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On-demand resource provisioning in cloud computing provies tailor-made resource packages (typically in the form of Wis) to
meet users’ demands. Public clouds nowadays provide more dmmore elaborated types of VMs, but have yet to offer the most éixible
dynamic VM assembly, which is partly due to the lack of a matue mechanism for pricing tailor-made VMs on the spot. This wok
proposes an efficient randomized auction mechanism based @novel application of smoothed analysis and randomized ragtion,
for dynamic VM provisioning and pricing in geo-distributed cloud data centers. This auction, to the best of our knowledg is the
first one in literature that achieves (i) truthfulness in expectation, (ii) polynomial running time in expectation, and (iii) (1 —¢)-optimal
social welfare in expectation for resource allocation, whe e can be arbitrarily close to 0. Our mechanism consists of three modules:
(1) an exact algorithm to solve the NP-hard social welfare medmization problem, which runs in polynomial time in expectation,
(2) a perturbation-based randomized resource allocationcheme which produces a VM provisioning solution that is(1 — €)-optimal
and (3) an auction mechanism that applies the perturbatiorbased scheme for dynamic VM provisioning and prices the custmized
VMs using a randomized VCG payment, with a guarantee in truthfulness in expectation.

We validate the efficacy of the mechanism through careful theretical analysis and trace-driven simulations.

Index Terms—Cloud Computing; Auction; Resource Allocation; Pricing; Truthful Mechanisms

I. INTRODUCTION employed by Amazon EC2, are not suitable for dynamically
assembled VMs. Under fixed pricing, it is impossible for the
Cloud computing services have been proliferating in toslaytloud provider to come up with the appropriate pricepriori,
Internet for the past decade. They create a shiftin resquee for any VM type that could possibly be assembled according to
visioning from on-premise hardware to shared resourcespoghe user’s needs. Furthermore, fixed pricing fails to caténe
accessible over the Internet. To be flexible at meeting Usegser-changing supply and demand in the market; either over-
resource demands, leading cloud platforms such as Amazgiting or underpricing would jeopardize the social weifaf
EC2 [1], Microsoft Azurel[2] and GoGrid [3] exploit advancedhe overall system as well as the provider's revenue. Amazon
virtualization technologies to pack resources (CPU, RAMJ a spot instances market [7] represents the first attempt atra mo
Disk Storage) into virtual machine (VM) instances of vasoumarket-driven pricing system, which, however, comes witho
types. Undoubtedly, the more variety of VM types they caany guarantee of truthfulness or SUA [8][9]. Some recentiwor
provide, the better they could meet the wide range of usefgither studied auction mechanism design for cloud resourc
demands. For example, Amazon EC2 has been expanding ghgvisioning from different perspectives [9][10][11]. iever,
variety of VM instances they provide, which now spahs most of them model VMs as type-oblivious commodities,
categories and9 types [4]. However, the increased varietyand therefore fail to provision dynamically assembled VMs
on the provider’s side still often falls short of addressusgr properly.
needs precisely, which could lead to a waste of resources an@side from pricing, the challenge of packing available
an unjustifiably inflated payment by the users. For exampl@sources to maximally cater to users’ VM demands trarslate
suppose a user needs to run a computationally intensive jatb an NP-hard combinatorial optimization problem, which
(e.g, a MapReduce job) by acquirings vCPU units andl6 presents a tough challenge in VM auction design. The VCG
GB memory [5] in EC2’'s Singapore data center, to processechanism[[12], essentially the only type of auction that
160 GB usage data. The best offer Amazon EC2 can mal@arantees both truthfulness and economic efficiency gboci
is ac3. 4xl ar ge instance, which unfortunately is far fromwelfare maximization), requires an exact optimal allowati
a perfect match, leading to a waste of roughly half of th@/hen polynomial-time approximation algorithms are applie
allocated memory and SSD storage. instead, VCG loses its truthfulness propefty|[13]. To aghie
Current virtualization technology is in fact ready for realtruthfulness with an approximation algorithm, researsiewve
time, on-demand VM patrtitioning and provisioning.g, by exploited the concept of critical bids [14], or resorted tone
utilizing credit-based CPU scheduler and memory ballognin.P decomposition techniques [15][16]117]. The approXiioat
[6]). What is not ready, however, is an effective pricing tm@c ratios of these auctions with respect to social welfarenogiti
nism to charge for those customized VMs on the spot. The citiy depend on the efficiency of the approximation algorithm
rent representative pricing modeésg, long-term reservation, employed, which is typically much larger than[16][17].
fixed on-demand instance pricing and spot instance pricingThis work aims to leverage the state-of-the-art techniques
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in smoothed analysis [18][19] and randomized reduction, tbrough the art of calculated random perturbation (for com-
design a highly efficient randomized auction mechanism fputational efficiency) and associated perturbation (fathtr
the provisioning and pricing of customized VM instances in fulness). While there exists separate literature on apglyi
geo-distributed cloud. The resulting combinatorial VM @aic  randomization for efficient algorithm design and for truthf

is sufficiently expressive for cloud users to request theesec mechanism design respectively, to the best of our knowledge
sary custom-made VM instances in bundles in different datfais work is the first of its kind that applies the same catgful
centers for their job execution. To the best of our knowledgprepared randomization scheme twice in subtly differemhfo
this is the first VM auction that achieves (i) truthfulness (iand in a coordinated fashion to achieve polynomial algorith
expectation), (ii) polynomial running time (in expectatjpand complexity and truthful mechanism design in the same auc-
(iii) (1—e)-optimal social welfare (in expectation) for resourcéion framework. We believe that this new technique can be
allocation in a geo-distributed cloud, whetec (0,1) is a generalized to be applicable to a rich class of combindtoria
tunable parameter that can approach zero. auctions in which social welfare maximization can be modele

Our proposed auction mechanism consists of three mais a linear integer program that is NP-hard (otherwise our
modules: (1) an exact algorithm to solve the NP-hard soct&chnique is unnecessary) but not too hard (which admits a
welfare maximization problem, which runs in polynomial &im smoothed polynomial time algorithm) to solve.
in expectation based on smoothed analysis. It serves as th@/e discuss related work in Sdcl Il and present the system
basis for resource allocation in (2); (2) a perturbatiosduh model in Sec[Tll. Sed1V gives the complete auction design.
randomized resource allocation scheme that produces a \Bdc.[¥ presents trace-driven simulation studies and [Séc. VI
provisioning solution achievingl — ¢)-optimal social welfare concludes the paper.
in expectation; and (3) an auction mechanism that applies th
perturbation-based scheme to dynamic VM provisioning, and
prices the customized VMs using a randomized VCG payment,
which guarantees truthfulness in expectation. Detaileghsst Resource provisioning in cloud computing has been exten-
are as followed. sively studied with different focuses. Beloglazet al. [21]

First, we formulate the social welfare optimization probaim at minimizing the energy consumption in computing
lem as an integer linear program and then prove its NEask scheduling. Alichernet al. [22] study VM allocation
hardness. Based on smoothed analysis, we randomly perturidistributed cloud systems, taking into consideratior th
the objective function and the packing constraints follogva communication cost. Joe-Wongt al. [23] seek to balance
well designed perturbation framework, and propose an exadficiency and fairness for allocating resources of muatipl
dynamic programming based algorithm to solve the perturbtaes. None of them however focus on dynamic VM assembly
problem. The algorithm finds a feasible solution to the origtnd provisioning, which is the focus of our work.
inal, unperturbed problem within polynomial running time Auction mechanisms have been applied to achieve efficient
in expectation. Furthermore, a transformation of this ifdas resource allocation in cloud systems. Zaneaml. [L0] design
solution yields a fractional solution to the original preis, a truthful auction based on an approximation algorithm for
which achieveg1 — ¢)-optimal social welfare in expectation.resource allocation, but without proving the performaridhe

Next we design a randomized resource allocation schemesource allocation algorithm. Zamanal. [11] also presents
which outputs the allocation solution of the auction follogg an auction-based VM allocation but focuses on static resour
a well designed distribution over a set of feasible solgiomprovisioning and only guarantees a large approximatiao.rat
of the social welfare maximization problem, including th&Vang et al. [8] propose a truthful VM auction based on
feasible solution produced in the above step. By designiaggreedy allocation algorithm and a well-designed payment
the distribution in close connection with the perturbatiomethod; the derived allocation solution approximates the o
framework, we are able to show that the expectation of suchimal solution with an approximation ratio which depends
randomized solution equals the fractional solution memd on the number of VMs. Zhangt al. [24] and Wang et
above, and hence it achievels— ¢)-optimal social welfare in al. [9] design online cloud auctions but they only consider
expectation. a single type of VM instances, ignoring dynamic provisia@nin

Finally, we combine the randomized resource allocaticof different VMs. Similar to our work, Zhangt al. [16] and
scheme with a randomized VCG payment, and complete dsini et al. [17] address dynamic VM provisioning, and design
auction design with truthfulness guaranteed in expectatio truthful auctions by applying an LP decomposition techeiqu

Our mechanism design yields some interesting results: Which achieve 2.72- and 3.30-approximation of optimal abci
For the social welfare maximization problem we formuwelfare, respectively. Mashayekhy et &l. [[25] also conside
late, even if truthful bids are given for free, no (deter- heterogeneous resources in a cloud auction. Their proposed
ministic) polynomial-time algorithm can guarantée — ¢)- allocation rule is proved to be a PTAS, which finds a partial
approximation for arbitrarily tunable[20]. (i) The (random- allocation solution first and then allocates through dymami
ized) VM auction designed in our work is both polynomialprogramming the remaining resources to unprovisionedsuser
time and(1—e¢)-optimal in expectation, and can simultaneouslynfortunately, the running time of their PTAS mechanism can
elicit truthful bids from selfish cloud users. be exponential inl/e, where ¢ denotes the approximation

The strong properties above guaranteed by our VM auctierror. Shiet al. [26] design online VM auctions via a pricing-
are made possible by unleashing the power of randomizationyve-based method. However, the resources which have been
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allocated and paid by the users could be cancelled by tl
cloud provider in their problem model, which is not practica

and user-friendly. One of the latest VM auctions propose — {:D:E veRu o

by Zhanget al. [27] investigates social welfare and profit g v RAM g veru
maximization in online VM auctions, where the future deman A ] oisk e

of each type of resource could be reserved in a customiz & EIeh T =l Disk
amount and duration. In their work, the performance of th DC1 S
mechanisms relies on an assumption that each user’s demi '

for each resource is extremely small compared to the corr be1 bc f—
sponding capacity. Unlike theirs, we study the auction in a wruz 1 DE1DC3 | bid set of _ DC2 ycpya |t
offline version where the small bid assumption is much milde ¥M# 2 [Z0F 5wl @5 bl e A1 5 oisc 4
than theirs. Additionally, this work departs from the eiigt $6 P M |5 g 3
literature by applying smoothed analysis and randomize™ : = ) =/
reduction techniques to design a randomized auction, whi

achieves much better approximation to the optimal squtioW““lg g“sm
i.e., (1—e¢)-optimal social welfare (wherecan be very close to

zero), while retaining truthfulness and computation efficy Fig. 1: An illustration of the VM auction.

in expectation.
A key technique we adopt in this paper is a novel use of
smoothed analysis in designing an algorithm to produce d goo
solution to the social welfare maximization in polynomiaEach data centet € [D] has a capacity,; for each resource
time in expectation. Smoothed analysis is a technique fof type k € [K].

analyzing the time complexity of an algorithm for an NP- The cloud provider acts as an auctioneer and sells custom-
hard problem, that exactly solves a perturbed instance @fde VMs tolv” cloud users through auctions. The cloud users
the problem based on a small, random perturbation, in ordgguest resources in the form of VMs through bidding in the
to show that the algorithm can be efficient in expectatiog\ction. LetV be the total number of bids submitted by all
despite its possible worst-case complexity![18]. It hasnbegne cloud users. We usies [N] to index the bids. Each cloud
argued that complexity analysis on the expectation oversofisery, e [I¥] is allowed to submit multiple bids, but at most
distribution of the instances is more convincing than thiat @ne pid can be successful. This assumption is reasonalele giv
the average case, and more practical than that of the WQffdt any need for concurrently acquiring VM bundles in two or
case [[18]. Smoothed analysis has been applied recentlyn@re bids can be expressed as a separate bid with a combined
areas such as combinatorial programming [28], computatioyndle. LetB,, denote the set of bids submitted by user

geometry [[29], game analysis [30]. Dugheti al. [31] focus Each bid B; contains a list of requested VMs of different
on social welfare maximization problems with an FPTAS, angpes and location preferencés., ¢ , VMs of typesm in

design a randomized reduction method to convert the FPTRgta centerl, Vin < [M],d € [D], and a bidding pricé;, i.e.,

into a truthful mechanism. Unlike theirs, our NP-hard sbcighe reported valuation of the resource combination regiire
welfare maximization problem does not have a deterministjg, More specifically, each bid € [N] can be formulated as
FPTAS; even so, we are able to show, surprisingly, that Wgllows:

can still achieve a randomized, truthfyl,— ¢)-approximation
mechanism with expected polynomial complexity by applying
the carefully designed permutation framework.

Bi = {bi, {@na}tmepp,acin)}-
For ease of problem formulation, we ugg? = S°M_ i k.
to denote the overal amount of typeresource required by bid
1 in data centedl.

) o Upon receiving user bids, the cloud provider computes the
We consider an laaS cloud system providing a pool @f;tcome of the auction, including (i) the resource allamati
geo-distributed resources.§.,CPU, RAM and Disk storage) scheme = {z1,...,zy}, Where binary variable; is 1 if
through servers deployed in multiple data centers. Thewiff iq ; is successful and otherwise, and (i) a payment for
ent types of resources are packed into heterogeneous VMsdgen winning bidi. Let v; denote the true valuation of the

lease to cloud users. Suppose there @rdata centers in the pigder submitting bid. The utility u; acquired due to this bid
cloud andM types of VMs in total can be assembled to offefg then:

(which can be potentially a very large numlﬁ]ec)omposed
of K types of resources. LdiX| denote the set of integers ui(B;, B_;) = {
{1,2,...,X}, d index the data centers in the cloud system

andm index t}tle types of VM. Each VM of typen € [M] whereB_; is the set of all bids in the auction except. An
consumes am;, amount of typek resource, for alk € [K]. jllustration of the system is given in Fif] 1.

Il. SYSTEM MODEL
A. Cloud Resource Aucion

v; — Pi if B; is accepted
0 otherwise

INote that we allow flexible VM assembly on demand and the nuimgye We summarize important notations in Table | for ease of
of VM types is purely for the ease of presentation. reference.



TABLE [: Notation

W [ # of users N | # of bids maximize Z bizs @
M | # of VM types K | # of resource typeg wElW] e
D | # of data centers B; | theqth bid subject to:
v; | true valuation of bidi | u; utility of bid 4
P | perturbation matrix | B, | bid set of usemw > > mRi < cra, Yk € [K],Vd € [D], (@)
b; | bidding price of bidi | b; perturbedb; we[W]i€Buw
¢ | parameter in0, 1) S wi<h, Yw € [W], @)
rE | amount of typek resource in a types VM i€Bw
¢\, | # of typesn VMs in DC d requested in bid zi €{0,1}, Vi€ By,Vwe [W]. [k
RF? | demand of typék resource in DG in bid 4
RF4 | perturbedRy Constraint[(lla) states that the overall demand for each type
cka_| capacity of typek resource in DGI of resource in the winning bids should not exceed the overall
s(7) | social welfare under allocation solutian capacity of the resource in each data center. Consti@int (1b
Cra(Z) | demand for typek resource in DGJ under specifies that each user can win at most one bid.

67 | parameter in0, ¢/N]
Q(Z) | distribution based o, ¢ and§
x; | to accept (1) or reject (0) bid
Z* | optimal allocation solution of ILP{1)

Theorem 1. The social welfare maximization problem defined
in the integer linear program (ILP){1) is NP-hard and there
does not exist a deterministic FPTAS for the problem.

7P | optimal allocation solution of ILPL{4) The proof is given in AppendixJA.
#7 | fractional solution perturbed from?”
y¢ | auction’s final allocation solution IV. AUCTION DESIGN

Y
p:(§°) | payment of bidi underg*

At a high level, our strategy for truthful VM auction design
is to apply a randomized VCG-like payment mechanism that
) ) works in concert with a randomized allocation algorithmthwi

B. Goals of Mechanism Design the latter achieving optimal social welfare in expectati®ach

] o _ randomized auctions leverage maximal-in-distributiclaalge

We pursue the following properties in our mechanismypRry algorithms, which are known to be a powerful tool for
design. (i) Truthfulness The auction mechanism is truthful 'fdesigning (randomized) truthful mechanistis|[32]. An MIDR
for any usem, declaring its true valuation of the VM bundlealgorithm is a randomized allocation algorithm that chease
in each of its bids always maximizes its utility, regardless g ocation solution randomly from a set of feasible solatio
other users’ bids. Truthfulness ensures that selfish bly@&'s ¢ ihe social welfare maximization problem, following a
automatically elicited to reveal their true valuationsl VMs  jistribution that is independent of the bidders’ bids, azatls
they demand, simplifying the bidding strategy and the @ucti 1, (he |argest expected social welfare as compared to ak oth
design. (i) Social welfare maximizatiohe social welfare is ¢,,ch distributions in a ran @.g, the set of distributions
the sum of the cloud provider's revenie,, () > ic, Pi%i»  over all the feasible solutioffs!f we can design an MIDR
and the aggregate u.sers’ utility’ , cw) Xien, (Vi — Pi)Zi-  allocation rule, then we can combine a randomized VCG
Since the cloud provider's revenue and the payment from t3gyment scheme following a similar distribution to obtain
users cancel out, the social welfare is equivalent to theative 5, auction mechanism that is truthful in expectatibn] [32].
valuation of the winning bids) ¢y > e, viin Which 1 achieve the other two goals of our auction design, the
equalsy_,,c(w) 2 ics,, biwi under truthful bidding. Different jiocation algorithm should b —e)-optimal in social welfare
from existing work that achieve only approximate socialnq have polynomial running time in expectation.
welfare optimality with a ratio much larger thanwe seek 10\ npext establish the randomized allocation algorithm in
achieve(1 — ¢)-optimality wheree is a tunable parameter that, steps. First, we design an exact algorithm based on
can be arbitrarily close t®. (iii) Computational efficiency dynamic programming for solving the social welfare maxi-
A polynomial-time resource allocation algorithm is deblea ization problem in Se€_TVAA. Next, we design the random-
for the auction to run efficiently in practice. Our auction,eq gjiocation algorithm based on a perturbation framéwor
mechanism leverages the power of randomization to bregl rynning the exact algorithm on a randomized perturbed
through the inapproximability barrier of the social we#ar yersjon of the original maximization problem and sampling t
maximization problem which does not have a deterministi, 5| ajiocation solution from a distribution. The randoetz

FPTAS. Consequently, we target polynomial time complexity;mpling compensates the perturbation on the problem, done
of the mechanisnin expectation

Next, we formulate the social welfare maximization prob- 2To achieve truthfulness of VCG-based mechanisms, thereaglditional
lem, which gives rise to the optimal resource allocatiofgstrictions on the distributional range or the distribo§ within the range
. . , e.g.,the size or specific form) in such MIDR allocation algorithns fact,
solutlon for the Clouq p.rOV|_der to address users’ VM deman well-designed range of distributions, as what we will msg is the key
assuming truthful bidding is guaranteed. for a better approximation ratio.



before running the exact algorithm, by transforming the-opt Algorithm 1: The Exact Algorithm for ILP[{IL)
mal solution of the perturbed problem into an near-optimal- .7 B =
| tation solution to the original problem. As theecof - 1Pt b .
IN-eéxpectation solution 1o the original problem. As heeol —, Output: exact optimal solutiorr
the randomized allocation algorithm, the perturbatiore sl .
. . o 3 if Cra({1}) < cka, Vk € [K],Vd € [D] then

carefully designed, in order to lead tq B— €) approximation o i

. ) A 4 | P(1)=A{0,1}
ratio, as well as polynomial running time of the algorithm,
both in expectation. 5 else

We further describe the payment scheme in Seciv-c. 6 | P(1) = {0};

7fori=2,...N do
A. An Exact Algorithm for Social Welfare Maximization & | for all #0-1 e P(i —1) do
20 — {f(zfl)’ 1};

if () satisfies Constraint§l(1a) arid (ithpn
| Put#® into P(i — 1) +1;

The basic idea of the exact algorithm is to enumerate aslall
the feasible allocation solutions excluding those absbjut
“bad” ones, and then select the optimal allocation solutioh
& = {z;,Vi € By,w € [W]} that achieves maximumy; | MergeP(i —1)+0 andP(i — 1) + 1 into P(i)’;
aggregate bidding price (corresponding to maximum social | Prune the solutions dominated by othersAfi)’ to
welfare under truthful bidding) among the set of “good” obtainP(i) = {7 e P() |3 e P(i) :
feasible solutions. The set of “good” solutions are defireed t " dominatesz(") };
be thosePareto optimalsolutions which are not dominated — - .
by any other feasible solutions, and the “bad” ones are thé‘éerewm = argmaéep(N)s(y)
dominated by at least one Pareto optimal solution. This is in
line with classical dynamic programming approaches forenu
merating Pareto optimal solutions in traditional combaml ~capacity limits, and contains only one Pareto optimal sotut

optimization [33]. 0, otherwise. Then we construd®(i),i = 2,...,N, by
Let s(7) = e[W]Z‘eB b;x; denote the social €liminating infeasible or non-Pareto-optimal solutiomsnfi
welfare under allocation solution?, and Cpq(#) = PG —1)+0UP( —1)+ 1. Finally, the exact allocation

ZwG[W]_ Sics, z;R¥ be the total demand for type-re- solution of ILP @) is obtained as the solution ™(N) that

source in data centet under. The Pareto optimal solutions@chieves the maximum social welfare. o
are defined as follows. The computation complexity of the exact algorithm in Al. 1

is polynomial in the number of Pareto optimal solutions in

Definition (Pareto Optimal Allocation) An allocation solutionp( )" as given in Theoreifl 2, which is based on Leniiha 2.
7 is Pareto optimal if it satisfies all the constraints in LB, (1

and there does not exist a feasible solutibthat dominateg, Leémma 2. The number of Pareto optimal solutioff3(i)| does
i.e, 32’ such thats(#') > s(&) and Crq(F') < Cra(),Vk € DOt decrease with, i.e.,[P(1)] < ... < [P(N)].
[K],Vd € [D], with at least one inequality being strict among The proof is given in AppendikIC.

the above, as well a%°,_, =} < 1, Vw € [W]. . ] ]
) ) R ) ) Theorem 2. The computation complexity of Algl] 1 is
We identify all the Pareto optimal solutions using a dynamig( K DN |P(N)|?).

programming approach: LeP(i) be the set of all Pareto o . ]

optimal solutions when we only consider the figssbids in [ ne proof is given in AppendiklE.

set [N] (the bids in[N] are ordered in any fashion). Lét _The algorithm runs in exponenual time in the.worst case,
dimensional vector) denote a Pareto optimal solution inSince there can be exponentially many Pareto optimal solsiti
P(i). We computeP(i) from P (i — 1), and eventually obtain to check in th_e worst case. _In wh_at foI_Io_ws, however_, we will
P(N) which is the set of Pareto optimal solutions of I[P (1)Show that this exact algorithm is efficient in practide,,

We show the following property of the Pareto optimaﬁunning in polynomial time in expectation, and can be used as
solution sets, with proof given in AppendiX B. a building block in a perturbation framework for producing a
o randomized allocation algorithm.
Lemma 1. If () is a Pareto optimal solution irP (i), then

the vector obtained by removing the last eleméfitfrom#) g The Randomizetl — ¢)-Approx. Allocation Algorithm

's & Pareto optimal solution iP(i — 1), Vi =2,..., N. We next design the randomized algorithm to solve the social
Let P(: — 1) + 1 denote the set of-dimensional solutions welfare maximization problem i 1) in polynomial time in
obtained by simply adding as theith element to each expectation. The basic idea is to obtain a set of feasible
solution vector inP(i — 1) (removing infeasible solutions), allocation solutions that achieyé — e)-optimal social welfare
andP(i — 1) 4+ 0 be the set obtained by addifigas theith in expectation, following a well-designed distributionggthen
element. Given Lemmid 1, we know that any solutiorPi(i) randomly output an allocation solution from this set foliog
must be contained in s@(i — 1) + 0UP(: — 1) + 1. In the this distribution. To achieve computation efficiency, thet s
algorithm given in Alg[l, we start withP (1), which contains of feasible solutions are to be computed in polynomial time
two Pareto optimal solutions (acceptB;) and0 (rejectB;), in expectation, including one solution from solving the -ran
if the resource demands in big do not exceed the respectivedom perturbation of the social welfare maximization profle



based on smoothed analysis techniques [18][28]. The randoptimum value of the perturbed objective functi®® PT" =

perturbation on the original problem is carefully designed”z» \ve will show that the expected running time to solve
in close connection with the distribution to sample feasibkne randomly perturbed ILP is polynomial in TheorEm 3 and
solutions, to achievél — ¢)-optimal social welfare ofl{1) in Thegren{&.

expectation. Especially, the most salient feature of algar Let#* be the optimal solution of ILA{1), andPT = BT i
design in this work, as the first in the literature, is to apply pe the optimal social welfare. The following lemma shows tha
pair of associated random perturbation schemes for smdothge optimal objective value of the perturbed problem is aste
polynomial time algorithm design and for randomized auttio(; _ ¢)-fraction of the optimal social welfare of the original
design, respectively. _ problem, which is very close as long as the perturbation,
Algorithm design. Given an arbitrary parametere (0,1) and  gecided bye, is small enough, under a small bid assumption.
KDN random variableg(6y,6;,...,0%}jcqo,...kp-1} that The proof is given in AppendikD.

are independently and identically chosen from a uniform dis

tribution on the interval of0, &]. Letd? = {#],...,63},vj € Lemma 3. PO];Z; 2 (1 - egorT, |ff
{0,..., KD —1}. Suppose the packing constraints[ih (1a) an@ax;e |y re(x],de[p] o5 < m.

ordered. Letj € [K D] index the sorted constraints; thus we
can use! to replaceR in (a),vj € {1,..., KD}, and will
refer to j as a resource, which represents the correspond
resource k) in the respective data centef)(

We perturb the bidding pric in the objective function an
the demandr;, of the first K x D — 1 packing constraints
of ILP (@) independently to:

. OS5 N b
bi:(1—6/2)bi+zz:lT:1,Vi€[N] ; (2)

The small bid assumption stated in Lemfda 3 essentially
ﬁf;@uires that the demand in each bid for each type of resource
in"each desired datacenter is small as compared to the cor-
d responding resource capacity, which is easy to justify al re
systems. Moreover, if a smalleris chosen, the assumption
becomes stronget.e., the ratio of the largest demand among
the bids for each type of resource over the resource capacity
is required to be smaller.
LemmalB gives thaPOPT = (Pb)Tz = bT(PTzv) >
i 0l SV LR, , (1 — €)OPT. We can obtain a potential solutiaif = PTzP
R =R + T?Vl €[NLjefl,....KD -1} to the original problem, which achievés — ¢)-optimal social
(3) welfare. However, the bad news is thaf may well be
actional due to the fractional entries ', and hence not a
easible solution of ILP[{l1) (not to mention whether it stidis
other constraints if{1) or not). We hence cannot directly us
7/ as the allocation solution to our social welfare maximiza-
tion problem[(1), but design a random sampling approach to
| produce a feasible allocation solution from a set of feasibl
solutions of [(1) following a well-designed distributionjch
that the expectation of the randomly produced solutiofi/is
maximize Z Z bz (4) Which 9chieves{1 — ¢)-optimal social welfare in expectation.
we[W] i€Bqy Let I; denote a solution of {1) that accepts only thie bid
and rejects all the other bidse., 1! = 1 andl!’ = 0, Vi’ # i.
We can easily see that Vi € IV, are feasible solutions t01(1).
Note thatz? is a feasible solution td 1) as well, since all the
perturbed coefficients of the packing constraints in I[P

Here,6?.Vi € [N], are the random variables associated wit
b;'s, the coefficients in the objective function, afd, Vi e
[N], are associated wittR!’s in the jth constraint in [{fLa),
Vj € {1,...,KD — 1}. Note that the last constraint ifil(1a)
is not perturbed. We defin&X” = RKP vi e [N], for
this unperturbed last constraint (Ea)’.he perturbed socia
welfare maximization problem is:

subject to:

S > @kl < ¥je{l,..., KD}, (@)

w 1€By
(II?)W;nZ @) no smaller than those of ILFE](}). The set of feasible solgtion
to sample from hence i§a?,1l;,...,Ilx,0}, where( is a
_ o N-dimensional all-zero vector. The final allocation solatio
According to the perturbation in](2), let of (@), denoted byj*, is randomly produced following the
GoOTT distribution Q(z?) below:
P:(1_6/2)I+T ®) Prigc =2 =1—¢/2,
=D\ __ = ZNzl 092P )
Qa?) = ¢ Prigc =) = =22 Vi {1,..., N},
be the perturbation matrix of the objective function, where Pry = 0] =

L= Prly =2 = )0, Priy =13).
I'is the N x N identity matrix. Then we can express the (6)
perturbation of bidding price vector és= Pb. We solve the We can verify that the probabilities of all candidate saln
perturbed social welfare maximization problem using thecex are positive and sum up to exactly We then have that the
algorithm (Alg.[d), and derive the optimal solutioff and expectation ofy is

3In line with the latest smoothed analysis techniques, wepiatte semi-

. A o> . N po.p N
random model[[18]. In this context, for a binary maximizatiproblem with Z 1 9j x; N T .
one objective function and multiple packing constrairtts, dbjective function E[f] = (1 - 6/2)557) + (37)(2 li) =Pl =i/,
and all the packing constraints except the last one arerpedudue to the i=1

reasons explained in Appendit F. (7



Given the above, the design of all the candidate solutions
Q(p) and probability assignment of each of them were aimin b/,-f"
to make the expectation equal " z7. The high level idea & / el / ®
is usingQ () to randomly perturlx? to &/ where PT of zP / - ,f
compensates the perturbatidéhof bin (®). According to the ‘,ff’ T W4
critical property(Pb)T @ = b7 (PTi?), i.e., the perturbation y PE\ 75
of the objective function is equal to the perturbation of the / \ /
solution, 7/ enables theg1 — €) approximation. Hereg* is \ /.~ Sy
equal toz? with a high probability ofl — ¢/2, which is in / e :
accordance with thd — ¢/2 part in [B). Each of the base
vectorsl:- and the zero vectod is chosen as a candidate to (a) (b)
makeQ(zP) diffuse enough, such that an expected polynomial
number of Pareto optimal solutions {d (4) can be guaranteed,
which will be proved in Theorer 3.

Algorithm steps. We summarize the above steps in Alg. 2, o . ) )
which is our randomized algorithm for computingB— e)- solutions (blue points in Figll2(a)). It is equivalent toating

approximate solution to social welfare optimization peyhl €ach feasible solution of the perturbed problem by an angle
@). of —a and solving for the maximai” (P” z) from the rotated

solutions P72’s (pink points in Fig.[2(b)). Directed by this
Algorithm 2: The (1 — ¢)-Approx. Algorithm for ILP [3) insight, we randomly cho_osyfé from a set pf feasible solutions
: e of the original problem with the expectation Bf 27. Because
L Input: € € (0,1),b, R, ¢ b"(PTzP) = (Pb)T 7, the expected social welfare gained by

Fig. 2: An example to show the mechanism design

2 Output: (1 — ¢)-approximate allocation solutiogr Alg. 2, which is b7, preserves the approximation ratio of
3 Choose{#,...,0} }jcqo,.. .k p—1} independently and (Pb)T 2P to bT "
identically in the interval0, 5], ) _ Analysis. Alg. @ achieves the following properties.
4 Construct each perturbed parameteand R} according (i) The expected running time of the randomized Alg[® is
to (2) and [(B), feSPeCUVGWL polynomial. Although the worst-case computation complexity
5 Computei? = Algorithm (b, R, c); of the exact Algorithm in Alg.[ll is exponential due to
6 Produce distribution2(?) according to[(5); exponentially many Pareto optimal solutions in the worsieca
7 return A sampleg© according toQ(z”) in (§). (TheorenR2), we show that the algorithm runs efficiently in

practice, based on smoothed analysis techniques [18][2&].

reason is that the expected number of the Pareto optimal so-

We further illustrate our algorithm using a simple examplﬁjtions of the perturbed social welfare maximization pesbl
in Fig.[2. We consider a toy example where only two bidk

. . i (@) is polynomial, and hence the exact algorithm runs in
are submitted to the auctioneer. Suppose (0,0), (0,1)) (1 | ial time i tati h lied to th tdrb
and (1,0) are the feasible solutions of the original proble ynomial time in expectation when applied to the pertdrbe

) k - . ) oblem—perturbed with & generated randomly as il (5).
in (@. Since the coefﬂmen}sdqf the packing constraiffs According to smoothed analysis, Algl 1 is said to run in
are randomly enlarged to beF? in the perturbed problenil(4), smoothed polynomial time

the set of feasible solutions of the perturbed problem coeld
shrunk. An extreme case could happen where both bids dieeorem 3. The expectation of the random variabfe(N)|>
accepted in the optimal solution ¢fl (1), #* = (1,1), while of the perturbed social welfare maximization problem (4)
at most one of the two bids could be accepted in the optimialupper bounded by (N85P /e2KD) " where the perturbed
solution of [3) (the green area denotes the feasible regionparameters are produced according @) and (@) with
the perturbed problem). By running the exact algorithm Blg. {61,63,...,6% }jcq0,...k p—13 independently and identically
to solve [@), the optimal solutiofi* = (1,0) is obtained. The chosen from a uniform distribution on the interval [6f +].
near-optimality of Alg[2 is basically achieved by two facts The proof is given in AppendiIF.

One is that due to the small perturbation Bf?’s, there is o _

an extremely small probabilffythat the optimal solution of Theorem 4. The expected running time of the randomized
the original problem is infeasible to the perturbed problerd!dorithm Alg.[2 is polynomial.

The other is that the perturbation of the vectdt could The proof is given in Appendik]G.

be compensated by the perturbation of the feasible sokition

of the perturbed problem. As Figl 2 (a) shows, Alg. 2 firgii) Alg. Plachieves(1 — ¢)-optimal social welfare.

perturbsl; to Pb by rotating E#by a small angle«, and . i L .
exactly solves for the maxim&Pb)”  from the three feasible Theorem 5. Alg.12 |s_a(1 —©) approximation randomized
algorithm for the social welfare maximization prob!slﬁ Q),

4For rigorousness, this probability could be quite high witere are a large under the small bid assumptiqnaxiew] ke[K],de[D] <L
number of bids submitted. Fortunately, according to theopaf Lemmal3, 1 ’ ’ Cld
with the small bid assumption, even if the optimal solutidntiee original 2KD(2+1)"
problem is infeasible to the perturbed problem, the objectialue of the N
perturbed problem unde#? will not deviate much to that undet*. Proof. We have shownE[js] = #f. Hence EpT§] =



bTzl = b7 (PT#) = (Pb)T# = POPT > (1 — €)OPT, ~Algorithm 3: The Randomized Auction Mechanism
based on Lemm@l 3. 1 Input: €€ (0,1),b, R, &

2 Output: allocation solutiony© and paymeng’
3 Computeg=Algorithm (e, b, R, o);

C. The Truthful-in-Expectation VM Auction 4 Compute paymen; (5) = b7, — (b7 §° — biys), for

i N ) all accepted bids € [NV];
Recall the MIDR mechanism desigh [32] that we introy (ot 7 andj

duced at the beginning of this section. By now we have
designed the randomized allocation algorithm which chsose

an allocation solution following the distributioR(z?) in ().

This distribution is independent of the cloud users’ bide W Now we describe our randomized VCG payment, which is
next show that it leads to the largest expected social veelfaS€d on the allocation solutign, as follows:

among a compact set of such distributions, such that we can pi(i) = bl — (BT — biys), Vi € [N]. ©)
combine a randomized VCG payment scheme following a

similar distribution, to obtain an auction mechanism that | Here b—i denotes the bidding price vector where tith
truthful in expectation. bidding price is set t®; y* ; is the random allocation solution

) ) ) output by Alg[2 with the input bidding price vectbr ;. Hence
allocation rule for the social welfare maximization probie thé( aljction. Further recall* is the output of Alg[R with the
@. full bidding price vectorb. Let y¢ be theith element ofy*.

Proof. An MIDR allocation rule of a social welfare maxi—"'er‘ceb_TgE — biy; is the social welfare achieved by all the
mization problem returns an allocation solution that is sarfther bids except bid, when all the bids are considered in
pled randomly from a distribution over a feasible set of th&€ auction.

problem, which achieves the largest expected social veslfar We summarize our complete randomized auction mecha-
among random solutions produced following distributiomai Nism in Alg.[3. The following theorem shows that the auction
distributional range, which is a fixed compact set of prolighi design fulfils our design objectives.

distributions over the feasible set that are independemh®f Theorem 7. The auction mechanism in Algl 3, which com-

users’ bids([32]. . _ bines the randomized allocation algorithm in Alg. 2 and the
Let 7 and 7 denote the set of all feasible ;oluuons Ofandomized VCG payment ifl (9), runs in polynomial time in
ILP (@) and of the perturbed ILFLI(4), respectively. Recallypectation, is truthful in expectation, and achievés- ¢)-

the perturbation rule for each demand parametetlin (3). Watimal social welfare in expectation, under the small bid
randomly enlarge the coefficient of the packing constrainis kd

from R to RF, therefore,T is a subset off. For each BSUMPHONNAX;c() kel
feasible solution? € 7, we can obtain a distributiof2(Z) in  Proof. According to the principles of MIDR algorithms [B2],
the same way as the distribution inl (6) by replacing all th® render a truthful-in-expectation mechanism, we should
ZP with & shown inQ(z?). Then lety denote the random combine an MIDR allocation rule with a VCG-like payment
allocation solution produced followin€(z), i.e., ¥ ~ Q(Z). as follows:
Givene and{6?,...,0%},c0....k -1} the distribution(z) P = EDT g% — (075 — biyl)), (10)
is dependent on feasible solutiafy but independent of the L . .
users’ bidsR — {Q(Z), V7 ¢ 72} is a compact set including where the expectation is computg:ﬁi as follows in mcire o_letalls
oo U : = By o 175 — Egemoar) b — biyf]. Hered”  is
all the distributions indexed by feasible solutignin the set o ft’.( 1|> o of the pelturbed LB (4 duced beli
T.Dueto7 C T, R is also a compact set of distribution € opimatsofution ot the perturbe (4), produced g li

over the feasible solutions ifi. UsingR as the distributional55 Of_ AIg._[Z, when the input b|dd|ng.pr|ce vector bs.;.
range, we have Since it may not be always possible to compute the expec-

tation in [10) efficiently, it has been proved [31] that irete

O

D] Cra < 2KD(2+1)"

Byena@n b5l = (PH2" = ‘;f,lea;‘(Pb)TI of using [10), we can use a randomized payment rule to yield
— maxb’ (P73 the truthfulness in expectation as well, as long as the @ggec
zeT payment of the randomized payment rule equélé (10).
= g Egja@) 6" 7. (8) The expectation of our random payment[ih (9) is exactly
The first equation is due tbl(7). The second equation is becaus Elpi(7°)]
ZP is the optimal solution of the perturbed ILP] (4). The last = EgiiNQ(fgi)[BTi?ﬁi] — Egeno(an) 07§ — biys]

equation is due td; oz [J] = PTz, which can be readily
obtained according to[ 7). Hence the solutigh selected
following distribution (i) in Alg. B achieves the largestHence the random payment ifil (9) renders truthfulness in
expected social welfare, among all the solutions producéypectation and can be computed in polynomial time in ex-
following distributions in the distributional rang®, leading Pectation. Combining Theorelm 4 and Theotém 5, this theorem
to an MIDR allocation rule. O s proved. O

Pi-
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We evaluate our randomized auction using trace-drive
simulations, exploiting Google cluster-usage data [34]civh
record jobs submitted to the Google cluster. Each job coatai = %%
multiple tasks, with information on resource demands (CPL
RAM, Disk) of the tasks. We translate each job into a VM : |
bundle bid, and the resource demand of each task in the j | I “ I“ ﬂl ”l
into a VM in the bundle. There are arouh@00 types of VMs 0-949550 250 450 650 850 10501250 14501650 1850 2050 2250
consisting of K = 3 types of resources in our experiments. Number of Users

Each task is mapped to a VM of a specific type by resource Fig. 3: Approx. Ratio of RPAA
demands, and further mapped to a data centre randomly.
then generate the VM demands of the bundlle,, by counting 0.951- -
the number of VMs of the same type mapped to the same d: K=s
center among the tasks in the job. We estimate the unit pric
of CPU, Disk and RAM, respectively, based on the prices ¢
Amazon EC2 instances and their resource composition, a
then set the bid price of each bundle based on the unit pric

0.950
and the overall resource demands in the bundle, scaled by g, I "l I“ ”l ”l

. . . 50 250 450 650 850 10501250 1450 1650 1850 2050 2250
random number if0.75, 1.5]. In this way, we obtain a pool Number of Users

of bidding bundles from the Google cluster data. Each_ user Fig. 4: Approx. Ratio of RPAA

randomly chooses at mog$,,| bundles from the pool to bid.

We compute the capacity of typeresourcecqi, in a data either a largerD or a largeK leads to more constraints in
center based on the overall amount of this resource requii@d) being perturbed, which causes a larger deviation leztwe
in this data center in all the bid bundles submitted by th&e original problem and the perturbed problem.

users, and scale it down using a random factor in [0, 0.5W/N], Fig.[3 further shows that the average approximation ratio is
such that roughly no more than half of the users can wimorse if a user submit more bids. The reason is clear: when
a bid under constrain{{1b), without loss of generality. Bthe number of user$V is fixed, the more bids a user can
default, the number of users I = 500, the upper-bound submit, the larger the total number of bidsis; hence due to

on the number of bids a user can submit|®,| = 4, the the same reason as analyzed above, the ratio is closer to the
number of data centers i® = 8, ande = 0.05. We repeat theoretical one.

each experiment for 50 times to obtain the average resultsFig.[d compares the average approximation ratio obtained in
Note that some of the resource demand§?) violate the our experiments and the respective theoretical approiomat
small bid assumption that is required in the analysis of thatios at different values aof, by plotting the relative approxi-
approximation ratio of our allocation algorithm in Lemiia 3mation ratio2/29¢ 80prox. fatoThe gyerage approximation ratio
Theorenib and Theorelmh 7. In this sense, our algorithm cowtlour algorithm outperforms the theoretical ratio more whe
work well even when the bid demands are not as small as wés larger, sinc?,i = 1,..., N are larger (they are selected
require in the theoretical analysis. in the interval [0, e/N]) and the gap between the empirical
approximation ratio and the theoretical one is larger adiogr

to (I3) in the proof of LemmBl3. The better performance at a

A. Approximation Ratio
smaller N can be explained similarly as that for Figl§13-5.
We first study the average approximation ratio achieved

by our algorithm, computed by the social welfare achieved . . .

by Alg. 2 over the optimal social welfare by solvinfl (1) B. Social Welfare Comparison with PDAA
exactly. Let RPAA represent our Randomized Perturbation-YWe now compare the social welfare achieved by our Alg. 2
based Approximation Algorithm in Ald] 2 in the figures. Giveryvith the primal-dual approximation algorithm in_[16] (whic

¢ = 0.05, the theoretical expected approximation ratio.ig5. is essentially the algorithm used ih [17] as well), denoted
Fig.s[3F% show that the average approximation ratio is fargey PDAA. The algorithm in [[16] does not consider the
than the theoretical ratio and approaches the latter when th
number of users (or bids) increases. According to Lerhina ?
and [7) in Sed_1V]1 —e is a lower bound of the approximation
ratio, and the results show that under practical settings tl
average ratio achieved is better. The reason why the ra
approaches the theoretical one whénis large can also be
explained by[(IB) in the proof of Lemri& 3, that the inequalit 1
tends to equality whef” (and henceV) is large. Fig[B and _ n .
Fig.[4 also demonstrate that the average ratio decreaghfiysli MM”“I

with the increase of the number of data centers or the numt  %%*%° 50 250 450 650 850 10501250 1450 1650 1850 2050 2250

. Number of Users
of resource types, respectively. The reasons are the sarne:
Fig. 5: Approx. Ratio of RPAA
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1.00 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Finally, we remark on the running time incurred by the
e two algorithms. Figs[17=10 illustrate that our algorithmt-ou
1.003] MIIN=2250 1 performs the algorithm in[[16] in social welfare and user
| satisfaction, which is mainly due to the much better approxi
mation ratio achieved by our algorithm. The running time of
- PDAA is shown to beD(N®log N), whereN is the number
Iﬂ Iﬂ H_ H- H. H. H. - of bids, while our algorithm has an expected time complexity
1 sl i W0 NN §E NE N6 BE of O(K DN3KD+1 /2KD) (details in the proof of Theorem
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 . . . cpn
3 [ in Appendix[G). Hence, our algorithm may sacrifice some
Fig. 6 Relative Approx. Ratio of RPAA of the computation. efficiency for a much better_ approximatio
to the optimal social welfare. However, the difference i$ no
distribution of VM demands in multiple data centers. We leengubstantial, and a polynomial running time is still guaeaaot
extend this algorithm to multiple data centers by expanttieg for our algorithm in practice.
dimensions of the capacity constraint frafh to K x D to
handleK types of resources distributed In data centers, for
a fair comparison.

Fig.[7 and Fig[B show that our algorithm consistently out- This work presents a truthful and efficient auction mech-
performs the algorithm in [16] in terms of social welfareden anism for dynamic VM provisioning and pricing in geo-
the same parameter settings. This validates our thedretidigtributed cloud data centers. By employing smoothed-anal
analysis: our algorithm is guaranteed to achieve a no-low#sis in a novel way and randomized reduction techniques, we
than{1 — ¢) approximation in social welfare, where the othe#levelop a randomized mechanism that achieves truthfylness
algorithm achieves a ratio of arourdr2 [16]. polynomial running time, andl — ¢)-optimal social welfare

Fig. [@ also indicates that the social welfare of both afor resource allocation (all in expectation). We propose an
gorithms increases with the increase Wf and |B,|. The exact algorithm which solves the NP-hard social welfare

resource capacity in our experiments is set to be roughéyalin maximization problem in expected polynomial time, and gppl
in the total resource demand of the users, and wHeris @ perturbation-based randomized scheme based on the exact
large, more bids can be accepted and hence the social wel@l®rithm to produce a VM provisioning solution that is
is larger. When each user can submit more bids, the decisidn— €)-optimal in social welfare in expectation. Combining
space for ILP[{lL) is larger, leading to a better social welfarthe randomized scheme with a randomized VCG payment,
Fig. B implies a negative correlation between the soci#le achieve an auction mechanism truthful in expectation.
welfare andD, which can be intuitively explained as follows:From a theoretical perspective, we achieve a randomized
When the number of data centers is larger, the bid bundfgdly polynomial-time-in-expectation 1( — )-approximation
that each user submits contain VMs scattered in more d&gheme for a strongly NP-hard problem which does not have
centers. |If any resource demand in any data center was ﬁo@eterministic FPTAS. We believe that this new tEChnique
satisfied, a bid would be rejected. Moreover, as explained féan be generalized to work for a rich class of combinatorial
Fig.[3 and Fig[¥, more data centers lead to more constraifittctions, other than VM auctions. Trace driven simulations
being perturbed (demands en|arged) in A|g 2, which makes we conduct validate our theoretical anaIYSiS and reveas th
deviate more from the optimum of the original problem. Notguperior performance of our mechanism as compared to an
that there is a high probability for the final allocation gan €xisting mechanism on dynamic VM provisioning.
y© to be equal tar?. Based on all the above, the chance for
each bundle to be accepted decreases, and the social welfare REFERENCES
decreases slightly with the increase of

Relative Approx. Ratio
g
N
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APPENDIXA
PROOF OFTHEOREM[]]

Proof. Let

i Jed j=1....KD

R =< 1" icB; o j=KD+1,...,. KD+ W
o if i¢Bj_kp 7= Y

and

_Jeas J=1,...,KD

The social welfare maximization problefd (1) can be converte
to a Multi-dimensional Knapsack Problem in polynomial time

N
maximize E bix;
i=1

(11)

subject to:


http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

bids from the accepted bids af*, until all the constraints

N are feasible again. This idea is directed by the fact that the
Z@R; < ¢y, j=1,..., KD+ W, demand parameters are only slightly p.er_turbed, .thus dmlplpi
i=1 a small amount of demand from the original optimal solution

z; € {0,1}, Vi € [N] may only lose little social welfare. Note that sugh™ may

not be unique, but we only need to find a possible one and

The Multi-dimensional Knapsack Problem is a classig,yer hound the derived perturbed objective value under it.
strongly NP-hard combinatorial optimization problem|[35]

Moreover, it has no FPTAS unless P=NP|[20][36]. @ O TABLE II: Dropping-based-on-Sorting Algorithio.S

APPENDIXB 1: Identify 9T, the set of the violated constraints;

PROOF OFLEMMA 1] 2: For eachj € Q' » .
Proof. If ¥ € P(i), then #") is not dominated by any 3 .Sort a!l the b|_ds of the o[|‘g|nal optimal st
solutions inP (). If z® — 2V (i.e, the vector obtained by in the increasing order oﬁ—]
removing the last element!” from #() is dominated by 4. Drop the sorted bids one by one,
some solution inP(i — 1), e.g, f((;'—l), then fl(ii_l) + Iz(-i) util the constraintj is feasible.
(i.e, the vector obtained by appendingji) to the end of
#~1) dominatest?, which is a contradiction. Thus we can

conclude that ift® € P(i), thenz® — 2V € P(i — 1).

To prove that the perturbed objective value under is at
leastl — ¢/2 of that underz™* is equivalent to show that the
total bidding price of dropped bids is at mosk £ fraction
of the total bidding price aggregated by the accepted bids of
APPENDIX C Z*. Before that, we defin@ to be the set ofj (recall all the

tuples of(k, d) are sorted and re-indexed by Let 9 be the

PROOF OFLEMMA subset ofQ where at each elemejitce 9, the total perturbed
Proof. According to the construction fror® (i)’ to P(i) in  demand of dimensiof exceeds the respective capacity. Recall
Algorithm 1, some solutions oP ()" will be pruned. When that in the algorithmDoS, we drop bids in|Q*| rounds to
we mergeP(i — 1) +0 andP(i — 1) + 1 to P(i)’, (1) if all  make the violated constraints feasible. A critical conasjpt
the solutions irP(i — 1) + 0 are kept inP(i)’, then|P(i)’| > s defined to be the set of dropped bids in the round;.of
|P(i — 1)+ 0[; (2) Otherwise, i3z € P(i—1)+0 which  Three facts are shown ifii{({15) ardd(16).
is pruned, therﬂfl(f) € P(i—1)+1 that dominatesz’”,

O

. . _ N
which means there always exists a solution which substitute Z Ry < (1+2€)Ryo, Vi€
the removed one. Hend®(i)| > |P(i — 1)|. O €55
(15)
APPENDIXD R >¢; Vje QT RI<¢;, VjieQ\Qt
PROOF OFLEMMA 3 1625 ’ 1625 ’

Proof. We define solutionz*~ to be a feasible solution to (16)
the perturbed groblem which is no larger théihcomponent- Here, fact in [IB) follows the definitions a@* and Q. The
wisely. Due tob = Pb, we have fact in (I3) is derived as follows. Recall that the pertuidrat

POPT = (PB)T# > (PH)T 7, (12) of demand parameter &/ = R/ + Svem ™ \whereg! ~

o ) _ U(0, ). We define the maximal demand bftype resource
smce:;** is afe_aS|bIe solution to the perturbe_d pr_oblem. INthe, Jata centerl to be R, = max;e(y] Rf Then we have
following, we will show that the perturbed objective value-u
derz*~ is at least g1 — A)-fraction of the perturbed objective Z R < Z RJ""‘Z ‘R < Z RIt‘eRI .

e . . B _ ) ; 1 — . 7 . N mar — _ i max
value underz*, which is further at least 81 — A)(1 — ¢/2) ieS* ies* ies* ieS*
fraction of OPT, the original objective value:

(17)

Moreover, we have the total demand under the optimal selutio

(PBYTZ~ > (1 - A)(Ph)Tz* of the original problem is at most the capacity of each type
ey, b of resource at each data centeg,, _, 5. R} < ¢; for each
>(1-A) Y (1 —e¢/2)bi + N Ty (13) j € Q. Thus, for eachj € QF, we can upper-bound the total
i€[N] N perturbed demand undet, to be", 5. R} <c¢; + €RI .0
>(1—A)(1— E/Q)BTf* (14) It means that if the dropped amount is at lea®}, ., of each

j € QT, the packing constraints will be feasible again. Now
The rest of the proof is to show that we could upper-bourile question is, in each round, how much demand will be
A < €/2 by assuming that each bid only requests for a smalttually dropped at most? Consider at some time in round
amount of demand for each type of resource. E&tdenote ; when the dropping is still not finished yet. We must have
the set of the accepted bids &f. To find az*~, a feasible that the droppedth demand is less thanR},,.; otherwise
solution to the perturbed problem, our method is to constiucthe remainingjth demand does not exceeg, the capacity

feasible solution to the perturbed problem by dropping sonoé jth demand, which means this round of dropping should



have been stopped. Then consider the moment in this round APPENDIXE

that the totaljth demand that have been dropped is less than PROOF OFTHEOREMI[Z

€RI s put the bid to b_e dropped.r_lext will finish this roundbroof. There are two main steps in eadth round:

of.droppmg. We call this mome_runugal moment No_te that 1 GivenP(i — 1), we constructP(i)’ by using two copies

th_|s critical moment always e>§|st§ in eac_h dropping rogngf all the solutionsz~1 € P(i — 1) and adding theith

Since the very next dropped bid in the critical moment is &g to each solution of one copy with the value @fnd 1,

MoSt iy, < (1+€) Ry, PluseR},,,, the dropped amount respectively. The time this step takes is lineard®(i — 1)],

before the critical moment, we prove the fact inl(15). increasing the total bidding price and resource demand} of a
The above three facts essentially mean that we findg the solutions irfP(i — 1). ,

a feasible solution of the perturbed problem, such that the2: FOr each solutionz® e P(i), we compare

allocated resource amount is not much less than that uné’é@z(?))vckd(“’(l))ﬁk € [K],vd € [D]) to all the other

#*, the optimal solution to the original problem. Recall thagolutions in P(i)_’ and delete_all_ the dominated solutions.

to lower-boundA, the remaining is to prove that the totail Nus the time this step takes is linear AAD| P (i)'|.

perturbed bidding price generated by remaining bids is not ) o )

much less than that af*. How to associate the remaining /According to the analysis in step 1 and step 2, the running

demand to the the remaining social welfare? In fact, thergprt ime is bounded by:

operation gives the answer. Recall in each royrd Q", we N_1 -

sort and drop the bids &* in the increasing order oﬁ—] the O(KD Yz, [P@)F).

bidding price per unit ofth demand. It means that the dropped

bids have lower bidding price per unit of demapdhan the

average% over all the bids inS*. The basic idea to upper-

bound the dropped social welfare is as follows. In each round

j, the droppedith demand could be upper-bounded according

to the fact in[(Ib). Then we could upper-bound the fraction of

the loss of perturbed social welfare due to the dropped Iids i . _

the jth round over the total perturbed social welfare. Finallf,700f- This theorem desires to upper-bound the number of

taking over all the rounds, we upper-bound the fraction ef tf°aréto optimal solutions in expectation when parametef&)in

total loss of perturbed social welfare over that ungierwhich &€ independently and randomly perturbed. We adopt ctssic
is shown as follows. smoothed analysis in which the expected humber of Pareto op-

. . timal solutions usually relies on the input size and the mmexi

Due to Lemma 2, O(KDZ?;IVP(Z')P) <
O(KDN|P(N)|2).
O

APPENDIXF
PROOF OFTHEOREM[3|

Zies; bi < Zies; R due t i 18 perturbation density of the perturbed input parameters.gLe
Z S e b Z s R (due to sorting (18) denote the upper-bound of the perturbation density of each
jeQr 1(615 ) )RJJ,GW e b; and R*. Now we calculatep of our perturbed problem.

+ € max . i J H € A_ . .
< Z ~ (due to: [I5) and{16) (19) slnce 6! is drawn from [0, N]’et;;?\f V?Iue (?fbl Iles- in the
jeQ+ J interval [(1 — €)b;, (1 — €)b; + —=3=7—], with the interval
N
< KD(1 + 2€) x % _ £ (20) length of%;;“. Let byar = max{by,...,by}. We have
2KD(2+¢) 2 S0 bir > byas- Thus the interval length is no smaller than

The first inequality in[(20) is due to the small bid assumptioffi#= and equivalently, the density df, is Upper-tlivounded
stated in Lemmai]S,Ri”;m < 2KD§2+1). The assumption everywhere in the intervdl(1 — €)b;, (1 — €)b; + 62}\,7:21]
essentially means that each bid has a small demand of eathbN_z, Similarly, the interval length of the perturbation of
type of resource in the desired data center, compared to ﬁfeismr:g smaller tharf%a:  and the density of2! is upper-
corresponding capacity. Thus,— A in (dI4), the fraction of °* N ) S Z& R
remaining perturbed social welfare over that undeis lower- bounded everywhere in the intervat!, R} + =*F5—] by
bounded to be — . - ]f . Moreover, without loss of generality, we can normalize
all"the bidding prices to be if0, 1] by dividing eachb; by
maz- We also normalize all the demands to be[in1] by
diving eachR! by R/, .. and diving eachr; by R/ ... The
Lperturbation density will be upper-bounded B§t

According to the latest result of the smoothed number of

According to [(I%#), we have that the social welfare of th
perturbed problem undef— over that unders— is at least
(1-A)(1—¢/2) > (1—¢€/2)(1—€/2) > 1—¢, which serves as
a critical step to lower-bound the approximation ratio of o

allocation algorithm. Note that our analysis method isd/aIiP ) timal soluti ¢ lti-obiective int
for milder conditions that require a higher upper-boundnef t areto optimai soiutions for a mufti-objective integergram-

e : . o
fraction of bid demand over capacity. Nevertheless, toinbta”;:ng.[l“']t'hwe obtamt_the result: In ttme tF;LOpOS't'EIr ﬁ Befolrt(_e
the (1 — ¢)-approximation ratio, we will consider such a smalpOWING the proposition, we show that the result of a muttl-

bid assumption which is stated in Lemiiia 3, Theofém 5 aﬁu&)jective optimization problem works for our problem.
Theoreny ’ According to the definition of a Pareto optimal solution to

a multi-objective integer programming_[19], a soluti@nin
0 the feasible region is Pareto optimal if and only if there is



no solution which is at least as good @sand better tharr’

in at least one criteria. That is, a Pareto optimal solut®a i
feasible solution that is not dominated by any other sotutio
the feasible region. In a multi-objective optimization plem,
there are multiple objective functions to be optimized in a
feasible region. In our problem, according to the definition
of Pareto optimal solution (Pareto Optimal Allocation)g th
defined objectives (criteria to compare two solutions, het t
objective function) ar&}4(Z)’s, the total demand for eadh
type of resource in data centér plus s(Z), the social welfare
underZ. It means we have in totdl' D + 1 objects of criteria

to define a Pareto optimal solution. In our problem, a sofutio
Z is a Pareto optimal solution if and only if there does nottexis
a feasible solution” that dominateg’ in all objects of criteria,
which falls in the family of the Pareto optimal solution 91
Besides the fact that the definition of a Pareto optimal smiut
for a multi-objective optimization problem is essentiathe
same as ours, the perturbation policy of our work fits that of
[19] where: Each coefficientb( and Rf-, Vj € [KD — 1))

is chosen independently according to its own quasi-concave
probability density function where the density at each pofn
the perturbation interval is upper-bounded dyHere, quasi-
concave density [19] requires that the probability denssty
non-decreasing within the left half perturbation interwddile

is non-increasing in the right half. Our perturbation of leac
parameter follows the uniform distribution which has a dguas
cave density function.

Proposition 1. For any constantX’, D and « € N, the ath
moment of the smoothed number of Pareto optimal solutions
of a multi-objective binary programming @(( N2KP ¢ D)«)

for quasi-concave perturbation density functions with sign
everywhere upper-bounded by

Here, according to definition ofith moment of a random
variable [37],a = 2 is the case to calculate the expectation
of |P(N)|2. Thus puttingp = N; anda = 2 into Proposition
[, we have thatE[|P(N)[?] < O(NBED /2KD) which the
theorem follows.

O

APPENDIXG
PROOF OFTHEOREM[4]

Proof. Combining Theoreril2 and Theordmh 3, we derive the
expected running time of our exact algorithm on the randomly
perturbed ILP[(¥) (line 5 in Alg.12) as

O(KDNE[P(N)|?]) = O(K DN8.PF1 j2KD)

Note thatK andD are fixed constants. The perturbation matrix
P can be obtained in polynomial time (lines 3—4 in Alg. 2).
The set of feasible solutions to ILP](1) and the distribution
Q can be constructed in polynomial time as well (lines 6 in
Alg. ). Hence the theorem is proven. O
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