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On-demand resource provisioning in cloud computing provides tailor-made resource packages (typically in the form of VMs) to
meet users’ demands. Public clouds nowadays provide more and more elaborated types of VMs, but have yet to offer the most flexible
dynamic VM assembly, which is partly due to the lack of a mature mechanism for pricing tailor-made VMs on the spot. This work
proposes an efficient randomized auction mechanism based ona novel application of smoothed analysis and randomized reduction,
for dynamic VM provisioning and pricing in geo-distributed cloud data centers. This auction, to the best of our knowledge, is the
first one in literature that achieves (i) truthfulness in expectation, (ii) polynomial running time in expectation, and(iii) (1−ǫ)-optimal
social welfare in expectation for resource allocation, where ǫ can be arbitrarily close to 0. Our mechanism consists of three modules:
(1) an exact algorithm to solve the NP-hard social welfare maximization problem, which runs in polynomial time in expectation,
(2) a perturbation-based randomized resource allocation scheme which produces a VM provisioning solution that is(1− ǫ)-optimal
and (3) an auction mechanism that applies the perturbation-based scheme for dynamic VM provisioning and prices the customized
VMs using a randomized VCG payment, with a guarantee in truthfulness in expectation.

We validate the efficacy of the mechanism through careful theoretical analysis and trace-driven simulations.

Index Terms—Cloud Computing; Auction; Resource Allocation; Pricing; Truthful Mechanisms

I. I NTRODUCTION

Cloud computing services have been proliferating in today’s
Internet for the past decade. They create a shift in resourcepro-
visioning from on-premise hardware to shared resource pools
accessible over the Internet. To be flexible at meeting users’
resource demands, leading cloud platforms such as Amazon
EC2 [1], Microsoft Azure [2] and GoGrid [3] exploit advanced
virtualization technologies to pack resources (CPU, RAM, and
Disk Storage) into virtual machine (VM) instances of various
types. Undoubtedly, the more variety of VM types they can
provide, the better they could meet the wide range of users’
demands. For example, Amazon EC2 has been expanding the
variety of VM instances they provide, which now spans9
categories and39 types [4]. However, the increased variety
on the provider’s side still often falls short of addressinguser
needs precisely, which could lead to a waste of resources and
an unjustifiably inflated payment by the users. For example,
suppose a user needs to run a computationally intensive job
(e.g., a MapReduce job) by acquiring16 vCPU units and16
GB memory [5] in EC2’s Singapore data center, to process
160 GB usage data. The best offer Amazon EC2 can make
is a c3.4xlarge instance, which unfortunately is far from
a perfect match, leading to a waste of roughly half of the
allocated memory and SSD storage.

Current virtualization technology is in fact ready for real-
time, on-demand VM partitioning and provisioning (e.g., by
utilizing credit-based CPU scheduler and memory ballooning
[6]). What is not ready, however, is an effective pricing mecha-
nism to charge for those customized VMs on the spot. The cur-
rent representative pricing models,e.g., long-term reservation,
fixed on-demand instance pricing and spot instance pricing

employed by Amazon EC2, are not suitable for dynamically
assembled VMs. Under fixed pricing, it is impossible for the
cloud provider to come up with the appropriate prices,a priori,
for any VM type that could possibly be assembled according to
the user’s needs. Furthermore, fixed pricing fails to cater to the
ever-changing supply and demand in the market; either over-
pricing or underpricing would jeopardize the social welfare of
the overall system as well as the provider’s revenue. Amazon’s
spot instances market [7] represents the first attempt at a more
market-driven pricing system, which, however, comes without
any guarantee of truthfulness or SLA [8][9]. Some recent work
further studied auction mechanism design for cloud resource
provisioning from different perspectives [9][10][11]. However,
most of them model VMs as type-oblivious commodities,
and therefore fail to provision dynamically assembled VMs
properly.

Aside from pricing, the challenge of packing available
resources to maximally cater to users’ VM demands translates
into an NP-hard combinatorial optimization problem, which
presents a tough challenge in VM auction design. The VCG
mechanism [12], essentially the only type of auction that
guarantees both truthfulness and economic efficiency (social
welfare maximization), requires an exact optimal allocation.
When polynomial-time approximation algorithms are applied
instead, VCG loses its truthfulness property [13]. To achieve
truthfulness with an approximation algorithm, researchers have
exploited the concept of critical bids [14], or resorted to some
LP decomposition techniques [15][16][17]. The approximation
ratios of these auctions with respect to social welfare optimal-
ity depend on the efficiency of the approximation algorithm
employed, which is typically much larger than1 [16][17].

This work aims to leverage the state-of-the-art techniques
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in smoothed analysis [18][19] and randomized reduction, to
design a highly efficient randomized auction mechanism for
the provisioning and pricing of customized VM instances in a
geo-distributed cloud. The resulting combinatorial VM auction
is sufficiently expressive for cloud users to request the neces-
sary custom-made VM instances in bundles in different data
centers for their job execution. To the best of our knowledge,
this is the first VM auction that achieves (i) truthfulness (in
expectation), (ii) polynomial running time (in expectation), and
(iii) (1−ǫ)-optimal social welfare (in expectation) for resource
allocation in a geo-distributed cloud, whereǫ ∈ (0, 1) is a
tunable parameter that can approach zero.

Our proposed auction mechanism consists of three main
modules: (1) an exact algorithm to solve the NP-hard social
welfare maximization problem, which runs in polynomial time
in expectation based on smoothed analysis. It serves as the
basis for resource allocation in (2); (2) a perturbation-based
randomized resource allocation scheme that produces a VM
provisioning solution achieving(1− ǫ)-optimal social welfare
in expectation; and (3) an auction mechanism that applies the
perturbation-based scheme to dynamic VM provisioning, and
prices the customized VMs using a randomized VCG payment,
which guarantees truthfulness in expectation. Detailed steps
are as followed.

First, we formulate the social welfare optimization prob-
lem as an integer linear program and then prove its NP-
hardness. Based on smoothed analysis, we randomly perturb
the objective function and the packing constraints following a
well designed perturbation framework, and propose an exact
dynamic programming based algorithm to solve the perturbed
problem. The algorithm finds a feasible solution to the orig-
inal, unperturbed problem within polynomial running time
in expectation. Furthermore, a transformation of this feasible
solution yields a fractional solution to the original problem,
which achieves(1− ǫ)-optimal social welfare in expectation.

Next, we design a randomized resource allocation scheme,
which outputs the allocation solution of the auction following
a well designed distribution over a set of feasible solutions
of the social welfare maximization problem, including the
feasible solution produced in the above step. By designing
the distribution in close connection with the perturbation
framework, we are able to show that the expectation of such a
randomized solution equals the fractional solution mentioned
above, and hence it achieves(1− ǫ)-optimal social welfare in
expectation.

Finally, we combine the randomized resource allocation
scheme with a randomized VCG payment, and complete our
auction design with truthfulness guaranteed in expectation.

Our mechanism design yields some interesting results: (i)
For the social welfare maximization problem we formu-
late, even if truthful bids are given for free, no (deter-
ministic) polynomial-time algorithm can guarantee(1 − ǫ)-
approximation for arbitrarily tunableǫ [20]. (ii) The (random-
ized) VM auction designed in our work is both polynomial-
time and(1−ǫ)-optimal in expectation, and can simultaneously
elicit truthful bids from selfish cloud users.

The strong properties above guaranteed by our VM auction
are made possible by unleashing the power of randomization,

through the art of calculated random perturbation (for com-
putational efficiency) and associated perturbation (for truth-
fulness). While there exists separate literature on applying
randomization for efficient algorithm design and for truthful
mechanism design respectively, to the best of our knowledge,
this work is the first of its kind that applies the same carefully
prepared randomization scheme twice in subtly different forms
and in a coordinated fashion to achieve polynomial algorithm
complexity and truthful mechanism design in the same auc-
tion framework. We believe that this new technique can be
generalized to be applicable to a rich class of combinatorial
auctions in which social welfare maximization can be modeled
as a linear integer program that is NP-hard (otherwise our
technique is unnecessary) but not too hard (which admits a
smoothed polynomial time algorithm) to solve.

We discuss related work in Sec. II and present the system
model in Sec. III. Sec. IV gives the complete auction design.
Sec. V presents trace-driven simulation studies and Sec. VI
concludes the paper.

II. RELATED WORK

Resource provisioning in cloud computing has been exten-
sively studied with different focuses. Beloglazovet al. [21]
aim at minimizing the energy consumption in computing
task scheduling. Alicherryet al. [22] study VM allocation
in distributed cloud systems, taking into consideration the
communication cost. Joe-Wonget al. [23] seek to balance
efficiency and fairness for allocating resources of multiple
types. None of them however focus on dynamic VM assembly
and provisioning, which is the focus of our work.

Auction mechanisms have been applied to achieve efficient
resource allocation in cloud systems. Zamanet al. [10] design
a truthful auction based on an approximation algorithm for
resource allocation, but without proving the performance of the
resource allocation algorithm. Zamanet al. [11] also presents
an auction-based VM allocation but focuses on static resource
provisioning and only guarantees a large approximation ratio.
Wang et al. [8] propose a truthful VM auction based on
a greedy allocation algorithm and a well-designed payment
method; the derived allocation solution approximates the op-
timal solution with an approximation ratio which depends
on the number of VMs. Zhanget al. [24] and Wanget
al. [9] design online cloud auctions but they only consider
a single type of VM instances, ignoring dynamic provisioning
of different VMs. Similar to our work, Zhanget al. [16] and
Shi et al. [17] address dynamic VM provisioning, and design
truthful auctions by applying an LP decomposition technique,
which achieve 2.72- and 3.30-approximation of optimal social
welfare, respectively. Mashayekhy et al. [25] also consider
heterogeneous resources in a cloud auction. Their proposed
allocation rule is proved to be a PTAS, which finds a partial
allocation solution first and then allocates through dynamic
programming the remaining resources to unprovisioned users.
Unfortunately, the running time of their PTAS mechanism can
be exponential in1/ǫ, where ǫ denotes the approximation
error. Shiet al. [26] design online VM auctions via a pricing-
curve-based method. However, the resources which have been



allocated and paid by the users could be cancelled by the
cloud provider in their problem model, which is not practical
and user-friendly. One of the latest VM auctions proposed
by Zhang et al. [27] investigates social welfare and profit
maximization in online VM auctions, where the future demand
of each type of resource could be reserved in a customized
amount and duration. In their work, the performance of the
mechanisms relies on an assumption that each user’s demand
for each resource is extremely small compared to the corre-
sponding capacity. Unlike theirs, we study the auction in an
offline version where the small bid assumption is much milder
than theirs. Additionally, this work departs from the existing
literature by applying smoothed analysis and randomized
reduction techniques to design a randomized auction, which
achieves much better approximation to the optimal solution,
i.e., (1−ǫ)-optimal social welfare (whereǫ can be very close to
zero), while retaining truthfulness and computation efficiency
in expectation.

A key technique we adopt in this paper is a novel use of
smoothed analysis in designing an algorithm to produce a good
solution to the social welfare maximization in polynomial
time in expectation. Smoothed analysis is a technique for
analyzing the time complexity of an algorithm for an NP-
hard problem, that exactly solves a perturbed instance of
the problem based on a small, random perturbation, in order
to show that the algorithm can be efficient in expectation
despite its possible worst-case complexity [18]. It has been
argued that complexity analysis on the expectation over some
distribution of the instances is more convincing than that of
the average case, and more practical than that of the worst
case [18]. Smoothed analysis has been applied recently in
areas such as combinatorial programming [28], computational
geometry [29], game analysis [30]. Dughmiet al. [31] focus
on social welfare maximization problems with an FPTAS, and
design a randomized reduction method to convert the FPTAS
into a truthful mechanism. Unlike theirs, our NP-hard social
welfare maximization problem does not have a deterministic
FPTAS; even so, we are able to show, surprisingly, that we
can still achieve a randomized, truthful,(1− ǫ)-approximation
mechanism with expected polynomial complexity by applying
the carefully designed permutation framework.

III. SYSTEM MODEL

A. Cloud Resource Aucion

We consider an IaaS cloud system providing a pool of
geo-distributed resources (e.g.,CPU, RAM and Disk storage)
through servers deployed in multiple data centers. The differ-
ent types of resources are packed into heterogeneous VMs for
lease to cloud users. Suppose there areD data centers in the
cloud andM types of VMs in total can be assembled to offer
(which can be potentially a very large number)1 composed
of K types of resources. Let[X ] denote the set of integers
{1, 2, . . . , X}, d index the data centers in the cloud system
andm index the types of VM. Each VM of typem ∈ [M ]
consumes anrkm amount of type-k resource, for allk ∈ [K].

1Note that we allow flexible VM assembly on demand and the numbering
of VM types is purely for the ease of presentation.

Fig. 1: An illustration of the VM auction.

Each data centerd ∈ [D] has a capacitycdk for each resource
of type k ∈ [K].

The cloud provider acts as an auctioneer and sells custom-
made VMs toW cloud users through auctions. The cloud users
request resources in the form of VMs through bidding in the
auction. LetN be the total number of bids submitted by all
the cloud users. We usei ∈ [N ] to index the bids. Each cloud
userw ∈ [W ] is allowed to submit multiple bids, but at most
one bid can be successful. This assumption is reasonable given
that any need for concurrently acquiring VM bundles in two or
more bids can be expressed as a separate bid with a combined
bundle. LetBw denote the set of bids submitted by userw.
Each bidBi contains a list of requested VMs of different
types and location preferences,i.e., qimd VMs of type-m in
data centerd, ∀m ∈ [M ], d ∈ [D], and a bidding pricebi, i.e.,
the reported valuation of the resource combination required in
Bi. More specifically, each bidi ∈ [N ] can be formulated as
follows:

Bi = {bi, {q
i
md}m∈[M ],d∈[D]}.

For ease of problem formulation, we useRkd
i =

∑M
m=1 q

i
mdr

k
m

to denote the overal amount of type-k resource required by bid
i in data centerd.

Upon receiving user bids, the cloud provider computes the
outcome of the auction, including (i) the resource allocation
scheme,~x = {x1, ..., xN}, where binary variablexi is 1 if
bid i is successful and0 otherwise, and (ii) a paymentpi for
each winning bidi. Let vi denote the true valuation of the
bidder submitting bidi. The utility ui acquired due to this bid
is then:

ui(Bi,B−i) =

{

vi − pi if Bi is accepted
0 otherwise

whereB−i is the set of all bids in the auction exceptBi. An
illustration of the system is given in Fig. 1.

We summarize important notations in Table I for ease of
reference.



TABLE I: Notation

W # of users N # of bids
M # of VM types K # of resource types
D # of data centers Bi the ith bid
vi true valuation of bidi ui utility of bid i
P perturbation matrix Bw bid set of userw
bi bidding price of bidi b̂i perturbedbi

ǫ parameter in(0, 1)
rkm amount of type-k resource in a type-m VM
qimd # of type-m VMs in DC d requested in bidi
Rkd

i demand of type-k resource in DCd in bid i

R̂kd
i perturbedRkd

i

ckd capacity of type-k resource in DCd
s(~x) social welfare under allocation solution~x

Ckd(~x) demand for type-k resource in DCd under~x
θji parameter in[0, ǫ/N ]

Ω(~x) distribution based on~x, ǫ and~θ
xi to accept (1) or reject (0) bidi
~x∗ optimal allocation solution of ILP (1)
~xp optimal allocation solution of ILP (4)
~xf fractional solution perturbed from~xp

~yǫ auction’s final allocation solution
pi(~y

ǫ) payment of bidi under~yǫ

B. Goals of Mechanism Design

We pursue the following properties in our mechanism
design. (i)Truthfulness: The auction mechanism is truthful if
for any usern, declaring its true valuation of the VM bundle
in each of its bids always maximizes its utility, regardlessof
other users’ bids. Truthfulness ensures that selfish buyersare
automatically elicited to reveal their true valuations of the VMs
they demand, simplifying the bidding strategy and the auction
design. (ii)Social welfare maximization: The social welfare is
the sum of the cloud provider’s revenue,

∑

w∈[W ]

∑

i∈Bw
pixi,

and the aggregate users’ utility
∑

w∈[W ]

∑

i∈Bw
(vi − pi)xi.

Since the cloud provider’s revenue and the payment from the
users cancel out, the social welfare is equivalent to the overall
valuation of the winning bids

∑

w∈[W ]

∑

i∈Bw
vixi, which

equals
∑

w∈[W ]

∑

i∈Bw
bixi under truthful bidding. Different

from existing work that achieve only approximate social
welfare optimality with a ratio much larger than1, we seek to
achieve(1− ǫ)-optimality whereǫ is a tunable parameter that
can be arbitrarily close to0. (iii) Computational efficiency:
A polynomial-time resource allocation algorithm is desirable
for the auction to run efficiently in practice. Our auction
mechanism leverages the power of randomization to break
through the inapproximability barrier of the social welfare
maximization problem which does not have a deterministic
FPTAS. Consequently, we target polynomial time complexity
of the mechanismin expectation.

Next, we formulate the social welfare maximization prob-
lem, which gives rise to the optimal resource allocation
solution for the cloud provider to address users’ VM demands,
assuming truthful bidding is guaranteed.

maximize
∑

w∈[W ]

∑

i∈Bw

bixi (1)

subject to:

∑

w∈[W ]

∑

i∈Bw

xiR
kd
i ≤ ckd, ∀k ∈ [K], ∀d ∈ [D], (1a)

∑

i∈Bw

xi ≤ 1, ∀w ∈ [W ], (1b)

xi ∈ {0, 1}, ∀i ∈ Bw ,∀w ∈ [W ]. (1c)

Constraint (1a) states that the overall demand for each type
of resource in the winning bids should not exceed the overall
capacity of the resource in each data center. Constraint (1b)
specifies that each user can win at most one bid.

Theorem 1. The social welfare maximization problem defined
in the integer linear program (ILP) (1) is NP-hard and there
does not exist a deterministic FPTAS for the problem.

The proof is given in Appendix A.

IV. A UCTION DESIGN

At a high level, our strategy for truthful VM auction design
is to apply a randomized VCG-like payment mechanism that
works in concert with a randomized allocation algorithm, with
the latter achieving optimal social welfare in expectation. Such
randomized auctions leverage maximal-in-distributionalrange
(MIDR) algorithms, which are known to be a powerful tool for
designing (randomized) truthful mechanisms [32]. An MIDR
algorithm is a randomized allocation algorithm that chooses an
allocation solution randomly from a set of feasible solutions
of the social welfare maximization problem, following a
distribution that is independent of the bidders’ bids, and leads
to the largest expected social welfare as compared to all other
such distributions in a range,e.g., the set of distributions
over all the feasible solutions.2 If we can design an MIDR
allocation rule, then we can combine a randomized VCG
payment scheme following a similar distribution to obtain
an auction mechanism that is truthful in expectation [32].
To achieve the other two goals of our auction design, the
allocation algorithm should be(1−ǫ)-optimal in social welfare
and have polynomial running time in expectation.

We next establish the randomized allocation algorithm in
two steps. First, we design an exact algorithm based on
dynamic programming for solving the social welfare maxi-
mization problem in Sec. IV-A. Next, we design the random-
ized allocation algorithm based on a perturbation framework,
by running the exact algorithm on a randomized perturbed
version of the original maximization problem and sampling the
final allocation solution from a distribution. The randomized
sampling compensates the perturbation on the problem, done

2To achieve truthfulness of VCG-based mechanisms, there areno additional
restrictions on the distributional range or the distributions within the range
(e.g., the size or specific form) in such MIDR allocation algorithms. In fact,
a well-designed range of distributions, as what we will propose, is the key
for a better approximation ratio.



before running the exact algorithm, by transforming the opti-
mal solution of the perturbed problem into an near-optimal-
in-expectation solution to the original problem. As the core of
the randomized allocation algorithm, the perturbation rule is
carefully designed, in order to lead to a(1− ǫ) approximation
ratio, as well as polynomial running time of the algorithm,
both in expectation.

We further describe the payment scheme in Sec. IV-C.

A. An Exact Algorithm for Social Welfare Maximization

The basic idea of the exact algorithm is to enumerate all
the feasible allocation solutions excluding those absolutely
“bad” ones, and then select the optimal allocation solution
~x = {xi, ∀i ∈ Bw, w ∈ [W ]} that achieves maximum
aggregate bidding price (corresponding to maximum social
welfare under truthful bidding) among the set of “good”
feasible solutions. The set of “good” solutions are defined to
be thosePareto optimalsolutions which are not dominated
by any other feasible solutions, and the “bad” ones are those
dominated by at least one Pareto optimal solution. This is in
line with classical dynamic programming approaches for enu-
merating Pareto optimal solutions in traditional combinatorial
optimization [33].

Let s(~x) =
∑

w∈[W ]

∑

i∈Bw
bixi denote the social

welfare under allocation solution~x, and Ckd(~x) =
∑

w∈[W ]

∑

i∈Bw
xiR

kd
i be the total demand for type-k re-

source in data centerd under~x. The Pareto optimal solutions
are defined as follows.

Definition (Pareto Optimal Allocation) An allocation solution
~x is Pareto optimal if it satisfies all the constraints in ILP (1),
and there does not exist a feasible solution~x′ that dominates~x,
i.e., ∄~x′ such thats(~x′) ≥ s(~x) andCkd(~x

′) ≤ Ckd(~x), ∀k ∈
[K], ∀d ∈ [D], with at least one inequality being strict among
the above, as well as

∑

i∈Bw
x′
i ≤ 1, ∀w ∈ [W ].

We identify all the Pareto optimal solutions using a dynamic
programming approach: LetP(i) be the set of all Pareto
optimal solutions when we only consider the firsti bids in
set [N ] (the bids in [N ] are ordered in any fashion). Leti-
dimensional vector~x(i) denote a Pareto optimal solution in
P(i). We computeP(i) from P(i− 1), and eventually obtain
P(N) which is the set of Pareto optimal solutions of ILP (1).

We show the following property of the Pareto optimal
solution sets, with proof given in Appendix B.

Lemma 1. If ~x(i) is a Pareto optimal solution inP(i), then
the vector obtained by removing the last elementx

(i)
i from~x(i)

is a Pareto optimal solution inP(i− 1), ∀i = 2, . . . , N .

Let P(i − 1) + 1 denote the set ofi-dimensional solutions
obtained by simply adding1 as the ith element to each
solution vector inP(i − 1) (removing infeasible solutions),
andP(i − 1) + 0 be the set obtained by adding0 as theith
element. Given Lemma 1, we know that any solution inP(i)
must be contained in setP(i− 1) + 0 ∪ P(i− 1) + 1. In the
algorithm given in Alg. 1, we start withP(1), which contains
two Pareto optimal solutions1 (acceptB1) and0 (rejectB1),
if the resource demands in bidB1 do not exceed the respective

Algorithm 1: The Exact Algorithm for ILP (1)

1 Input: ~b, ~R,~c
2 Output: exact optimal solution~x
3 if Ckd({1}) ≤ ckd, ∀k ∈ [K], ∀d ∈ [D] then
4 P(1) = {0, 1};

5 else
6 P(1) = {0};

7 for i = 2, ..., N do
8 for all ~x(i−1) ∈ P(i− 1) do
9 ~x(i) = {~x(i−1), 1};

10 if ~x(i) satisfies Constraints (1a) and (1b)then
11 Put ~x(i) into P(i− 1) + 1;

12 MergeP(i− 1) + 0 andP(i− 1) + 1 into P(i)′;
13 Prune the solutions dominated by others inP(i)′ to

obtainP(i) = {~x(i) ∈ P(i)′|∄~x(i)′ ∈ P(i)′ :
~x(i)′ dominates~x(i)};

14 return ~x = argmax~y∈P(N)s(~y)

capacity limits, and contains only one Pareto optimal solution
0, otherwise. Then we constructP(i), i = 2, . . . , N , by
eliminating infeasible or non-Pareto-optimal solutions from
P(i − 1) + 0 ∪ P(i − 1) + 1. Finally, the exact allocation
solution of ILP (1) is obtained as the solution inP(N) that
achieves the maximum social welfare.

The computation complexity of the exact algorithm in Alg. 1
is polynomial in the number of Pareto optimal solutions in
P(N), as given in Theorem 2, which is based on Lemma 2.

Lemma 2. The number of Pareto optimal solutions|P(i)| does
not decrease withi, i.e., |P(1)| ≤ ... ≤ |P(N)|.

The proof is given in Appendix C.

Theorem 2. The computation complexity of Alg. 1 is
O(KDN |P(N)|2).

The proof is given in Appendix E.
The algorithm runs in exponential time in the worst case,

since there can be exponentially many Pareto optimal solutions
to check in the worst case. In what follows, however, we will
show that this exact algorithm is efficient in practice,i.e.,
running in polynomial time in expectation, and can be used as
a building block in a perturbation framework for producing a
randomized allocation algorithm.

B. The Randomized(1− ǫ)-Approx. Allocation Algorithm

We next design the randomized algorithm to solve the social
welfare maximization problem in (1) in polynomial time in
expectation. The basic idea is to obtain a set of feasible
allocation solutions that achieve(1−ǫ)-optimal social welfare
in expectation, following a well-designed distribution, and then
randomly output an allocation solution from this set following
this distribution. To achieve computation efficiency, the set
of feasible solutions are to be computed in polynomial time
in expectation, including one solution from solving the ran-
dom perturbation of the social welfare maximization problem,



based on smoothed analysis techniques [18][28]. The random
perturbation on the original problem is carefully designed,
in close connection with the distribution to sample feasible
solutions, to achieve(1 − ǫ)-optimal social welfare of (1) in
expectation. Especially, the most salient feature of algorithm
design in this work, as the first in the literature, is to applya
pair of associated random perturbation schemes for smoothed
polynomial time algorithm design and for randomized auction
design, respectively.
Algorithm design. Given an arbitrary parameterǫ ∈ (0, 1) and
KDN random variables{θj1, θ

j
2, . . . , θ

j
N}j∈{0,...,KD−1} that

are independently and identically chosen from a uniform dis-
tribution on the interval of[0, ǫ

N ]. Let ~θj = {θj1, . . . , θ
j
N}, ∀j ∈

{0, . . . ,KD− 1}. Suppose the packing constraints in (1a) are
ordered. Letj ∈ [KD] index the sorted constraints; thus we
can useRj

i to replaceRkd
i in (1a),∀j ∈ {1, . . . ,KD}, and will

refer to j as a resource, which represents the corresponding
resource (k) in the respective data center (d).

We perturb the bidding pricebi in the objective function and
the demandRi

kd of the firstK × D − 1 packing constraints
of ILP (1) independently to:

b̂i = (1− ǫ/2)bi +
θ0i

∑N
i′=1 bi′

N
, ∀i ∈ [N ] ; (2)

R̂j
i = Rj

i +
θji

∑N
i′=1 R

j
i′

N
, ∀i ∈ [N ], j ∈ {1, . . . ,KD − 1}

(3)

Here,θ0i , ∀i ∈ [N ], are the random variables associated with
bi’s, the coefficients in the objective function, andθji , ∀i ∈
[N ], are associated withRj

i ’s in the jth constraint in (1a),
∀j ∈ {1, . . . ,KD − 1}. Note that the last constraint in (1a)
is not perturbed. We definêRKD

i = RKD
i , ∀i ∈ [N ], for

this unperturbed last constraint in (1a).3 The perturbed social
welfare maximization problem is:

maximize
∑

w∈[W ]

∑

i∈Bw

b̂ixi (4)

subject to:

∑

w∈[W ]

∑

i∈Bw

xiR̂
j
i ≤ cj ,∀j ∈ {1, . . . ,KD}, (4a)

(1b) and (1c)

According to the perturbation in (2), let

P = (1− ǫ/2)I +
~θ0~1T

N
(5)

be the perturbation matrix of the objective function, where
I is the N × N identity matrix. Then we can express the

perturbation of bidding price vector as~̂b = P~b. We solve the
perturbed social welfare maximization problem using the exact
algorithm (Alg. 1), and derive the optimal solution~xp and

3In line with the latest smoothed analysis techniques, we adopt the semi-
random model [18]. In this context, for a binary maximization problem with
one objective function and multiple packing constraints, the objective function
and all the packing constraints except the last one are perturbed due to the
reasons explained in Appendix F.

optimum value of the perturbed objective functionPOPT =
~̂
bT~xp. We will show that the expected running time to solve
the randomly perturbed ILP is polynomial in Theorem 3 and
Theorem 4.

Let ~x∗ be the optimal solution of ILP (1), andOPT = ~bT~x∗

be the optimal social welfare. The following lemma shows that
the optimal objective value of the perturbed problem is at least
(1 − ǫ)-fraction of the optimal social welfare of the original
problem, which is very close as long as the perturbation,
decided byǫ, is small enough, under a small bid assumption.
The proof is given in Appendix D.

Lemma 3. POPT ≥ (1 − ǫ)OPT , if

maxi∈[N ],k∈[K],d∈[D]
Rkd

i

ckd
≤ 1

2KD(2+ 1
ǫ
)
.

The small bid assumption stated in Lemma 3 essentially
requires that the demand in each bid for each type of resource
in each desired datacenter is small as compared to the cor-
responding resource capacity, which is easy to justify in real
systems. Moreover, if a smallerǫ is chosen, the assumption
becomes stronger,i.e., the ratio of the largest demand among
the bids for each type of resource over the resource capacity
is required to be smaller.

Lemma 3 gives thatPOPT = (P~b)T~xp = ~bT (PT~xp) ≥
(1− ǫ)OPT . We can obtain a potential solution~xf = PT~xp

to the original problem, which achieves(1− ǫ)-optimal social
welfare. However, the bad news is that~xf may well be
fractional due to the fractional entries inPT , and hence not a
feasible solution of ILP (1) (not to mention whether it satisfies
other constraints in (1) or not). We hence cannot directly use
~xf as the allocation solution to our social welfare maximiza-
tion problem (1), but design a random sampling approach to
produce a feasible allocation solution from a set of feasible
solutions of (1) following a well-designed distribution, such
that the expectation of the randomly produced solution is~xf ,
which achieves(1 − ǫ)-optimal social welfare in expectation.

Let ~li denote a solution of (1) that accepts only theith bid
and rejects all the other bids,i.e., lii = 1 and li

′

i = 0, ∀i′ 6= i.
We can easily see that~li, ∀i ∈ N , are feasible solutions to (1).
Note that~xp is a feasible solution to (1) as well, since all the
perturbed coefficients of the packing constraints in ILP (4)are
no smaller than those of ILP (1). The set of feasible solutions
to sample from hence is{~xp,~l1, . . . ,~lN ,~0}, where ~0 is a
N -dimensional all-zero vector. The final allocation solution
of (1), denoted by~yǫ, is randomly produced following the
distributionΩ(~xp) below:

Ω(~xp) =







Pr[~yǫ = ~xp] = 1− ǫ/2,

P r[~yǫ = ~li] =
∑N

j=1 θ0j x
p
j

N
,∀i ∈ {1, ..., N},

P r[~yǫ = ~0] = 1− Pr[~yǫ = ~xp]−
∑N

i=1 Pr[~yǫ = ~li].
(6)

We can verify that the probabilities of all candidate solutions
are positive and sum up to exactly1. We then have that the
expectation of~yǫ is

E[~yǫ] = (1 − ǫ/2)~xp + (

∑N
j=1 θ

0
jx

p
j

N
)(

N
∑

i=1

~li) = PT~xp = ~xf .

(7)



Given the above, the design of all the candidate solutions in
Ω(~p) and probability assignment of each of them were aiming
to make the expectation equal toPT~xp. The high level idea
is usingΩ(~xp) to randomly perturb~xp to ~xf wherePT of ~xp

compensates the perturbationP of ~b in (5). According to the
critical property(P~b)T ~xp = ~bT (PT~xp), i.e., the perturbation
of the objective function is equal to the perturbation of the
solution, ~xf enables the(1 − ǫ) approximation. Here,~yǫ is
equal toxp with a high probability of1 − ǫ/2, which is in
accordance with the1 − ǫ/2 part in (5). Each of the base
vectors~li and the zero vector~0 is chosen as a candidate to
makeΩ(~xp) diffuse enough, such that an expected polynomial
number of Pareto optimal solutions to (4) can be guaranteed,
which will be proved in Theorem 3.
Algorithm steps. We summarize the above steps in Alg. 2,
which is our randomized algorithm for computing a(1 − ǫ)-
approximate solution to social welfare optimization problem
(1).

Algorithm 2: The (1− ǫ)-Approx. Algorithm for ILP (1)

1 Input: ǫ ∈ (0, 1),~b, ~R,~c
2 Output: (1− ǫ)-approximate allocation solution~yǫ

3 Choose{θj1, ..., θ
j
N}j∈{0,...,KD−1} independently and

identically in the interval[0, ǫ
N ];

4 Construct each perturbed parameterb̂i andR̂kd
i according

to (2) and (3), respectively;

5 Compute~xp = Algorithm 1(~̂b, R̂, c);
6 Produce distributionΩ(~xp) according to (6);
7 return A sample~yǫ according toΩ(~xp) in (6).

We further illustrate our algorithm using a simple example
in Fig. 2. We consider a toy example where only two bids
are submitted to the auctioneer. Suppose (0,0), (0,1), (1,1)
and (1,0) are the feasible solutions of the original problem
in (1). Since the coefficients of the packing constraintsR̂kd

i

are randomly enlarged to bêRkd
i in the perturbed problem (4),

the set of feasible solutions of the perturbed problem couldbe
shrunk. An extreme case could happen where both bids are
accepted in the optimal solution of (1),i.e., ~x∗ = (1, 1), while
at most one of the two bids could be accepted in the optimal
solution of (4) (the green area denotes the feasible region of
the perturbed problem). By running the exact algorithm Alg.1
to solve (4), the optimal solution~xp = (1, 0) is obtained. The
near-optimality of Alg. 2 is basically achieved by two facts.
One is that due to the small perturbation ofR̂kd

i ’s, there is
an extremely small probability4 that the optimal solution of
the original problem is infeasible to the perturbed problem.
The other is that the perturbation of the vector~bT could
be compensated by the perturbation of the feasible solutions
of the perturbed problem. As Fig. 2 (a) shows, Alg. 2 first
perturbs~b to P~b by rotating ~b by a small angleα, and
exactly solves for the maximal(P~b)T ~x from the three feasible

4For rigorousness, this probability could be quite high whenthere are a large
number of bids submitted. Fortunately, according to the proof of Lemma 3,
with the small bid assumption, even if the optimal solution of the original
problem is infeasible to the perturbed problem, the objective value of the
perturbed problem under~xp will not deviate much to that under~x∗.

Fig. 2: An example to show the mechanism design

solutions (blue points in Fig. 2(a)). It is equivalent to rotating
each feasible solution of the perturbed problem by an angle
of −α and solving for the maximal~bT (PT~x) from the rotated
solutionsPT~x’s (pink points in Fig. 2(b)). Directed by this
insight, we randomly choose~yǫ from a set of feasible solutions
of the original problem with the expectation ofPT~xp. Because
~bT (PT~xp) = (P~b)T ~x, the expected social welfare gained by
Alg. 2, which is~bT~yǫ, preserves the approximation ratio of
(P~b)T~xp to ~bT~x∗.
Analysis. Alg. 2 achieves the following properties.
(i) The expected running time of the randomized Alg. 2 is
polynomial. Although the worst-case computation complexity
of the exact Algorithm in Alg. 1 is exponential due to
exponentially many Pareto optimal solutions in the worst case
(Theorem 2), we show that the algorithm runs efficiently in
practice, based on smoothed analysis techniques [18][28].The
reason is that the expected number of the Pareto optimal so-
lutions of the perturbed social welfare maximization problem
in (4) is polynomial, and hence the exact algorithm runs in
polynomial time in expectation when applied to the perturbed
problem—perturbed with aP generated randomly as in (5).
According to smoothed analysis, Alg. 1 is said to run in
smoothed polynomial time.

Theorem 3. The expectation of the random variable|P(N)|2

of the perturbed social welfare maximization problem (4)
is upper bounded byO(N8KD/ǫ2KD), where the perturbed
parameters are produced according to(2) and (3) with
{θj1, θ

j
2, . . . , θ

j
N}j∈{0,...,KD−1} independently and identically

chosen from a uniform distribution on the interval of[0, ǫ
N ].

The proof is given in Appendix F.

Theorem 4. The expected running time of the randomized
algorithm Alg. 2 is polynomial.

The proof is given in Appendix G.

(ii) Alg. 2 achieves(1 − ǫ)-optimal social welfare.

Theorem 5. Alg. 2 is a (1 − ǫ)-approximation randomized
algorithm for the social welfare maximization problem (1),
under the small bid assumptionmaxi∈[N ],k∈[K],d∈[D]

Rkd
i

ckd
≤

1
2KD(2+ 1

ǫ
)
.

Proof. We have shownE[~yǫ] = ~xf . Hence E[~bT~yǫ] =



~bT~xf = ~bT (PT~xp) = (P~b)T~xp = POPT ≥ (1 − ǫ)OPT ,
based on Lemma 3.

C. The Truthful-in-Expectation VM Auction

Recall the MIDR mechanism design [32] that we intro-
duced at the beginning of this section. By now we have
designed the randomized allocation algorithm which chooses
an allocation solution following the distributionΩ(~xp) in (6).
This distribution is independent of the cloud users’ bids. We
next show that it leads to the largest expected social welfare
among a compact set of such distributions, such that we can
combine a randomized VCG payment scheme following a
similar distribution, to obtain an auction mechanism that is
truthful in expectation.

Theorem 6. The randomized allocation Alg. 2 is an MIDR
allocation rule for the social welfare maximization problem
(1).

Proof. An MIDR allocation rule of a social welfare maxi-
mization problem returns an allocation solution that is sam-
pled randomly from a distribution over a feasible set of the
problem, which achieves the largest expected social welfare,
among random solutions produced following distributions in a
distributional range, which is a fixed compact set of probability
distributions over the feasible set that are independent ofthe
users’ bids [32].

Let T and T̂ denote the set of all feasible solutions of
ILP (1) and of the perturbed ILP (4), respectively. Recall
the perturbation rule for each demand parameter in (3). We
randomly enlarge the coefficient of the packing constraints
from Rkd

i to R̂kd
i , therefore,T̂ is a subset ofT . For each

feasible solution~x ∈ T̂ , we can obtain a distributionΩ(~x) in
the same way as the distribution in (6) by replacing all the
~xp with ~x shown inΩ(~xp). Then let~y denote the random
allocation solution produced followingΩ(~x), i.e., ~y ∼ Ω(~x).
Givenǫ and{θj1, . . . , θ

j
N}j∈{0,...,KD−1}, the distributionΩ(~x)

is dependent on feasible solution~x, but independent of the
users’ bids.R = {Ω(~x), ∀~x ∈ T̂ } is a compact set including
all the distributions indexed by feasible solution~x in the set
T̂ . Due to T̂ ⊂ T , R is also a compact set of distributions
over the feasible solutions inT . UsingR as the distributional
range, we have

E~yǫ∼Ω(~xp)[~b
T ~yǫ] = (P~b)T~xp = max

~x∈T̂

(P~b)T~x

= max
~x∈T̂

~bT (P T~x)

= max
Ω(~x)∈R

E~y∼Ω(~x)[~b
T ~y]. (8)

The first equation is due to (7). The second equation is because
~xp is the optimal solution of the perturbed ILP (4). The last
equation is due toE~y∼Ω(~x)[~y] = PT~x, which can be readily
obtained according to (7). Hence the solution~yǫ selected
following distribution Ω(~xp) in Alg. 2 achieves the largest
expected social welfare, among all the solutions produced
following distributions in the distributional rangeR, leading
to an MIDR allocation rule.

Algorithm 3: The Randomized Auction Mechanism

1 Input: ǫ ∈ (0, 1),~b, ~R,~c
2 Output: allocation solution~yǫ and payment~p
3 Compute~yǫ=Algorithm 2(ǫ,~b, ~R,~c);
4 Compute paymentpi(~yǫ) = ~bT−i~y

ǫ
−i − (~bT ~yǫ − biy

ǫ
i ), for

all accepted bidsi ∈ [N ];
5 return ~yǫ and~p

Now we describe our randomized VCG payment, which is
based on the allocation solution~yǫ, as follows:

pi(~y
ǫ) = ~bT−i~y

ǫ
−i − (~bT ~yǫ − biy

ǫ
i ),∀i ∈ [N ]. (9)

Here ~b−i denotes the bidding price vector where theith
bidding price is set to0; ~yǫ−i is the random allocation solution
output by Alg. 2 with the input bidding price vector~b−i. Hence
~bT−i~y

ǫ
−i is the social welfare when theith bid is excluded from

the auction. Further recall~yǫ is the output of Alg. 2 with the
full bidding price vector~b. Let yǫi be theith element of~yǫ.
Hence~bT ~yǫ − biy

ǫ
i is the social welfare achieved by all the

other bids except bidi, when all the bids are considered in
the auction.

We summarize our complete randomized auction mecha-
nism in Alg. 3. The following theorem shows that the auction
design fulfils our design objectives.

Theorem 7. The auction mechanism in Alg. 3, which com-
bines the randomized allocation algorithm in Alg. 2 and the
randomized VCG payment in (9), runs in polynomial time in
expectation, is truthful in expectation, and achieves(1 − ǫ)-
optimal social welfare in expectation, under the small bid
assumptionmaxi∈[N ],k∈[K],d∈[D]

Rkd
i

ckd
≤ 1

2KD(2+ 1
ǫ
)
.

Proof. According to the principles of MIDR algorithms [32],
to render a truthful-in-expectation mechanism, we should
combine an MIDR allocation rule with a VCG-like payment
as follows:

p′i = E[~bT−i~y
ǫ
−i − (~bT~yǫ − biy

ǫ
i )], (10)

where the expectation is computed as follows in more details:
E~yǫ

−i
∼Ω(~xp

−i
)[~b

T
−i~y

ǫ
−i] − E~yǫ∼Ω(~xp)[~b

T ~yǫ − biy
ǫ
i ]. Here~xp

−i is
the optimal solution of the perturbed ILP (4), produced by line
5 of Alg. 2, when the input bidding price vector is~b−i.

Since it may not be always possible to compute the expec-
tation in (10) efficiently, it has been proved [31] that instead
of using (10), we can use a randomized payment rule to yield
the truthfulness in expectation as well, as long as the expected
payment of the randomized payment rule equalsp′i in (10).

The expectation of our random payment in (9) is exactly

E[pi(~y
ǫ)]

= E~yǫ
−i

∼Ω(~xp

−i
)[~b

T
−i~y

ǫ
−i]− E~yǫ∼Ω(~xp)[~b

T ~yǫ − biy
ǫ
i ]

= p′i.

Hence the random payment in (9) renders truthfulness in
expectation and can be computed in polynomial time in ex-
pectation. Combining Theorem 4 and Theorem 5, this theorem
is proved.



V. PERFORMANCEEVALUATION

We evaluate our randomized auction using trace-driven
simulations, exploiting Google cluster-usage data [34] which
record jobs submitted to the Google cluster. Each job contains
multiple tasks, with information on resource demands (CPU,
RAM, Disk) of the tasks. We translate each job into a VM
bundle bid, and the resource demand of each task in the job
into a VM in the bundle. There are around1000 types of VMs
consisting ofK = 3 types of resources in our experiments.

Each task is mapped to a VM of a specific type by resource
demands, and further mapped to a data centre randomly. We
then generate the VM demands of the bundle,qimd, by counting
the number of VMs of the same type mapped to the same data
center among the tasks in the job. We estimate the unit prices
of CPU, Disk and RAM, respectively, based on the prices of
Amazon EC2 instances and their resource composition, and
then set the bid price of each bundle based on the unit prices
and the overall resource demands in the bundle, scaled by a
random number in[0.75, 1.5]. In this way, we obtain a pool
of bidding bundles from the Google cluster data. Each user
randomly chooses at most|Bw| bundles from the pool to bid.
We compute the capacity of type-k resource,cdk, in a data
center based on the overall amount of this resource required
in this data center in all the bid bundles submitted by the
users, and scale it down using a random factor in [0, 0.5W/N],
such that roughly no more than half of the users can win
a bid under constraint (1b), without loss of generality. By
default, the number of users isW = 500, the upper-bound
on the number of bids a user can submit is|Bw| = 4, the
number of data centers isD = 8, and ǫ = 0.05. We repeat
each experiment for 50 times to obtain the average results.
Note that some of the resource demands (Rkd

i ) violate the
small bid assumption that is required in the analysis of the
approximation ratio of our allocation algorithm in Lemma 3,
Theorem 5 and Theorem 7. In this sense, our algorithm could
work well even when the bid demands are not as small as we
require in the theoretical analysis.

A. Approximation Ratio

We first study the average approximation ratio achieved
by our algorithm, computed by the social welfare achieved
by Alg. 2 over the optimal social welfare by solving (1)
exactly. Let RPAA represent our Randomized Perturbation-
based Approximation Algorithm in Alg. 2 in the figures. Given
ǫ = 0.05, the theoretical expected approximation ratio is0.95.
Fig.s 3-5 show that the average approximation ratio is larger
than the theoretical ratio and approaches the latter when the
number of users (or bids) increases. According to Lemma 3
and (7) in Sec. IV,1−ǫ is a lower bound of the approximation
ratio, and the results show that under practical settings the
average ratio achieved is better. The reason why the ratio
approaches the theoretical one whenW is large can also be
explained by (13) in the proof of Lemma 3, that the inequality
tends to equality whenW (and henceN ) is large. Fig. 3 and
Fig. 4 also demonstrate that the average ratio decreases slightly
with the increase of the number of data centers or the number
of resource types, respectively. The reasons are the same:
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Fig. 4: Approx. Ratio of RPAA

either a largerD or a largeK leads to more constraints in
(1a) being perturbed, which causes a larger deviation between
the original problem and the perturbed problem.

Fig. 5 further shows that the average approximation ratio is
worse if a user submit more bids. The reason is clear: when
the number of usersW is fixed, the more bids a user can
submit, the larger the total number of bidsN is; hence due to
the same reason as analyzed above, the ratio is closer to the
theoretical one.

Fig. 6 compares the average approximation ratio obtained in
our experiments and the respective theoretical approximation
ratios at different values ofǫ, by plotting the relative approxi-
mation ratioaverage approx. ratio

1−ǫ . The average approximation ratio
of our algorithm outperforms the theoretical ratio more when
ǫ is larger, sinceθ0i , i = 1, . . . , N are larger (they are selected
in the interval [0, ǫ/N ]) and the gap between the empirical
approximation ratio and the theoretical one is larger according
to (13) in the proof of Lemma 3. The better performance at a
smallerN can be explained similarly as that for Fig.s 3-5.

B. Social Welfare Comparison with PDAA

We now compare the social welfare achieved by our Alg. 2
with the primal-dual approximation algorithm in [16] (which
is essentially the algorithm used in [17] as well), denoted
by PDAA. The algorithm in [16] does not consider the
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distribution of VM demands in multiple data centers. We hence
extend this algorithm to multiple data centers by expandingthe
dimensions of the capacity constraint fromK to K × D to
handleK types of resources distributed inD data centers, for
a fair comparison.

Fig. 7 and Fig. 8 show that our algorithm consistently out-
performs the algorithm in [16] in terms of social welfare, under
the same parameter settings. This validates our theoretical
analysis: our algorithm is guaranteed to achieve a no-lower-
than-(1− ǫ) approximation in social welfare, where the other
algorithm achieves a ratio of around2.72 [16].

Fig. 7 also indicates that the social welfare of both al-
gorithms increases with the increase ofW and |Bw|. The
resource capacity in our experiments is set to be roughly linear
in the total resource demand of the users, and whenW is
large, more bids can be accepted and hence the social welfare
is larger. When each user can submit more bids, the decision
space for ILP (1) is larger, leading to a better social welfare.

Fig. 8 implies a negative correlation between the social
welfare andD, which can be intuitively explained as follows:
When the number of data centers is larger, the bid bundles
that each user submits contain VMs scattered in more data
centers. If any resource demand in any data center was not
satisfied, a bid would be rejected. Moreover, as explained for
Fig. 3 and Fig. 4, more data centers lead to more constraints
being perturbed (demands enlarged) in Alg. 2, which makes~xp

deviate more from the optimum of the original problem. Note
that there is a high probability for the final allocation solution
~yǫ to be equal to~xp. Based on all the above, the chance for
each bundle to be accepted decreases, and the social welfare
decreases slightly with the increase ofD.

C. User Satisfaction Comparison with PDAA

We next evaluate user satisfaction achieved by both RPAA
and PDAA, which is the percentage of users accepted as
winners in the respective auctions. Fig. 9 and Fig. 10 show
that user satisfaction achieved by our algorithm is about twice
that of the other algorithm, which results from similar reasons
as given in the comparison of social welfare. User satisfaction
of both algorithms improves slightly with the increase of the
number of bids a user submits, mainly because more choices
of the bids provide a user a higher chance to win one, while the
chance does not improve much since all the users now have
more bids to submit. User satisfaction in Fig. 10 decreases
slightly as more data centers are included, suffering from the
same cause as explained for Fig. 8.

Finally, we remark on the running time incurred by the
two algorithms. Figs. 7–10 illustrate that our algorithm out-
performs the algorithm in [16] in social welfare and user
satisfaction, which is mainly due to the much better approxi-
mation ratio achieved by our algorithm. The running time of
PDAA is shown to beO(N6 logN), whereN is the number
of bids, while our algorithm has an expected time complexity
of O(KDN8KD+1/ǫ2KD). (details in the proof of Theorem
4 in Appendix G). Hence, our algorithm may sacrifice some
of the computation efficiency for a much better approximation
to the optimal social welfare. However, the difference is not
substantial, and a polynomial running time is still guaranteed
for our algorithm in practice.

VI. CONCLUDING REMARKS

This work presents a truthful and efficient auction mech-
anism for dynamic VM provisioning and pricing in geo-
distributed cloud data centers. By employing smoothed anal-
ysis in a novel way and randomized reduction techniques, we
develop a randomized mechanism that achieves truthfulness,
polynomial running time, and(1 − ǫ)-optimal social welfare
for resource allocation (all in expectation). We propose an
exact algorithm which solves the NP-hard social welfare
maximization problem in expected polynomial time, and apply
a perturbation-based randomized scheme based on the exact
algorithm to produce a VM provisioning solution that is
(1 − ǫ)-optimal in social welfare in expectation. Combining
the randomized scheme with a randomized VCG payment,
we achieve an auction mechanism truthful in expectation.
From a theoretical perspective, we achieve a randomized
fully polynomial-time-in-expectation (1 − ǫ)-approximation
scheme for a strongly NP-hard problem which does not have
a deterministic FPTAS. We believe that this new technique
can be generalized to work for a rich class of combinatorial
auctions, other than VM auctions. Trace driven simulations
we conduct validate our theoretical analysis and reveals the
superior performance of our mechanism as compared to an
existing mechanism on dynamic VM provisioning.
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Fig. 8: Social Welfare of RPAA and PDAA
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Fig. 9: User Satisfaction of RPAA and PDAA
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APPENDIX A
PROOF OFTHEOREM 1

Proof. Let

Ri
j =

{

Ri
kd j = 1, . . . ,KD

1 if i∈Bj−KD

0 if i/∈Bj−KD
j = KD + 1, . . . ,KD +W

and

cj =

{

ckd j = 1, . . . ,KD
1 j = KD + 1, . . . ,KD +W

The social welfare maximization problem (1) can be converted
to a Multi-dimensional Knapsack Problem in polynomial time:

maximize
N
∑

i=1

bixi (11)

subject to:

http://code.google.com/p/googleclusterdata/wiki/TraceVersion2


N
∑

i=1

xiR
i
j ≤ cj , j = 1, . . . ,KD +W,

xi ∈ {0, 1}, ∀i ∈ [N ]

The Multi-dimensional Knapsack Problem is a classic
strongly NP-hard combinatorial optimization problem [35].
Moreover, it has no FPTAS unless P=NP [20][36].

APPENDIX B
PROOF OFLEMMA 1

Proof. If ~x(i) ∈ P(i), then ~x(i) is not dominated by any
solutions inP(i). If ~x(i) − x

(i)
i (i.e., the vector obtained by

removing the last elementx(i)
i from ~x(i)) is dominated by

some solution inP(i − 1), e.g., ~x
(i−1)
d , then ~x

(i−1)
d + x

(i)
i

(i.e., the vector obtained by appendingx(i)
i to the end of

~x
(i−1)
d ) dominates~x(i), which is a contradiction. Thus we can

conclude that if~x(i) ∈ P(i), then~x(i) − x
(i)
i ∈ P(i− 1).

APPENDIX C
PROOF OFLEMMA 2

Proof. According to the construction fromP(i)′ to P(i) in
Algorithm 1, some solutions ofP(i)′ will be pruned. When
we mergeP(i − 1) + 0 andP(i − 1) + 1 to P(i)′, (1) if all
the solutions inP(i− 1)+0 are kept inP(i)′, then|P(i)′| ≥

|P(i− 1) + 0|; (2) Otherwise, if∃~x(i)
a ∈ P(i− 1) + 0 which

is pruned, then∃~x(i)
b ∈ P(i − 1) + 1 that dominates~x(i)

a ,
which means there always exists a solution which substitutes
the removed one. Hence|P(i)| ≥ |P(i− 1)|.

APPENDIX D
PROOF OFLEMMA 3

Proof. We define solution~x∗− to be a feasible solution to
the perturbed problem which is no larger than~x∗ component-

wisely. Due to~̂b = P~b, we have

POPT = (P~b)T~xp ≥ (P~b)T~x∗−, (12)

since~x∗− is a feasible solution to the perturbed problem. In the
following, we will show that the perturbed objective value un-
der~x∗− is at least a(1−∆)-fraction of the perturbed objective
value under~x∗, which is further at least a(1−∆)(1− ǫ/2)-
fraction ofOPT , the original objective value:

(P~b)T~x∗− ≥ (1−∆)(P~b)T ~x∗

≥(1 −∆)
∑

i∈[N ]

((1 − ǫ/2)bi +
ǫ
∑

i′∈[N ] bi

N
)x∗

i (13)

≥(1 −∆)(1− ǫ/2)~bT~x∗ (14)

The rest of the proof is to show that we could upper-bound
∆ ≤ ǫ/2 by assuming that each bid only requests for a small
amount of demand for each type of resource. LetS∗ denote
the set of the accepted bids of~x∗. To find a~x∗−, a feasible
solution to the perturbed problem, our method is to construct a
feasible solution to the perturbed problem by dropping some

bids from the accepted bids of~x∗, until all the constraints
are feasible again. This idea is directed by the fact that the
demand parameters are only slightly perturbed, thus dropping
a small amount of demand from the original optimal solution
may only lose little social welfare. Note that such~x∗− may
not be unique, but we only need to find a possible one and
lower bound the derived perturbed objective value under it.

TABLE II: Dropping-based-on-Sorting AlgorithmDoS

1: Identify Q+, the set of the violated constraints;
2: For eachj ∈ Q+:
3: Sort all the bids of the original optimal setS∗

in the increasing order ofb̂i
R̂j

i

;

4: Drop the sorted bids one by one,
util the constraintj is feasible.

To prove that the perturbed objective value under~x∗− is at
least1 − ǫ/2 of that under~x∗ is equivalent to show that the
total bidding price of dropped bids is at most aǫ/2 fraction
of the total bidding price aggregated by the accepted bids of
~x∗. Before that, we defineQ to be the set ofj (recall all the
tuples of(k, d) are sorted and re-indexed byj). LetQ+ be the
subset ofQ where at each elementj ∈ Q+, the total perturbed
demand of dimensionj exceeds the respective capacity. Recall
that in the algorithmDoS, we drop bids in|Q+| rounds to
make the violated constraints feasible. A critical conceptS−

j

is defined to be the set of dropped bids in the round ofj.
Three facts are shown in (15) and (16).

∑

i∈S−

j

R̂j
i ≤ (1 + 2ǫ)Rj

max, ∀j ∈ Q+

(15)
∑

i∈S∗

R̂j
i > cj , ∀j ∈ Q+;

∑

i∈S∗

R̂j
i ≤ cj , ∀j ∈ Q \ Q+

(16)

Here, fact in (16) follows the definitions ofQ+ andQ. The
fact in (15) is derived as follows. Recall that the perturbation

of demand parameter iŝRj
i = Rj

i +
θj

i

∑
i′∈[N ] R

j

i

N whereθji ∼
U(0, ǫ

N ). We define the maximal demand ofk-type resource
in data centerd to beRj

max = maxi∈[N ] R
j
i . Then we have

∑

i∈S∗

R̂j
i ≤

∑

i∈S∗

Rj
i+

∑

i∈S∗

ǫ

N
Rj

max ≤
∑

i∈S∗

Rj
i+ǫRj

max. (17)

Moreover, we have the total demand under the optimal solution
of the original problem is at most the capacity of each type
of resource at each data center,i.e.,

∑

i∈S∗ R
j
i ≤ cj for each

j ∈ Q. Thus, for eachj ∈ Q+, we can upper-bound the total
perturbed demand under~x∗, to be

∑

i∈S∗ R̂
j
i ≤ cj + ǫRj

max.
It means that if the dropped amount is at leastǫRj

max of each
j ∈ Q+, the packing constraints will be feasible again. Now
the question is, in each round, how much demand will be
actually dropped at most? Consider at some time in round
j when the dropping is still not finished yet. We must have
that the droppedjth demand is less thanǫRj

max; otherwise
the remainingjth demand does not exceedcj , the capacity
of jth demand, which means this round of dropping should



have been stopped. Then consider the moment in this round
that the totaljth demand that have been dropped is less than
ǫRj

max, but the bid to be dropped next will finish this round
of dropping. We call this momentcritical moment. Note that
this critical moment always exists in each dropping round.
Since the very next dropped bid in the critical moment is at
mostR̂j

max ≤ (1+ ǫ)Rj
max. PlusǫRj

max, the dropped amount
before the critical moment, we prove the fact in (15).

The above three facts essentially mean that we find a~x∗−,
a feasible solution of the perturbed problem, such that the
allocated resource amount is not much less than that under
~x∗, the optimal solution to the original problem. Recall that
to lower-bound∆, the remaining is to prove that the total
perturbed bidding price generated by remaining bids is not
much less than that of~x∗. How to associate the remaining
demand to the the remaining social welfare? In fact, the sorting
operation gives the answer. Recall in each roundj ∈ Q+, we
sort and drop the bids ofS∗ in the increasing order ofb̂i

R̂j

i

, the

bidding price per unit ofjth demand. It means that the dropped
bids have lower bidding price per unit of demandj than the
average b̂i

R̂j

i

over all the bids inS∗. The basic idea to upper-

bound the dropped social welfare is as follows. In each round
j, the droppedjth demand could be upper-bounded according
to the fact in (15). Then we could upper-bound the fraction of
the loss of perturbed social welfare due to the dropped bids in
the jth round over the total perturbed social welfare. Finally,
taking over all the rounds, we upper-bound the fraction of the
total loss of perturbed social welfare over that under~x∗, which
is shown as follows.

∑

j∈Q+

∑

i∈S−

j
b̂i

∑

i∈S∗ b̂i
≤

∑

j∈Q+

∑

i∈S−

j
R̂j

i
∑

i∈S∗ R̂
j
i

(due to sorting) (18)

≤
∑

j∈Q+

(1 + 2ǫ)Rj
max

cj
(due to: (15) and (16)) (19)

≤ KD(1 + 2ǫ)×
1

2KD(2 + 1
ǫ )

=
ǫ

2
(20)

The first inequality in (20) is due to the small bid assumption
stated in Lemma 3,R

j
max

cj
≤ 1

2KD(2+ 1
ǫ
)
. The assumption

essentially means that each bid has a small demand of each
type of resource in the desired data center, compared to the
corresponding capacity. Thus,1 − ∆ in (14), the fraction of
remaining perturbed social welfare over that under~x∗ is lower-
bounded to be1− ǫ

2 .

According to (14), we have that the social welfare of the
perturbed problem under~x− over that under~x− is at least
(1−∆)(1−ǫ/2) ≥ (1−ǫ/2)(1−ǫ/2) ≥ 1−ǫ, which serves as
a critical step to lower-bound the approximation ratio of our
allocation algorithm. Note that our analysis method is valid
for milder conditions that require a higher upper-bound of the
fraction of bid demand over capacity. Nevertheless, to obtain
the (1− ǫ)-approximation ratio, we will consider such a small
bid assumption which is stated in Lemma 3, Theorem 5 and
Theorem 7.

APPENDIX E
PROOF OFTHEOREM 2

Proof. There are two main steps in eachith round:
1. GivenP(i − 1), we constructP(i)′ by using two copies
of all the solutions~x(i−1) ∈ P(i − 1) and adding theith
bid to each solution of one copy with the value of0 and 1,
respectively. The time this step takes is linear in|P(i − 1)|,
increasing the total bidding price and resource demands of all
the solutions inP(i− 1).

2. For each solution~x(i) ∈ P(i)′, we compare
(b(~x(i)), Ckd(~x

(i)), ∀k ∈ [K], ∀d ∈ [D]) to all the other
solutions in P(i)′ and delete all the dominated solutions.
Thus the time this step takes is linear inKD|P(i)′|2.

According to the analysis in step 1 and step 2, the running
time is bounded by:

O(KD
∑N−1

i=1 |P(i)|2).

Due to Lemma 2, O(KD
∑N−1

i=1 |P(i)|2) ≤
O(KDN |P(N)|2).

APPENDIX F
PROOF OFTHEOREM 3

Proof. This theorem desires to upper-bound the number of
Pareto optimal solutions in expectation when parameters in(4)
are independently and randomly perturbed. We adopt classical
smoothed analysis in which the expected number of Pareto op-
timal solutions usually relies on the input size and the maximal
perturbation density of the perturbed input parameters. Let φ
denote the upper-bound of the perturbation density of each
b̂i and R̂kd

i . Now we calculateφ of our perturbed problem.
Since θji is drawn from [0, ǫ

N ], the value of b̂i lies in the

interval [(1 − ǫ)bi, (1 − ǫ)bi +
ǫ
∑N

j=1 bj

N2 ], with the interval

length of
ǫ
∑

N
i′=1

bi′

N2 . Let bmax = max{b1, . . . , bN}. We have
∑N

i′=1 bi′ ≥ bmax. Thus the interval length is no smaller than
ǫbmax

N2 and equivalently, the density of̂bi is upper-bounded

everywhere in the interval[(1 − ǫ)bi, (1 − ǫ)bi +
ǫ
∑

N
i′=1

bi′
N2 ]

by N2

ǫbmax
. Similarly, the interval length of the perturbation of

R̂j
i is no smaller thanǫR

j
max

N2 , and the density of̂Rj
i is upper-

bounded everywhere in the interval[Rj
i , R

j
i +

∑N

i′=1
Rj

i′

N2 ] by
N2

ǫRj
max

. Moreover, without loss of generality, we can normalize
all the bidding prices to be in[0, 1] by dividing eachbi by
bmax. We also normalize all the demands to be in[0, 1] by
diving eachRj

i by Rj
max and diving eachcj by Rj

max. The
perturbation density will be upper-bounded byN2

ǫ .
According to the latest result of the smoothed number of

Pareto optimal solutions for a multi-objective integer program-
ming [19], we obtain the result in the Proposition 1. Before
showing the proposition, we show that the result of a multi-
objective optimization problem works for our problem.

According to the definition of a Pareto optimal solution to
a multi-objective integer programming [19], a solution~x in
the feasible region is Pareto optimal if and only if there is



no solution which is at least as good as~x and better than~x
in at least one criteria. That is, a Pareto optimal solution is a
feasible solution that is not dominated by any other solution in
the feasible region. In a multi-objective optimization problem,
there are multiple objective functions to be optimized in a
feasible region. In our problem, according to the definition
of Pareto optimal solution (Pareto Optimal Allocation), the
defined objectives (criteria to compare two solutions, not the
objective function) areCkd(~x)

′s, the total demand for eachk-
type of resource in data centerd, pluss(~x), the social welfare
under~x. It means we have in totalKD+1 objects of criteria
to define a Pareto optimal solution. In our problem, a solution
~x is a Pareto optimal solution if and only if there does not exist
a feasible solution~x′ that dominates~x in all objects of criteria,
which falls in the family of the Pareto optimal solution in [19].
Besides the fact that the definition of a Pareto optimal solution
for a multi-objective optimization problem is essentiallythe
same as ours, the perturbation policy of our work fits that of
[19] where: Each coefficient (b̂i and R̂j

i , ∀j ∈ [KD − 1])
is chosen independently according to its own quasi-concave
probability density function where the density at each point of
the perturbation interval is upper-bounded byφ. Here, quasi-
concave density [19] requires that the probability densityis
non-decreasing within the left half perturbation intervalwhile
is non-increasing in the right half. Our perturbation of each
parameter follows the uniform distribution which has a quasi-
cave density function.

Proposition 1. For any constantK, D and α ∈ N, theαth
moment of the smoothed number of Pareto optimal solutions
of a multi-objective binary programming isO((N2KDφKD)α)
for quasi-concave perturbation density functions with density
everywhere upper-bounded byφ.

Here, according to definition ofαth moment of a random
variable [37],α = 2 is the case to calculate the expectation
of |P(N)|2. Thus puttingφ = N2

ǫ andα = 2 into Proposition
1, we have thatE[|P(N)|2] ≤ O(N8KD/ǫ2KD), which the
theorem follows.

APPENDIX G
PROOF OFTHEOREM 4

Proof. Combining Theorem 2 and Theorem 3, we derive the
expected running time of our exact algorithm on the randomly
perturbed ILP (4) (line 5 in Alg. 2) as

O(KDNE[|P(N)|2]) = O(KDN8KD+1/ǫ2KD).

Note thatK andD are fixed constants. The perturbation matrix
P can be obtained in polynomial time (lines 3–4 in Alg. 2).
The set of feasible solutions to ILP (1) and the distribution
Ω can be constructed in polynomial time as well (lines 6 in
Alg. 2). Hence the theorem is proven.
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