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Abstract—The last years witnessed a steep rise in data generation worldwide and, consequently, the widespread adoption of software
solutions able to support data-intensive applications. Competitiveness and innovation have strongly benefited from these new
platforms and methodologies, and there is a great deal of interest around the new possibilities that Big Data analytics promise to
make reality. Many companies currently engage in data-intensive processes as part of their core businesses; however, fully embracing
the data-driven paradigm is still cumbersome, and establishing a production-ready, fine-tuned deployment is time-consuming,
expensive, and resource-intensive. This situation calls for innovative models and techniques to streamline the process of deployment
configuration for Big Data applications. In particular, the focus in this paper is on the rightsizing of Cloud deployed clusters, which
represent a cost-effective alternative to installation on premises. This paper proposes a novel tool, integrated in a wider
DevOps-inspired approach, implementing a parallel and distributed simulation-optimization technique that efficiently and effectively
explores the space of alternative Cloud configurations, seeking the minimum cost deployment that satisfies quality of service
constraints. The soundness of the proposed solution has been thoroughly validated in a vast experimental campaign encompassing
different applications and Big Data platforms.

Index Terms—G.1.6.h Nonlinear programming, C.4 Performance of Systems, C.2.4 Distributed Systems.
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1 Introduction

Many analysts point out that we are experiencing
years in which technologies and methodologies that

fall within the sphere of Big Data have swiftly pervaded
and revolutionized many sectors of industry and economy,
becoming one of the primary facilitators of competitiveness
and innovation [1].

IDC reported that the Big Data market will grow from
$150.8 billion in 2017 to $210 billion in 2020, with a compound
annual growth rate of 11.9% [2]. Big Data applications offer
many business opportunities that stretch across industries,
especially to enhance performance, as in the case of data-
driven decision support systems. Furthermore, data-intensive
applications (DIAs) can also prove extremely useful in social
intervention scenarios to improve the overall life quality of a
community, as happens with systems for predicting, prevent-
ing, and developing policies in the event of natural disasters.

Undeniably, one of the pillars underpinning the Big Data
revolution is the MapReduce paradigm, which has enabled
massive-scale parallel analytics [3]. MapReduce is the core of
Apache Hadoop, an open source framework that has proven
capable of managing large datasets over either commod-
ity clusters or high performance distributed topologies [4].
Hadoop attracted the attention of both academia and indus-
try as it overtook the scalability limits of traditional data
warehouse and business intelligence solutions [3]. For the first
time, processing unprecedented amounts of structured and
unstructured data was within reach, thus opening up a whole
world of opportunities.
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Despite the fact that many new solutions have been
created over time, Hadoop has been able to age well, con-
stantly renewing itself to support new technologies (e.g., SSD,
caching, I/O barriers elimination) and workloads (batch and
interactive) [5]. In addition, a large Hadoop-based ecosystem
of highly specialized tools has sprung up and matured. Conse-
quently, for a long time it has been the foremost solution in the
Big Data scene. This is confirmed by the fact that, only a few
years ago, more than half of the world’s data were somehow
processed via Hadoop [6].

Paradoxically, the MapReduce paradigm, which has con-
tributed so much to Hadoop’s rise, is steadily declining in fa-
vor of solutions based on more generic and flexible processing
models. Among these, Apache Spark is a framework that is
enjoying considerable success in the area of batch processing,
whilst Apache Kafka and Flink are valuable alternatives for
data streaming applications [7].

In spite of the mentioned points in favor of Big Data
technologies, fully embracing them is a very complex and mul-
tifaceted process. From the technological point of view, many
efforts have been made to make it more accessible, but es-
tablishing a production-ready deployment is time-consuming,
expensive, and resource-intensive. Not to mention the fact
that fine-tuning is still often perceived as a kind of occult art.

It is widely held that there is a clear need for an easy button
to accelerate the adoption of Big Data analytics [8]. This is
why many companies have started offering Cloud-based Big
Data solutions (like Microsoft HDInsight, Amazon Elastic
MapReduce, or Google Cloud Dataproc) and IDC expects
that nearly 40% of Big Data analyses will be supported by
public Clouds by 2020 [9]. The advantages of this approach
are manifold. For instance, it provides an effective and cheap
solution for storing huge amounts of data, whereas the pay-
per-use business model allows to cut upfront expenses and
reduce cluster management costs. Moreover, the elasticity can
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be harnessed to tailor clusters capable to support DIAs in a
cost-efficient fashion. Yet, provisioning workloads in a public
Cloud environment entails several challenges. In particular,
the space of configurations (e.g., node types and number) can
be very large, thus identifying the exact cluster configuration
is a demanding task [10], especially in the light of the consid-
eration that the blend of job classes in a specific workload and
their resource requirements may also be time-variant.

At the very beginning, MapReduce jobs were meant to
run on dedicated clusters to support batch analyses via a
FIFO scheduler [11], [12]. Nevertheless, DIAs have evolved
and nowadays large queries, submitted by different users,
need to be performed on shared clusters, possibly with some
guarantees on their execution time [4], [13]. However, guar-
anteeing job performance implies being able to predict with
a sufficient degree of accuracy the execution times in shared
environments, and this is one of the greatest challenges in Big
Data due to the large number of variables at stake [14], [15].
Therefore, in such systems, capacity allocation becomes one
of the most important aspects.

Determining the optimal number of nodes in a cluster
shared among multiple users performing heterogeneous tasks
is a relevant and difficult problem [10], [15]. In particular,
in this work the problem of rightsizing Apache Hadoop and
Spark clusters, deployed in the Cloud and supporting different
job classes while guaranteeing the quality of service (QoS) is
addressed and solved. Each class is associated with a given
concurrency level and a deadline, meaning that several similar
jobs have to run on the cluster at the same time without
exceeding a constraint imposed on their execution times.
Additionally, the cluster can exploit the flexibility of Cloud
infrastructures by adopting different types of virtual machines
(VMs), taking into account performance characteristics and
pricing policies.

The capacity planning problem is formulated by means
of a mathematical model, with the aim of minimizing the
cost of Cloud resources. The problem considers several VM
types as candidates to support the execution of DIAs from
multiple user classes. Cloud providers offer VMs of different
capacity and cost. Given the complexity of virtualized systems
and the multiple bottleneck switches that occur in executing
DIAs, very often the largest available VM is not the best
choice from either the performance or performance/cost ratio
perspective [4], [10]. Through a search space exploration, the
proposed approach seeks the optimal VM type and number of
nodes considering also specific Cloud provider pricing models
(namely, reserved, on demand, and spot instances [16]). The
underlying optimization problem is NP-hard and is tackled
by a simulation-optimization procedure able to determine an
optimized configuration for a cluster managed by the YARN
Capacity Scheduler [17]. DIA execution times are estimated
by relying on multiple models, including machine learning
(ML) and simulation based on queueing networks (QNs),
stochastic Petri nets (SPNs) [18], as well as an ad hoc dis-
crete event simulator, dagSim [19], especially designed for the
analysis of applications involving a number of stages linked
by directed acyclic graphs (DAGs) of precedence constraints.
This property is common to legacy MapReduce jobs, work-
loads based on Apache Tez, and Spark-based applications.

Our work is one of the first contributions facing the design
time problem of rightsizing data-intensive Cloud systems

adopting the Capacity Scheduler. In particular, it builds
upon our previous research presented in [20] and provides
a thorough description of D-SPACE4Cloud1, a software tool
designed to help system administrators and operators in the
capacity planning of shared Big Data clusters hosted in the
Cloud to support both batch and interactive applications with
deadline guarantees. With respect to previous releases, the
tool now supports, besides classical MapReduce workloads,
also Spark applications, which feature generic DAGs execu-
tion models. The generalization of the addressed problem has
required significant changes in the approach implemented by
the tool; in fact, D-SPACE4Cloud now exploits ML instead
of scheduling-theory-based formulas and integrates dagSim2,
a purpose-built discrete event simulator capable of handling
highly parallel applications with DAGs of precedence con-
straints. Moreover, the optimization core currently features a
new search technique, more effective and less likely to return
local optima.

Finally, the present paper also reports extensive validation
results obtained on a gamut of real deployments. In particular,
experiments based on the TPC-DS industry benchmark for
business intelligence data warehouse applications are pre-
sented and the outcomes discussed. Microsoft Azure HDIn-
sight, Amazon EC2, the CINECA Italian supercomputing
center, and an in-house cluster based on IBM POWER8
processors have been considered as target deployments. The
proposed approach proved to achieve good performance across
all these alternatives, despite their peculiarities. Simulation
results and experiments performed on real systems have
shown that the achieved percentage error is within 30% of the
measurements in the very worst case, with an average error
around 12% for QNs and as low as 3% when using dagSim. On
top of this, it is shown that optimizing the resource allocation,
in terms of both type and number of VMs, offers savings up
to 20–30% in comparison with the second best configuration.
In particular, at times, general purpose instances turned out
to be a better alternative than VMs advertised as suitable for
Big Data workloads. Finally, with respect to an alternative
method integrating other state of the art proposals facing
the capacity planning problem [21], [22], we demonstrate to
identify more accurate solutions, with an average percentage
error of about 3% on the number of cores with respect to 7–
16%.

This paper is organized as follows. Section 2 overviews D-
SPACE4Cloud’s architecture. Section 3 presents in detail the
problem addressed in the paper. In Section 4 the focus is on
the formulation of the optimization problem and on the design
time exploration algorithm implemented within the tool. In
Section 5 our approach is evaluated by considering first the
accuracy that can be achieved by the simulation models and
then the overall effectiveness of the optimization method.
Finally, Section 6 compares this work with other proposals
available in the literature and Section 7 draws the conclusions.

2 D-SPACE4Cloud Architecture
The tool we present and discuss in this paper, namely D-
SPACE4Cloud, has been developed within the context of

1. D-SPACE4Cloud is available as open source under the
Apache license version 2.0 at: https://github.com/dice-project/
DICE-Optimisation-Back-End.

2. https://github.com/eubr-bigsea/dagSim

https://github.com/dice-project/DICE-Optimisation-Back-End
https://github.com/dice-project/DICE-Optimisation-Back-End
https://github.com/eubr-bigsea/dagSim
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Figure 1. D-SPACE4Cloud architecture

the DICE H2020 EU research project [23]. The project aims
at filling gaps in model-driven engineering with regard to
the development of DIAs in Cloud environments, embracing
the DevOps [24] culture, developing an integrated ecosystem
of tools and methodologies intended to streamline the DIA
development through an iterative and quality-aware approach
(design, simulation, verification, optimization, deployment,
and refinement). DICE primarily proposes a data-aware UML
profile that provides designers with the means necessary to
model dynamic and static characteristics of the data to be
processed as well as the impact on the performance of appli-
cation components. In addition, the project develops an IDE
capable of supporting managers, developers, and operators
in quality-related decisions. The IDE enforces the iterative
design refinement approach through a toolchain of both design
(simulation, verification, and optimization of deployment) and
run time tools (deployment, testing, and feedback analysis of
monitoring data).

D-SPACE4Cloud is the deployment optimization solution
provided by the DICE IDE. The tool serves the purpose of
optimizing the deployment costs for one or more DIAs with
a priori performance guarantees. In a nutshell, within the
quality-aware development process envisioned by DICE, a
DIA is associated with QoS requirements expressed in form of
a maximum execution time (deadline) and concurrency level
(several users executing the same application at the same
time with a certain think time). D-SPACE4Cloud addresses
and solves the capacity planning problem consisting in the
identification of a minimum cost cluster (both for public and
private Clouds) supporting concurrent and on-time execution
of DIAs. To this end, the tool implements a design time
exploration algorithm able to consider multiple target VM
candidates also across different Cloud providers.

Figure 1 depicts the main elements of the D-
SPACE4Cloud architecture. Our tool is a distributed software
system designed to exploit multi-core and multi-host architec-
tures to work at a high degree of parallelism. In particular, it
features a presentation layer (integrated in the IDE) devoted
to manage the interactions with users and with other compo-
nents of the DICE ecosystem, an optimization service (colored
gray), which transforms the inputs into suitable performance
models [18] and implements the optimization strategy, and a
horizontally scalable assessment service (colored green in the

picture), which abstracts the performance evaluation from the
particular solver used. Currently, a QN simulator (JMT [25]),
a SPN simulator (GreatSPN [26]), and a discrete event simu-
lator (dagSim [19]) are supported.

D-SPACE4Cloud takes as input the following data:

1) a UML description of the applications provided
via DICE Platform and Technology Specific Mod-
els (DTSMs) [24] or execution logs obtained execut-
ing the applications in a pre-production environment.

2) a partially specified deployment model for each ap-
plication. The deployment model must be specified in
DICE Platform, Technology, and Deployment Specific
Model (DDSM) format.

3) a description of the execution environment, that is a
list of candidate providers and VM types along with
VM performance profiles.

4) the list of QoS constraints, that is the concurrency
level and deadline for each DIA, respectively.

The optimization service is the tool centerpiece. It primar-
ily parses the inputs, stores the relevant information using
a more manageable and compact format, then calculates
an initial solution for the problem (via the Initial Solution
Builder) and improves it via a simulation-optimization algo-
rithm (implemented by the Parallel Local Search Optimizer).

The initial solution is generated by solving a mixed integer
nonlinear programming (MINLP) formulation where a subset
of constraints have been modeled by training suitable ML
models. More details are available in Section 4.1. Nevertheless,
the initial solution can still be improved, mainly because
the MINLP harnesses an approximate representation of the
application-cluster liaison. More accurate performance models
(e.g., QNs and SPNs) are therefore used to create room for
further cost reduction; however, since the flip side of accuracy
is a time-consuming evaluation process, the solution space has
to be explored in the most efficient way, especially avoiding
the evaluation of unpromising configurations. The Optimizer
component carries out this task, implementing a simulation-
optimization technique applied independently, and in parallel,
on all the application classes.
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3 Problem Statement
In this section the aim is to introduce some important de-
tails on the problem addressed in this work. The envisioned
scenario consists in setting up a cluster to efficiently carry
out a set of interactive DIAs. A cluster featuring the YARN
Capacity Scheduler and running on a public infrastructure as
a service (IaaS) Cloud is considered as target deployment.
In particular, the cluster has to support the simultaneous
execution of DIAs in the form of Hadoop jobs and Hive, Pig,
or SparkSQL queries. Different classes C = {i | i = 1, . . . , n}
gather the applications that exhibit a similar behavior and
performance requirements. The cluster composition and size,
in terms of type and number of VMs, must be decided in such
a way that, for every class i, hi jobs are guaranteed to execute
concurrently and complete before a prearranged deadline Di.
Moreover, YARN is configured in a way that all available cores
can be dynamically assigned for task execution. Finally, in
order to limit the risk of data corruption, and according to
the practices suggested by major Cloud vendors, the datasets
reside on a Cloud storage service accessible in quasi-constant
time.

In general, IaaS providers feature a large catalog of VM
configurations that differ in features (CPU frequency, number
of cores, available memory, etc.) and prices. Making the right
design decision implies a remarkable endeavor, yet it can be
rewarded by important savings throughout the cluster life
cycle. Let us index with j the VM types available across, pos-
sibly, different Cloud providers and let V = {j | j = 1, . . . ,m}.
We denote by τi the VM type used to support DIAs of class i
and with νi the number of VMs of that kind allocated to
class i.

In this scenario, the pricing model is inspired by Amazon
EC2’s [16]. The provider offers: 1) reserved VMs, for which
it adopts a one-time payment policy that grants access to a
certain number of them at a discounted fare for the contract
duration; 2) on demand VMs, which can be rented by the
hour according to current needs; and 3) spot VMs, created
out of the unused datacenter capacity. Such instances are
characterized by discounted fees at the expense of reduced
guarantees on their reliability. In order to obtain the most
cost-effective configuration, the assumption is to exploit re-
served VMs (denoting with ri their number) to satisfy the
bulk of computational needs and complement them with on
demand (di) and spot (si) instances (νi = ri + di + si). Let
ρτi , δτi , στi be the unit price for VMs of type τi, respectively,
reserved, on demand, and spot. Overall, the cluster hourly
renting out costs can be calculated as follows:∑

i∈C

(ρτiri + δτidi + στisi) . (1)

As the reliability of spot VMs is susceptible to the Cloud
provider’s workload fluctuations, to keep a high QoS level the
number of spot VMs is bounded not to be greater than a
fraction ηi of the total number of VMs νi for each class i.
In addition, reserved VMs must comply with the long term
contract signed with the Cloud provider and cannot exceed
the prearranged allotments Rij , that is every class is asso-
ciated with a separate pool of reserved VMs of any type. It
is worth noting that this cost model is general enough to
remain valid, zeroing the value of certain parameters, even

when considering IaaS providers with pricing policies that do
not include reserved or spot instances.

In the remainder, ci denotes the total number of YARN
containers devoted to application i, whilst mi and vi are the
container capacities in terms of RAM and vCPUs, andMj and
Vj represent the total RAM and vCPUs available in a VM of
type j.

The problem faced in this work is to reduce the operating
costs of the cluster by efficiently using the virtual resources
in lease. This translates into a resource provisioning problem
where renting out costs must be minimized subject to the ful-
fillment of QoS requirements, namely a per-class concurrency
level hi given certain deadlinesDi. In the following we assume
that the system supports hi users for each class and that users
work interactively with the system and run another job after
a think time exponentially distributed with mean Zi, i.e., the
system is represented as a closed model [27].

In order to rigorously model and solve this problem, it is
crucial to predict with fair confidence the execution times of
each application class under different conditions: level of con-
currency, size, and composition of the cluster. The execution
time can generically be expressed as:

Ti = Ti (νi, hi, Zi, τi) , ∀i ∈ C. (2)

What is worthwhile to note is that the previous formula
represents a general relation describing either closed form
results, as those presented in [15], based on ML [28], or the
average execution times achieved via simulation: in this paper
both the latter approaches are adopted.

Since the execution of jobs on a sub-optimal VM type
may lead to performance disruptions, it is critical to avoid
assigning tasks belonging to class i to the wrong VM type
j 6= τi. Indeed, YARN allows for specifying node labels and
partitioning nodes in the cluster according to these labels,
then it is possible to enforce such separation. The optimized
configuration statically splits different VM types with this
mechanism and adopts within each partition either a further
static separation in classes or a work conserving scheduling
mode, where idle resources can be assigned to jobs requiring
the same VM type. The choice about the scheduling policy
within partitions is not critical, since it does not impact on the
optimization technique or performance prediction approach.
When resources are tightly separated, the performance esti-
mate is expected to accurately mirror the real system behav-
ior, whilst in work conserving mode the observed performance
may improve due to a better overall utilization of the deployed
cluster, hence the prediction is better interpreted as a conser-
vative upper bound. Equation (2) can be used to formulate
the deadline constraints as:

Ti ≤ Di, ∀i ∈ C. (3)

In light of the above, the ultimate goal of the proposed
approach is to identify the optimal VM type selection τi, and
type of lease and number of VMs (νi = ri + di + si) for each
class i, such that the total operating costs are minimized while
the deadlines and concurrency levels are met.

The reader is referred to Figure 2 for a graphical overview
of the main elements of the considered resource provisioning
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Table 1
Model parameters

Param. Definition

C Set of application classes
V Set of VM types
hi Number of concurrent users for class i
Zi Class i think time [ms]
Di Deadline associated to applications of class i [ms]
ηi Maximum percentage of spot VMs allowed to class i
mi Class i YARN container memory size [GB]
vi Class i YARN container number of vCPUs
Mj Memory size for a VM of type j [GB]
Vj Number of vCPUs available within a VM of type j
ρj Effective hourly price for reserved VMs of type j [e/h]
δj Unit hourly price for on demand VMs of type j [e/h]
σj Unit hourly price for spot VMs of type j [e/h]
Rij Number of reserved VMs of type j devoted to class i

users

Table 2
Decision variables

Var. Definition

νi Number of VMs assigned for the execution of applications
from class i

ri Number of reserved VMs booked for the execution of
applications from class i

di Number of on demand VMs assigned for the execution of
applications from class i

si Number of spot VMs assigned for the execution of applica-
tions from class i

ci Total number of YARN containers assigned to class i
xij Binary variable equal to 1 if VM type j is assigned to

application class i

problem. Furthermore, Table 1 reports a complete list of the
parameters used in the models presented in the next sections,
whilst Table 2 summarizes the decision variables.

4 Problem Formulation and Solution
This section presents the optimization models and techniques
exploited by the D-SPACE4Cloud tool in order to rightsize
the cluster deployment given a set of profiles characterizing
the DIAs under study, the candidate VM types (possibly
at different Cloud providers), and different pricing models.
The resulting optimization model is the resource allocation
problem presented in Section 4.1.

The first issue D-SPACE4Cloud has to tackle is to quickly,
yet with an acceptable degree of accuracy, estimate the com-
pletion times and operational costs of the cluster: to this
end, within the mathematical programming formulation of the
problem ML models are exploited for the assessment of appli-
cation execution times. In this way, it is possible to swiftly
explore several plausible configurations and point out the
most cost-effective among the feasible ones. Afterwards, the
required resource configuration can be fine-tuned using more
accurate, though more time-consuming and computationally
demanding, simulations to obtain a precise prediction of the
expected running time.

According to the previous considerations, the first step in
the optimization procedure consists in determining the most
cost-effective resource type for each application, based on
their price and the expected performance. The mathematical
programming models that allow to identify such an initial
solution are discussed in Section 4.2. Finally, the algorithm
adopted to efficiently tackle the resource provisioning problem
is described in Section 4.3.

4.1 Optimization Model
The Big Data cluster resource provisioning problem can be
formalized through the following mathematical programming
formulation:

min
x,ν,r,d,s

∑
i∈C

(ρτiri + δτidi + στisi) (P1a)

subject to: ∑
j∈V

xij = 1, ∀i ∈ C, (P1b)
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Ri,τi =
∑
j∈V

Rijxij , ∀i ∈ C, (P1c)

ρτi =
∑
j∈V

ρjxij , ∀i ∈ C, (P1d)

δτi =
∑
j∈V

δjxij , ∀i ∈ C, (P1e)

στi =
∑
j∈V

σjxij , ∀i ∈ C, (P1f)

xij ∈ {0, 1} , ∀i ∈ C, ∀j ∈ V, (P1g)

(ν, r,d, s) ∈ arg min
∑
i∈C

(ρτiri + δτidi + στisi) (P1h)

subject to:
ri ≤ Ri,τi , ∀i ∈ C, (P1i)

si ≤
ηi

1− ηi
(ri + di) , ∀i ∈ C, (P1j)

νi = ri + di + si, ∀i ∈ C, (P1k)
Ti (νi, hi, Zi, τi) ≤ Di, ∀i ∈ C, (P1l)

νi ∈ N, ∀i ∈ C, (P1m)
ri ∈ N, ∀i ∈ C, (P1n)
di ∈ N, ∀i ∈ C, (P1o)
si ∈ N, ∀i ∈ C. (P1p)

Problem (P1) is presented as a bi-level resource allocation
problem where the outer objective function (P1a) considers
running costs. For each application class the logical variable
xij is set to 1 if the VM type j is assigned to application class i,
0 otherwise. Constraints (P1b) enforce that only xi,τi = 1,
thus determining the optimal VM type τi for application
class i. Hence the following constraints, ranging from (P1c)
to (P1f), pick the values for the inner problem parameters.

The inner objective function (P1h) has the same expres-
sion as (P1a), but in this case the prices ρτi , δτi , and στi

are fixed, as they have been chosen at the upper level. Con-
straints (P1i) bound the number of reserved VMs that can
be concurrently started according to the contracts in place
with the IaaS provider. The subsequent constraints (P1j)
enforce that spot instances do not exceed a fraction ηi of the
total assigned VMs and constraints (P1k) add all the VMs
available for class i, irrespective of the pricing model. Further,
constraints (P1l) mandate to respect the deadlines Di. In the
end, all the remaining decision variables are taken from the
natural numbers set, according to their interpretation.

4.2 Identifying an Initial Solution
The presented formulation of Problem (P1) is particularly dif-
ficult to tackle, as it is a MINLP problem, possibly nonconvex,
depending on Ti. According to the literature about complexity
theory [29], integer programming problems belong to the NP-
hard class, hence the same applies to (P1). However, since
there is no constraint linking variables belonging to different
application classes, the general formulation can be split into
several smaller and independent problems, one per class i ∈ C:

min
ci,ri,di,si

ρτiri + δτidi + στisi (P2a)

subject to:
ri ≤ Ri,τi , (P2b)

si ≤
ηi

1− ηi
(ri + di) , (P2c)

mici ≤Mτi (ri + di + si) , (P2d)
vici ≤ Vτi (ri + di + si) , (P2e)

χhi,τi
hi + χci,τi

1
ci

+ χ0
i,τi
≤ Di, (P2f)

ci ∈ N, (P2g)
ri ∈ N, (P2h)
di ∈ N, (P2i)
si ∈ N. (P2j)

Problem (P2) drops νi thanks to constraints (P1k). More-
over, (P1l) becomes the system of constraints (P2d)–(P2f).
Specifically, (P2d) and (P2e) ensure that the capacity associ-
ated with the overall number of containers, ci, namely, mici
and vici, is consistent with nodes capacity, in terms of both
vCPUs (Vτi) and memory (Mτi). As regards constraint (P2f),
the presented inequality is a model of the average execution
time, function of the concurrency level and the available
containers, among other features, used to enforce that the
completion time meets the arranged deadline. Specifically, it
is the result of a ML process to get a first order approximation
of the execution time of Hadoop and Spark jobs in Cloud
clusters. More in details, building upon [30], which compares
linear regression, Gaussian support vector regression (SVR),
polynomial SVR with degree ranging between 2 and 6, and
linear SVR, this paper adopts a model learned with linear
SVR, following [28]. This is due to the fact that SVR with
other kinds of kernel fares worse than with the linear one,
whilst plain linear regression requires specific data cleaning
to avoid perfect multicollinearity in the design matrix, thus
making it harder to apply in the greatest generality. In order
to select a relevant feature set, a good starting point is
generalizing the analytical bounds for MapReduce clusters
proposed in [15]. This approach suggests a diverse collection
of features including the number of tasks in each map or
reduce phase, or stage in the case of Spark applications,
average and maximum values of task execution times, average
and maximum shuffling times, dataset size, as well as the
number of available containers, for which the reciprocals are
considered. The Ti function in (2) becomes, then:

Ti =
∑
k∈Fi

wi,τi,kxik, (4)

where Fi is the set of features associated to application i,
xik the values assumed by such features, and wi,τi,k the
coefficients learned via SVR. These depend also on the chosen
VM type, due to the influence of its computational capabilities
on the observed performance. The above exemplified measures
appear within xi. Since most of these features characterize
the application class, but cannot be controlled, equation (P2f)
collapses all but hi and ci, with the corresponding coefficients,
into a single constant term, χ0

i,τi
, that is the linear combina-

tion of the feature values with the SVR-derived weights.
Problem (P2) can be reasonably relaxed to a continuous

formulation as in other literature approaches (see, e.g., [31]).
Furthermore, the problem can be additionally simplified with
a couple of simple algebraic transformations.

First, constraints (P2d) and (P2e) share the same basic
structure and are alternative, hence in every feasible solution
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at most one can be active. Building upon this consideration,
it is possible to reformulate them as a single constraint, the
most stringent:

ci ≤ αi (ri + di + si) , where αi , min
{
Mτi

mi
,
Vτi

vi

}
. (5)

Moreover, given the total number of VMs needed to
support the required workload, it is trivial to determine
the optimal instance mix using dominance considerations.
Indeed, since στi < ρτi < δτi , spot VMs are selected first,
but respecting the constraint (P2c), then it is the turn of
reserved ones, whose number is bounded by Ri,τi and, at last,
on demand instances cover the still unheeded computational
needs. Moving from this consideration, it is possible to reduce
the problem to a formulation that involves only the number of
containers, ci, and the overall number of VMs, νi, as exposed
below:

min
ci,νi

νi (P3a)

subject to:
ci ≤ αiνi, (P3b)

χhi,τi
hi + χci,τi

1
ci

+ χ0
i,τi
≤ Di, (P3c)

ci ≥ 0, (P3d)
νi ≥ 0. (P3e)

The continuous relaxation makes it possible to apply the
Karush-Kuhn-Tucker conditions, which are necessary and
sufficient for optimality due to the regularity of Problem (P3),
thanks to Slater’s constraint qualification: (P3c) is the only
nonlinear constraint and is convex in the domain, which in
turn contains an internal point. Notice that, in this way,
it is possible to analytically obtain the optimum of all the
instances of Problem (P3), one per class i ∈ C, as proven in
Theorem 4.1.

Theorem 4.1. The optimal solution of Problem (P3) is:

ci =
χci,τi

Di − χhi,τi
hi − χ0

i,τi

, (6a)

νi =
ci

αi
=

1
αi

χci,τi

Di − χhi,τi
hi − χ0

i,τi

. (6b)

Proof. The Lagrangian of Problem (P3) is given by:

L (ci, νi) = νi + λα (ci − αiνi) +

+ λχ

(
χhi,τi

hi + χci,τi

1
ci

+ χ0
i,τi
−Di

)
+

− λcci − λννi

(7)

and stationarity conditions lead to:

∂L
∂νi

= 1− αiλα − λν = 0, (8a)

∂L
∂ci

= λα − λχχci,τi

1
c2
i

− λc = 0, (8b)

while complementary slackness conditions are:

λα (ci − αiνi) = 0, λα ≥ 0, (9a)

t

Figure 3. Hyperbolic jump

λχ

(
χhi,τi

hi + χci,τi

1
ci

+ χ0
i,τi
−Di

)
= 0, λχ ≥ 0, (9b)

λcci = 0, λc ≥ 0, (9c)
λννi = 0, λν ≥ 0. (9d)

Constraint (P3c) requires ci > 0 and, thanks to (P3b),
it also holds νi > 0. Thus, λc = 0 and λν = 0. Now,
equations (8a) and (8b) can be applied to obtain λα > 0 and
λχ > 0. So constraints (P3c) and (P3d) are active in every
optimal solution, whence descend (6a) and (6b).

Since Theorem 4.1 provides optima in closed form for
Problem (P3), it is straightforward to repeat its algebraic
solution for all the pairs class-VM of Problem (P1). The choice
of the preferred VM type whereon to run each class is made
via the comparison of all the relevant optimal values, selecting
by inspection the minimum cost association of classes and VM
types.

4.3 The Optimization Algorithm
The aim of this section is to provide a brief description
of the optimization heuristic embedded in D-SPACE4Cloud.
It efficiently explores the space of possible configurations,
starting from the initial ones obtained via Theorem 4.1.

Since (P3c) is only a preliminary approximation, the very
first step of the procedure is simulating the initial configu-
ration in order to refine the prediction. This step, as well
as all the subsequent ones, is executed in parallel since the
original Problem (P1) has been split into independent sub-
problems. After checking the feasibility of the initial solution,
the search algorithm begins the exploration incrementing the
VM assignment whenever the solution results infeasible, or
decreasing it to save on costs if the current configuration is
already feasible.

In order to avoid one-VM steps, which might lead to a very
slow convergence for the optimization procedure, particularly
when dealing with large clusters, the optimization heuristic
exploits the fact that the execution time of DIAs (as approx-
imated by (P2f)) is inversely proportional to the allocated
resources (see also [15], [22], [28]). Hence, at every iteration
the application execution time is estimated as:

ti =
ai

νi
+ bi, (10)

where ti is the execution time and νi the number of VMs,
whilst ai and bi are obtained by fitting the hyperbola to
the results of the previous steps. Hence, from the second
search step on, ai and bi can be computed using the predicted
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Algorithm 1 Search algorithm
Require: ν0

i ∈ N
1: simulate ν0

i
2: if ν0

i is infeasible then
3: ν1

i ← ν0
i + 1

4: l1i ← ν0
i

5: else
6: ν1

i ← ν0
i − 1

7: u1
i ← ν0

i
8: end if
9: repeat k ← 1, 2, . . .
10: simulate νki
11: update bounds
12: νk+1

i ← f
(
νki , ν

k−1
i

)
13: check νk+1

i against bounds
14: until uki − lki = 1
15: return uki

execution times returned by the performance simulators and
the associated resource allocations. In this way, at every
iteration k it is possible to have an educated guess on the
number of VMs required to meet the deadline Di, as depicted
in Figure 3:

νk+1
i =

ak,k−1
i

Di − bk,k−1
i

. (11)

The proposed optimization algorithm aims at combining
the convergence guarantees of dichotomic search with the
fast exploration allowed by specific knowledge on system
performance, such as equations (10) and (11). Each job class
is optimized separately and in parallel as described in pseudo-
code in Algorithm 1. First off, the initial solution ν0

i , obtained
as outlined in Section 4.2, is evaluated using the simulation
model. Since equation (11) requires at least two points, the
conditional at lines 2–8 provides a second point at one-VM
distance and sets the initial one as lower or upper bound,
according to its feasibility. Then the algorithm iteratively
searches the state space performing simulations and keeping
track of the interval enclosing the optimal solution. Every new
step relies on the hyperbolic function, as shown at line 12.

As has already been mentioned, D-SPACE4Cloud mixes
dichotomic search and domain knowledge about performance
characteristics in order to exploit the best of both worlds.
Fitting a hyperbola to previous results allows for speeding up
the exploration by directing it where the system performance
is expected to be reasonably close to the deadline imposed
as constraint, yet the use of only the latest two simulations,
dictated by convenience considerations, might hamper con-
vergence with oscillations due to inaccuracies. This issue is
addressed by recording the most resource hungry infeasible
solution as lower bound, lki , and the feasible configuration
with fewest VMs as upper bound, uki . Hence, at line 11, if
νki turns out to be feasible, then it is assigned to uki , otherwise
to lki . Furthermore, every new tentative configuration νk+1

i

predicted at line 12 must belong to the open interval
(
lki , u

k
i

)
to be relevant: at line 13 the algorithm enforces this behavior,
falling back to the mid point when this property does not hold.

Now, given the monotonic dependency of execution times
on the number of assigned computational nodes, the stopping
criterion at line 14 guarantees that the returned configuration
is the provably optimal solution of the inner, separate Prob-
lem (P2) for class i. In other words, the joint selection of the

S0 S1 S2
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S5

S4

S6

(a) Q26

S0

S1

S4S3

S2

(b) Q52

S0

S1

S2

S5

S3

S4

S6

(c) Q40

Figure 4. Spark queries DAGs

VM type and their number is NP-hard, but when the type of
VM is fixed in the first phase, the discussed heuristic obtains
the final solution for all classes in polynomial time.

5 Experimental Analysis
This section presents the results of an extensive experimental
campaign aimed at validating the proposed approach.3 All
these experiments have been performed on two Ubuntu 14.04
VMs hosted on a server equipped with an Intel Xeon E5530
2.40 GHz microprocessor. The first VM ran D-SPACE4Cloud
and dagSim, with 8 virtual CPUs and 12 GB of RAM. The
second one, instead, ran JMT 0.9.3, with 2 virtual CPUs and
2 GB of RAM.

The analysis is structured as follows: Section 5.1 de-
scribes the experiment settings, while Section 5.2 introduces
Ernest [22], an alternative solution provided by the literature
for Big Data cluster sizing, which is considered as reference.
Section 5.3 validates the simulation models against the per-
formance of real clusters, Section 5.4 presents a comparative
study on outcomes obtained by varying the problem param-
eters, thus identifying the potential savings of the proposed
approach. Section 5.5 is devoted to assess the quality of
solutions returned by D-SPACE4Cloud and to provide a
quantitative comparison with Ernest. Finally, the scalability
of the presented approach is studied in Section 5.6.

5.1 Experimental Setup
To profile Big Data applications and compare with simulator
results, real measures have been collected by running SQL
queries on Apache Hive4 on MapReduce and Apache Spark.5
The industry standard TPC-DS6 benchmark dataset genera-
tor has been exploited to create synthetic data at scale factors
ranging from 250 GB to 1,000 GB.

s ?? and ??, available in the Appendix, show the consid-
ered queries: R1, R3, Q26, Q40, and Q52. R1 and R3 are hand-
crafted so as to have exactly one map and one reduce stage
when run on Hive, thus constituting examples of MapReduce
jobs. On the other hand, Q26, Q40, and Q52 belong to the
TPC-DS benchmark. These queries have been executed on
SparkSQL, yielding the DAGs depicted in Figure 4.

3. Supporting data is available on Zenodo: https://doi.org/10.
5281/zenodo.1299775.

4. https://hive.apache.org
5. https://spark.apache.org
6. www.tpc.org/tpcds/

https://doi.org/10.5281/zenodo.1299775
https://doi.org/10.5281/zenodo.1299775
https://hive.apache.org
https://spark.apache.org
www.tpc.org/tpcds/
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Since profiles are meant to statistically summarize jobs’
behavior, the profiling runs have been performed at least
twenty times per query to reduce the effect of outliers and the
overall variance. Properly parsing the logs allows to extract
all the parameters needed to build the query profile as, for
instance, average and maximum task execution times, number
of tasks, etc. Profiling has been performed on Amazon EC2,
by considering m4.xlarge instances, on Microsoft Azure, with
A3, A4, D12v2, D13v2, or D14v2 VMs, and on PICO,7 the Big
Data cluster provided by CINECA, the Italian supercomput-
ing center. In addition, there is also a set of profiles obtained
on an in-house cluster based on IBM POWER8 processors,
available at Politecnico di Milano.

The cluster created in EC2 is composed of 30 computa-
tional nodes, for a total of 120 vCPUs hosting 240 YARN
containers, whilst on PICO up to 120 cores configured to host
one container per core have been used. As far as Azure is
concerned, clusters of variable sizes have been provisioned,
reaching up to 26 dual-core containers. The POWER8 de-
ployment includes four worker VMs with 11 cores and 60 GB
RAM each, plus one similarly configured master node, for a
total of 44 CPUs available for computation. Spark executors
have been configured with 2 cores and 4 GB RAM, while 8 GB
have been allocated to the driver. In the EC2 case, every
container has 2 GB RAM and on Cineca 6 GB, whereas on
Azure containers feature 2 GB for A3 machines, 8 GB for
A4 and D12v2, 40 GB for D13v2, and 90 GB for D14v2.
Along with the profiles, it was also possible to collect lists
of task execution times to feed the replayer in JMT service
centers or dagSim stages. In the end, the different VM types
characteristics have been recorded.

Our previous work [18] shows that GreatSPN, a tool based
on SPNs, can reach a slightly higher accuracy than JMT at the
expense of quite longer simulation times, thus here we do not
consider it as simulator to achieve shorter optimization times.
The cited work also highlights that MapReduce and Spark
stages tend to follow Erlang distributions, whose coefficient of
variation is small.

5.2 Comparison with an Alternative Method
With the aim of proving the soundness of the approach
implemented in our tool, we have identified a state-of-the-
art solution, Hemingway [21], for a problem that bears many
similarities with the one addressed in this work. Hemingway
harnesses ML performance models and Bayesian optimization
to converge to the optimal configuration for recurrent jobs.
A recurrent job is an application always executed within the
same time limit. Compared to the method discussed in this
paper, Hemingway has some serious limitations that prevent
its direct application to our problem: i) it only considers
single user scenarios, and ii) it must be applied fixing the
application and service level agreements (SLAs). Neverthe-
less, the underlying performance model, obtained by relying
on the Ernest [22] framework, can still be used to create an
alternative algorithm suitable for the comparison. However,
since the model itself is valid only for the single-user case, this
is the scenario considered in the following comparisons.

Ernest’s authors propose to apply nonnegative least
squares fitting for learning a performance model of the form:

7. www.hpc.cineca.it/hardware/pico

t = θ0 + θ1
s

m
+ θ2 log (m) + θ3m, (12)

where t is the execution time, s the input data size, and
m the number of allocated machines. Each of the variable
terms serves the purpose of modeling a specific common com-
munication/computation pattern implemented in distributed
applications: namely, the term in θ1 relates to data-parallel
processing—for example map stages, whilst the logarith-
mic term models tree-shaped aggregation—typical of reduce
stages, and θ3m highlights communication targeting only one
sink node—such as the collect action in Spark.

Further, Ernest’s authors propose a methodology to train
the model based on optimal design of experiment, yet to
maximize the fairness of the comparison, we used the same
training dataset of D-SPACE4Cloud’s internal SVR model,
which is very fine-grained and includes a very large set of
experiments on real clusters where the system configuration
varies with two-core steps for every platform. In this way,
model learning happens with an abundance of data, so as not
to impair the baseline.

After applying the learned model to predict performance
across the whole range of possible machine allocations (by
increasing m with step 1 starting from 1 to a maximum
value such that the prediction obtained from (12) is lower
than the target deadline Di, for each candidate VM type),
the optimal configuration is obtained by inspection, that is
taking the minimum cost configuration whose predicted time
is feasible, i.e., shorter than the imposed deadline. Adopting
this approach, it is possible to determine the global optimum
associated with the (Ernest-based) baseline model. Similarly,
using measurements on the real system it is possible to estab-
lish by inspection the minimum cost configuration that meets
a given deadline.

5.3 Simulation Models Validation
To start off with, here are presented results for the valida-
tion of the different performance models, parametrized using
information and measurements from the real systems they
aim at mimicking. The simulated model metrics (obtained
through dagSim or Ernest’s ML model) are compared to
measurements, in order to assess accuracy. Specifically, the
quality index used in the comparison is the signed relative
error on the prediction of execution times, defined as follows:

ϑ =
τ − T
T

(13)

where τ is the execution time obtained through performance
prediction, whilst T is the average measurement over twenty
runs. Such a definition allows not only to quantify the relative
error on execution times, but also to identify cases where the
predicted time is smaller than the actual one, thus leading to
deadline misses. Indeed, if ϑ < 0 then the prediction is not
conservative.

The Appendix details the experimental campaign for per-
formance models validation. These experiments are single user
scenarios with a query repeatedly running on a dedicated
cluster and a 10 s average think time. Every table details
experiments with the relevant query, the allocated cores, the
overall number of tasks to complete, as well as the mean

www.hpc.cineca.it/hardware/pico
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Figure 5. Query R1, two concurrent users

execution time T across twenty runs, the corresponding stan-
dard deviation sT , obtained as square root of the unbiased
estimator for variance, and the errors obtained with dagSim
(ϑd) and Ernest (ϑe). s ?? and ?? report the results for dagSim
models on the 500 GB dataset, with two different Azure VM
types. Since all these experiments have a single user, it is
possible to compare dagSim’s results to the baseline model
described in Section 5.2. The worst case error is −19.02%
for dagSim and 18.53% when using Ernest, while on average
errors settle at 3.05% for the former and 5.05% for the latter.
Analogously, s ??, ??, ?? and ?? report the comparison of
dagSim and Ernest with the deployment on IBM POWER8
machines and across all scale factors, considering Q40. Here
dagSim reaches a worst case error of 6.01% against the 38.33%
scored by Ernest, whilst the average errors are, respectively,
1.02% and 9.46%. Notice that, in this case, the model in (12) is
not accurate enough, hence the further term θ4s

2m−1 is added
to improve accuracy. This particular term is mentioned in the
original publication [22] as another contribution that might be
needed for some workloads. In general, it is possible to observe
in all the tables that dagSim mostly produces errors on the
same scale as the measured standard deviation, fact that does
not always apply to the baseline model. Similar results for
QNs (14.13%) and SPNs (9.08%) models, considering multiple
users, can be found in [18].

5.4 Scenario-based Experiments
The optimization approach described in Section 4 needs to be
validated to assess its capability of catching realistic behaviors
as one can reasonably expect of the system under analysis.
This property is tested with a set of assessment instances
where all the problem parameters but one are fixed, so as
to verify that solutions follow an intuitive evolution.

The main axes governing performance in Hadoop or Spark
clusters hosted on public Clouds are the level of concurrency
and the deadlines. In the first case, increasing hi and fixing all
the remaining parameters, it is reasonable to expect a need for
more VMs to support the higher workload, eventually leading
to increased leasing costs. If the deadlines Di tighten keeping
the hi unchanged, however, the optimal configuration should
show increased costs anew as the system should require a
higher parallelism to shrink execution times.

For the sake of clarity, in this section are reported single-
class experiments in order to ensure an easier interpretation
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of the results. Figures 5, 6 and 7 show the solutions obtained
with the 250 GB dataset on MapReduce queries using the
JMT simulator. The average running time for each experiment
is around two hours. All the mentioned figures show the cost
in e/h plotted against decreasing deadlines in minutes for
both the real VM types considered as candidate, namely,
CINECA, the 20-core node machine available on PICO, and
m4.xlarge, the 4-core instance available on Amazon AWS. In
Figures 5 and 6 the expected cost increase due to tightening
deadlines is apparent for both query R1 and R3. Further, in
both cases it is cheaper to provision a cluster consisting of the
smaller Amazon-offered instances, regardless the deadlines.
Interestingly, R1 shows a different behavior when the required
concurrency level increases from two to five users. Figure 7
shows that, as the deadlines tighten, it is possible to identify a
region where executing the workload on larger VMs becomes
more economic, with a 27.8% saving.

Figures 8 and 9 show the behavior of several Spark runs
on the 500 GB dataset using the dagSim simulator. Q40 with
ten users exhibits a straightforward behavior: D13v2 instances
always lead to cheaper deployments. In order to quantify
monetary savings, the ratio of the difference between costs
over the second cheapest alternative has been computed. With
this metric, D13v2 yields an average percentage saving around
23.1% for Q40, hence this VM type proves to be the cheapest
choice by a reasonable margin. Single-user Q52, conversely,
provides a more varied scenario. As shown in Figure 10 for
clarity, two VM types, namely, A3 and D12v2, alternate
as the cheapest deployment when the deadline varies. This
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figure reports the percentage savings gained by the cheapest
deployment choice in comparison to the second cheapest. By
identifying the proper alternative, it is possible to obtain
an average saving around 19.3% over the considered range
of deadlines, whereas the maximum saving is about 36.4%.
Finally, Figure 11 shows the results of a multi-user experiment
over the 500 GB dataset. All the other parameters fixed,
among them query Q26 and a deadline of 20 minutes, the
required concurrency level varies between 1 and 10 users
with step 1. The figure, accordingly, plots hourly operational
costs against concurrency levels. In this experiment the D12v2
instances prove in every case to be the better choice, with an
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average 30.0% saving in comparison to the second cheapest
deployment.

In terms of execution times, D-SPACE4Cloud has carried
out the whole optimization procedure for Spark experiments
within minutes. All the running times are in the range
[24, 560] s, with an average of 125.98 s. In these cases the
search algorithm runs much faster due to the performance
gain allowed by dagSim, which has been used for the Q
queries.

Overall, these results provide a strong point in favor of
the optimization procedure implemented in D-SPACE4Cloud,
as they prove that making the right choice for deployment
can lead to substantial savings throughout the application life
cycle. Suffice it to think that Microsoft Azure suggests VMs
of the D11–15v2 range for memory intensive applications,
such as analytics on Spark or distributed databases, whilst
these results highlight that, under many circumstances, even
the most basic offerings in the A0–4 range can satisfy QoS
constraints with a competitive budget allocation. On top of
this, D-SPACE4Cloud can also determine the optimal number
of VMs to use in order to meet the QoS requirements, which
is a nontrivial decision left to users.

5.5 Solution Validation in a Real Cluster Setting
A further experiment is aimed at assessing the quality of the
optimized solution obtained using D-SPACE4Cloud. Given a
query and a deadline to meet, the considered quality index is
the relative error on allocated cores. Formally:

ε =
cp − cr

cr , (14)

where cp is the optimal number of cores returned by D-
SPACE4Cloud and cr the actual optimum obtained by in-
spection from measurements on the real system. With this
definition, when the optimizer assigns too scarce resources the
error is negative.

As in Section 5.3, here is a comparison of the re-
sults obtained via D-SPACE4Cloud and dagSim (εd) against
Ernest [22] (εe). As previously discussed, since Ernest provides
a formula, it is possible to obtain the minimum cores feasible
configuration by inspection.

Table 3 considers six cases, varying deadline and query,
and lists the optimal resource assignment to meet the QoS
constraints on D12v2 instances with a 500 GB scale factor.
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Table 3
Optimizer single class validation, D12v2

Query D [ms] cr εd [%] εe [%]

Q26 180, 000 48 0.00 16.67
Q52 180, 000 48 0.00 0.00
Q26 240, 000 40 −10.00 0.00
Q52 240, 000 40 −10.00 −10.00
Q26 360, 000 24 0.00 16.67
Q52 360, 000 24 0.00 0.00

Table 4
Optimizer single class validation, IBM POWER8

Query D [ms] cr εd [%] εe [%] εe′ [%]

Q40 2,537,015 6 0.00 0.00 33.33
Q40 1,905,821 8 0.00 −25.00 25.00
Q40 1,566,992 10 0.00 −20.00 20.00
Q40 1,337,868 12 0.00 −16.67 16.67
Q40 1,165,666 14 0.00 −28.57 28.57
Q40 1,044,557 16 0.00 −25.00 25.00
Q40 964,752 18 0.00 −22.22 22.22
Q40 902,173 20 0.00 −30.00 10.00
Q40 854,692 22 0.00 −27.27 9.09
Q40 812,298 24 0.00 −33.33 8.33
Q40 784,445 26 −7.69 −38.46 0.00
Q40 763,447 28 −7.14 −35.71 0.00
Q40 743,283 30 −6.67 −40.00 −6.67
Q40 726,324 32 −6.25 −43.75 −6.25
Q40 718,641 34 −11.76 −47.06 −11.76
Q40 696,641 36 −5.56 −50.00 −16.67
Q40 687,299 38 −10.53 −47.37 −15.79
Q40 664,080 40 0.00 −50.00 −20.00
Q40 662,526 42 −4.76 −52.38 −23.81
Q40 663,823 44 −9.09 −54.55 −27.27

Every row shows the relevant query and deadline, the opti-
mal number of cores, and the percentage errors with both
alternatives. The two methods prove accurate, with relative
errors that always remain below 20%, on average 3.33% for
D-SPACE4Cloud and 7.22% for Ernest.

Table 4, on the other hand, reports an extensive compar-
ison over the full range of experiments run on the internal
cluster based on IBM POWER8 processors for query Q40. In
particular, the table shows results obtained at a 1000 GB scale
factor, with deadlines set at the mean execution times (a.k.a.
response times [27]) measured on the real system. In this
case, Ernest with the basic feature set widely underestimates
the optimal resource allocation across the board. In order
to obtain a fair comparison, the column marked εe′ lists
the errors yielded by the Ernest model tweaked using the
additional feature provided by the squared scale factor divided
by the number of cores, at which the authors of Ernest hint
in their paper, stating that for some workloads it is useful.
This analysis shows that the proposed approach exploiting D-
SPACE4Cloud and dagSim attains a better accuracy than the
baseline, with an average relative error of 3.47% instead of
the 16.32% obtained by Ernest with the additional feature, or
34.37% when this is not used. The worst value for the error is
also lower, −11.76% against 33.33% obtained by the improved
Ernest model.

At last, Table 5 presents the results for a multi-class
instance on D14v2 VMs. Three different queries subject to
the same deadline are executed on a shared cluster of three

Table 5
Optimizer multi-class validation, D14v2

Query D [ms] Cores R [ms] ζ [%]

Q26 720,000 16 533,731 25.87
Q40 720,000 16 530,122 26.37
Q52 720,000 16 562,625 21.86
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Figure 12. Execution time for varying number of classes and users

worker nodes (as mandated by the optimal solution returned
by D-SPACE4Cloud), for a total of 48 cores under a work
conserving scheduling policy. Under this scheduling policy,
resources can be borrowed from other classes during their
idle time, so the accuracy metric adopted in this scenario
is the relative error of measured execution times against the
deadline (ζ): the worst case result is 26.37%, with an average
of 24.70%.

5.6 Scalability Analysis
This section reports the analysis over the times taken to
obtain the optimized solution for instances of increasing size,
both in terms of number of classes and aggregated user count.
All these runs harness dagSim as simulator and Azure D14v2
VMs as target deployment.

The experiment considers three different queries, namely,
Q26, Q40, and Q52, varying the deadline between five minutes
and one hour with a five-minute stride, to obtain 12 sets of
three distinct classes. Thus, there are Q26, Q40, and Q52 with
deadline 60 minutes, then the same three queries all with a
deadline of 55 minutes, and so on. The instances are then
created cumulatively joining the three-class sets following
decreasing deadlines. For example, the configuration with
three classes has D = 60 minutes, the second instance with
six classes collects D ∈ {60, 55} minutes, the third one adds
D = 50, and so forth. This test instance generation has been
repeated with a required level of concurrency ranging from 1
to 10 users, but without mixing classes with different hi, that
is in any given instance ∀i ∈ C, hi = h̄. In this way, a
total of 120 different test instances have been generated with
varying number of classes and overall concurrent users: classes
range between 3 and 36, while the aggregate number of users
from 3 to 360.

Figure 12 shows the results of this experiment. The plot
represents the mean execution time of D-SPACE4Cloud at
every step. The number of users is per class, thus, for example,
the configuration (24, 4) totals 96 users subdivided into 24
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distinct classes with concurrency level 4. Overall, the average
processing time ranges from around 40 minutes for three
classes up to 12 hours for 36 classes. On the other hand,
the best single instance, which needs only three minutes, is
with three classes and one user each, while the longest running
takes 16 hours and a half to optimize 36 classes of 9 users.

The reported results show how D-SPACE4Cloud can solve
the capacity allocation problem for Cloud systems in less than
one day, which is a reasonable time span for design time
considerations. Furthermore, current best practices discour-
age hosting as many as 36 application classes and 360 users
on a single shared cluster, hence several of the considered
instances could be considered one order of magnitude larger
than nowadays production environments.

6 Related Work
Capacity planning and architecture design space exploration
are important problems addressed in the literature [32], [33].
High level models and tools to support software architects
(see, e.g., Palladio Component Model and its Palladio Bench
and PerOpteryx design environment [34], [35], or stochastic
process algebra and the PEPA Eclipse plugin [36], [37]) have
been proposed to identify optimized configurations given a set
of QoS requirements for enterprise Web-based systems, but
unfortunately they do not support Cloud-specific abstractions
or directly address the problem of deriving an optimized
Cloud and Big Data cluster configuration [38].

Sun et al. [39] propose ROAR, a tool to automatically
benchmark Cloud resources in order to deploy multi-tiered
Web applications in the most cost-effective way, yet avoid-
ing QoS violations. Another approach is proposed in [40],
where the authors use integer linear programming (ILP) to
determine the optimal placement of Web components in the
Cloud, pursuing high availability. Their approach consistently
shortens the overall downtime compared to the OpenStack
default scheduler, which is not availability-aware. Frey et
al. [41] consider the problem of deploying existing applications
in the Cloud rather than on premises. In order to find out
the most fitting configurations, they adopt a simulation-based
genetic algorithm and derive a Pareto front, according to
costs, response times, and SLA violations.

Techniques specifically devised for Big Data workloads
belong to two major categories depending on whether they
are applied at design or run time. In the following, related
works are organized according to this criterion.

6.1 Design Time Approaches
The problem of job profiling and execution time estima-
tion represents a common issue in the Big Data literature.
Verma et al. [42] propose a framework for the profiling and
performance prediction of Hadoop applications running on
heterogeneous resources. An approach to this problem based
on closed QNs is presented in [43]. This work is noteworthy
as it explicitly considers contention and parallelism on com-
pute nodes to evaluate the execution time of a MapReduce
application. However, the weak spot of this approach is that
it contemplates the map phase alone. Vianna et al. [44] have
worked on a similar solution; however, the validation phase
has been carried out considering a cluster dedicated to the
execution of a single application at a time.

A novel modeling approach based on mean field analysis,
able to provide fast approximate methods to predict the
performance of Big Data systems, has been proposed in [45].
Machine learning black box models are becoming also popular
to predict the performance of large scale business analytics
systems. Ernest [22] is a representative example of these
approaches. The authors use experiment design to collect a
reduced number of training points. In the experimental analy-
sis the authors use Amazon EC2 and evaluate the accuracy of
the proposed approach using several ML algorithms that are
part of Spark MLlib: their evaluation shows that the average
prediction error is under 20%. As previously discussed, this
work is used as baseline for the evaluation of our proposal.
Alipourfard et al. [10] present CherryPick, a black box system
that leverages Bayesian optimization to find near-optimal
Cloud configurations that minimize Cloud usage costs for
MapReduce and Spark applications. The authors’ approach
also guarantees application performance and limits the over-
head for recurring Big Data analytics jobs, focusing the search
to improve prediction accuracy of those configurations that
are close to the best for a specific deadline.

Similar to our work, the authors in [46] provide a frame-
work facing the problem of minimum costs provisioning of
data analytics clusters in Cloud environments. The cost model
includes resource costs and SLA penalties, which are propor-
tional to the deadline violations. Execution times of queries
are predicted through QN models, which introduce up to 70%
percentage error, though. The minimum cost configuration
is chased through two greedy hill climbing heuristics, which
can identify heterogeneous clusters, yet no guarantees on the
quality of the solution can be provided.

In [28] the authors investigate a mixed analytical/ML
approach to predict the performance of MapReduce clusters,
harnessing QNs to generate a knowledge base (KB) of syn-
thetic data whereon a complementary SVR model is trained.
The initial KB is then updated over time to incorporate real
samples from the operational system. Such method has been
recently extended to model also Spark and is the approach
used for building the ML models discussed in Section 4.
Zhang et al. [47] investigate the performance of MapReduce
applications on Hadoop clusters in the Cloud. They consider
a problem similar to the one faced in this work and provide
a simulation-based framework for minimizing cluster infras-
tructural costs.

In [15] the ARIA framework is presented. This work fo-
cuses on clusters dedicated to single-user classes handled by
the FIFO scheduler. The framework addresses the problem of
calculating the most suitable amount of resources to allocate
to map and reduce tasks in order to meet a user-defined
due date for a certain application; the aim is to avoid as
much as possible costs due to resource over-provisioning. The
same authors, in a more recent work [4], provide a solution
for optimizing the execution of a workload specified as a
set of DAGs under the constraints of a global deadline or
budget. Heterogeneous clusters with possible faulty nodes are
considered as well.

6.2 Run Time Approaches
Big Data frameworks often require an intense tuning phase in
order to exhibit their full potential. For this reason, Starfish,
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a self-tuning system for analytics on Hadoop, has been pro-
posed [48]. In particular, Starfish collects some key run time
information about applications execution with the aim of
generating meaningful application profiles; such profiles are,
in turn, the basic elements exploited for Hadoop automatic
configuration processes. Furthermore, also the cluster sizing
problem has been tackled and successfully solved exploiting
the same tool [49]. More recently, Dalibard et al. [50] have
presented BOAT, a gray box framework, which supports
developers to build efficient auto-tuners for their systems,
in situations where generic auto-tuners fail. BOAT is based
on structured Bayesian optimization and has been used to
support the performance tuning of Cassandra clusters and of
GPU-based servers for neural network computation.

MapReduce scheduling is considered in [14]. The authors
propose a tandem queue with overlapping phases to model
the execution of the application and an efficient run time
scheduling algorithm for the joint optimization of the map
and copy/shuffle phases. The authors demonstrate the ef-
fectiveness of their approach comparing it with the offline
generated optimal schedule. Phan et al. [51] recognize the
inadequacy of Hadoop schedulers released at the time of their
writing in properly handling completion time requirements.
The work proposes to adapt some classical multiprocessor
scheduling policies to the problem; in particular, two versions
of the earliest deadline first heuristic are presented and proved
to outperform off-the-shelf schedulers. A similar approach is
proposed in [47], where the authors present a solution to
manage clusters shared among Hadoop applications and more
traditional Web systems. Another recent contribution ad-
dresses the scheduling of long-running applications in shared
clusters [52]. The authors couple a task-based scheduler, to
cope with short jobs, and an ILP formulation that takes
care of scheduling long-running applications while minimizing
costs and violations of placement constraints, thus achieving
up to 32% shorter median execution time in comparison to
a baseline constraint-aware scheduler. The authors in [53]
provide a run time framework for the management of large
Cloud infrastructures based on collaborative filtering and
classification, which supports run time decision of a greedy
scheduler. The overall goal is to maximize infrastructure
utilization while minimizing resource contention, taking into
account also resource heterogeneity. The same authors have
extended their work in [54], supporting resource scale-out
decisions (i.e., determining if more servers can be beneficial
for an application) and server scale-up (i.e., predicting if more
resources per server are beneficial) for Spark and Hadoop
applications. The authors demonstrate that their framework
can effectively manage large systems, improving significantly
infrastructure utilization and application performance. Even
if their collaborative filtering approach requires to gather little
data from the running applications, it requires a significant ef-
fort to initially profile the baseline benchmarking applications
used to predict the effects of, e.g., resource contention and
scale up/out decisions at run time: the exhaustive profiling
of 30 workload types running from 1 to 100 nodes.

In the streaming research field, Hochreiner et al. [55]
propose a Platform for Elastic Stream Processing that aims
for the run time management of a stream processing engine
deployed on multiple Clouds. Their architecture makes use
of an optimization problem to adapt allocated resources to

incoming data volume while minimizing operational costs; in
this way, they achieve a 20% monetary saving at the expense
of 28% SLA violations. Heinze et al. [56] propose a different
approach to stream elasticity. Building upon threshold-based
scaling techniques, they devise a method to automatically
optimize their parametrization, in order to minimize running
costs without sacrificing QoS. The experiments show that they
can obtain, on average, the same number of violations with a
19% cost saving compared to a fixed configuration baseline.

7 Conclusions
This paper proposes an effective tool for capacity planning of
YARN managed Cloud clusters to support DIAs implemented
as MapReduce or complex DAG-based Apache Spark applica-
tions. A MINLP formulation based on ML models has been
developed, and its initial solution is iteratively improved by a
sim-heuristic optimization algorithm able to accurately assess
application performance under different conditions. In this
way, the tool is able to achieve a favorable trade-off between
prediction accuracy and running times.

A comprehensive experimental validation has proved how
the tool is a valuable contribution towards supporting dif-
ferent application classes over heterogeneous resource types.
Moreover, situations where choosing the best VM type is not
trivial have been highlighted and discussed. In these cases,
sticking to small instances and scaling out proves to be less
economic than switching to more powerful VMs that call for
a smaller number of replicas: the decreased replication factor
compensates the increased unit price in a not obvious way.
Unfortunately, this is not always true and making the right
choice can lead to substantial savings throughout the applica-
tion life cycle, up to 20–30% in comparison with the second
best configuration. Finally, a comparison with an alternative
method based on state of the art proposals demonstrates how
our solution is able to identify more accurate solutions (with
an average percentage error of about 3% on the number of
cores with respect to 7–16%).

Future work will extend D-SPACE4Cloud to support the
resource provisioning of continuous applications that integrate
batch and streaming workloads. Moreover, the run time clus-
ter management scenario will be addressed, with more strin-
gent constraints on the optimization times that impose the
use of different, less time-consuming performance prediction
techniques.
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