

ing cost.

4.2 Results

In this section we describe cost analysis, SLA evaluation
based on our proposed greenSLA algorithm, impact of con-
trol parameter V, impact of penalty to the total energy
expenditure and robustness of our approach in detail.

4.2.1 Cost analysis

In Figure 6, we compare the cost for 24 hours between
our proposed greenSLA algorithm and other two approaches
namely “purchase at deadline” and "“using energy storage”.
It is rationale that, purchasing green energy in every slot
when it is needed incurs higher cost for purchase at deadline
approach. Furthermore, the storage incurs additional costs
due to charging the excessive energy and discharging the
remaining energy in some slots. Besides, the storage does
not discharge the exact amount of energy that has been
charged earlier. From Figure 6(a) and 6(b), we calculate
that, greenSLA achieves 4.47% and 4.17% cost reduction for
workload 1 and 3.29% and 2.1% for workload 2 comparing
to other two approaches. For workload 3, it has been noticed
that (shown in Figure 6(c)), some time slots experience
greater green energy inadequacy, hence greenSLA algorithm
was forced to choose penalty for few slots. In some other
slots, greenSLA choose penalty over buying green energy
from spot market, as the cost for buying green energy
was slightly higher in terms of total expenditure. Since
purchasing green energy option is limited in spot market
for a single consumer, other two approaches cannot meet
the exact demand. Nevertheless, greenSLA performs better
by reducing 5.9% and 3.54% cost comparing to other ap-
proaches for workload 3. In terms of buying spot energy,
Figure 7(c) shows, purchase at deadline approach incurs
8.17%, 6.26%, 15.62% expenditure of total energy cost for
workload 1,2 and 3, the storage performs better by incur-
ring 7.48%, 4.35% and 12.45% for respective workloads. In
contrast, greenSLA significantly reduce the expenditure for
spot green energy by only incurring .65%, .71% and 4.75%
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TABLE 3: SLA between laaS provider and its consumers

service metric oper. thtmin(%) thtyex(%) — fuzz. % of fuzz. conf. penalty (euro/interval)
energy  green (Gr) > 25 30 5 91.66 18.18 1.5
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of total expenditure for above mentioned workloads. In our
understanding, the concept of virtualizing the green energy
leverages the process of reduction the total green energy
expenditure by our algorithm than other two approaches.

4.2.2 SLA validation

Figure 7(a) and 7(b) show the comparison of targeted and
achieved SLA based on greenSLA algorithm, which is evalu-
ated and validated through CSLA. For our experiment, we
fix observation window 7 = 30 minutes and evaluate every
12 hours as evaluation window suggesting, we evaluate 24
intervals at a time. We present a example of CSLA in section
3.2 having a SLA contract to provide 18 ideal intervals,
4 degraded intervals and 2 inadequate intervals out of 24
intervals or slots of green energy. The Table 3 summarizes
the SLA between the IaaS provider and its consumers (SaaS
providers). When SaaS provider establishes a SLA with IaaS
provider for having 30% green energy to run their workload,
the Ideal intervals ranges from 25% to 30% for green energy
in CSLA framework. We argue on the fact that, it is not
possible to provide or measure exactly 30% green energy
in each timeframe. Besides, running same workload over
and over again in a server shows slightly different power
consumption profile. For workload 1, greenSLA achieves
exactly the target for first 12 hours, but shows better perfor-
mance attaining 91.67% of ideal and 0% of degraded interval
comparing to the goal of providing 75% and 16.66% of ideal
and degraded interval respectively. The algorithm performs
even better for batch jobs type workload 2, by providing
91.67% and 100% of ideal interval for first 12 hours and
later 12 hours. Although the mean green energy demand
for workload 1 and workload 2 deviates by 14.14% and
7.88% comparing to our predicted demand, greenSLA still
managed to fulfill SLA by greater percentage, thus our algo-
rithm is robust to inaccurate prediction information in terms
of SLA validation. Due to the insufficient amount of green
energy in the green spot market, greenSLA fails by 4.17%
and 8.33% to meet SLA for workload 3 in two timeframe but
still managed to incur lower cost than other two approaches,
even though the algorithm chose to provide penalties in 6
intervals.

4.2.3 Impact of control parameter V

As shown in Figure 8, to simulate 3 kinds of workload,
we fix t to be 24 hours and each fine grained timeslot
as 7=30 minutes. We conduct experiments with different
V values ranging from 1 to 5 and realized that, as the V
value increases, it reduces the total energy cost. However,
fixing larger value of V can violate contracted SLA. We see
that, for workload 1, when V = 4.2, the control parameter
performs well by reducing cost close to greenSLA and can
satisfy the targeted SLA shown in 8(a). Nevertheless, if the
value is increased by fraction, reduction of cost becomes
larger but violates SLA. So this quantitatively indicates that,
our proposed Lyapunov framework can approach very close
to greenSLA within a diminishing gap of O(1/V). Moreover
we perceive that, the value of V can not be fixed ahead since
it depends on the characteristics of the workload and SLA
parameters. Figure 8(b) and 8(c) shows that, the same value
of V can incur different level of costs. So, choosing the ap-
propriate value is essential to make a trade-off between cost

11

reduction and maintaining Green SLA. From our experiment,
we find that the value of V = 2 and V = 1.9 can incur costs
near to greenSLA for workload 2 and workload 3.

4.2.4 Impact of penalty

For our experiment, we choose static penalty per inter-
val meaning, if IaaS provider fails to meet the demand
of providing green energy beyond the SLA, the provider
pay a fixed amount per interval. It is well understandable
that, choosing a penalty value is extremely difficult and it
depends on the business model of IaaS provider. Though
we fixed the value of penalty as 1.5 euro/interval, Figure
9(c) shows that how the other penalty value affects the
total expenditure for workload 3. In case of workload 1
and 2, greenSLA does not incur any penalty as it achieves
the targeted SLA. We consider penalty value ranges from
1 eurofinterval to 1.75 euro/interval by a factor of 0.25.
We realize that, even increasing the penalty value by 0.25
euro/interval, the total expenditure increases only by 0.48%,
0.93%, 1.05% for 1.25, 1.50, 1.75 euro/interval. Hence, we
choose 1.5 euro/interval penalty value which affects below
1% to the total green energy expenditure and certainly gives
the flexibility to the IaaS provider.

4.3 Discussion

In this paper, we provide a greenSLA approach to show
how SLA can be established and validated based on Green
energy. Due to the intermittent nature of green sources and
price diversity in electricity market, we consider that, the
REC and Spot market energy price variation fluctuates in
a range in section 4.1.2. We observe that, with 31.57% (.19-
.25 cents/kwh) price variation in REC market; the maximum
cost difference fluctuates within [-4.13%, 6.63%] for 3 kinds
of workload, whose mean and standard deviation (see Table
2) varies significantly than the predicted workload. Figure
9(a) shows the total cost curve in respect to different REC
market energy price and energy demand variation. So, with
the increase of energy price in REC market, the total expen-
diture increases slightly but expenditure can be increased
significantly if the energy demand variation is large. The
rationale is that, the cost reduction through using greenSLA
depends on the application workload. If the workload is
more predictable, the cost reduction could be larger. Further-
more, Figure 9(b) indicates, the maximum cost difference
fluctuates within [-1.43%, 1.30%] in respect to our proposed
solution, while spot market has 25% (.28-.35 cents/kwh)
price variation. Section 4.2.2 shows that, greenSLA managed
to fulfill SLA with greater percentage, even workload 1 and
2 has significant deviation of mean in terms of green energy
demand. Therefore, greenSLA is robust and reliable to the
energy prices in two time-scale market and energy demand,
even though they have certain turbulence in variation.

Furthermore, we only present one method to buy green
energy from the green spot market based on proposed Green
SLA. Our idea can be easily extendable to other methods
required by laaS provider to meet different goals and es-
tablishment for different SLA based on availability of green
energy. Furthermore, this paper only proposes static penalty
in case of SLA violation, but dynamic penalty can be inte-
grated into the model as CSLA supports dynamic penalty
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modeling. Moreover, we do not propose an optimal solution
as optimal solution for reducing cost of green energy can be
varied depending on the workload pattern, on-site green
energy generation and green spot market characteristics.
From our experiments we observe that, it is possible to val-
idate Green SLA with proposed spot market characteristics.
Nonetheless, providing penalty in most of the intervals/slots
when green energy is not available seems a little unrealistic.
In case of low availability of green energy, we recommend
that, efficient VM migration framework in IaaS level [36]
and dynamic resource scaling and functionality degradation
of services [3] can reduce energy consumption as well as
green energy requirement in data center.

5 ReLatep WoRk

In recent years, a plethora of work has addressed the prob-
lem of reducing carbon footprint and energy procurement
cost by integrating different renewable options in Cloud
data centers. In the following, we first survey the literature
on Green SLA and then focus on proposals on reducing
energy procurement or management cost.

5.1 Green SLA

Laszewski et al. [13] investigated different green IT met-
rics that considered environmental impacts as part of the
SLA for building GreenlT-as-a-Service (GaaS) which can be
reused as part of a SaaS and IaaS framework. The frame-
work provides how green metrics (i.e., DCIiE, PUE, DCeP,
SWaP) can be taken into consideration to reduce energy
consumption in different layer of Cloud computing to pro-
vide greener services. Later, Wang et al [14] proposed green
SLA based on energy aware scheduling of resources by
exploiting dynamic voltage and frequency scaling (DVES)
technique. Their green SLA contract definition phase creates
some green SLA templates where user might accept some
performance or QoS degradation in order to reduce power
consumption for their task completion. While these specifi-
cations are ought to build green services, Green SLA must
be established using green energy sources to reduce carbon
footprint. Klingert et al. [25] introduced the notion of Green
SLA, focusing more on optimizing energy per job based

on known hardware and software techniques. Furthermore,
how applications might specify preferences/requirements
for these techniques were discussed. However, their work
neither provides specification of SLA nor proposes valida-
tion process based on available green energy. Generally,
Green SLA should be able to guarantee that the leased
resources to SaaS providers or end clients via IaaS provider
are environmental friendly. To this point, Haque et al. [1]
considered an SLA that specifies the proportion of green
power that the laaS provider should use to run the job
(e.g., x% of the job should run on green power). However,
their proposed Green SLA approach is per application/job
specific, where every job can have different green energy
requirement. In contrast, we advocate the Green SLA as
per interval specific, which is not dependent to the ap-
plication/job. Moreover, their approach is more based on
power distribution and control infrastructure. We try to
ensure that, a data center can be proportionally green for
the whole day by exploiting available green energy sources
and markets for establishing a formal contract between SaaS
provider/end client and we explained how the Green SLA
can be formulated and validated through CSLA language.
Ahmed et al. [26] addressed green SLAs for geographically
distributed data center by shifting workloads towards most
green energy efficient data center (following renewable) by
penetrating VM migration. Their goal was to reduce carbon
emission per job by finding most green data center among
the virtual data center owned by the same provider while
maximizing revenue. Again their work, including [27], lacks
proper definition of Green SLA and its real use case in any
business model.

While above researchers focused on addressing Green SLA,
substantial amount of research has been done in coordinated
multi-level power management [15], energy-efficient re-
source management [9][16], energy-efficient network-aware
scheduling [19] and prominent green architecture [17] for
Green data center. Recently, Basmadjian et al. [38] summa-
rized the existing proposals and solutions that deal with the
energy consumption and its reduction possibilities in every
aspect of a Cloud data center. In position to above works,
our research exploits incorporating green energy to establish
Green SLA, which can be harmonious and advantageous to
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existing trends and techniques used in modern data center
to reduce carbon footprint.

5.2 Multi-source energy management and cost

Another stream of research has been found on multiple
timescale energy market, prices and scheduling of energy
in smart grid. Deng et al. [22] [29] studied optimal energy
procurement to reduce the operational cost from long term
ahead and real time market under intermittent renewable
energy supplies with the leverage of UPS to reduce oper-
ational cost. Nair et al. [30] proposed similar goal using
dynamic programming without taking into account the
storage facility. On the contrary, we introduce spot energy
market and investigate energy management of a data center
by procuring energy depending on the Green SLA to reduce
the operational cost of data center. We also introduce the
concept of virtualization of energy, which take advantage
over energy storage and shown to be efficient for small-scale
data center. In addition, recent researches [31][32][33][34]
show cost reduction in data center by distributing request
process across multiple data centers by leveraging both
time diversity and location diversity of electricity prices
in grid environment. Contrarily, we study how to reduce
cost depending on Green SLA aware energy management
and procurement in single data center rather than how to
distribute requests across data centers.

6 ConcLusioN

In this paper, we have presented a new scheme for green en-
ergy management based on Green SLA. Due to the intermit-
tent nature of renewable sources, Green SLA was not intro-
duced per interval specific based on green energy before. To
overcome this difficulty, our proposal included three novel
features: (i) the concept of virtualization of green energy
ii) the extension of CSLA language that supports Green SLA
and iii) the greenSLA algorithm, which leverages the concept
of virtualization of green energy. Results demonstrate that,
by smartly exploiting the renewable sources, Green SLA
can be a possible reality in Cloud Computing. Throughout
the paper we argue that, Green SLA should be established
based in the presence of green energy, thus carbon footprint
can be reduced and social responsibility for being Green
can be achieved. Moreover, any large power consuming
infrastructure similar to Cloud computing, which has large
power demand variation over time and has aspiration to
reduce carbon footprint by using green energy, can easily
extend our proposed research work. We intend to continue
this work in several ways. Firstly, we would like to define
dynamic penalty models and pricing policies. Secondly, we
continue to propose new strategies to purchase green energy
from spot energy market. Finally, we expect to support
negotiation phase to improve customer satisfaction levels.
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