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Abstract — Leveraging power consumption models in software systems can achieve easy deployment of low-cost, high-

availability power monitoring in cloud datacenters that are usually large-scale, heterogeneous and frequently scaling up. 

However, traditional regression-based power consumption models generally have two drawbacks. First, their mathematical 

forms are usually fixed and determined a priori. This may cause unacceptable increase of error or over-fitting as the power 

signatures of cloud servers are usually uncertain. Second, the characteristic of workload dispatched to cloud servers is 

constantly changing while regression-based models can hardly generalize to a wide range of servers and workload types. As a 

novel solution, we in this paper propose a server power consumption model based on Elman Neural Network (PCM-ENN), 

aiming to allow accurate and flexible power estimation. PCM-ENN is an end-to-end black box model capable of learning the 

temporal relation between samples in a time series of power consumption. We trained and evaluated PCM-ENN on two power 

sequence datasets collected from heterogeneous hardware and operating systems running quasi-production benchmarks like 

CloudSuite. Experimental result shows that PCM-ENN generated accurate estimates on server power consumption with only 

small errors, outperforming widely-used linear regression model and NARX model in terms of accuracy. 

Index Terms — Cloud servers; Cloud datacenters; Power time series; Power consumption models; Elman neural network 

——————————      —————————— 
 

1 INTRODUCTION

HILE cloud computing is still gaining increasing 
popularity around the world, excessive electricity 

consumption by cloud datacenters has become a promi-
nent issue and drawn a lot of concern. Statistics shows 
that the annual electricity consumed by datacenters in the 
USA already reached 91 billion kilowatt-hours, while the 
figure is projected to soar to as high as 140 billion kWh in 
2020 [1]. Over-consumption of energy certainly makes 
negative impacts on the development of cloud compu-
ting, bringing about problems such as increasing opera-
tion cost and adverse effects on environment. 

Implementation of fine-grained power monitoring sys-
tems is the very foundation for realizing energy-aware 
power provisioning and management. Emerson’s report 
in North America reveals that 51% of respondents cited 
adequate monitoring/ datacenter management capabili-
ties among their three biggest concerns [2]. Traditionally, 
server power is measured using external metering devic-
es or dedicated data acquisition interfaces. For instance, 
IBM PowerExecutive [30] is a plug-in tool for gaining as 

well as capping actual power consumption of servers 
under the specified architecture – System X. Hardware 
(e.g., sensors) power measuring can be the best option for 
homogeneous datacenters but is hardly a solution for 
heterogeneous ones such as legacy systems and cloud 
datacenters [28][29]. The main reasons are but not limited 
to expensiveness, poor scalability [3] and coarse granu-
larity. By contrast, power monitoring systems built on 
software are able to support fine-grained, low-cost, easy-
to-extend monitoring in a cloud system that can be high-
ly heterogeneous and constantly scaling [29]. The core of 
software power monitoring is the pre-built power con-
sumption model, which is defined as one or multiple 
functions that map system performance related metrics to 
system power or energy consumption [4]. Power con-
sumption model takes as input one or several metrics 
(features) at different sampling granularities (e.g., OS 
level and processor level), outputs estimated values of 
power (for an instant) or energy consumption (for a peri-
od). Power model is not only used for monitoring pur-
poses, but also provides important guidance for energy-
aware resource provisioning [5][39][41], capping [38] and 
scheduling [6][7][40]. For example, Shen et al. [38] pro-
posed “power container”, which is a novel operating sys-
tem facility that accounts for and controls the power and 
energy usage of every single task on multi-core systems. 
One of the key techniques in their work is an online, 
adaptive power model for capturing the power consump-
tion of concurrent tasks. Niu et al. [8] implemented an 
energy-aware scheduling framework named GreenMR. 
The authors introduce the execution time models and 
power consumption models for Map phase and Reduce 
phase, separately. The models are used to profile the total 
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run time and energy consumption jobs in a given re-
source configuration. 

Previous studies mainly used regression-based meth-
ods to build power consumption models. The most wide-
ly adopted approach is linear regression because of its 
good interpretability and simplicity in training [9]. For 
example, Hsu and Poole [10] investigated a number of 
regression-based power consumption models which are 
all functions of CPU utilization. Lin et al. [11] surveyed 
mainstream component-level power models and evaluat-
ed their accuracy in experiment using regression analy-
sis. Whereas regression models are commonly adopted, 
they have outstanding deficiencies. First, using fixed 
forms limits their ability to generalize to a diversity of 
server power curves. Second, they can hardly support 
incremental training whilst cloud infrastructures are up-
grading fast. Third, temporal relation between time-
series records (samples of power consumption in a time 
series) is neglected in regression models.  

More and more studies on time-series processing 
begin to adopt Artificial Neural Network (ANN), but 
most of them focus on predicting power or workload in 
the future. For example, we have seen promising results 
in predicting workload using ANN or its improved 
forms [12][13][14]. ANN is complex but allows flexible 
training and more possibilities in model optimization, 
providing an entirely different way to build and train 
power consumption models that are suitable for cloud 
servers. In this paper, we propose to leverage artificial 
neural network and find the proper form of it to build the 
power consumption model for cloud servers. Fig. 1 
demonstrates a software power monitoring framework 
applied to a cloud system where power models are ap-
plied to heterogeneous cloud servers. The models are 
trained on historical datasets collected from correspond-
ing types of cloud servers.  

 

 

Fig. 1. The proposed framework of power monitoring using power 
consumption models in cloud datacenters.  

Training data for each model is server-specific, where-

as different servers with identical hardware can share a 
same power consumption model, which largely reduces 
the number of models needed. In particular, we take ad-
vantage of neural network to improve power models’ 
accuracy, enable incremental training, and enhance their 
ability to generalize what it learned. Moreover, we in this 
paper explore the temporal correlation between consecu-
tive power records using a simple recurrent structure. 
We summarize the main contributions of our work as 
follows: 

1. Based on the fundamental requirements of a pow-
er monitoring system, we first introduce a number 
of ANN architectures that can be applied to pow-
er estimation after training on time-series data set. 
We further summarize their advantages and limi-
tations. 

2. We propose a server power consumption model 
based on Elman Neural Network (PCM-ENN), 
which is able to learn the temporal impact from 
previous power consumption and make real-time 
estimation.   

3. We trained PCM-ENN on mixed datasets contain-
ing multiple types (CPU-intensive, memory-
intensive and I/O-intensive) of workload, and 
evaluated it on test datasets obtained by running a 
production benchmark suite. Experimental result 
on two completely heterogeneous servers shows 
that PCM-ENN is more accurate than linear re-
gression model, NARX model and the monitoring 
software Joulemeter. 

The rest of this paper is organized as follows. Section 2 
introduces related work on prediction models and power 
models based on ANN. Section 3 summarizes a number of 
ANN structures that can be applied to processing power 
sequence. We present the proposed server power model 
based on ENN in section 4 and show evaluation results in 
section 5. Finally we conclude the paper in section 6. 

2 RELATED WORK 

Lin et al. [3] in their paper categorize power measuring 
methods into four classes: direct metering by hardware 
devices, power estimation using power consumption 
models, power measuring in virtualized environment, 
and simulation-based power estimation. They also figure 
out that traditional power metering with external devices 
or dedicated acquisition systems (e.g., IBM Active Energy 
Manager [15]) is not feasible in large-scale and heteroge-
neous datacenters mainly due to the problem of hard-
ware compatibility. 

Software monitoring systems built on power con-
sumption model has the advantages of low deployment 
cost, high scalability and fine granularity [28], and they 
are also applicable to estimating the power of virtual ma-
chines [42] and containers. For instance, Joulemeter [16], 
a power monitoring tool developed by Microsoft, works 
on the basis of several component power models. The 
widely-used simulation framework CloudSim [17] uses 
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pre-defined models to emulate cloud servers’ power con-
sumption. Software-based accounting can also be applied 
to Non-IT units at the granularity of virtual machine [43]. 
Dayarathna et al. [18] in their paper discuss power mod-
els at different levels of granularity from single compo-
nents to a whole datacenter entity, and figure out that a 
well-designed model should be six features including 
accuracy, speed, generality, portability, inexpensiveness, 
and simplicity. Based on component-level power models, 
Lin et al. [19] developed a distributed power consump-
tion monitoring tool named EnergyMeter. Their work 
adopts a white box approach of power modeling and is 
based on a multi-component system model. They pro-
posed to use three separated, independent component 
power models to estimate CPU, memory and disk’s pow-
er, and combine them with the system idle power to ob-
tain the estimate of the whole computer’s power. Similar 
to Joulemeter, the solution is light-weight (because it only 
needs to track utilizations) and provides fine-grained 
power monitoring. However, a disadvantage of it is that 
multiple power models corresponding to multiple com-
ponents have to be maintained. One or even all of the 
models may need to be retrained in case system hard-
ware is upgraded. Tang et al. [29] proposed a software-
based hierarchical power estimation approach for legacy 
datacenters. Similar to our rationale, they build power 
mapping functions (PMFs) of server states along with a 
selective incremental training process to achieve non-
intrusive, zero-cost, accurate power monitoring. The 
work of Lin et al. [11] summarizes a great number of 
power models in different forms. They also experimental-
ly evaluated the models and the results show a fact that 
the most suitable model differs from server to server. In 
other words, it is unpractical to find a fixed form of pow-
er model that fits all types of servers. 

Regression models may perform poorly in heteroge-
neous environments. Dayarathna et al. [18] believed the 
main causes are the cross dependence between selected 
features, features’ being outdated after hardware up-
grade, some features’ strong dependency on OS, and the 
complexity of contemporary system architecture. As an 
alternative, artificial neural network is attracting more 
attention. Similar to power monitoring, workload predic-
tion is a significant technique for datacenter manage-
ment. Many studies have already adopted different ANN 
structures, like BPNN [20], LSTM-ANN [21] and Fuzzy 
ANN [22], to build prediction models and demonstrated 
promising results. Kumar and Singh [12] built a simple 
feed-forward neural network and trained it with differ-
ential evolution algorithm. Prevost et al. [23] used a neu-
ral network and an Auto Regression Prediction Weiner 
Filter to predict cloud datacenters’ workload. Results 
proved that both of the models are accurate. The number 
of historical data inputs is a critical hyper-parameter, Roy 
et al [24] carried out experiment and figured out that 
with only three most recent data records the future work-
load can be accurately forecasted. Kumar et al. [21] took 
advantage of LSTM-ANN to predict the number of re-

quests received by web servers. They compared their 
model with BPNN and showed a significant improve-
ment in accuracy. Chen et al. [22] combined ensemble 
model and fuzzy neural network to make workload pre-
diction. The fuzzy neural network takes as input the out-
puts of several base predictors and consists of six layers. 

Power estimation and load prediction are different but 
quite similar in essence. First, both of them are tradition-
ally done by mathematical models and regression analy-
sis, and can both resort to new modeling methods like 
neural network. Besides, monitoring power consumption 
and workload will both generate time-series data, which 
also indicates that we should consider the relation be-
tween temporally neighboring data records. Ruiz et al. 
[25] proposed to use artificial neural network for energy 
consumption forecasting. They trained three typical neu-
ral network models - NAR (Non-linear Auto-Regressive 
Neural Network), NARX (NAR with exogenous inputs) 
and Elman Neural Network on a historical data set of 
buildings’ energy use. As a result, their study reveals 
neural networks’ potential in performing accurate power 
forecasting for buildings. However, how to utilize them 
to build power estimator for cloud servers need to be 
further explored. 

Accuracy can no longer be guaranteed using tradi-
tional power models since the heterogeneity of both 
servers and workload becomes increasingly common in 
cloud datacenters. Thus it is of great necessity to explore 
how to build power models that are easy-to-generalize. 

3 MODELING TIME SERIES OF POWER WITH ANN 

Traditional power consumption models assume that 
power consumptions at different moments are independ-
ent. But as a matter of fact, system power actually chang-
es in a continuous manner (similar to the change of work-
load), and there is also experimental evidence supporting 
the implicit relation between power consumption at con-
secutive moments [25]. Basically, power consumption 
models can be categorized into two types: (1) predicting 
power by examining historical data, and (2) estimating 
current system power through collecting relevant per-
formance metrics such as utilization. The first one can be 
achieved in a way nearly the same with workload fore-
casting [20]. We focus on the second type as our goal is to 
establish real-time power monitoring on cloud servers 
without any extra metering devices. Li et al. [26] built a 
software/program power consumption model using 
BPNN. The model takes as input the target program’s 
time complexity, space complexity and data size, and 
was experimentally proved accurate. However, BPNN 
model does not take into account time sequence patterns. 
Adopting a different approach, we attempted to take ad-
vantage of recurrent neural network to build a system-
level end-to-end power consumption model. We aim to 
realize precise, real-time power estimation exploiting 
commonly-used features that are easy to collect in OS. 
Considering that power modeling is not of high complex-



 

 

ity (as a regression task essentially), we believe a simple 
recurrent neural network structure with one hidden layer 
is enough for power estimation. 

In this section we introduce a number of ANN struc-
tures applicable to power estimation followed by a brief 
comparison of their strengths and limitations. 

3.1 BPNN Models 

Back Propagation Neural Network (BPNN) is a common-
ly used ANN structure that applies error back propaga-
tion to model training. Basically, there are two BPNN 
structures corresponding to power prediction and power 
estimation, respectively.  

The first structure is used to predict power consump-
tion by taking historical power data as input. We in this 
paper call it Sliding Window BPNN power model. Slid-
ing Window BPNN power model makes prediction en-
tirely based on historical data. This probably leads to 
poor accuracy because the change of power consumption 
shows large uncertainty and weak temporal correlation. 
Moreover, we have to feed historical power records into 
the model, which means that the Sliding Window BPNN 
model cannot work without ground truth (i.e., measured 
data) in the current window. Thus, the model is not fit for 
power estimation. The second BPNN structure has a dif-
ferent design of input layer, which represents a vector of 
system performance features such as CPU utilization and 
disk throughput rate. BPNN model with only features 
input has a drawback in common with regression model 
- it cannot learn the temporal relation between consecu-
tive time-series records. But its advantage over regression 
model is that we can easily enhance its complexity by 
extending the hidden layer by adding neurons or increas-
ing the number of layers.  

3.2 NAR(X) Network Model 

Non-linear Auto-Regressive Model (NAR) and Non-
linear Auto-Regressive Model with Exogenous Inputs 
(NARX) are two forms of recurrent neural network 
commonly used in establishing prediction model on 
time-series data set.  

NAR receives power values at n consecutive moments 
denoted as p(t-n), p(t-n+1), …, p(t-1). Its output layer typ-
ically contains only one neuron corresponding to the 
power consumption at time t. The limitation of NAR is 
similar to that of the Sliding Window BPNN model. The 
reason is that neither of them takes system performance 
features into account. But NAR takes advantage of the 
feedback from its output (current prediction) to input 
(feature input of next moment) to enables the model to 
work continuously and automatically without feeding of 
historical data. 

NARX, as shown in Fig. 2, extends NAR network by 
introducing additional input neuron(s) to receive exoge-
nous input(s). For power consumption model, we typi-
cally choose system utilization features as exogenous 
inputs. In Fig. 2, ud stands for the dth dimension of the 
input feature vector. NARX’s advantage over NAR is that 
it explicitly associates current system power to both per-

formance features and historical power. However, NARX 
increases the risk of over-fitting as the size of model in-
put is enlarged. 
 

 
Fig. 2. The network structure of NARX power model  

3.3 ENN Model 

Elman Neural Network (ENN)[31], proposed by Jef-
frey Elman, is also referred to as Simple Recurrent Neural 
Network. ENN was first applied to automatic speech 
processing and soon proved effective in a wide range of 
time-series processing tasks. Different from Jordan Neu-
ral Network (e.g. NAR and NARX), the ultimate output 
of ENN is not directly fed back to the input layer. Instead, 
ENN relies on a layer named “states” to learn the tem-
poral pattern within the time-series input (e.g., a power 
sequence measured at fixed intervals). The key difference 
between states (or a state layer) and an ordinary hidden 
layer is that there are local feedback connections within 
the state layer. In other words, a state neuron takes its 
output at the last moment as a part of input, which con-
sequently makes a single state layer equivalent to a com-
bination of multiple hidden layers in the process of for-
ward propagation.  

Elman neural network is essentially a basic form of re-
current neural network with a single hidden layer. ENN 
is widely adopted in time-series processing because its 
complexity is adequate for many applications like dis-
crete signal analysis, dynamic systems [34] and predic-
tions [35][36]. Fig. 3 shows the network structure of a 
typical ENN power model, where sq(t) denotes the output 
of a neuron at time t in the state layer. The state layer of 
ENN contains local feedback (current states take as input 
the output of previous states) and thus plays the role of 
memory. This structure enables the hidden layer to retain 
the impact of previous data input on current feed-
forward process and the memory in turn affects the next 
forward propagation after being updated. Therefore, 
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ENN is an ideal model for processing time series of pow-
er consumption. 

  

 
Fig. 3. The network structure of ENN power model. 

Elman Neural Network is usually trained using Back 
Propagation Through Time (BPTT) algorithm which 
shares similar backward propagation process with BP 
except that error is propagated back through time in the 
state layer. A specific hyper-parameter, steps_back, is 
needed to limit the back-propagation distance during 
ENN’s training, and its optimal value basically depends 
on the temporal pattern of the target sequence.  

According to BPTT training process, error in state lay-
er propagates through time because the output of a state 
unit at time t depends on its output at time t-1: 

𝑠𝑡 = 𝑓(𝑊𝑥𝑡 + 𝑈𝑠𝑡−1 + 𝑏)                          (1) 

where f is the activation function, st and xt denote the 
vectors of state layer output and features input, respec-
tively. W and U are the matrices that consist of vectors of 
weights corresponding to performance features and local 
feedback of states, respectively. b is the bias vector. Let yt 
and Et denote ENN model’s output and the loss comput-
ed at time t, respectively. Thus, the gradient of loss func-
tion with respect to W and U, according to the chain rule, 
can be respectively formulated as bellows: 

𝜕𝐸𝑡

𝜕𝑊
= ∑

𝜕𝑠𝑘

𝜕𝑊
(∏

𝜕𝑠𝑗

𝜕𝑠𝑗−1

𝑡
𝑗=𝑘+1 )

𝜕𝑦𝑡

𝜕𝑠𝑡

𝜕𝐸𝑡

𝜕𝑦𝑡

𝑡
𝑘=0                 (2) 

     𝜕𝐸𝑡

𝜕𝑈
= ∑

𝜕𝑠𝑘

𝜕𝑈
(∏

𝜕𝑠𝑗

𝜕𝑠𝑗−1

𝑡
𝑗=𝑘+1 )

𝜕𝑦𝑡

𝜕𝑠𝑡

𝜕𝐸𝑡

𝜕𝑦𝑡

𝑡
𝑘=0                 (3) 

where  𝜕𝑠𝑗 𝜕𝑠𝑗−1⁄  is the derivative of the activation func-

tion. Examining (1) (2) and (3), it can observe that the 

term ∏ 𝜕𝑠𝑗 𝜕𝑠𝑗−1⁄𝑡
𝑗=𝑘+1  exponentially increases (i.e., ex-

ploding gradient) or approaches zero (i.e., vanishing gra-

dient) if we adopt commonly-used activation functions 

such as sigmoid or tanh. This phenomenon leads to the 

major limitation of ENN model but can be optimized by 

leveraging different activation functions, imposing limits 

on gradients, applying truncated BPTT algorithm [32], 

and using evolutionary methods [33] to accelerate train-

ing. 

Table 1 summarizes the advantages and limitations of 

the ANN structures that are applicable to modeling time 

series of power. 

From Table 1 we can see that ENN power model has 

clear advantages over other neural network structures. 

ENN model works independently on historical data and 

is able to learn the association between power consump-

tion data regarding time dimension. Therefore, we pro-

pose to use ENN to build cloud server power model, 

namely PCM-ENN. To reduce the complexity in training, 

we leveraged BPTT algorithm with a short time step. 

4 PCM-ENN 

We introduce the proposed power consumption model 
based on Elman neural network (PCM-ENN) in this sec-
tion. First, the network structure is introduced including 
the design of input layer, output layer, state layer, and 
the selection of activation function. We then discuss the 
methods we applied to model training optimization.   

4.1 Model Design 

The proposed PCM-ENN is an end-to-end black box 
power consumption model. Black box model stands for 
modeling method that treats the target system as a whole 
despite of its internal functioning. Multivariate regres-
sion model, for instance, is a typical black box model as 
the coefficients are usually not interpretable, whereas 
power models at component level [11] are white box 
models since system power is clearly decomposed as the 
summation of individual components’ power. 

We selected CPU utilization, memory usage, disk 
throughput and disk IO request rate as our model’s input, 
considering that they are the most commonly-used, easy-
to-sample features for cloud server power models. The 
size of state layer is a tunable hyper-parameter in our 
model and will be decided through experiments. We will 
discuss it in the experimental evaluation section. We 
choose tanh (i.e., f(x) = (ex - e-x) /(ex + e-x)) and purelin (i.e., 
f(x) = x) as the activation functions of state layer and out-
put layer, respectively. 

We set our model’s input layer size to 4 (d=4), state 
layer size q (q should be determined through experiment) 
and only one neuron in the output layer. The output of 
PCM-ENN is an estimate of power consumption. We 
adopt different activation functions, weight initializers 
and bias initializers for the state layer and output layer. 
Note that we use tanh as the activation function of each 
state neuron because truncated BPTT can well eliminate 
the problem of vanishing or exploding gradients.  



 

 

 

TABLE 1. 

 THE ADVANTAGES AND LIMITATIONS OF USING BPNN, NAR, NARX OR ENN TO MODEL POWER CONSUMPTION 

Model  Advantages Limitations 

Sliding Window 

BPNN model 

1. Independence on any system perfor-

mance counters. 

1. The model may have poor accu-

racy as power consumption changes 

with large uncertainty.  

2. It cannot work without historical 

power data 

BPNN model with 

only features input 

1. The model receives the same input as 

regression model and is able to achieve 

better accuracy and support incremental 

training. 

1. It is unable to learn the temporal 

relation among time-series records. 

NAR power model 
1. Independence on any system perfor-

mance counters. 

1. The model may have poor accu-

racy as only historical data is uti-

lized. 

NARX power model 

1. NARX introduces system performance 

features to its input layer while maintaining 

the feedback from the output layer. 

2. It is able to learn the temporal pattern in 

the time series input. 

1. Difficult to determine input time 

window size. 

ENN power model 

1. Independence on historical power data 

records. 

2. ENN model’s state layer has local feed-

back and is able to learn temporal relation 

between time-series records.  

1. High training complexity. 

4.2 Model Training Optimization 

Elman neural network, as a kind of recurrent neural net-
work, is usually trained using Back Propagation Through 
Time (BPTT) algorithm. However, gradients diminish 
rapidly during back-propagation with long input se-
quence. Thus, we used Truncated BPTT algorithm to ac-
celerate the training process of PCM-ENN. Truncated 
BPTT imposes a limit on the steps that training error 
propagates back through time in the state layer. Besides, 
we made use of regularization and early-stopping to 
eliminate over-fitting. Regularization is applied by add-
ing an extra term to the calculation of loss for restricting 
the weight values. Early-stopping is a technique that 
terminates the training process according to some rule for 
the conservation of best model parameters before over-
fitting occurs. The stopping rule we adopted is that vali-
dation error remains non-decreasing for a number of 
epochs. We did not adopt “dropout” since PCM-ENN is 
not of high complexity in structure. 

5 EXPERIMENTAL EVALUATION 

In this section we briefly introduce experimental setup 
including the power consumption data set and parameter 
settings. Then we demonstrate the evaluation results of 
PCM-ENN against some baselines including NARX 
power model, the multivariate linear regression model, 
and the power monitoring software Joulemeter released 

by Microsoft. 

5.1 Experimental Setup 

We implemented, trained and evaluated PCM-ENN and 
NARX network using Python language based on the ma-
chine learning framework TensorFlow. The libraries we 
used mainly include Tensorflow 1  1.6.0, Numpy 1.14.2, 
Scipy 1.0.1, and Scikit-learn 0.19.1. With Scikit-learn li-
brary, we utilized the class LinearRegression in the module 
linear_model to implement the multivariate linear regres-
sion model. We launched performance counters to collect 
CPU utilization, memory usage, disk throughput rate, 
and disk I/O operation rate while system power was 
obtained via an external metering device (model: 
Wattsup?Pro) with logging function. 

To cover the diversity of server hardware and operat-
ing systems, we investigate the accuracy of power mod-
els on two data sets, which were sampled on servers with 
completely different hardware and operation systems 
running different suites of benchmarks. 

On a Tower Server with Windows 
The first data set used in our experiment was sampled 

on a Dell PowerEdge T110 server with Windows Server 
2008 R2 sp1 as operating system. We use PCMark 2 
7(subversion: v1.4.0) to generate different types of work-
load (e.g., computation-intensive and storage-intensive). 
 

1 Tensorflow. https://tensorflow.google.cn/ 
2 PCMark 7. https://www.futuremark.com/benchmarks/pcmark7 
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PCMark contains multiple benchmark suites. To enable 
the model to generalize to a wide range of workload, dif-
ferent benchmark suites were exploited including Com-
putation Suite (CPU-intensive), System Storage Suite 
(Memory and I/O-intensive), and Productivity Suite 
(mixed workload, for validation and testing).  

On a Blade Server with Linux 
The second data set used was sampled on a Blade server 
(model: Dell R730) with Centos 7.6 (kernel version: 3.10.0) 
as operating system. We use a combination of Linux 
benchmarks to generate diverse workload. Specifically, 
they are CloudSuite 3.0 [37], Sysbench3 and IOzone4. Sys-
bench and IOzone are common benchmarks for testing 
Linux systems performance. CloudSuite, developed by a 
community, is a benchmark suite for cloud services con-
sisting of eight popular applications in datacenters. They 
are based on real-world workload and represent practical 
setups in production environments. 

Table 2 describes the two data sets we used in the ex-
periments. Each data set is divided into training set and 
test set from which a part of data is used for validation. 
We normalized all the features as well as power in pre-
processing since ENN is sensitive to the range of input 
and output values. We applied a simple min-max trans-
formation where all the fields are mapped to [0, 1]. The 
transformation is formulated as (4): 

𝑧̃𝑑 =
𝑧𝑑 − 𝑚𝑖𝑛 (𝑧𝑑)

𝑚𝑎𝑥(𝑧𝑑 )−𝑚𝑖𝑛 (𝑧𝑑)
, 𝑑 = 1,2,3,4,5              (4) 

where 𝑧̃𝑑 is the dth field (totally five fields including four 
features and power consumption) after standardization 
and 𝑧𝑑 is the original value. Standardization of model’s 
input and output makes the model incompletely end-to-
end. Therefore, we adopt a pre-processing module in the 
overall workflow to standardize input in advance and a 
post-processing module to inversely convert the model’s 
output to the range of power consumption.  

As mentioned in section 4.2 we applied regularization 
and early-stopping to reduce the risk of over-fitting. Af-
ter rounds of tests we finally selected L2 regularization 
and set lambda (impact of regularization term) to 0.0003. 
Observing that the model usually converged within tens 
of epochs, we used a small value of patience in order to 
optimize the training process. 

5.2 Hyper-parameter Optimization 

We mainly discuss two hyper-parameters, namely 
state_size and steps_back, which make significant impact 
on the performance of PCM-ENN. We in the experiment 
set state_size to 6, 9, 12 and 15, in turn, while steps_back 
were set to 1, 2 and 3, in turn. The result on data set 1 is 
shown in Fig. 4. Similar results were observed on data set 
2. 

It is notable from Fig. 4 that the best setting of 
steps_back is 1. The reason is that the temporal correlation 
becomes much weaker when the time interval between 
 

3 Sysbench. https://github.com/akopytov/sysbench 
4 IOZone. http://www.iozone.org/ 

two records increases. We also investigated the number 
of training epochs (iterations through all batches) before 
the model’s convergence with different state_size and 
steps_back. The result is shown in Table 3, with the first 
number indicating the number of epochs needed and the 
second mean relative error (MRE) of the trained model. It 
can be noted that the model converged quickly when we 
set a short back-propagation time step (steps_back = 1 or 
2). The reason is that the truncated BPTT algorithm effec-
tively accelerated the training process by limiting the 
back-propagation of errors along the dimension of time. 
We also find that the number of neurons in the state layer 
(state_size) does not make significant impact on the mod-
el’s accuracy. It implies that the complexity of ENN with 
dozens of state neurons is sufficient for modeling server 
power consumption on our data set. According to the 
result, we finally set steps_back to 1 and the number of 
neurons in state layer to 12. 

 
Fig. 4. PCM-ENN’s mean relative error with different state_size and 
steps_back settings. 

5.3 Experimental Results 

This section reports our experimental evaluation of the 
proposed power consumption model based on ENN. For 
comparison, we trained an NARX network on the same 
dataset and tuned its hyper-parameters until attaining its 
best accuracy. We also fitted multivariate linear regres-
sion models using Scikit-learn5, with the same set of fea-
tures on the two data sets mentioned in section 5.1, as 
shown in (5) and (6), respectively: 

𝑝̃𝐿𝑅,1 = 26.57 + 25.94𝑢𝑐𝑝𝑢 + 0.97𝑢𝑚𝑒𝑚

+0.03𝑚𝑑𝑖𝑠𝑘 − 0.0002𝑟𝑑𝑖𝑠𝑘
              (5) 

𝑝̃𝐿𝑅,2 = 41.72 + 27.62𝑢𝑐𝑝𝑢 + 13.14𝑢𝑚𝑒𝑚

−0.023𝑚𝑑𝑖𝑠𝑘 − 0.0054𝑟𝑑𝑖𝑠𝑘
              (6) 

where ucpu, umem, mdisk and rdisk are CPU utilization, 
memory usage, disk throughput rate and IO request rate, 
respectively. We choose linear regression and NARX 
network as baselines because they are the most repre-
sentative, commonly used models for regression prob-
lems that are time-independent or time-relevant, respec-
tively. In addition, we launched a Windows power moni-
toring software, named Joulemeter [16], to estimate serv-
er power on a regular basis, and we set its interval to 1 

 

5 https://scikit-learn.org/stable/ 



 

 

second.   
TABLE 2. 

DESCRIPTIONS OF THE POWER DATA SETS USED IN OUR EXPERIMENTS 

 Data set 1 (T110 tower, windows) Data set 2 (R730 blade, Linux) 

 #samples min max avg. std. dev. #samples min max avg. std. dev. 

CPU utilization (%) 1850 0.00 0.69 0.16 0.11 3568 0.00 0.99 0.19 0.21 

Memory usage (GB) 1850 1.75 2.54 1.98 0.22 3568 4.66 7.41 5.13 0.40 

Disk throughput 

(MB/s) 
1850 0.00 133.56 12.94 21.14 3568 0.00 148.67 57.72 50.12 

Disk operation rate 1850 0.00 862.86 92.05 120.82 3568 0.00 881.00 234.47 202.18 

Power Consumption 

(Watts) 
1850 27.40 49.70 32.74 3.14 3568 106.20 154.30 114.09 7.11 

 
TABLE 3. 

THE NUMBER OF TRAINING EPOCHS AND MODEL’S MRE WITH DIFFERENT SETTINGS OF STATE_SIZE AND STEPS_BACK 

 steps_back = 1 steps_back = 2 steps_back = 3 

state_size = 6 7, 0.03814 7, 0.04209 8, 0.04166 

state_size = 9 7, 0.03835 7, 0.04167 21, 0.04175 

state_size = 12 7, 0.03700 7, 0.04175 8, 0.05024 

state_size = 15 7, 0.03764 8, 0.04078 8, 0.05136 

 
The functioning of Joulemeter relies on several built-in 

component power models of three major components 
(CPU, memory and hard disk). Its Developers from Mi-
crosoft adopt a linear model for each of them. 

The estimated server power consumption by PCM-
ENN, NARX model, linear regression model and 
Joulemeter (exclusive on Windows) on the two test data 
sets are drawn in Fig. 5 and Fig. 6, respectively. Actual 
power (ground truth) measured by the external meter is 
shown as the black solid line.  
 

  
(a)                                         (b) 

  
(c)                                        (d) 

Fig. 5. Comparing measured power data with estimated values by 
(a) PCM-ENN, (b) NARX network model, (c) linear regression mod-
el, and (d) Joulemeter over the running of windows benchmark 
(PCMark 7) on Dell PowerEdge T110 tower 

  
(a)                                         (b) 

 
(c) 

Fig. 6. Comparing measured power data with estimated values by 
(a) PCM-ENN, (b) NARX network model, and (c) linear regression 
model over the running of Linux benchmarks (CloudSuite + Sys-
bench + IOzone) on Dell PowerEdge R730 Blade 

PCM-ENN precisely estimated the server’s power 
consumption throughout the test period though some of 
the power peaks/troughs were under/over-estimated 
(e.g., the trough starting at the 227th second in data set 1 
and the peak around the 850th second in data set 2). We 
think the reasons behind are two-fold. On one hand, the 
memorized “states” of the hidden layer “smooth” the 
estimate sequence but, from a holistic prospective, im-
prove overall accuracy. On the other, extreme values are 
rare and may not appear in the training set to learn. For 
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instance, server power reached 154.3 Watts at the 882nd 
second on R730 but the maximum value in the training 
set is merely 138.0, which probably leads to misestimate 
in extremely power-intensive situations. The estimates by 
Joulemeter and regression model deviated significantly 
from the real values in many periods (e.g., period from 
130 to 140 on data set 1 and that from 530 to 760 on data 
set 2) and tended to overestimate the peaks. NARX net-
work yielded better results than regression model, but it 
under-estimated the server’s power consumption at the 
ending period of both tests.  

 

  
                         (a)                                             (b) 
Fig. 7. Cumulative Distribution Function of estimation error produced 
by PCM-ENN, NARX model, regression model and Joulemeter (ex-
clusive on Windows) throughout the test on (a) Dell PowerEdge 
T110 Windows server and (b) Dell PowerEdge R730 Linux Server 

To further clarify their accuracy, we computed every 
power model’s mean absolute error (MAE), root mean 
square error (RMSE), maximum relative error (max_RE), 
and mean relative error (MRE). The statistical results on 
both data sets are summarized in Table 4. 

We can conclude from Table 4 that the proposed pow-
er model PCM-ENN is of remarkable accuracy in the 
tests on the two heterogeneous machines, with relative 
error smaller than 4% and 2%, respectively. The result 
also shows its strong ability to generalize learning from 
the fact that PCM-ENN’s maximum errors are apparently 
smaller than NARX, regression model, and Joulemeter 
even when the test sets contain more extreme values than 
the training sets. 

We drew CDF (Cumulative Distribution Function) 
curves to better demonstrate how the four power estima-
tors performed on the two test platforms. The curves are 

obtained by calculating relative error on each power rec-
ord. The results are shown in Fig. 7. It can be observed 
from the error distribution (Fig. 7) that the deviations of 
PCM-ENN’s output from real power are basically within 
a small margin, with 50 percent/80 percent of the esti-
mate values above 95% accurate, while over 90 per-
cent/97 percent of them above 90% accurate on data set 1 
and 2, respectively. For regression model and the moni-
toring software Joulemeter, it is notable that more than 10 
percent of their estimated values are below 90% accurate 
on the tower server. An important reason is that they are 
too sensitive to the changes of input features and, conse-
quently, tend to make significantly jittering estimates on 
servers’ power, especially in case power peaks and 
troughs appear. Besides, we observe that only a tiny frac-
tion of estimates by PCM-ENN is of relative error over 
12%, whereas the regression model and Joulemeter are 
more likely to make deviated estimates. NARX network 
performed slightly better than regression model, with 
relative error averaging at 4.3% and 3.1% on the two 
servers respectively.  

Fast training is also a key feature especially in hetero-
geneous environments. We summarize the training cost 
of PCM-ENN for both T110 and R730 in Table 5. Besides, 
we also evaluate the cost of re-training when transplant-
ing the model for T110 to fit the power behavior of R730. 
In this case, the original model saved for T110 can be 
reckoned as a pre-trained one. From the result we can see 
that the training finishes in a few seconds (on a personal 
notebook PC) as only less than 10 epochs are needed for 
convergence. Table 5 also shows a slightly reduction of 
time cost (roughly 6.7%) when pre-training is applied.  

Overall, the experimental evaluation demonstrates 
that our proposed model based on Elman neural network 
is of high accuracy for server power estimation. It also 
reflects the model’s ability to generalize as it can well 
perform on comprehensive workload on different hard-
ware and platforms whilst supporting fast training and 
pre-training. 

TABLE 4. 

STATISTICAL COMPARISON OF POWER MODELS’ ACCURACY ON DATA SET 1 (WINDOWS BENCHMARKS, DELL POWEREDGE T110) 
AND DATA SET 2 (LINUX BENCHMARKS, DELL POWEREDGE R730) 

 Data set 1 (T110 tower, windows) Data set 2 (R730 blade, Linux) 

Power Estimator MAE(Watts) RMSE Max_RE MRE MAE(Watts) RMSE Max_RE MRE 

Regression model 1.905 2.146 0.308 0.050 4.976 7.991 0.398 0.041 

Joulemeter 2.345 2.945 0.410 0.072 - - - - 

NARX 1.382 1.901 0.247 0.043 3.795 6.049 0.267 0.031 

PCM-ENN 0.976 1.514 0.181 0.037 2.032 3.538 0.229 0.016 

 
 



 

 

TABLE 5. 
TRAINING OVERHEADS OF PCM-ENN FOR SERVERS T110 

AND R730 

Target  
machine 

MSE # of epochs 
Training  
time (s) 

T110 0.011 7 4.59 

R730 0.003 8 7.74 

R730 
(pre-trained) 

0.003 7 7.22 

6 CONCLUSIONS 

In this paper we first summarize several forms of neural 
networks that can be applied to cloud server power 
modeling on time-series datasets. Through analyzing 
their advantages and limitations, we figure out that ENN 
is the most suitable among the candidate models for es-
timating server power consumption as a time series in 
heterogeneous environment like clouds. Then with the 
aim of realizing real-time power consumption estimation 
we propose a novel cloud server power model, namely 
PCM-ENN. PCM-ENN is an end-to-end black box model 
that takes easy-to-collect, platform-independent perfor-
mance features as input, and outputs an estimated value 
of server power. We trained the model on two datasets 
collected from a tower server and a blade server by run-
ning multiple types of workload after empirically deter-
mining the model’s optimal hyper-parameters. The eval-
uation results of PCM-ENN with other baseline models 
show its high accuracy, fast training as well as strong 
ability to generalize what it learned from a limited 
amount of training data to a more complex test scenario 
with mixed workload. 

We plan to focus our future work on increasing the 
model’s feature dimension by considering more perfor-
mance and state features. With a larger number of avail-
able features, feature selection and dimensionality reduc-
tion probably need to be done. Alternatively, principal 
component methods can be adopted to build separate 
feature sets for different types of workload, which ena-
bles the power estimator to be workload-aware for accu-
racy improvement. We are also trying to further improve 
our power model’s accuracy and efficacy through explor-
ing more complex forms of networks like streaming 
models. 
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