

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/123573

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/123573
mailto:wrap@warwick.ac.uk

A Power Consumption Model for Cloud Servers
Based on Elman Neural Network

Wentai Wu, Weiwei Lin, Ligang He, Member, IEEE, Guangxin Wu, and Ching-Hsien Hsu, Senior

Member, IEEE

Abstract — Leveraging power consumption models in software systems can achieve easy deployment of low-cost, high-

availability power monitoring in cloud datacenters that are usually large-scale, heterogeneous and frequently scaling up.

However, traditional regression-based power consumption models generally have two drawbacks. First, their mathematical

forms are usually fixed and determined a priori. This may cause unacceptable increase of error or over-fitting as the power

signatures of cloud servers are usually uncertain. Second, the characteristic of workload dispatched to cloud servers is

constantly changing while regression-based models can hardly generalize to a wide range of servers and workload types. As a

novel solution, we in this paper propose a server power consumption model based on Elman Neural Network (PCM-ENN),

aiming to allow accurate and flexible power estimation. PCM-ENN is an end-to-end black box model capable of learning the

temporal relation between samples in a time series of power consumption. We trained and evaluated PCM-ENN on two power

sequence datasets collected from heterogeneous hardware and operating systems running quasi-production benchmarks like

CloudSuite. Experimental result shows that PCM-ENN generated accurate estimates on server power consumption with only

small errors, outperforming widely-used linear regression model and NARX model in terms of accuracy.

Index Terms — Cloud servers; Cloud datacenters; Power time series; Power consumption models; Elman neural network

——————————  ——————————

1 INTRODUCTION

HILE cloud computing is still gaining increasing
popularity around the world, excessive electricity

consumption by cloud datacenters has become a promi-
nent issue and drawn a lot of concern. Statistics shows
that the annual electricity consumed by datacenters in the
USA already reached 91 billion kilowatt-hours, while the
figure is projected to soar to as high as 140 billion kWh in
2020 [1]. Over-consumption of energy certainly makes
negative impacts on the development of cloud compu-
ting, bringing about problems such as increasing opera-
tion cost and adverse effects on environment.

Implementation of fine-grained power monitoring sys-
tems is the very foundation for realizing energy-aware
power provisioning and management. Emerson’s report
in North America reveals that 51% of respondents cited
adequate monitoring/ datacenter management capabili-
ties among their three biggest concerns [2]. Traditionally,
server power is measured using external metering devic-
es or dedicated data acquisition interfaces. For instance,
IBM PowerExecutive [30] is a plug-in tool for gaining as

well as capping actual power consumption of servers
under the specified architecture – System X. Hardware
(e.g., sensors) power measuring can be the best option for
homogeneous datacenters but is hardly a solution for
heterogeneous ones such as legacy systems and cloud
datacenters [28][29]. The main reasons are but not limited
to expensiveness, poor scalability [3] and coarse granu-
larity. By contrast, power monitoring systems built on
software are able to support fine-grained, low-cost, easy-
to-extend monitoring in a cloud system that can be high-
ly heterogeneous and constantly scaling [29]. The core of
software power monitoring is the pre-built power con-
sumption model, which is defined as one or multiple
functions that map system performance related metrics to
system power or energy consumption [4]. Power con-
sumption model takes as input one or several metrics
(features) at different sampling granularities (e.g., OS
level and processor level), outputs estimated values of
power (for an instant) or energy consumption (for a peri-
od). Power model is not only used for monitoring pur-
poses, but also provides important guidance for energy-
aware resource provisioning [5][39][41], capping [38] and
scheduling [6][7][40]. For example, Shen et al. [38] pro-
posed “power container”, which is a novel operating sys-
tem facility that accounts for and controls the power and
energy usage of every single task on multi-core systems.
One of the key techniques in their work is an online,
adaptive power model for capturing the power consump-
tion of concurrent tasks. Niu et al. [8] implemented an
energy-aware scheduling framework named GreenMR.
The authors introduce the execution time models and
power consumption models for Map phase and Reduce
phase, separately. The models are used to profile the total

W

————————————————

 W. Wu and L. He are with the Department of Computer Science, Universi-
ty of Warwick, Coventry, CV4 7AL, United Kingdom. E-mail: {wentai.wu,
ligang.he}@warwick.ac.uk.

 W. Lin (corresponding author) is with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510006,
China. E-mail: linww@scut.edu.cn.

 W. Wu and G. Wu are with the School of Computer Science and Engineer-
ing, South China University of Technology, Guangzhou 510006, China. E-
mail: {cswuwt, cswgx1nfinite}@mail.scut.edu.cn.

 C.-H. Hsu is with the Department of Computer Science and Information
Engineering, Chung Hua University, 707, Sec. 2, WuFu Rd, Hsinchu 300,
Taiwan. E-mail: chh@cs.ccu.edu.tw.

run time and energy consumption jobs in a given re-
source configuration.

Previous studies mainly used regression-based meth-
ods to build power consumption models. The most wide-
ly adopted approach is linear regression because of its
good interpretability and simplicity in training [9]. For
example, Hsu and Poole [10] investigated a number of
regression-based power consumption models which are
all functions of CPU utilization. Lin et al. [11] surveyed
mainstream component-level power models and evaluat-
ed their accuracy in experiment using regression analy-
sis. Whereas regression models are commonly adopted,
they have outstanding deficiencies. First, using fixed
forms limits their ability to generalize to a diversity of
server power curves. Second, they can hardly support
incremental training whilst cloud infrastructures are up-
grading fast. Third, temporal relation between time-
series records (samples of power consumption in a time
series) is neglected in regression models.

More and more studies on time-series processing
begin to adopt Artificial Neural Network (ANN), but
most of them focus on predicting power or workload in
the future. For example, we have seen promising results
in predicting workload using ANN or its improved
forms [12][13][14]. ANN is complex but allows flexible
training and more possibilities in model optimization,
providing an entirely different way to build and train
power consumption models that are suitable for cloud
servers. In this paper, we propose to leverage artificial
neural network and find the proper form of it to build the
power consumption model for cloud servers. Fig. 1
demonstrates a software power monitoring framework
applied to a cloud system where power models are ap-
plied to heterogeneous cloud servers. The models are
trained on historical datasets collected from correspond-
ing types of cloud servers.

Fig. 1. The proposed framework of power monitoring using power
consumption models in cloud datacenters.

Training data for each model is server-specific, where-

as different servers with identical hardware can share a
same power consumption model, which largely reduces
the number of models needed. In particular, we take ad-
vantage of neural network to improve power models’
accuracy, enable incremental training, and enhance their
ability to generalize what it learned. Moreover, we in this
paper explore the temporal correlation between consecu-
tive power records using a simple recurrent structure.
We summarize the main contributions of our work as
follows:

1. Based on the fundamental requirements of a pow-
er monitoring system, we first introduce a number
of ANN architectures that can be applied to pow-
er estimation after training on time-series data set.
We further summarize their advantages and limi-
tations.

2. We propose a server power consumption model
based on Elman Neural Network (PCM-ENN),
which is able to learn the temporal impact from
previous power consumption and make real-time
estimation.

3. We trained PCM-ENN on mixed datasets contain-
ing multiple types (CPU-intensive, memory-
intensive and I/O-intensive) of workload, and
evaluated it on test datasets obtained by running a
production benchmark suite. Experimental result
on two completely heterogeneous servers shows
that PCM-ENN is more accurate than linear re-
gression model, NARX model and the monitoring
software Joulemeter.

The rest of this paper is organized as follows. Section 2
introduces related work on prediction models and power
models based on ANN. Section 3 summarizes a number of
ANN structures that can be applied to processing power
sequence. We present the proposed server power model
based on ENN in section 4 and show evaluation results in
section 5. Finally we conclude the paper in section 6.

2 RELATED WORK

Lin et al. [3] in their paper categorize power measuring
methods into four classes: direct metering by hardware
devices, power estimation using power consumption
models, power measuring in virtualized environment,
and simulation-based power estimation. They also figure
out that traditional power metering with external devices
or dedicated acquisition systems (e.g., IBM Active Energy
Manager [15]) is not feasible in large-scale and heteroge-
neous datacenters mainly due to the problem of hard-
ware compatibility.

Software monitoring systems built on power con-
sumption model has the advantages of low deployment
cost, high scalability and fine granularity [28], and they
are also applicable to estimating the power of virtual ma-
chines [42] and containers. For instance, Joulemeter [16],
a power monitoring tool developed by Microsoft, works
on the basis of several component power models. The
widely-used simulation framework CloudSim [17] uses

 3

pre-defined models to emulate cloud servers’ power con-
sumption. Software-based accounting can also be applied
to Non-IT units at the granularity of virtual machine [43].
Dayarathna et al. [18] in their paper discuss power mod-
els at different levels of granularity from single compo-
nents to a whole datacenter entity, and figure out that a
well-designed model should be six features including
accuracy, speed, generality, portability, inexpensiveness,
and simplicity. Based on component-level power models,
Lin et al. [19] developed a distributed power consump-
tion monitoring tool named EnergyMeter. Their work
adopts a white box approach of power modeling and is
based on a multi-component system model. They pro-
posed to use three separated, independent component
power models to estimate CPU, memory and disk’s pow-
er, and combine them with the system idle power to ob-
tain the estimate of the whole computer’s power. Similar
to Joulemeter, the solution is light-weight (because it only
needs to track utilizations) and provides fine-grained
power monitoring. However, a disadvantage of it is that
multiple power models corresponding to multiple com-
ponents have to be maintained. One or even all of the
models may need to be retrained in case system hard-
ware is upgraded. Tang et al. [29] proposed a software-
based hierarchical power estimation approach for legacy
datacenters. Similar to our rationale, they build power
mapping functions (PMFs) of server states along with a
selective incremental training process to achieve non-
intrusive, zero-cost, accurate power monitoring. The
work of Lin et al. [11] summarizes a great number of
power models in different forms. They also experimental-
ly evaluated the models and the results show a fact that
the most suitable model differs from server to server. In
other words, it is unpractical to find a fixed form of pow-
er model that fits all types of servers.

Regression models may perform poorly in heteroge-
neous environments. Dayarathna et al. [18] believed the
main causes are the cross dependence between selected
features, features’ being outdated after hardware up-
grade, some features’ strong dependency on OS, and the
complexity of contemporary system architecture. As an
alternative, artificial neural network is attracting more
attention. Similar to power monitoring, workload predic-
tion is a significant technique for datacenter manage-
ment. Many studies have already adopted different ANN
structures, like BPNN [20], LSTM-ANN [21] and Fuzzy
ANN [22], to build prediction models and demonstrated
promising results. Kumar and Singh [12] built a simple
feed-forward neural network and trained it with differ-
ential evolution algorithm. Prevost et al. [23] used a neu-
ral network and an Auto Regression Prediction Weiner
Filter to predict cloud datacenters’ workload. Results
proved that both of the models are accurate. The number
of historical data inputs is a critical hyper-parameter, Roy
et al [24] carried out experiment and figured out that
with only three most recent data records the future work-
load can be accurately forecasted. Kumar et al. [21] took
advantage of LSTM-ANN to predict the number of re-

quests received by web servers. They compared their
model with BPNN and showed a significant improve-
ment in accuracy. Chen et al. [22] combined ensemble
model and fuzzy neural network to make workload pre-
diction. The fuzzy neural network takes as input the out-
puts of several base predictors and consists of six layers.

Power estimation and load prediction are different but
quite similar in essence. First, both of them are tradition-
ally done by mathematical models and regression analy-
sis, and can both resort to new modeling methods like
neural network. Besides, monitoring power consumption
and workload will both generate time-series data, which
also indicates that we should consider the relation be-
tween temporally neighboring data records. Ruiz et al.
[25] proposed to use artificial neural network for energy
consumption forecasting. They trained three typical neu-
ral network models - NAR (Non-linear Auto-Regressive
Neural Network), NARX (NAR with exogenous inputs)
and Elman Neural Network on a historical data set of
buildings’ energy use. As a result, their study reveals
neural networks’ potential in performing accurate power
forecasting for buildings. However, how to utilize them
to build power estimator for cloud servers need to be
further explored.

Accuracy can no longer be guaranteed using tradi-
tional power models since the heterogeneity of both
servers and workload becomes increasingly common in
cloud datacenters. Thus it is of great necessity to explore
how to build power models that are easy-to-generalize.

3 MODELING TIME SERIES OF POWER WITH ANN

Traditional power consumption models assume that
power consumptions at different moments are independ-
ent. But as a matter of fact, system power actually chang-
es in a continuous manner (similar to the change of work-
load), and there is also experimental evidence supporting
the implicit relation between power consumption at con-
secutive moments [25]. Basically, power consumption
models can be categorized into two types: (1) predicting
power by examining historical data, and (2) estimating
current system power through collecting relevant per-
formance metrics such as utilization. The first one can be
achieved in a way nearly the same with workload fore-
casting [20]. We focus on the second type as our goal is to
establish real-time power monitoring on cloud servers
without any extra metering devices. Li et al. [26] built a
software/program power consumption model using
BPNN. The model takes as input the target program’s
time complexity, space complexity and data size, and
was experimentally proved accurate. However, BPNN
model does not take into account time sequence patterns.
Adopting a different approach, we attempted to take ad-
vantage of recurrent neural network to build a system-
level end-to-end power consumption model. We aim to
realize precise, real-time power estimation exploiting
commonly-used features that are easy to collect in OS.
Considering that power modeling is not of high complex-

ity (as a regression task essentially), we believe a simple
recurrent neural network structure with one hidden layer
is enough for power estimation.

In this section we introduce a number of ANN struc-
tures applicable to power estimation followed by a brief
comparison of their strengths and limitations.

3.1 BPNN Models

Back Propagation Neural Network (BPNN) is a common-
ly used ANN structure that applies error back propaga-
tion to model training. Basically, there are two BPNN
structures corresponding to power prediction and power
estimation, respectively.

The first structure is used to predict power consump-
tion by taking historical power data as input. We in this
paper call it Sliding Window BPNN power model. Slid-
ing Window BPNN power model makes prediction en-
tirely based on historical data. This probably leads to
poor accuracy because the change of power consumption
shows large uncertainty and weak temporal correlation.
Moreover, we have to feed historical power records into
the model, which means that the Sliding Window BPNN
model cannot work without ground truth (i.e., measured
data) in the current window. Thus, the model is not fit for
power estimation. The second BPNN structure has a dif-
ferent design of input layer, which represents a vector of
system performance features such as CPU utilization and
disk throughput rate. BPNN model with only features
input has a drawback in common with regression model
- it cannot learn the temporal relation between consecu-
tive time-series records. But its advantage over regression
model is that we can easily enhance its complexity by
extending the hidden layer by adding neurons or increas-
ing the number of layers.

3.2 NAR(X) Network Model

Non-linear Auto-Regressive Model (NAR) and Non-
linear Auto-Regressive Model with Exogenous Inputs
(NARX) are two forms of recurrent neural network
commonly used in establishing prediction model on
time-series data set.

NAR receives power values at n consecutive moments
denoted as p(t-n), p(t-n+1), …, p(t-1). Its output layer typ-
ically contains only one neuron corresponding to the
power consumption at time t. The limitation of NAR is
similar to that of the Sliding Window BPNN model. The
reason is that neither of them takes system performance
features into account. But NAR takes advantage of the
feedback from its output (current prediction) to input
(feature input of next moment) to enables the model to
work continuously and automatically without feeding of
historical data.

NARX, as shown in Fig. 2, extends NAR network by
introducing additional input neuron(s) to receive exoge-
nous input(s). For power consumption model, we typi-
cally choose system utilization features as exogenous
inputs. In Fig. 2, ud stands for the dth dimension of the
input feature vector. NARX’s advantage over NAR is that
it explicitly associates current system power to both per-

formance features and historical power. However, NARX
increases the risk of over-fitting as the size of model in-
put is enlarged.

Fig. 2. The network structure of NARX power model

3.3 ENN Model

Elman Neural Network (ENN)[31], proposed by Jef-
frey Elman, is also referred to as Simple Recurrent Neural
Network. ENN was first applied to automatic speech
processing and soon proved effective in a wide range of
time-series processing tasks. Different from Jordan Neu-
ral Network (e.g. NAR and NARX), the ultimate output
of ENN is not directly fed back to the input layer. Instead,
ENN relies on a layer named “states” to learn the tem-
poral pattern within the time-series input (e.g., a power
sequence measured at fixed intervals). The key difference
between states (or a state layer) and an ordinary hidden
layer is that there are local feedback connections within
the state layer. In other words, a state neuron takes its
output at the last moment as a part of input, which con-
sequently makes a single state layer equivalent to a com-
bination of multiple hidden layers in the process of for-
ward propagation.

Elman neural network is essentially a basic form of re-
current neural network with a single hidden layer. ENN
is widely adopted in time-series processing because its
complexity is adequate for many applications like dis-
crete signal analysis, dynamic systems [34] and predic-
tions [35][36]. Fig. 3 shows the network structure of a
typical ENN power model, where sq(t) denotes the output
of a neuron at time t in the state layer. The state layer of
ENN contains local feedback (current states take as input
the output of previous states) and thus plays the role of
memory. This structure enables the hidden layer to retain
the impact of previous data input on current feed-
forward process and the memory in turn affects the next
forward propagation after being updated. Therefore,

 5

ENN is an ideal model for processing time series of pow-
er consumption.

Fig. 3. The network structure of ENN power model.

Elman Neural Network is usually trained using Back
Propagation Through Time (BPTT) algorithm which
shares similar backward propagation process with BP
except that error is propagated back through time in the
state layer. A specific hyper-parameter, steps_back, is
needed to limit the back-propagation distance during
ENN’s training, and its optimal value basically depends
on the temporal pattern of the target sequence.

According to BPTT training process, error in state lay-
er propagates through time because the output of a state
unit at time t depends on its output at time t-1:

𝑠𝑡 = 𝑓(𝑊𝑥𝑡 + 𝑈𝑠𝑡−1 + 𝑏) (1)

where f is the activation function, st and xt denote the
vectors of state layer output and features input, respec-
tively. W and U are the matrices that consist of vectors of
weights corresponding to performance features and local
feedback of states, respectively. b is the bias vector. Let yt
and Et denote ENN model’s output and the loss comput-
ed at time t, respectively. Thus, the gradient of loss func-
tion with respect to W and U, according to the chain rule,
can be respectively formulated as bellows:

𝜕𝐸𝑡

𝜕𝑊
= ∑

𝜕𝑠𝑘

𝜕𝑊
(∏

𝜕𝑠𝑗

𝜕𝑠𝑗−1

𝑡
𝑗=𝑘+1)

𝜕𝑦𝑡

𝜕𝑠𝑡

𝜕𝐸𝑡

𝜕𝑦𝑡

𝑡
𝑘=0 (2)

 𝜕𝐸𝑡

𝜕𝑈
= ∑

𝜕𝑠𝑘

𝜕𝑈
(∏

𝜕𝑠𝑗

𝜕𝑠𝑗−1

𝑡
𝑗=𝑘+1)

𝜕𝑦𝑡

𝜕𝑠𝑡

𝜕𝐸𝑡

𝜕𝑦𝑡

𝑡
𝑘=0 (3)

where 𝜕𝑠𝑗 𝜕𝑠𝑗−1⁄ is the derivative of the activation func-

tion. Examining (1) (2) and (3), it can observe that the

term ∏ 𝜕𝑠𝑗 𝜕𝑠𝑗−1⁄𝑡
𝑗=𝑘+1 exponentially increases (i.e., ex-

ploding gradient) or approaches zero (i.e., vanishing gra-

dient) if we adopt commonly-used activation functions

such as sigmoid or tanh. This phenomenon leads to the

major limitation of ENN model but can be optimized by

leveraging different activation functions, imposing limits

on gradients, applying truncated BPTT algorithm [32],

and using evolutionary methods [33] to accelerate train-

ing.

Table 1 summarizes the advantages and limitations of

the ANN structures that are applicable to modeling time

series of power.

From Table 1 we can see that ENN power model has

clear advantages over other neural network structures.

ENN model works independently on historical data and

is able to learn the association between power consump-

tion data regarding time dimension. Therefore, we pro-

pose to use ENN to build cloud server power model,

namely PCM-ENN. To reduce the complexity in training,

we leveraged BPTT algorithm with a short time step.

4 PCM-ENN

We introduce the proposed power consumption model
based on Elman neural network (PCM-ENN) in this sec-
tion. First, the network structure is introduced including
the design of input layer, output layer, state layer, and
the selection of activation function. We then discuss the
methods we applied to model training optimization.

4.1 Model Design

The proposed PCM-ENN is an end-to-end black box
power consumption model. Black box model stands for
modeling method that treats the target system as a whole
despite of its internal functioning. Multivariate regres-
sion model, for instance, is a typical black box model as
the coefficients are usually not interpretable, whereas
power models at component level [11] are white box
models since system power is clearly decomposed as the
summation of individual components’ power.

We selected CPU utilization, memory usage, disk
throughput and disk IO request rate as our model’s input,
considering that they are the most commonly-used, easy-
to-sample features for cloud server power models. The
size of state layer is a tunable hyper-parameter in our
model and will be decided through experiments. We will
discuss it in the experimental evaluation section. We
choose tanh (i.e., f(x) = (ex - e-x) /(ex + e-x)) and purelin (i.e.,
f(x) = x) as the activation functions of state layer and out-
put layer, respectively.

We set our model’s input layer size to 4 (d=4), state
layer size q (q should be determined through experiment)
and only one neuron in the output layer. The output of
PCM-ENN is an estimate of power consumption. We
adopt different activation functions, weight initializers
and bias initializers for the state layer and output layer.
Note that we use tanh as the activation function of each
state neuron because truncated BPTT can well eliminate
the problem of vanishing or exploding gradients.

TABLE 1.

 THE ADVANTAGES AND LIMITATIONS OF USING BPNN, NAR, NARX OR ENN TO MODEL POWER CONSUMPTION

Model Advantages Limitations

Sliding Window

BPNN model

1. Independence on any system perfor-

mance counters.

1. The model may have poor accu-

racy as power consumption changes

with large uncertainty.

2. It cannot work without historical

power data

BPNN model with

only features input

1. The model receives the same input as

regression model and is able to achieve

better accuracy and support incremental

training.

1. It is unable to learn the temporal

relation among time-series records.

NAR power model
1. Independence on any system perfor-

mance counters.

1. The model may have poor accu-

racy as only historical data is uti-

lized.

NARX power model

1. NARX introduces system performance

features to its input layer while maintaining

the feedback from the output layer.

2. It is able to learn the temporal pattern in

the time series input.

1. Difficult to determine input time

window size.

ENN power model

1. Independence on historical power data

records.

2. ENN model’s state layer has local feed-

back and is able to learn temporal relation

between time-series records.

1. High training complexity.

4.2 Model Training Optimization

Elman neural network, as a kind of recurrent neural net-
work, is usually trained using Back Propagation Through
Time (BPTT) algorithm. However, gradients diminish
rapidly during back-propagation with long input se-
quence. Thus, we used Truncated BPTT algorithm to ac-
celerate the training process of PCM-ENN. Truncated
BPTT imposes a limit on the steps that training error
propagates back through time in the state layer. Besides,
we made use of regularization and early-stopping to
eliminate over-fitting. Regularization is applied by add-
ing an extra term to the calculation of loss for restricting
the weight values. Early-stopping is a technique that
terminates the training process according to some rule for
the conservation of best model parameters before over-
fitting occurs. The stopping rule we adopted is that vali-
dation error remains non-decreasing for a number of
epochs. We did not adopt “dropout” since PCM-ENN is
not of high complexity in structure.

5 EXPERIMENTAL EVALUATION

In this section we briefly introduce experimental setup
including the power consumption data set and parameter
settings. Then we demonstrate the evaluation results of
PCM-ENN against some baselines including NARX
power model, the multivariate linear regression model,
and the power monitoring software Joulemeter released

by Microsoft.

5.1 Experimental Setup

We implemented, trained and evaluated PCM-ENN and
NARX network using Python language based on the ma-
chine learning framework TensorFlow. The libraries we
used mainly include Tensorflow 1 1.6.0, Numpy 1.14.2,
Scipy 1.0.1, and Scikit-learn 0.19.1. With Scikit-learn li-
brary, we utilized the class LinearRegression in the module
linear_model to implement the multivariate linear regres-
sion model. We launched performance counters to collect
CPU utilization, memory usage, disk throughput rate,
and disk I/O operation rate while system power was
obtained via an external metering device (model:
Wattsup?Pro) with logging function.

To cover the diversity of server hardware and operat-
ing systems, we investigate the accuracy of power mod-
els on two data sets, which were sampled on servers with
completely different hardware and operation systems
running different suites of benchmarks.

On a Tower Server with Windows
The first data set used in our experiment was sampled

on a Dell PowerEdge T110 server with Windows Server
2008 R2 sp1 as operating system. We use PCMark 2
7(subversion: v1.4.0) to generate different types of work-
load (e.g., computation-intensive and storage-intensive).

1 Tensorflow. https://tensorflow.google.cn/
2 PCMark 7. https://www.futuremark.com/benchmarks/pcmark7

 7

PCMark contains multiple benchmark suites. To enable
the model to generalize to a wide range of workload, dif-
ferent benchmark suites were exploited including Com-
putation Suite (CPU-intensive), System Storage Suite
(Memory and I/O-intensive), and Productivity Suite
(mixed workload, for validation and testing).

On a Blade Server with Linux
The second data set used was sampled on a Blade server
(model: Dell R730) with Centos 7.6 (kernel version: 3.10.0)
as operating system. We use a combination of Linux
benchmarks to generate diverse workload. Specifically,
they are CloudSuite 3.0 [37], Sysbench3 and IOzone4. Sys-
bench and IOzone are common benchmarks for testing
Linux systems performance. CloudSuite, developed by a
community, is a benchmark suite for cloud services con-
sisting of eight popular applications in datacenters. They
are based on real-world workload and represent practical
setups in production environments.

Table 2 describes the two data sets we used in the ex-
periments. Each data set is divided into training set and
test set from which a part of data is used for validation.
We normalized all the features as well as power in pre-
processing since ENN is sensitive to the range of input
and output values. We applied a simple min-max trans-
formation where all the fields are mapped to [0, 1]. The
transformation is formulated as (4):

𝑧̃𝑑 =
𝑧𝑑 − 𝑚𝑖𝑛 (𝑧𝑑)

𝑚𝑎𝑥(𝑧𝑑)−𝑚𝑖𝑛 (𝑧𝑑)
, 𝑑 = 1,2,3,4,5 (4)

where 𝑧̃𝑑 is the dth field (totally five fields including four
features and power consumption) after standardization
and 𝑧𝑑 is the original value. Standardization of model’s
input and output makes the model incompletely end-to-
end. Therefore, we adopt a pre-processing module in the
overall workflow to standardize input in advance and a
post-processing module to inversely convert the model’s
output to the range of power consumption.

As mentioned in section 4.2 we applied regularization
and early-stopping to reduce the risk of over-fitting. Af-
ter rounds of tests we finally selected L2 regularization
and set lambda (impact of regularization term) to 0.0003.
Observing that the model usually converged within tens
of epochs, we used a small value of patience in order to
optimize the training process.

5.2 Hyper-parameter Optimization

We mainly discuss two hyper-parameters, namely
state_size and steps_back, which make significant impact
on the performance of PCM-ENN. We in the experiment
set state_size to 6, 9, 12 and 15, in turn, while steps_back
were set to 1, 2 and 3, in turn. The result on data set 1 is
shown in Fig. 4. Similar results were observed on data set
2.

It is notable from Fig. 4 that the best setting of
steps_back is 1. The reason is that the temporal correlation
becomes much weaker when the time interval between

3 Sysbench. https://github.com/akopytov/sysbench
4 IOZone. http://www.iozone.org/

two records increases. We also investigated the number
of training epochs (iterations through all batches) before
the model’s convergence with different state_size and
steps_back. The result is shown in Table 3, with the first
number indicating the number of epochs needed and the
second mean relative error (MRE) of the trained model. It
can be noted that the model converged quickly when we
set a short back-propagation time step (steps_back = 1 or
2). The reason is that the truncated BPTT algorithm effec-
tively accelerated the training process by limiting the
back-propagation of errors along the dimension of time.
We also find that the number of neurons in the state layer
(state_size) does not make significant impact on the mod-
el’s accuracy. It implies that the complexity of ENN with
dozens of state neurons is sufficient for modeling server
power consumption on our data set. According to the
result, we finally set steps_back to 1 and the number of
neurons in state layer to 12.

Fig. 4. PCM-ENN’s mean relative error with different state_size and
steps_back settings.

5.3 Experimental Results

This section reports our experimental evaluation of the
proposed power consumption model based on ENN. For
comparison, we trained an NARX network on the same
dataset and tuned its hyper-parameters until attaining its
best accuracy. We also fitted multivariate linear regres-
sion models using Scikit-learn5, with the same set of fea-
tures on the two data sets mentioned in section 5.1, as
shown in (5) and (6), respectively:

𝑝̃𝐿𝑅,1 = 26.57 + 25.94𝑢𝑐𝑝𝑢 + 0.97𝑢𝑚𝑒𝑚

+0.03𝑚𝑑𝑖𝑠𝑘 − 0.0002𝑟𝑑𝑖𝑠𝑘
 (5)

𝑝̃𝐿𝑅,2 = 41.72 + 27.62𝑢𝑐𝑝𝑢 + 13.14𝑢𝑚𝑒𝑚

−0.023𝑚𝑑𝑖𝑠𝑘 − 0.0054𝑟𝑑𝑖𝑠𝑘
 (6)

where ucpu, umem, mdisk and rdisk are CPU utilization,
memory usage, disk throughput rate and IO request rate,
respectively. We choose linear regression and NARX
network as baselines because they are the most repre-
sentative, commonly used models for regression prob-
lems that are time-independent or time-relevant, respec-
tively. In addition, we launched a Windows power moni-
toring software, named Joulemeter [16], to estimate serv-
er power on a regular basis, and we set its interval to 1

5 https://scikit-learn.org/stable/

second.
TABLE 2.

DESCRIPTIONS OF THE POWER DATA SETS USED IN OUR EXPERIMENTS

 Data set 1 (T110 tower, windows) Data set 2 (R730 blade, Linux)

 #samples min max avg. std. dev. #samples min max avg. std. dev.

CPU utilization (%) 1850 0.00 0.69 0.16 0.11 3568 0.00 0.99 0.19 0.21

Memory usage (GB) 1850 1.75 2.54 1.98 0.22 3568 4.66 7.41 5.13 0.40

Disk throughput

(MB/s)
1850 0.00 133.56 12.94 21.14 3568 0.00 148.67 57.72 50.12

Disk operation rate 1850 0.00 862.86 92.05 120.82 3568 0.00 881.00 234.47 202.18

Power Consumption

(Watts)
1850 27.40 49.70 32.74 3.14 3568 106.20 154.30 114.09 7.11

TABLE 3.

THE NUMBER OF TRAINING EPOCHS AND MODEL’S MRE WITH DIFFERENT SETTINGS OF STATE_SIZE AND STEPS_BACK

 steps_back = 1 steps_back = 2 steps_back = 3

state_size = 6 7, 0.03814 7, 0.04209 8, 0.04166

state_size = 9 7, 0.03835 7, 0.04167 21, 0.04175

state_size = 12 7, 0.03700 7, 0.04175 8, 0.05024

state_size = 15 7, 0.03764 8, 0.04078 8, 0.05136

The functioning of Joulemeter relies on several built-in

component power models of three major components
(CPU, memory and hard disk). Its Developers from Mi-
crosoft adopt a linear model for each of them.

The estimated server power consumption by PCM-
ENN, NARX model, linear regression model and
Joulemeter (exclusive on Windows) on the two test data
sets are drawn in Fig. 5 and Fig. 6, respectively. Actual
power (ground truth) measured by the external meter is
shown as the black solid line.

(a) (b)

(c) (d)

Fig. 5. Comparing measured power data with estimated values by
(a) PCM-ENN, (b) NARX network model, (c) linear regression mod-
el, and (d) Joulemeter over the running of windows benchmark
(PCMark 7) on Dell PowerEdge T110 tower

(a) (b)

(c)

Fig. 6. Comparing measured power data with estimated values by
(a) PCM-ENN, (b) NARX network model, and (c) linear regression
model over the running of Linux benchmarks (CloudSuite + Sys-
bench + IOzone) on Dell PowerEdge R730 Blade

PCM-ENN precisely estimated the server’s power
consumption throughout the test period though some of
the power peaks/troughs were under/over-estimated
(e.g., the trough starting at the 227th second in data set 1
and the peak around the 850th second in data set 2). We
think the reasons behind are two-fold. On one hand, the
memorized “states” of the hidden layer “smooth” the
estimate sequence but, from a holistic prospective, im-
prove overall accuracy. On the other, extreme values are
rare and may not appear in the training set to learn. For

0 50 100 150 200 250
25

30

35

40

45

50

Record order

P
o

w
e

r
(W

a
tt

s
)

measured power

PCM-ENN

0 50 100 150 200 250
25

30

35

40

45

50

Record order

measured power

NARX model

0 50 100 150 200 250
25

30

35

40

45

50

Record order

P
o

w
e

r
(W

a
tt

s
)

measured power

regression model

0 50 100 150 200 250
25

30

35

40

45

50

Record order

measured power

joulemeter

 9

instance, server power reached 154.3 Watts at the 882nd
second on R730 but the maximum value in the training
set is merely 138.0, which probably leads to misestimate
in extremely power-intensive situations. The estimates by
Joulemeter and regression model deviated significantly
from the real values in many periods (e.g., period from
130 to 140 on data set 1 and that from 530 to 760 on data
set 2) and tended to overestimate the peaks. NARX net-
work yielded better results than regression model, but it
under-estimated the server’s power consumption at the
ending period of both tests.

 (a) (b)
Fig. 7. Cumulative Distribution Function of estimation error produced
by PCM-ENN, NARX model, regression model and Joulemeter (ex-
clusive on Windows) throughout the test on (a) Dell PowerEdge
T110 Windows server and (b) Dell PowerEdge R730 Linux Server

To further clarify their accuracy, we computed every
power model’s mean absolute error (MAE), root mean
square error (RMSE), maximum relative error (max_RE),
and mean relative error (MRE). The statistical results on
both data sets are summarized in Table 4.

We can conclude from Table 4 that the proposed pow-
er model PCM-ENN is of remarkable accuracy in the
tests on the two heterogeneous machines, with relative
error smaller than 4% and 2%, respectively. The result
also shows its strong ability to generalize learning from
the fact that PCM-ENN’s maximum errors are apparently
smaller than NARX, regression model, and Joulemeter
even when the test sets contain more extreme values than
the training sets.

We drew CDF (Cumulative Distribution Function)
curves to better demonstrate how the four power estima-
tors performed on the two test platforms. The curves are

obtained by calculating relative error on each power rec-
ord. The results are shown in Fig. 7. It can be observed
from the error distribution (Fig. 7) that the deviations of
PCM-ENN’s output from real power are basically within
a small margin, with 50 percent/80 percent of the esti-
mate values above 95% accurate, while over 90 per-
cent/97 percent of them above 90% accurate on data set 1
and 2, respectively. For regression model and the moni-
toring software Joulemeter, it is notable that more than 10
percent of their estimated values are below 90% accurate
on the tower server. An important reason is that they are
too sensitive to the changes of input features and, conse-
quently, tend to make significantly jittering estimates on
servers’ power, especially in case power peaks and
troughs appear. Besides, we observe that only a tiny frac-
tion of estimates by PCM-ENN is of relative error over
12%, whereas the regression model and Joulemeter are
more likely to make deviated estimates. NARX network
performed slightly better than regression model, with
relative error averaging at 4.3% and 3.1% on the two
servers respectively.

Fast training is also a key feature especially in hetero-
geneous environments. We summarize the training cost
of PCM-ENN for both T110 and R730 in Table 5. Besides,
we also evaluate the cost of re-training when transplant-
ing the model for T110 to fit the power behavior of R730.
In this case, the original model saved for T110 can be
reckoned as a pre-trained one. From the result we can see
that the training finishes in a few seconds (on a personal
notebook PC) as only less than 10 epochs are needed for
convergence. Table 5 also shows a slightly reduction of
time cost (roughly 6.7%) when pre-training is applied.

Overall, the experimental evaluation demonstrates
that our proposed model based on Elman neural network
is of high accuracy for server power estimation. It also
reflects the model’s ability to generalize as it can well
perform on comprehensive workload on different hard-
ware and platforms whilst supporting fast training and
pre-training.

TABLE 4.

STATISTICAL COMPARISON OF POWER MODELS’ ACCURACY ON DATA SET 1 (WINDOWS BENCHMARKS, DELL POWEREDGE T110)
AND DATA SET 2 (LINUX BENCHMARKS, DELL POWEREDGE R730)

 Data set 1 (T110 tower, windows) Data set 2 (R730 blade, Linux)

Power Estimator MAE(Watts) RMSE Max_RE MRE MAE(Watts) RMSE Max_RE MRE

Regression model 1.905 2.146 0.308 0.050 4.976 7.991 0.398 0.041

Joulemeter 2.345 2.945 0.410 0.072 - - - -

NARX 1.382 1.901 0.247 0.043 3.795 6.049 0.267 0.031

PCM-ENN 0.976 1.514 0.181 0.037 2.032 3.538 0.229 0.016

TABLE 5.
TRAINING OVERHEADS OF PCM-ENN FOR SERVERS T110

AND R730

Target
machine

MSE # of epochs
Training
time (s)

T110 0.011 7 4.59

R730 0.003 8 7.74

R730
(pre-trained)

0.003 7 7.22

6 CONCLUSIONS

In this paper we first summarize several forms of neural
networks that can be applied to cloud server power
modeling on time-series datasets. Through analyzing
their advantages and limitations, we figure out that ENN
is the most suitable among the candidate models for es-
timating server power consumption as a time series in
heterogeneous environment like clouds. Then with the
aim of realizing real-time power consumption estimation
we propose a novel cloud server power model, namely
PCM-ENN. PCM-ENN is an end-to-end black box model
that takes easy-to-collect, platform-independent perfor-
mance features as input, and outputs an estimated value
of server power. We trained the model on two datasets
collected from a tower server and a blade server by run-
ning multiple types of workload after empirically deter-
mining the model’s optimal hyper-parameters. The eval-
uation results of PCM-ENN with other baseline models
show its high accuracy, fast training as well as strong
ability to generalize what it learned from a limited
amount of training data to a more complex test scenario
with mixed workload.

We plan to focus our future work on increasing the
model’s feature dimension by considering more perfor-
mance and state features. With a larger number of avail-
able features, feature selection and dimensionality reduc-
tion probably need to be done. Alternatively, principal
component methods can be adopted to build separate
feature sets for different types of workload, which ena-
bles the power estimator to be workload-aware for accu-
racy improvement. We are also trying to further improve
our power model’s accuracy and efficacy through explor-
ing more complex forms of networks like streaming
models.

ACKNOWLEDGEMENT

This work is supported by National Natural Science
Foundation of China (Grant Nos. 61772205, 61872084),
Guangdong Science and Technology Department (Grant
Nos. 2017B010126002, 2017B090901061), Guangzhou Sci-
ence and Technology Program key projects (Grant No.
201802010010, 201807010052, 201907010001,
201902010040), Nansha Science and Technology Projects
(Grant No. 2017GJ001) and the Fundamental Research
Funds for the Central Universities, SCUT.

REFERENCES

[1] P. Delforge. (2014, Feb. 06). America’s data centers consuming

and wasting growing amounts of energy. [Online]. Available:

https://www.nrdc.org/resources/americas-data-centers-

consuming-and-wasting-growing-amounts-energy

[2] Emerson Network Power. (2009, May 28). Survey of Emerson

Network Power's Data Center Users Group Shows Energy Effi-

ciency and Monitoring on the Rise [Online]. Available:

https://news.thomasnet.com/companystory/survey-of-emerson-

network-power-s-data-center-users-group-shows-energy-

efficiency-and-monitoring-on-the-rise-827187

[3] W. Lin and W. Wu, “Energy consumption measurement and

management in cloud computing environment,” Ruan Jian Xue

Bao/Journal of Software, vol. 27, no. 4, pp. 1026-1041, 2016 (in

Chinese). Doi: 10.13328/j.cnki.jos.005022.

[4] J.C. Mccullough and Y. Agarwal, J. Chandrashekar, S Kuppus-

wamy, A.C. Snoeren and R.K. Gupta, “Evaluating the effective-

ness of model-based power characterization,” in: Usenix Annual

Technical Conference, CA, 2011.

[5] W. Zhu, Y. Zhuang, and L. Zhang, “A three-dimensional virtual

resource scheduling method for energy saving in cloud compu-

ting,” Future Generation Computer Systems, vol. 69, 66-74, 2017.

[6] X. K. Li, C. H. Gu, Z. P. Yang, and Y. H. Chang, “Virtual machine

placement strategy based on discrete firefly algorithm in cloud

environments,” International Computer Conference on Wavelet Ac-

tive Media Technology and Information Processing, IEEE, 2016, pp.

61-66.

[7] W. Lin, W. Wu, and J. Z. Wang, “A heuristic task scheduling

algorithm for heterogeneous virtual clusters,” Scientific Pro-

gramming, vol. 2016, no. 5, pp.1-10, 2016. Doi: 10.1155/2016/

7040276

[8] Z. Niu, B. He, and Liu, F, “Not All Joules are Equal: Towards

Energy-Efficient and Green-Aware Data Processing Frame-

works,” IEEE International Conference on Cloud Engineering, 2016,

pp. 2-11, IEEE.
[9] W. Wu, W. Lin, and Z. Peng, “An intelligent power consumption

model for virtual machines under CPU-intensive workload in

cloud environment,” Soft Computing, vol. 21, no. 19, pp. 5755-

5764, 2017.

[10] C. H. Hsu and S. W. Poole, “Power signature analysis of the

SPECpower_ssj2008 benchmark,” in: IEEE International Sympo-

sium on PERFORMANCE Analysis of Systems and Software, 2011,

pp. 227-236, IEEE.

[11] W. Lin, W. Wu, H. Wang, J. Z. Wang, and C. H. Hsu, “Experi-

mental and quantitative analysis of server power model for

cloud data centers,” Future Generation Computer Systems, vol. 86,

pp. 940-950, 2016

[12] J. Kumar and A.K. Singh, “Workload prediction in cloud using

artificial neural network and adaptive differential evolution,”

Future Generation Computer Systems, vol. 81, pp. 41-52, 2017.

[13] Y. Chang, R. Chang, and F. Chuang, “A Predictive Method for

Workload Forecasting in the Cloud Environment,” Lecture Notes

in Electrical Engineering, vol. 260, pp. 577-585, 2014.

[14] S. Gupta, V. Singh, A.P. Mittal, and A. Rani, “Weekly Load

Prediction Using Wavelet Neural Network Approach,” in: Sec-

ond International Conference on Computational Intelligence & Com-

munication Technology, IEEE Computer Society, pp. 174-179,

2016.

[15] IBM. (2014, June 12). IBM Systems Director. [Online] Available:

https://www.ibm.com/support/knowledgecenter/en/POWER6/i

phb1/iphb1directoragents.htm

 11

[16] Microsoft. (2010, Feb. 23). Joulemeter: Computational Energy

Measurement and Optimization. [Online] Available:

https://www.microsoft.com/en-us/research/project/joulemeter-

computational-energy-measurement-and-optimization

[17] CLOUDS Laboratory. (2016, May 23). CloudSim: A Framework

for Modeling and Simulation of Cloud Computing Infrastruc-

tures and Services. [Online] Available:

http://www.cloudbus.org/cloudsim/

[18] M. Dayarathna, Y. Wen, and R. Fan, “Data Center Energy Con-

sumption Modeling: A Survey,” IEEE Communications Surveys &

Tutorials, vol. 18, no. 1, pp. 732-794, 2017.

[19] W. Lin, H. Wang, and W. Wu, “A power monitoring system

based on a multi-component power model,” International Journal

of Grid & High Performance Computing, vol. 10, no. 1, pp. 16-30,

2018.

[20] Y. Lu, J. Panneerselvam, L. Liu, and Y. Wu, “RVLBPNN: A

workload forecasting model for smart cloud computing,” Scien-

tific Programming, no. 2016, pp.1-9, 2016.

[21] J. Kumar, R. Goomer, and A. K. Singh, “Long Short Term

Memory Recurrent Neural Network (LSTM-RNN) Based Work-

load Forecasting Model for Cloud Datacenters,” Procedia Com-

puter Science, vol. 125, pp. 676-682, 2018.

[22] Z. Chen, Y. Zhu, Y. Di, and S. Feng, “Self-adaptive prediction of

cloud resource demands using ensemble model and subtrac-

tive-fuzzy clustering based fuzzy neural network,” Comput In-

tell Neurosci, no. 2015, pp. 1-14, 2015

[23] J.J. Prevost, K.M. Nagothu, B. Kelley, and J. Mo, “Prediction of

cloud data center networks loads using stochastic and neural

models, in: International Conference on System of Systems Engineer-

ing (SoSE),” IEEE Computer Society. 2011, pp. 276-281.

[24] N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the

Cloud Using Predictive Models for Workload Forecasting,” in:

IEEE International Conference on Cloud Computing, IEEE, 2011, pp.

500-507.

[25] L.G.B. Ruiz, R. Rueda, M.P. Cuéllar, and M.C. Pegalajar, “Ener-

gy consumption forecasting based on Elman neural networks

with evolutive optimization,” Expert Systems with Applications,

vol. 92, pp. 380-389, 2017.

[26] Q. Li, B. Guo, Y. Shen, J. Wang, Y. Wu, and Y. Liu, “An Embed-

ded Software Power Model Based on Algorithm Complexity Us-

ing Back-Propagation Neural Networks,” in: Green Computing

and Communications, IEEE Computer Society, 2011, pp. 454-459.

[27] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A.A. Bhattacharya,

“Virtual machine power metering and provisioning,” in: ACM

Symposium on Cloud Computing, ACM, 2010, pp. 39-50.

[28] G. Tang, W. Jiang, Z. Xu, F. Liu, and K. Wu, “Zero-cost, fine-

grained power monitoring of datacenters using non-intrusive

power disaggregation,” In: 16th Annual Middleware Conference,

ACM, 2015, pp. 271-282.

[29] G. Tang, W. Jiang, Z. Xu, F. Liu, and K. Wu, “NIPD: non-

intrusive power disaggregation in legacy datacenters,” IEEE

Transactions on Computers 66(2), pp. 312-325, 2017.

[30] P. POPA. (2006, Oct.). Managing server energy consumption

using IBM PowerExecutive, IBM Systems and Technology

Group Tech. Rep. [Online] Available:

http://images.incisivemedia.com/v7_static/pdf/vnu/optit-wp-

stg-power-executive.pdf

[31] J.L. Elman, "Finding Structure in Time," Cognitive Science, vol. 14

no. 2, pp. 179–211, 1990. doi:10.1016/0364-0213(90)90002-E.

[32] P. J. Werbos, “Generalization of backpropagation with applica-

tion to a recurrent gas market model,” Neural networks, vol. 1,

no.4, pp. 339-356, 1988.

[33] X. Cai, N. Zhang, G.K. Venayagamoorthy, and D.C. Wunsch II,

"Time series prediction with recurrent neural networks trained

by a hybrid PSO–EA algorithm," Neurocomputing, vol. 70, no. 13-

15, pp. 2342-2353, 2007.

[34] X.Z. Gao, X.M. Gao, and S. J. Ovaska, “A modified Elman neu-

ral network model with application to dynamical systems iden-

tification,” In Systems, Man, and Cybernetics, 1996., IEEE Interna-

tional Conference on, 1996, October, vol. 2, pp. 1376-1381, IEEE.

[35] J.J. Wang, W. Zhang, Y. Li, J.Z. Wang, and Z. Dang, “Forecasting

wind speed using empirical mode decomposition and Elman

neural network,” Applied Soft Computing, vol. 23, no. 452-459,

2014.

[36] T. Koskela, M. Lehtokangas, J. Saarinen, and K. Kaski, “Time

series prediction with multilayer perceptron, FIR and Elman

neural networks,” In: World Congress on Neural Networks, 1996

September, pp. 491-496, INNS Press San Diego, USA.

 [37] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D.

Jevdjic, et al, “Clearing the clouds: a study of emerging scale-

out workloads on modern hardware,” In ACM SIGPLAN Notic-

es, 2012, March, vol. 47, no. 4, pp. 37-48. ACM.

[38] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen,

“Power containers: an OS facility for fine-grained power and

energy management on multicore servers,” In ACM SIGPLAN

Notices, 2013 March, vol. 48, no. 4, pp. 65-76, ACM.

[39] K. Li,” Improving multicore server performance and reducing

energy consumption by workload dependent dynamic power

management,” IEEE Transactions on Cloud Computing, vol .4, no.

2, pp. 122-137, 2016.

[40] U. Wajid, C. Cappiello, P. Plebani, B. Pernici, N. Mehandjiev, M.

Vitali, M. Gienger, K. Kavoussanakis, D. Margery, D.G. Perez,

and P. Sampaio, “On achieving energy efficiency and reducing

CO 2 footprint in cloud computing,” IEEE transactions on cloud

computing, vol .4, no. 2, pp. 138-151, 2016.

[41] M. Nir, A. Matrawy, and M. St-Hilaire, “Economic and energy

considerations for resource augmentation in mobile cloud com-

puting,” IEEE Transactions on Cloud Computing, vol. 6, no. 1, pp.

99-113, 2018.

[42] W. Jiang, F. Liu, G. Tang, K. Wu, and H. Jin, “Virtual machine

power accounting with shapley value,” In 2017 IEEE 37th Inter-

national Conference on Distributed Computing Systems

(ICDCS), 2017 June, pp. 1683-1693, IEEE.

[43] W. Jiang, S. Ren, F. Liu, and H. Jin, “Non-IT energy accounting

in virtualized datacenter,” In 2018 IEEE 38th International Con-

ference on Distributed Computing Systems (ICDCS), 2018 July.

pp. 300-310. IEEE.

Wentai Wu received the Bachelor and Master
degrees in computer science from South China
University of Technology in 2015 and 2018, re-
spectively. Currently, he is a Ph.D. candidate in
Computer Science supervised by Prof. Ligang He
with the Department of Computer Science, the
University of Warwick, United Kingdom. His re-
search interests mainly include parallel and dis-
tributed computing, cloud computing, energy-
efficient computing and time series processing.

Weiwei Lin received his B.S. and M.S. degrees
from Nanchang University in 2001 and 2004,
respectively, and the PhD degree in Computer
Application from South China University of
Technology in 2007. Currently, he is a professor
in the School of Computer Science and Engi-
neering, South China University of Technology.
His research interests include distributed sys-
tems, cloud computing, big data computing and
AI application technologies. He has published

more than 80 papers in refereed journals and conference proceed-
ings. He is a senior member of CCF.

 Ligang He received the Ph.D. degree in Com-
puter Science at the University of Warwick, Unit-
ed Kingdom, and worked as a post-doctoral
researcher at the University of Cambridge, UK.
From 2006, he worked in the Department of
Computer Science at the University of Warwick
as Assistant Professor and then Associate Pro-
fessor. His research interests focus on parallel

and distributed processing, Cluster, Grid and Cloud computing. He
has published more than 100 papers in international conferences
and journals, such as IEEE Transactions on Parallel and Distributed
Systems, IPDPS, CCGrid, MASCOTS. He has been a co-chair or a
member of the program committee for a number of international
conferences, and been the reviewers for many international jour-
nals, including IEEE Transactions on Parallel and Distributed Sys-
tems, IEEE Transactions on Computers, etc. He is a member of the
IEEE.

Guangxin Wu received the B.E. degree in com-

puter science from the South China University of

Technology in 2018. He is currently a master

student in Computer Science at South China

University of Technology. His research interests

include search engine and cloud computing.

Ching-Hsien Hsu is a professor in the Depart-
ment of Computer Science and Information En-
gineering, Chung Hua University, Taiwan, and a
distinguished chair professor in the School of
Computer and Communication Engineering,
Tianjin University of Technology, China. His
research includes high-performance computing,
cloud computing, parallel and distributed sys-

tems, big data analytics, ubiquitous/pervasive computing, and intel-
ligence. He has published 200 papers in refereed journals, confer-
ence proceedings, and book chapters in these areas. He is the edi-
tor-in-chief of the International Journal of Grid and High Perfor-
mance Computing and International journal of Big Data Intelligence.
He is serving as an editorial board member for a number of prestig-
ious journals, including IEEE Transactions on Service Computing,
IEEE Transactions on Cloud Computing, etc. He has been acting as

an author/co-author or an editor/coeditor of 10 books from Springer,
IGI Global, World Scientific, and McGraw-Hill. He has also edited a
number of special issues at top journals, such as IEEE Transactions
on Cloud computing, IEEE Transactions on Services Computing,
IEEE System Journal, Future Generation Computer Systems, Jour-
nal of Supercomputing, etc. He received eight times distinguished
award for excellence in research and annual outstanding research
award through 2005 to 2015 from Chung Hua University. He has
been serving as executive committee of Taiwan Association of
Cloud Computing from 2008 to 2012; executive committee of the
IEEE Technical Committee of Scalable Computing (2008-2012);
IEEE Cloud Computing (since 2012). He is a senior member of the
IEEE.

