1910.05482v1 [cs.PF] 12 Oct 2019

arxXiv

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

ClassyTune: A Performance Auto-Tuner for
Systems in the Cloud

Yuqing Zhu, Member, IEEE, and Jianxun Liu

Abstract—Performance tuning can improve the system performance and thus enable the reduction of cloud computing resources
needed to support an application. Due to the ever increasing number of parameters and complexity of systems, there is a necessity to
automate performance tuning for the complicated systems in the cloud. The state-of-the-art tuning methods are adopting either the
experience-driven tuning approach or the data-driven one. Data-driven tuning is attracting increasing attentions, as it has wider
applicability. But existing data-driven methods cannot fully address the challenges of sample scarcity and high dimensionality
simultaneously. We present ClassyTune, a data-driven automatic configuration tuning tool for cloud systems. ClassyTune exploits the
machine learning model of classification for auto-tuning. This exploitation enables the induction of more training samples without
increasing the input dimension. Experiments on seven popular systems in the cloud show that ClassyTune can effectively tune system
performance to seven times higher for high-dimensional configuration space, outperforming expert tuning and the state-of-the-art
auto-tuning solutions. We also describe a use case in which performance tuning enables the reduction of 33% computing resources

needed to run an online stateless service.

Index Terms—Performance tuning, auto-tuning, autotuner, data-driven tuning, experience-driven tuning, performance modeling

—t

INTRODUCTION

LOUD computing has facilitated the deployment of
C systems for big data analytics and Web services. For
an efficient exploitation of the cloud computing resources,
we can either choose for a specific task [1] the most cost-
effective cloud configuration, i.e., the types and numbers of
virtual machine instances; or, we can optimize the system
performance for a specific deployment setting so as to
reduce the total computing resources in demand [2]. In
fact, modern systems are exposing an increasing number
of configurable parameters that can have strong impacts on
system performance and thus that are denoted as PerfConfs,
e.g., innodb_buffer_pool_size and executor.cores in Figure 1.
Well tuning the PerfConfs of a system can lead to multiple
times of performance speedup [3], requiring no change
to the system design. Unfortunately, to meet the diversity
of applications and deployment settings, the number and
the complexity of PerfConfs have increased to a level ex-
ceeding the comprehension capability of human beings [4].
We see an emerging need for automating the tuning of
PerfConfs [5], [6], [7] for much higher system performance.

Existing solutions to auto-tuning PerfConfs for systems
in the cloud are either experience-driven or data-driven. Ap-
proaches based on heuristics-guided search [8], [9] and
analytical modeling [10], [11] rely heavily on human experi-
ences and knowledge, belonging to the experience-driven
category. Experience-driven tuning requires human inter-
vention for each specific case and has limited applicabil-
ity. Approaches using Bayesian optimization [12] or other
machine-learning models [13] exploit data to train models
for optimization, thus falling into the data-driven category.

o Y. Zhu is the corresponding author. E-mail:zhuyuqing@ict.ac.cn.

e Y. Zhu is with the Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China.

o J. Liu is with UTuned Technology Company Limited, Beijing, China.

Manuscript received 25 Dec. 2018; revised 18 Jun. 2019.

Data-driven tuning can be applied to where sufficient tun-
ing samples are provided, thus attracting increasing popu-
larity [7], [14]. However, running tuning tests in the cloud
and collecting large samples are expensive due to a pay-as-
you-go cost, while the sample size required is in proportion
to the dimension of the configuration space [15]. Sample
scarcity and high dimensionality place two challenges to
data-driven configuration tuning.

In this paper, we take the data-driven approach to ad-
dress the problem of auto-tuning performance for systems
in the cloud through adjusting PerfConf settings. Our main
idea is to tackle performance tuning as a comparison problem and
model the performance comparison relations of the limited sam-
ples. In contrast to the common exploitation of performance
prediction models [16], we adopt the classification method
for the comparison modeling, as it can bring about two ben-
efits that directly address the sample scarcity challenge of
the data-driven tuning. First, the classification model for the
comparison problem can have a training set as quadratically
large as the original sample set, as it takes pairs of original
samples as input and such pairs can be constructed through
permuting every pair of the original samples. Second, we
can generate even more training samples based on manual
tuning experiences. As manual tuning process usually goes
through numerous trials and comparisons, the tuning expe-
riences are usually summarized in comparison-based rules,
e.g., increasing memory cache sizes leads to higher performances.
We can generate more training samples for the classification
models based on such tuning rules, while this is impossible
for the performance prediction modeling [17].

But two problems remain to be solved. The first is
about dimensionality, i.e., how to effectively represent the input
without increasing its dimensions. If we directly concatenate
two PerfConf settings, the input dimension for the model
is increased to twice of the original one, leading again to
sample scarcity [15]. If we take the division or difference

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

11 === ClusterMode

= StandaloneMode

2.0{ === readOnly

— TPCC ©1.0
g

o 0.9

Throughput

S
0.8
3
8

£50.7

T vt HH 0.6 . -
0 200 400 600 800 1000 2 4 6 8 10 12 14 16
innodb_buffer pool size(MB) # of executor.cores

(a) MySQL performance under (b) Spark performance under dif-
different workloads. ferent environments.

Figure 1. Performance-PerfConf curves are nonlinear, nonsmooth, and
system-/workload-/environment-specific.

of a PerfConf pair, different pairs will collide, leading to
different inputs mapped to one same output. We propose
to induce samples by constructing a bijection from a 2d-
dimensional space to a d-dimensional one. The second is
about model accuracy, ie., how to find the best PerfConf
setting using an imprecise model. This found PerfConf setting
should lead to the best system performance within a given
time and computing resources. Machine learning models
are generally not a hundred percent accurate [15]. Even
if we train a model with enough samples, this model can
still mistakenly distinguish some comparison relations. We
must robustly find a best PerfConf setting even if some
predictions are incorrect. This best PerfConf setting should
lead to better performance. We propose a clustering-based
tuning algorithm that can exploit the imprecise classification
model.

We thus present ClassyTune, which is, to the best of our
knowledge, the first automatic performance tuning system
that exploits a classification model to find the best PerfConf
setting within a limited sample. In Classytune, we use
a classifier to predict whether one PerfConf setting has a
better performance than another. Taking this classification
approach, ClassyTune can construct a useful model for auto-
tuning with only a limited number of original PerfConf-
performance samples, while the common auto-tuning meth-
ods would require tens of times more samples [2], [12],
[18]. The classifier model can make a prediction in a time
multiple orders of magnitude shorter than a tuning test
actually runs. We can thus use the model as the surrogate of
the system and take a systematic approach towards tuning
with an imprecise model.

ClassyTune consists of three components for sampling,
modeling and searching respectively. The sampling com-
ponent outputs a database of PerfConf-performance sam-
ples; the modeling component outputs a classification-based
model; and, the searching component finds the PerfConf
setting with the highest performance in best effort. Decou-
pling the system into three components allows the reuse of
the intermediate tuning outputs, i.e., the database and the
model. As a result, ClassyTune can be used not only for
tuning, but also for system analysis. The intermediate out-
puts, especially the model, can inform users about relations
between PerfConfs and performance,

In this work, we make the following contributions:

o We propose a data-driven performance auto-tuning
approach, unprecedentedly adopting a classification
model for representing the performance comparison
relations between PerfConf settings (§4).

o We propose to address the input dimension problem
through sample induction that constructs a bijection

based on the Cantor’s proof (§4.2).

e We propose a clustering-based auto-tuning method
that exploits the imprecise classification model (§5).

o Weimplement the above solutions in ClassyTune (§6)
and evaluate the system in extensive and compre-
hensive experiments, using 7 popular systems and
14 common application workloads in the cloud (§7).

e We present a customer’s use case to show how
ClassyTune can be used and help users reduce the
cloud computing resources needed to run an online
stateless service (§7.8).

2 MOTIVATION AND RELATED WORK

This section examines the modeling challenges for the data-
driven methods of automatic performance tuning based
on PerfConf setting adjustments. These challenges motivate
our work over the related works, which are summarized at
the end of this section.

2.1

PerfConf-performance curves are formed by taking Perf-
Confs as input and the system performance as output.
Different systems have different performance curves. In fact,
this curve is not only related to the system, but also very
sensitive to the workloads, the deployment environments
and the computing resources [3]. Figure 1 plots the curves
for database system MySQL and the distributed online
processing system Spark.

Among the four plotted curves, two for MySQL and two
for Spark, none demonstrates linearity. The performance is
not in direct proportion to the PerfConf input. For exam-
ple, Figure 1a plots the throughput of MySQL under two
workloads of read-only and TPC-C, given buffer_pool_-
size as input. The throughputs of MySQL are not directly
proportional to the size of buffer pool. Figure 1b plots the
job durations for Spark under the standalone and cluster
deployments respectively. The performances demonstrate
no linearity with the number of executor cores either.

Even for the same system, changes to the workload,
the deployment environment, or the computing resources
can also lead to different PerfConf-performance curves.
Changing the workload from read-only to TPC-C leads to
two completely different performance curves for MySQL,
as shown in Figure la. Changing the deployment from the
standalone mode to the cluster mode also changes the shape
of Spark’s performance curve, as illustrated in Figure 1b.

Generally, it would not be wise to use linear models to
map PerfConf-performance relations due to non-linearity.
As the system, workload, environment, and computing
resources are factors influencing the curve shape, PerfConf-
performance models should be constructed with regard
to a specific combination of these factors, making model
reuse infeasible. In sum, tuning tests and samples must be
collected specifically for such a combination, leading to the
sample scarcity challenge (§2.2).

The non-smooth property of performance curves is also a
challenge to the popular data-driven auto-tuning method of
Bayesian optimization (BO) [19]. BO-based auto-tuning en-
ables an effective use of the sampling budget by guiding the

Challenge: Non-Smooth Complicated Curves

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

125

-
®

~100

[y
~

75

—
=

50

—
w

Max Error(%.

MAE/Y-mean (%)

SOSISASASISA]
[111]
LTI
=
=

1
25
1
1

1000 1500
Sample Sizes

0 d b
Tnmca;/scassagdraﬂysQXMySQL/Hadcop/ gpark/ 500 2000

websui UEeB 8 reads poc yMeanSgteans

(a) Max differences between predicted (b) Errors reduced as
and real performances. samples added (Hadoop-
KMeans/RFR).

Figure 2. Highly inaccurate performance predictions due to limited
samples, but adding samples reduces errors.

sampling and search process with an acquisition function.
The common application of BO adopts a Gaussian process
prior to get a closed-form acquisition function. Unfortu-
nately, this adoption requires the objective function to be a
differentiable function. But not all objective function is dif-
ferentiable. In fact, it is shown that the performance surfaces
of several popular cloud systems are non-differentiable [3].
The dissatisfaction of this assumption can invalidate an
optimization process based on BO.

2.2 Challenge: The Sample Size

Data-driven auto-tuning methods commonly exploit ma-
chine learning algorithms for modeling. We illustrate
the sample size challenge to the common performance-
prediction based modeling [16]. We model the PerfConf-
performance relation by three machine learning methods.
As performance is a continuous value, these models are re-
gression models, including boosted decision tree (B_CART),
supported vector regression (SVR) and random forest re-
gression (RFR). The decision tree model CART is effective
in performance modeling for simple systems [16] and thus
recently applied to performance tuning [20]. SVR can in-
crease the sample set to twice as large, alleviating the sample
scarcity partially. As a robust ensemble model, RFR com-
bines the advantages of statistical reasoning and machine
learning approaches [17]. We have also tried linear regres-
sion, which has been used in a state-of-the-art related work
for feature selection [12], but the model is too imprecise to
be useful due to the reason described in Section 2.1.

We measure the above models using the max pre-
diction error, which is the max difference between the
real performances and the model predictions, divided
by the corresponding real performance. The equation is
max(|y";_y"| }iclo,n—1]), Where n is the number of samples,
y is the real performances and § is the performances pre-
dicted by a model. We use 100 samples to construct each
model over 10 PerfConfs.

As demonstrated in Figure 2a, the max prediction errors
of these models can be very high, as much as twice more
than the real performances. While the complexity of the
PerfConf-performance curves is one reason, the scarcity of
samples is the other. In fact, the model inaccuracy can be
decreased given more samples (Figure 2b), but the cost of
obtaining a large sample set can be high. Many tuning solu-
tions require a database of thousands of samples for tuning
10 parameters [12]. Models based on neural networks would
require more samples even for just two PerfConfs [13].

4000 FETTEET T 4000 ! — = LargeitSet
1 n SmalllnitSet
1]
30001 1 N ll |l
! 7 1 - 7
2500{ X g T\ A R
v vy : YOI
v

w
a
=3
S

’
3000

Throughput
n
Thropghput 3

N
5

=)
S
N}
o
S
S

== = LargelnitSet

2000 SmalllnitSet 1500

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Test # Test #

(a) Better optimized (b) Better next point predictions
performances for a larger for a larger initial training set.
initial training set.

Figure 3. Sample size matters: tuning Tomcat by BO with a GP prior.

Worse still, these samples must be collected for each spe-
cific combination of system, workload, environment and
computing resources. This makes the precise prediction on
system performance almost impossible, because collecting
a large number of samples for every such combination is
impractical, if not impossible. Hence, we are facing the prob-
lem how to obtain proper samples for model construction.

Sample scarcity has also negative impacts on the tuning
process of BO. With BO, the GP model can be trained
with limited samples and later updated with more samples
as the acquisition function drives the sampling process.
However, with a GP model trained with limited samples,
the tuning process based on BO can be very ineffective.
As demonstrated in Figure 3, a BO model with very few
samples cannot locate best points for sampling as one with
more samples does.

2.3 Challenge: Irrelevant Optimization Steps

Data-driven tuning methods like Bayesian optimization op-
timize and sample stepwise towards the final optimization
goal [12]. In comparison, many other data-driven tuning
methods train a model after taking a large samples and then
optimize on the final model [20]. There exists a question on
whether we should optimize stepwise or integrally.

We look into the optimization process of BO. At each
step, BO algorithms determine the next sampling point by
optimizing a carefully designed acquisition function [19].
Acquisition functions determine how to explore the input
space. The commonly used acquisition function is the ex-
pected improvement (EI) function, which represents the
expected improvement on sampling a given point. The prior
probability model on f is needed in the EI computation. This
probability model is usually assumed to be described by a
Gaussian process (GP) [12]. Assuming the GP prior, a priori
knowledge over f is required to set the covariance function
and hyper-parameters. We take the common practice in the
choice of the covariance function and hyper-parameters [19].

Figure 3b demonstrates how the BO method runs toward
the final result by optimizing the EI acquisition function at
each step. Even though the current EI acquisition function
is optimized to find the next sample point at every step,
the found point is not necessarily a better one. In fact, it is
a worse one in many cases as demonstrated in Figure 3b.
When the total number of samples is small, the resulting
model might even fail to find a better point in the following
steps, e.g., the optimization process with a small initial
sample set as represented by the dotted line in Figure 3.

These facts indicate that we do not need to optimize
at every step in the optimization process. We can wait till

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

enough samples are collected. We should optimize inte-
grally on a large sample set, instead of on a small sample
set and in a stepwise way. Besides, instead of trying on a
single point at each step, we can simultaneously try multiple
points. With these understandings, we design ClassyTune.

2.4 Related Work

Solutions to automatic performance tuning have been pro-
posed for a specific type of systems, e.g., storage sys-
tems [13] and databases [12]. Auto-tuning for general sys-
tems also exist, e.g., BestConfig [2], BOAT [7], and Smart-
Conf [18]. Performance tuning requires the support from a
flexible system architecture. Thus, auto-tuning systems for
general systems implement system architectures for sup-
porting the whole process of auto-tuning PerfConfs, includ-
ing manipulating the system under tune, running tuning
tests and computing the optimization results. At the core of
configuration tuning lies a black-box optimization problem.
The solutions to this black-box optimization problem can be
divided into two categories, i.e., experience-driven tuning and
data-driven tuning.

Classic experience-driven tuning methods include the
heuristics-based search approach [2], [8], [21] and the
control-theory based approach [18]. The tuning based on
manually specified models [10], [11] also belongs to this
category. While heuristics are highly related to human ex-
perience, they might be useful for some systems but not the
others. Besides, the search-based approach can only produce
stable results when the searched space is large enough. Con-
trol theory based auto-tuning iteratively applies a change
to inputs and monitors feedbacks to decide for the next
step. This approach is only applicable to cases where the
number of PerfConfs is only a handful. There also exist auto-
tuning tools that decide the configuration settings based on
expert provided guidelines or experts’ answers on a set of
questions [22]. Like manually specified models, they have
only limited applicability. Different heuristics-driven tuning
methods can be assembled for usage in auto-tuning, as the
OpenTuner framework does [14].

Data-driven tuning approaches exploit data to guide
tuning, instead of experience-based heuristics or manually
specified models. Such approaches typically train a model
on a given data set and optimize the model towards the tun-
ing objective [12]. Due to the large number of PerfConfs, the
model-based approach demands a large sample set to train
useful regression models on performance [15]. Bayesian
optimization is a popular data-driven tuning approach [6],
[12], [13], as it requires only a limited number of samples to
train the optimization model. For the BO method with a GP
prior, a priori knowledge over the black-box function is re-
quired to set the covariance function and hyper-parameters
of the GP model. Unfortunately, such knowledge requires
deep understanding of the optimization problem and the
covariance function, which is a difficult task for common
users. Facebook’s Spiral system [23] is an industrial practice
to integrate data-driven methods for predicting the current
best setting of PerfConfs. A recent work BOAT [7] enables
the blending of experience-driven tuning and data-driven
tuning. It proposes an optimization framework to integrate
human knowledge into the Bayesian optimization process,
making the black-box optimization partially white.

4

ClassyTune takes a classification approach to perfor-
mance auto-tuning, which is completely different from
previous works. ClassyTune addresses the sample scarcity
problem in auto-tuning by two measures, i.e., permuting
sample pairs to form inputs and generating samples from
tuning experiences. Through data generation, ClassyTune
transfers expert knowledge and experiences to the auto-
tuning process. Like BestConfig [2], ClassyTune has an
architecture that can work with both experience-driven and
data-driven tuning methods. The difference of these two
architectures is that ClassyTune can save all collected tuning
samples for future modeling purpose and expose the tuning
model to inform users about PerfConf-performance rela-
tions, while BestConfig cannot. The classification model can
be used effectively as the surrogate of the system in analysis.
In comparison, models directly predicting performances are
too imprecise to rely upon [20], while models like Bayesian
optimization [6], [19] can only predict the next best points
and not be used in such analysis.

3 DESIGN OVERVIEW

ClassyTune is a data-driven performance auto-tuning tool
for systems in the cloud. It addresses the problem of auto-
tuning system PerfConfs within a given number of tuning
tests. A set of PerfConf-performance samples can be col-
lected from the given number of tuning tests.

Taking a comparison-based perspective, Classytune
models the relation between each pair of PerfConf-
performance samples. This comparison-based modeling en-
ables the generation of even more samples based on tun-
ing experiences, further attacking the sample scarcity chal-
lenge. The modeling process trains a classifier for predict-
ing whether the first PerConf setting has a higher per-
formance than the second in a pair of PerfConf settings.
Section 4 presents the details of the comparison-based
modeling based on classification. Unlike the performance-
prediction based methods, ClassyTune does not need to
assume whether the performance curve is linear or non-
linear, thanks to its classification-based method. But, like
other machine learning models, the trained classifier is not
a hundred percent accurate. It is an imprecise classifier.

To tune with the imprecise classifier, ClassyTunes adopts
a clustering-based method. Naive exploitations of the im-
precise classifier will fail to find a best PerfConf setting due
to occasionally incorrect predictions. ClassyTune uses the
trained classifier as the surrogate of the system. ClassyTune
clusters a set of good PerfConf settings output by the
classifier to locate promising spaces for searching the best
PerfConf setting. Section 5 presents the details of the tuning
process based on an imprecise classifier.

The overall architecture and implementation of Classy-
Tune is presented in Section 6. ClassyTune consists of three
main components, i.e., sampling, modeling and searching
(86.1). Sampling and searching components can interact
with the system under tune. The interaction is mainly ad-
justing the PerfConf settings of the system under tune. The
interactions are automated and driven by the tuning process
when needed. The three components interact in a way
as defined by the tuning algorithm (§6.2). Implementation
details are also provided (§6.3).

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

4 MODELING COMPARISONS

In this section, we first formulate the comparison-based
view for performance tuning. We then detail how to induce
training samples and model comparison relations by classi-
fication for the auto-tuning task.

4.1 The Comparison-Based View

We model the performance-comparison relations between
pairs of PerfConf settings. This comparison-based model
takes a pair of PerfConf settings (X7, X3) as input and
outputs 1 if the first setting has a performance better than
the second, i.e., f(X71) — f(X2) > 0, or 0 otherwise. Hence,
it can be represented by the function g defined as:

1if f(X1) — f(X2) >0,
0 otherwise.

9(X1, X2) = { M

We exploit the above comparison-based model to tackle
the auto-tuning problem. We relate the comparison relation
to each dimension difference between an input pair. We
propose a mapping to encode this dimension difference and
construct a new set of samples (§4.2). With the constructed
sample set, we can exploit classifiers to model the compar-
ison relations between input pairs. We choose the classifier
with the best trade-off between computation overhead and
accuracy for modeling.

This comparison-based approach has the following ad-
vantages over other approaches. First, the tuning problem
can easily fit into the comparison-based modeling perspec-
tive. As performance tuning is usually formalized as an
optimization problem, the problem for finding the optimal
PerfConf setting is in fact to find one setting that has a better
performance as compared to all other PerfConf settings.

Second, modeling the comparison relations is more ro-
bust than directly modeling on performance. On sample
collection, the performance measurements are in fact prone
to noise, leading to a variance of measurements. But even
if two measurements might not be accurate due to noise or
fluctuation, their comparison result can still be correct. In
case that some comparisons do not have correct results due
to a high variance of measurements, there still exist many
other correct comparison relations to rely upon. In compar-
ison, such high variance of measurements can completely
divert the modeling of performance predictions.

Third, comparison-based modeling leads to a natural
augmentation of the data set, partially alleviating the sam-
ple scarcity problem. With comparison-based modeling, the
training set consists of PerfConf pairs and their performance
comparison results. This training set must be mapped from
the original set of PerfConf-performance samples. The map-
ping is a permutation of the original sample set. Thus,
for the same sample collection effort, comparison-based
modeling can have a training set as quadratically large as
the direct modeling of performance can have. Besides, we
can generate even more training samples based on man-
ual tuning experiences, which are commonly expressed as
comparison-based rules. This is impossible for the perfor-
mance prediction modeling.

Finally, the comparison-based modeling provides
straight-forward means for users to gauge the influences
of PerfConfs on the performance. On manual tuning, we

5

would actually observe whether a change of PerfConf val-
ues leads to an increase or decrease of the performance. This
is exactly a comparison process. In fact, when we make an
analysis on systems, we make similar comparison-based ob-
servations as well. Thus, comparison-based modeling aligns
well with the thinking of human beings.

4.2 Inducing Samples for Modeling

The performance comparison result can be viewed as the
performance change result if the first PerfConf setting is
changed to the second one. Put it in another way, the
performance change is actually related to the first PerfConf
setting and the value difference regarding the second Perf-
Conf setting. Hence, we can represent a pair of PerfConf
settings by encoding in each dimension the value of the
first setting and the corresponding difference respectively.
For each dimension, we need to construct a bijection for an
effective encoding. With such bijection, we can construct a
larger sample set without increasing the input dimension.

Cantor’s proof is the solution to constructing such bijec-
tion [24]. Probably sounding counter-intuitive, it has been
shown in cardinal arithmetic that the cardinality of the set
[0, 1] x [0, 1] (the unit square) is equal to that of the set [0, 1].
The cardinality of a set is a measure the number of elements
of the set. The cardinality of a set is also called its size. The
cardinality of a finite set is the number of its elements. Two
sets have the same cardinality if there exists a bijection between the
two sets. This result was first demonstrated by Cantor and
later proved based on space-filling curves (SFC), which are
curved lines twisting and turning enough to fill the whole of
any finite space [24]. Space-filling curves provide one way
for constructing a bijection from the unit square to the unit
interval, mapping from the 2d-dimension space to the d-
dimension space.

For each PerfConf, we thus construct the bijection from
two values into one value using SFC, specifically the z-
ordering method [24]. The mapped value in the unit in-
terval is called the z-value. The z-value of a point in
multi-dimensions is simply calculated by interleaving the
binary representations of its coordinate values. For exam-
ple, given the ith-dimension values X}l) = 05000100 and
X{? = 06000101, we can get the z-value of (X", X{") =
00bb000000110001. The order of the two input variables
actually matter. In the example, the z-value of (X 2(2), X 1(1)) is
006b000000110010. Note that, this z-ordering mapping can
actually be modeled by a function with the modulo operator
and simple arithmetic operators.

We construct a new sample set as quadratic large as the
original set of PerfConf-performance samples by permuting
every pair of original samples. The permutation generates
P2 = n x (n — 1) samples from the original n samples. On
construction, we exploit the above SFC method to map pairs
of PerfConf settings into a space with the same dimensions
as the number of PerfConfs. It is common practice that
inputs are normalized before training machine learning
models. Assuming that X, Xy are normalized and trans-
formed into the u_ni>t interval [0, 1], the SFC-based bijection
is h(Xl,Xg) = X172 with X, Xo, X172 € [0, l]d.

We can generate even more training samples based on
historical tuning experiences. Experiences useful for sam-
ple generation are comparison-based rules, for example,

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

increasing the value of PerfConf X leads to a higher performance.
For any given PerfConf setting, we can increase the value
of PerfConf X and obtain pairs of PerfConf settings. We
can then induce new training samples based on the above
sample induction method. As long as the experience-based
rule holds, we can generate as many training samples as
needed. However, we must be careful of two things. First,
the experience-based rule must be correct; otherwise, the
model trained on the generated samples would be wrong.
Second, we must introduce no data skewness and take
samples uniformly distributed in the input space; otherwise,
the trained model can be misguiding.

4.3 Modeling Comparison as Classification

We can model the comparison-based relations using the ma-
chine leaning method of classification, the model of which is
called classifier. A classification problem is to decide which
class a given input belongs to. Given pairs of PerfConfs,
we classify their performance comparison results into two
classes, i.e., the first better than the second and other-
wise. For example, a PerfConf pair (X7, X5) is classified
into one class if X; performs better than X5, i.e., when
g9(X1, X2) = 1; otherwise, it is classified int_o;he other class.
With sample induction h(X7, X2) = X; 2 as defined in
Section 4.2, we can transform g of Eq. (1) into the following

function ¢’:
g/(h(Xl,Xg)) — {1 lff(Xl) f(XQ) >0u

0 otherwise.

@)

% .
where g(X1, X2)=¢'(h(X1, X2))=¢' (X1 2). The input space
of ¢’ has the same dimensions as that of f, i.e., half the input
dimensions of g, but with training samples as quadratically
many as those for f. We can now construct a classifier on
the sample set (X, ¢'(X)) with enough samples.

We might also train a classifier for telling whether one
configuration setting is better than the default configuration
setting. But this way of constructing a classifier cannot
solve the problem of sample scarcity. As our target is to
exploit classifier models to solve the tuning problem, our
focus is how to use the machine learning model, instead of
improving the model. We do not tune the hyper-parameters
of the classifier, as this is a problem as difficult as the one
that the classifier is trained for. Rather, we bear in mind
that the classifier is not precise. We thus design algorithms
that could exploit imprecise predictions by such classifier to
fulfill tuning-related tasks.

Classification vs. ranking. As related works formulate
tuning as an optimization problem, some would think that
modeling tuning as a ranking problem [20] would be more
natural than as a comparison one. We do not address the
tuning problem by ranking models but with classification
models for two reasons. First, the input space of configu-
ration tuning generally has continuous dimensions, which
would contain in any given range points in a number larger
than the total number of natural numbers. As ranking is
in fact mapping natural numbers to inputs, this fact indi-
cates ranking is an inadequate way of modeling. Second,
configuration tuning is to find the top input(s) in the set,
rather than aligning all inputs. While given a ranking model,
obtaining any comparison result is straight forward. Given

6

a classification model for comparison, finding the ranking is
an NP-hard problem [25]. In other words, the ranking model
has incorporated more information than the classification
model. That said, like directly predicting performance, per-
formance ranking has also done more than required.

5 TUNING WITH AN IMPRECISE CLASSIFIER

With the comparison-based classification model, ClassyTune
can compare any pair of PerfConf settings. Since we can now
use the trained model as the surrogate of the real system, our
goal now becomes to find out the best one in a sufficiently
large set of N PerfConf settings.

Strawman. One naive solution is to sample /N PerfConf
settings and use the classifier to compare every pair of them.
In order to find the optimal setting, /N must be sufficiently
large to cover the whole space of PerfConfs. Unfortunately,
pairing every two of the N PerfConf settings would lead to
a set with a daunting size of C%;. Even though the classifier
can predict in a sufficiently short time, this processing time
would add up to a long duration. Worse still, as the classifier
is not a hundred percent correct, some results would be contra-
dicting, making it impossible to deduce the real optimal.

A Dbetter strawman. An alternative solution is to do a
binary search among the huge set of N PerfConf settings.
In each comparison, i.e., each prediction by the classifier,
the winning PerfConf setting is kept for the next round
of comparison, while the other one is discarded directly.
After log, N rounds of binary comparisons, we will finally
reach the last pair of winning PerfConf settings. And, the
final winner will be the optimal. However, as we have
mentioned, the classifier is not a hundred percent correct;
thus, the actual optimal setting might have been discarded because
it loses in just one false comparison.

Our solution. ClassyTune takes a systematic approach
towards tuning. Rather than trying to improve the precision
of the model, ClassyTune recognizes that the trained model
can only make a large portion of predictions correct. It
exploits this fact and finds the top setting in best effort
through three phases, i.e., finding a list of good PerfConf
settings, locating promising areas with optimal settings and
searching for the optimal setting.

5.1 Finding Better PerfConf Settings

ClassyTune does not compare every pair of PerfConf set-
tings. Rather, in the training phase, it keeps the best Perf-
Conf setting in the training set along with the trained model.
When given the large set of IV PerfConf settings, ClassyTune
uses the trained model to compare each of the IV settings
with the best PerfConf setting in the training set. This list of
settings that win in the comparisons are kept. Even though
the trained model might not be completely correct in these
comparisons, it is very likely that many of these winning
settings are ones better than the best PerfConf setting in the
training set.

We take a list of winning settings output by the imprecise
classifier. We do not keep the single PerfConf setting that
wins the most comparisons, contrasting the way that BO
with the GP prior takes one optimal setting at each step.
Given the same imprecision rate, finding a list of winning
settings reduces the probability that we find no PerfConf
setting better than the best one in the training set.

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

Furthermore, we do not directly output this list of win-
ning PerfConf settings as optimal ones. Rather, we use
them to locate some promising areas for finding the real
optimal setting. The reasons include: 1) as the model is not
a hundred percent accurate, some of the winning settings
might not even be good settings; and, 2) the space of
PerfConfs is too large such that the N settings might not
be representative enough for finding the optimal one.

5.2 Clustering to Locate Promising Subspaces

In fact, we believe good settings are close to each other
and possibly locate at a few promising areas. Generally,
the optimal PerfConf setting is surrounded by good settings
that are better than many others. Likewise, the areas where
many good settings locate are promising places that the
optimal setting might be found. We denote such areas as
the promising subspaces.

For the set of winning PerfConf settings, ClassyTune
uses the clustering algorithm of KMeans to find out where
the good PerfConf settings cluster. To determine the number
of promising areas, i.e., the number of clusters, we exploit
the elbow criterion [26] to find a best number k for clus-
tering. We then run the KMeans algorithm to cluster the
winning PerfConf settings into k clusters, whose centers
are then computed. The promising subspaces are located
around these centers.

5.3 Searching for the Best

Now, we have the centers of the promising subspaces. We
have not yet set their boundaries. We set the boundaries
of the promising subspaces based on the PerfConf settings
that we have already evaluated. As we know that none of
the evaluated settings is expected to be better than the list
of winning settings, we should not consider those settings
lying farther from any center than an evaluated setting
that is closer to the center than other evaluated settings.
Hence, for each center, we find at each dimension its closest
neighbor in the set of evaluated settings; and, the value of
this neighboring setting is used as the boundary for this
dimension by the center. After finding for each dimension
of all centers, we bound all promising subspaces.

Within the specified number of tuning tests, we then
sample in the promising subspaces so that a good coverage
of the areas is guaranteed [2]. These sampled PerfConf
settings are then evaluated in the system to decide which
exactly is the best. The final best will be output as the
suggested setting for an optimal performance.

6 THE CLASSYTUNE SYSTEM

The overall architecture of ClassyTune is illustrated in
Figure 4. Like BestConfig [2] and Ottertune [12], Classy-
Tune only needs the users to provide a list of PerfConfs
along with their valid ranges, and scripts to set PerfConf
values/get system performances for tuning a new system
and its application workload. ClassyTune has three main
components, i.e., sampling, modeling and searching. These
components interact through data flows, thus they can
locate on one same server or multiple servers. The results
of sampling and modeling are produced as the intermediate

| @Modeling
ﬁomparison-based\‘ ;

(@sampling |

Database of e Sompling'
(PerfConf.
performance) /|

I\ method/i

/" The optimal

|\ frainingset /%
gT——— Collect — / ®Sﬂg
(" Modeling X e |/ Optimal
' ‘ - i ptimal
_technique / ge\?eMCOn; /Evaluate | \,M//“

(Workload)

(" Classification "\ \ /"~ searchwith N
N model] 3\ imprecision /

Figure 4. ClassyTune: the architecture & the tuning process. .
outputs for reuse in following tasks. The two intermediate

outputs are the database of PerfConf-performance samples
and the classifier model. The final output of the tuning
process is the best PerfConf setting found within the given
number of tuning tests.

6.1 Main Components

Sampling. Different from common machine learning tasks,
configuration tuning allows the learning process to freely
choose the points to sample in the input space. As all values
in the range are valid for a dimension, sample values on
each dimension should spread across the corresponding
range so that the underlying relations impacting comparison
results should be represented and learned. According our
practical experience, we find the latin hypercube sampling
(LHS) method [27] used in ClassyTune very effective and to
the purpose. It can (1) uniformly cover the whole range on
each dimension and (2) sample a given number of points. In
comparison, uniform random sampling does not necessarily
cover the whole range, while grid sampling might not be
able to sample for a required number of points. Other sam-
pling methods that satisfy the two properties like LHS can
also be used with ClassyTune. The output of the sampling
phase is a database of PerfConf-performance samples.

Modeling. ClassyTune exploits the database of
PerfConf-performance samples to construct news samples
for training the comparison-based model. ClassyTune tries
different classification methods to train the comparison-
based model (§4.3). This comparison-based modeling
enables ClassyTune to discover the latent principle
underlying how changing an input leads to the change
of performance. In comparison to direct performance
modeling, ClassyTune simplifies the task by not requiring
the precise prediction on the performance numbers. Rather,
ClassyTune only cares about the relative relations of
resulting performances. The constructed model is output
as an intermediate result of the tuning process. It can be
exploited later by other analysis tasks for the system.

Searching. Based on the classifier, we search the configu-
ration space thoroughly for a set of best points. The classifier
is used to decide whether a configuration setting is superior
to any other configuration. This prediction takes much less
time than actually evaluating a configuration setting for the per-
formance. Like other model-based tuning solutions [6], [12],
[16], ClassyTune exploits the trained model as a surrogate.
Different from some Bayesian-optimization based solutions
that explicitly solve an optimization equation, ClassyTune
takes a systematic approach to optimization, adopting a
three-phase searching process. The found candidate settings
are evaluated in the system for verification.

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

Algorithm 1: ClassyTune: classification-based tuning.

Input: X, y; // PerfConf settings,performance
Input: m; // # of validating PerfConf settings
Output: best X; // the optimal PerfConf setting
/* induce samples, train classifier */
clf=FIT(SET_INDUCE(X,y));

idx M axr=ARGSORT(y)[-1]; // index of best y
/* sample many points in the space */
S« {X}; // | S|>1000 x DIM (X)
Xp=PAIR_INDUCE(S,X[idxMazx]);

Y p=clf.PREDICT(Xp);

/* points better than X [idzMax] */
idx List=IDX_WHERE(Y p,yp; > 0);

Xs=Slidx List];

N o=

G oW

ESIE-N

/* compute best # of clusters x/
8 k=BEST_CLUSTER_NUM(Xj);

/* cluster points to promising subspaces */
9 C=KMEANS_FIT_AND_GET_CENTERS(k,Xs);

/* sampling in promising subspaces by LHS */

10 X_candidates < LHS(C, m/k);

11 y_candidates <EVALUATE(X _candidates);
12 idex M ar=ARGSORT(y_candidates)[-1];

13 bestX < X_candidates[idrMazx];

14 return bestX;

6.2 The Tuning Algorithm

The whole tuning process of ClassyTune is implemented
as illustrated in Algorithm 1. Given a set of PerfConf-
performance samples as input, we first induce a new sample
set for training a binary classifier (Line 1). Then, we find
the best PerfConf setting in the original sample set (Line 2).
Using the best PerfConf setting in the training set as the
pivot, ClassyTune compare each of the N PerfConf settings
with this pivot (Line 3-5). All the winning settings are put
in a winner set (Line 6-7). Second, ClassyTune proposes
to enclose the areas where the winner settings cluster in
(Line 8-9). These areas are the promising subspaces where
optimal settings might locate. Even though the classifier
might have mispredicted some winners, the location of
the promising subspaces might be shifted a little bit but
would not be completely missed. Third, to actually find the
optimal settings, ClassyTune proposes to resample in these
subspaces and evaluate the sampled PerfConf settings in the
system (Line 10-11). The best setting will be output as the
solution (Line 12-14).

6.3 Implementation

Data types for sample representation. One could notice
that, we need to use data types with higher precision to
represent the induced samples. In our implementation, we
use the double data type to represent the induced sample val-
ues and the float for the original ones. However, the lengthy
tail of a decimal is very likely to lose its significance in the
model training process. Thanks to the sparsity of samples,
it is rare that the induced inputs get collapsed with the
original ones. The disadvantage of the induction is that the
latent relations between configuration pairs could become
even further profound. However, as we have mentioned in
Section 4.2, the sample induction can actually be modeled as
a function of modulo and other simple arithmetic operators.
Luckily, as demonstrated by many real-world applications,
some classification algorithms can represent highly complex
input data [28].

Other implementation details. We implement Classy-
Tune using Python and R, with only about 2000 lines of

8
Table 1
The Evaluated Systems and Variables
System Description Lang. Workloads
HDFS Dist. filesystem Java PageRank,
YARN Dist. processing Java Join,
Hive Data analytics Java KMeans
Spark Data processing Scala PageRank,TeraSort, KMeans
MySQL DB server C++ readOnly,readWrite, TPC-C
PostgreSQL DB server C readOnly,readWrite, TPC-C
Cassandra NoSQL DB Java readWrite(YCSB-a)
Tomcat Web server Java Web exploration

code. The interactions with the system under tune are
implemented through shell scripts. ClassyTune maximizes
a scalar performance metric. The scalar performance metric
can be defined and specified through some utility func-
tion [2], with user-concerned performance goals as inputs.

7 EVALUATION
7.1 Experimental Settings

We evaluate ClassyTune over 7 cloud systems that are
implemented in different languages. They have supported
a variety of applications. These systems are listed in Table 1.
To provide an example of tuning co-deployed cloud sys-
tems, we tune Hive and Hadoop together for offline data an-
alytical workloads. We choose these systems in accordance
with related works [2], [12], [18] for an easy comparison.
We believe our choice should be representative for a large
number of cloud systems.

We choose 14 application workloads following the choice
of related works [2], [12], [18], as listed in Table 1. The cases
of Tomcat and Cassandra are relatively simple as compared
to other systems, so only the workloads of Web exploration
and read-write are chosen respectively. The other systems
are evaluated on three typical workloads. The distributed
processing systems of Spark and Hive plus Hadoop are
evaluated under analytical and machine learning work-
loads, generated by the HiBench benchmark. The transac-
tional (readWrite) and readOnly workloads for databases
are generated by the SysBench benchmark. We also include
the TPC-C workload, the current industrial standard for
evaluating the performance of OLTP systems.

For each system, we choose 10 influential PerfConfs for
tuning, unless mentioned otherwise. Related works taking
the model-based approach typically use a similar number
of parameters, around 7 to 16 and with 8 achieving the best
on tuning with fixed parameters [6], [12]. We choose the
PerfConfs to tune in accordance with related works. These
PerfConfs control various aspects of systems, including but
not limited to network, CPU, memory, storage, indexing,
caching and buffering.

Performance metrics are application-specific. We adopt
the performance metrics commonly used for the evalu-
ated workloads. While workloads on Spark and Hive plus
Hadoop are tuned for a shorter processing time (or task
duration), workloads on the other systems are tuned for
higher throughputs.

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

125

- IR 9 DT [SWM NN = XGB

£100 7

8 0% fI 0% 0 ol 0% g on foow foon f

® 75 A o /9 7 K o J 7

A A NV A17d ¢ |7

g N, 7 2N 7 (N 7 I/ “H I/l

£ 504 74 4< 7% Y 7 7 Y D Ve

R EUNPRERPRURPNPRNERUN B s

I BN I 1N VRN Y 79N I8N AN W d IR
AN I/ % = 9 N W/ 7 A

S 25 1% 744 74 7% % 7% 7% 7 7 Y D w

M EVRENENERUNENER VNN EGR P
70 DI DI N 1A AN BN N BN 12N AN 1N

0
Tomcat/ Cassandra/ MySQL/ MySOL/PostgreSQLPostgreSQL/ Spark/ Spark/
webExplore YCSB a TPCC reads reads TeraSortKMeans PageRank Join

Spark/ Hadoop/ Hadoop/ Hadoop/
KMeans PageRank

Figure 5. Percentage of winning settings found by different classifiers:
XGB outperms all the other classifiers, while the kernel method SVM,
exploiting covariance functions, fails in most cases.

Our experimental platform consists of 12 servers. Each
server has two 12-core Intel Xeon E5620 CPU with 32GB
RAM. CentOS 6.5 and JVM 1.7 are installed. For each evalu-
ation, one server is used to generate workloads. Standalone
SUTs are run on one server, while distributed SUTs are
hosted by four servers.

7.2 Selecting the Classification Model

We empirically study which classifier is best to be used with
ClassyTune. There exist many machine learning methods
to model the comparison relations, e.g., logistic regression
(LR for short), decision tree (DT), supported vector ma-
chine (SVM), neural networks (NN) and XGBoost. While
the former three are the classic methods for binary classi-
fication, neural networks have been applied to many real
applications and make significant progress in applications
to scenarios with big data. XGBoost (XGB for short) is in the
algorithm family of gradient-boosted trees [29], which have
been shown to be among the best classifiers [28]. In binary
classification problems with small data, algorithms from the
families of gradient-boosted trees are on the top among all.
XGBoost has been used to achieve state-of-the-art results on
many machine learning challenges.

In the comparison-based tuning, the key to success is
to recognize the whole set of PerfConf settings that are
better than and winning a given one. We evaluate the
above five classifiers to see how they can recognize the
winning settings. We let each classifier to be trained on a
set of 50 original samples and tested on 20 samples. The 20
samples have performances higher than the best sample in
the training set. We evaluate to see how many among the
20 samples can be recognized by a trained classifier. The
results are plotted in Figure 5. From Figure 5, we can see
that XGBoost can almost find all the winning settings for
all systems. Therefore, we choose XGBoost as our classifier
model in ClassyTune.

7.3 Tuning Efficacy

Comparing to performance-prediction based tuning. We
have tried predicting winning settings using regression mod-
els on the same set of original samples as in Figure 5. We use
the decision tree based regression model, which is shown to
perform best in predicting system performances [16]. But
the model trained on the same sample set fails to find out any
of the winning samples. This again proves the validity of
taking a comparison-based approach.

Compared to other auto-tuning methods. To demon-
strate the tuning efficacy of ClassyTune, we compare Classy-
Tune with two state-of-the-art tuning approaches, i.e., the

I}

S

3
IS
S

»
S

800 =14
200 == Default ‘;‘120 == Default FZZ BestConfig
g Z GP-BO 5 GP-BO EEE ClassyTune
600 BestConfig <100 v N
500 mm Class e 2 4
5 ClassyTune % a0 Y
2400 [;E
60
300 Z 7 2
£
£
&
s
®

N

N%
N
N
N
N
N
N
M

A

“’t' ICTTTITITITTTTTT 1]

0

Hy, Hy,
/Pa ﬁm/re arg. &ffﬁq 2. Yoy, > Ha, o
'S ory Cang "*’7@,‘,*’700 //(,lqdn’(/t/, %

0
0 “Capg b

(a) Throughputs of Web server, (b) Runnlng times of Spark and
NoSQL database, and databases. Hadoop jobs.

Figure 6. ClassyTune/BestConfig/GP-based BO(GP-BO) improving per-
formances over those under default settings.

search-based approach [2] and the Gaussian-process (GP)
based Bayesian optimization (BO) approach [6], [12]. Be-
sides, these two approaches are the few auto-tuning proposals that
work on a limited number of samples. We do not compare with
approaches based on control theory [18] or reinforcement
learning [13] because they are only applicable to a handful
of configuration parameters. We exploit the open-source
implementation BestConfig' for the evaluation of the search-
based approach. As no open-source implementation can be
found for the GP-based BO tuning approach [6], [12], we
implemented it exploiting the Python package of GP-based
BO implementation?.

For each combination of tuning solutions, systems and
workloads, we run the tuning experiment for three times
and report the average performance improvement. In each
tuning experiment, we tune within 100 tests, as following
the evaluation methodology of related works [2].

Figure 6 shows that ClassyTune can find configurations
better than and occasionally as good as those output by
the two state-of-the-art solutions. ClassyTune can improve
throughputs to as much as about 8x of that under the
default setting, and decrease execution times to as much
as about 1/4. Specifically, it has improved the throughputs
of Tomcat by 76%, Cassandra by 4%, MySQL/transactions
by 654%, MySQL/reads by 256%, PostgreSQL/transactions
by 228% and PostgreSQL/reads by 33%. It reduces the
execution time by 58% for Spark/PageRank, 72% for
Spark/TeraSort, 50% for Spark/ KMeans, 6% for Hive-
Hadoop/PageRank, 7% for Hive-Hadoop/Join and 22% for
Hive-Hadoop/KMeans.

Even for the complex co-deployed system of Hive-
Hadoop, ClassyTune can still improve the performance by
reducing as much as 22% execution time of the KMeans
workload. In comparison, the search-based method and the
GP-based BO method cannot tune such a complex system to
a performance as good as ClassyTune.

ClassyTune tunes several systems to a performance
much higher than the state-of-the-art solutions, e.g.,
Spark/PageRank and MySQL/txns in Figure 6. For other
systems, ClassyTune can only win the state-of-the-art so-
lutions by a small percentage. A system can in no way be
tuned as well as one would wish by only changing PerfConf
settings. There is an upper bound on the performance that
tuning PerfConf settings can improve, although this bound
can hardly be figured out for the high-dimensional continu-
ous space of PerfConfs. The performances that ClassyTune
has tuned to are the best we have found for the correspond-

1. http://github.com/zhuyuqing/bestconf/
2. https:/ / github.com/thuijskens /bayesian-optimization

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

10

WZaN Manual 60 400
300 == Script - sampling > sampling
GP-BO ;50 N evaluating : 4 evaluating
X250 772 BestConfig g £300 -
ClassyTune B B R s
E .
E] 52007 - ;v
830 8 @ ps
> > H .ok
28] 28]
200 20 40 60 80 100 100O 10 20 30 40 50
spark.default.parallelism mapreduce.job.maps

MySQL/TPC-C

Postgres/TPC-C

Figure 7. Auto-tuning compared to manual
tuning: databases/TPC-C.

ing combinations of systems, workloads and environments.
We have tried testing each combination over thousands of
different PerfConf settings, but we never find one setting
better than the one suggested by ClassyTune.

Compared to manual and expert tuning. To further
demonstrate the effectiveness of ClassyTune, we also eval-
uate the performances tuned by ClassyTune towards those
tuned manually or by expert knowledge. We experiment
with databases under the TPC-C workload. To enable the
comparison, we adopt the setting as suggested by the Inter-
net and related works [12] for the manual setting. Before au-
tomatic tuning appears, a common way for tuning databases
is to use scripts that are written by experts based on their
knowledge and expertise. We exploit two tuning scripts for
MySQL? and PostgreSQL* respectively. These scripts are
also evaluated in a related work [12]. We also demonstrate
the tuning results of GP-based BO and BestConfig. Figure 7
presents the results.

ClassyTune can improve the system performance to
about 3.2x of that under the manually tuned configura-
tion. In fact, human beings can hardly capture fully the
characteristics of complicated workloads, thus auto-tuning
methods find PerfConf settings with better performances
than those under manual-tuned and script-tuned PerfConf
settings. And, the latent relations between PerfConfs and
performances are better captured if modeled in the way of
ClassyTune than if modeled in the way of GP-based BO.
Therefore, ClassyTune has an advantage in both database
cases, while the BO-based and the search-based approaches
perform slightly worse than the script-based approach on
tuning PostgreSQL. We believe that the number of samples
is an influential factor. ClassyTune acquires its advantage
from the comparison-based modeling.

7.4 Understanding Comparison-Based Tuning Process

Have winning PerfConf settings been recognized? We
measure to see whether ClassyTune can correctly differ-
entiating all PerfConf settings better than a given one. As
plotted in Figure 5, we can see that the classifier model
can almost perfectly identify the list of winning PerfConf
settings when only 50 samples are provided. This fact sup-
ports our design choice in locating promising subspaces by
clustering these winning PerfConf settings.

Are promising subspaces located? We examine whether
ClassyTune actually locates the promising subspaces. To

3. https:/ /launchpad.net/mysql-tuning-primer
4. http:/ /pgfoundry.org/projects/pgtune/

(a) PageRank on Spark

(b) PageRank on Hive-Hadoop

Figure 8. Promising subspaces (bounded by circles) with optimal settings (i.e., evaluating
points) as located by ClassyTune.

better view the PerfConf-performance relations, we run
a tuning experiment with 1000 tests for Spark/PageRank
and Hive-Hadoop/PageRank respectively. We select the
most influential PerfConf spark.default.parallelism
for Spark and mapreduce. job.maps for Hive-Hadoop. We
plot all the sampled points in the sampling phase and
the evaluated points in the searching phase. The results
are shown in Figure 8. For both systems, the evaluated
points are clustering in its space, which is circled out.
And, the clusters are having short execution times, i.e.,
higher performances, than other sampled points. In other
words, ClassyTune has successfully located the promising
subspaces and recognized a set of good settings.

Imprecision is alleviated by the systematic approach.
We further verify the impacts of classifiers’” imprecision
on tuning. We choose to evaluate on Tomcat-webExplore
and PostgreSQL-reads because classifiers display the most
difference in the former and the least in the latter in Figure 5.

XGB, DT and LR improve the performances to 1.76, 1.71
and 1.73 respectively for tuning Tomcat/WebExplore, while
they improve to 1.33, 1.25 and 1.24 respectively for Pos-
greSQL/reads. We can find that the differences between the
improved performances are not as much as those between
the percentage of winning settings found.

In fact, the tuning results of ClassyTune do not solely
rely on the precision of the classifier. Rather, after the clas-
sifier pins down the promising areas, we take a systematic
approach by resampling in the areas using the LHS method.
This result leads us to think that, while exploiting machine
learning models are beneficial, taking a systematic approach
to the goal will also help to reduce the effect brought about
by the imprecision of machine learning models.

7.5 Sample Induction Method

We evaluate whether the bijection-based sample induction
actually performs better than the simple way of directly
taking the difference (i.e., using the minus operation). We
also compare our sample induction method with the direct
concatenation of two PerfConf settings. We evaluate the
three methods on the percentage of winning settings they
can find. In the experiments, we use the XGBoost classifier
for all three sample induction methods. Results are illus-
trated in Figure 9.

Our sample induction method based on the Cantor’s
proof performs the best for all systems. As we have men-
tioned in Section 4.2, this sample induction method can be
modeled as a function of modulo and simple arithmetic
operators, although it is seemingly complicated. On the one

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

<125
5
2100
75
50
25
0

% of winners f

Figure 9. Percentage of winning settings found: sample induction based
on Cantor’s proof outperforms others.

hand, functions with modulo and simple arithmetic oper-
ators can easily be learned by common machine learning
algorithms [15]. On the other hand, our sample induction
method feeds the model with the real independent factors,
i.e.,, PerfConfs. In comparison, the concatenation method
mixes independent factors with correlated factors, increas-
ing the input dimension simultaneously. And, the difference
method performs worse than our method because the dif-
ference computation can lead to collision of mappings.

7.6 High-dimensional Tuning

We demonstrate ClassyTune” advantages for tuning in a
high-dimensional input space. We choose a tuning space
with 30 PerfConfs and constrain the tuning within 100 tests.
We compare ClassyTune to the two state-of-the-art auto-
tuning methods, i.e., the search-based [2] and the GP-based
BO [6], [12] approach. Manual tuning is not applicable to
high-dimensional tuning because it is very difficult for hu-
man beings to comprehend relations in a high-dimensional
space, if not impossible [4]. Script-based tuning is also
based on human experiences, making it inapplicable to
high-dimensional tuning either. We tune for MySQL and
PostgreSQL under the TPC-C workload respectively.

The tuning results are presented in Figure 10a. First,
increasing the dimension leads to a larger input space
with possibly even better results, e.g., for MySQL/TPC-C.
The performance improvements are higher than those in a
10-dimensional input space, as demonstrated in Figure 6.
ClassyTune outperforms the other auto-tuning methods in
both high and low dimensional cases. For high-dimensional
tuning, the advantage of ClassyTune over the other methods
is more obvious. ClassyTune improves the performance of
MySQL/TPC-C by more than six times, while the GP-based
BO and the search-based BestConfig can only improve by
four times. Second, some systems can have only limited
effective PerfConfs, e.g., PostgreSQL/TPC-C. The perfor-
mance improvements are similar for both high and low
dimensional tuning. Anyhow, ClassyTune still has a slight
advantage over the other auto-tuning methods.

7.7 Tuning Time

We have mentioned that the GP-based GO method has high
computation overhead. For the tuning results in Figure 10a,
we record the tuning time for both ClassyTune and GP-
based BO. The tuning time includes the time for model
training and model optimization. As GP-based BO is a step-
wise method, the tuning time sums up all the computation
time in all steps. We carry out the auto-tuning process of
ClassyTune and GP-based BO for five times respectively. We

11

800

~700

S

geoo I
£500 Z

3150

1

BestConfig

we Default
SSY GP-BO
mmm ClassyTune

GP-BO ClassyTune

Z.

100 200 300 400 500 600
Modeling and optimization time (sec)

50 ysar/tpc-c

(a) ClassyTune outperforms other (b) Total tuning times for Classy-
auto-tuning methods. Tune and GP-BO respectively.

Figure 10. High-dimensional tuning results: tuning 30 PerfConfs for
databases/TPC-C.

Postgres/TPC-C

report the average of the tuning results and the tuning times
respectively. The results are plotted in Figure 10b.

ClassyTune involves a tuning time of no more than
200 seconds, while GP-based BO requires a tuning time
of more than 550 seconds. Within a much shorter tuning
time, ClassyTune finds a better PerfConf setting than the
GP-based BO method. The GP-BO method has a heavy
computation overhead because its tuning process involves
the covariance matrix computation and this computation is
carried out stepwise. Taking an integral approach to auto-
tuning, ClassyTune trains a model once and then spends the
rest of its time in searching the input space thoroughly based
on the trained model. If necessary, ClassyTune can further
reduce its tuning time by searching fewer points.

7.8 Cloud Resource Reduction via Performance Tuning

ClassyTune can bring about the five benefits of automatic
performance tuning [3] like related works [2], [12], [18],
[30]. Here, we present a real use case of UTuned’s customers
to show how ClassyTune enables cloud resource reduction
via performance tuning. In this case, ClassyTune is used to
tune a small online querying service deployed in the cloud.
The application workload accesses the service by connecting
to a stateless Web service cluster running a Spring Boot®
application, which sends user queries to the backend. Before
tuning, the service is deployed on a three-node cluster,
supporting a throughput around 9000 composite operations
per second. There is a resource planning question about
whether all the three nodes are needed or reducing one node is
possible, if the workload throughput must be guaranteed.

To answer this resource planning question, we deploy
the service on clusters of one to three nodes respectively. For
each deployment, we test its performance under the default
PerfConf setting. Then, we use ClassyTune to tune for the
best performance. Under the tuned PerfConf setting, we test
the service performance again. All the performance results

are listed in Table 2.
Table 2
Service Throughputs: Default vs. Tuned

Node # | Default (err. rate) | ClassyTune (err. rate)
1 36474 (17.6%) 43768 (8.9%)
2 7972.4 (9.9%) 9341.3 (5.4%)
3 9295.1 (9.7%) 11905.2 (2.2%)

For the target workload, a two-node cluster with a well-
tuned PerfConf setting is the most cost effective. Without
tuning, it would require one more node, i.e.,, 50% more
computing resources, to satisfy the application workload.
From Table 2, we can see that a one-node deployment, tuned
or untuned, cannot support the application workload. While

5. https:/ /spring.io/ projects/spring-boot

IEEE TRANSACTIONS ON CLOUD COMPUTING, JUNE 2019

an untuned two-node deployment cannot meet the through-
put requirement, it can perfectly support the workload after
being tuned by ClassyTune. For three-node deployment,
performance tuning enables it to support an even heavier
application workload. In sum, We have actually reduced the
cloud resource requirements (and costs) of an online service
by 33% through performance tuning by ClassyTune.

8 CONCLUSION

This paper proposes a data-driven auto-tuning system
ClassyTune, which can auto-tune the system performance
by adjusting the PerfConfs within a limited number of tun-
ing tests. ClassyTune exploits and models the comparison
relations between PerfConfs by classification algorithms,
instead of the typical performance-based model. Thanks
to the comparison-based modeling, we can induce and
generate more samples for training the classification model.
Like other machine learning models, the classification model
is not a hundred percent correct. If exploited naively, the
imprecision of model could divert the performance tuning
process such that no better PerfConf can be found. To
guarantee a best PerfConf setting be found, we propose a
clustering-based approach towards auto-tuning, exploiting
the imprecise classification model.

Extensive experiments on seven systems commonly used
in the cloud show that ClassyTune can outperform expert
tuning and the state-of-the-art auto-tuning solutions, espe-
cially for high-dimensional inputs, while the computation
overhead of ClassyTune is much lighter than that of the
state-of-the-art GP-based BO method. An illustrative use
case is presented to show how performance tuning by
ClassyTune improves the system performance and enables
the reduction of 33% cloud computing resources for an
online stateless service.

REFERENCES

[1] S. M. Nabavinejad and M. Goudarzi, “Faster mapreduce compu-
tation on clouds through better performance estimation,” IEEE
Transactions on Cloud Computing, 2017.

[2] Y. Zhu,]. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang,
“Bestconfig: Tapping the performance potential of systems via
automatic configuration tuning,” in Proceedings of ACM Symposium
on Cloud Computing 2017. ACM, 2017, pp. 338-350.

[3] Y. Zhu, J. Liu, M. Guo, W. Ma, and Y. Bao, “Acts in need:
Automatic configuration tuning with scalability guarantees,” in
Proceedings of the 8th ACM APSys, 2017, p. 14.

[4] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-
Molina, J. Gray, J. Held, J. Hellerstein, H. Jagadish et al., “The
asilomar report on database research,” ACM Sigmod record, vol. 27,
no. 4, pp. 74-80, 1998.

[5] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K.
Hollingsworth, B. Norris, and R. Vuduc, “Autotuning in high-
performance computing applications,” Proceedings of the IEEE,
no. 99, pp. 1-16, 2018.

[6] Z.L.Li, C.-J. M. Liang, W. He, L. Zhu, W. Dali, J. Jiang, and G. Sun,
“Metis: Robustly tuning tail latencies of cloud systems,” in 2018
USENIX Annual Technical Conference, 2018, pp. 981-992.

[7] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “Boat: building
auto-tuners with structured bayesian optimization,” in Proceedings
of the 26th International Conference on WWW, 2017, pp. 479-488.

[8] D. E. Goldberg and J. H. Holland, “Genetic algorithms and ma-
chine learning,” Machine learning, vol. 3, no. 2, pp. 95-99, 1988.

(9]

[10] H. H

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

12

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in

International Conference on Machine Learning, 2017, pp, 2902-2911.
erodotou, 'F. Dong, and S. Babu, “No one (cluster) size

fits all: automatic cluster sizing for data-intensive analytics,” in
Proceedings of the 2nd ACM SoCC, 2011, p. 18.

J. Chen, G. Soundararajan, S. Ghanbari, F. Iorio, A. B. Hashemi,
and C. Amza, “Ensemble: A tool for performance modeling of
applications in cloud data centers,” IEEE Transactions on Cloud
Computing, vol. 4, no. 1, pp. 20-33, 2016.

D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale machine
learning,” in Proceedings of the 2017 ACM International Conference
on Management of Data. ACM, 2017, pp. 1009-1024.

Y. Li, K. Chang, O. Bel, E. L. Miller, and D. D. Long, “Capes: unsu-
pervised storage performance tuning using neural network-based
deep reinforcement learning,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2017, p. 42.

J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O'Reilly, and S. Amarasinghe, “Opentuner: An extensible
framework for program autotuning,” in Proceedings of the 23rd in-
ternational conference on Parallel architectures and compilation. ACM,
2014, pp. 303-316.

M. J. Kearns and U. V. Vazirani, An introduction to computational
learning theory. MIT press, 1994.

J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski,
“Variability-aware performance prediction: A statistical learning
approach,” in IEEE/ACM 28th International Conference on ASE.
IEEE, 2013, pp. 301-311.

Z.Bei, Z. Yu, H. Zhang, W. Xiong, C. Xu, L. Eeckhout, and S. Feng,
“Rthoc: A random-forest approach to auto-tuning hadoop’s con-
figuration,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 5, pp. 1470-1483, 2016.

S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. L. Kistijan-
toro, “Understanding and auto-adjusting performance-sensitive
configurations,” in Proceedings of the Twenty-Third International
Conference on ASPLOS. ACM, 2018, pp. 154-168.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Fre-
itas, “Taking the human out of the loop: A review of bayesian
optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175,
2016.

V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Using bad learners
to find good configurations,” in ACM FSE, 2017, pp. 257-267.

P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in
Simulated Annealing: Theory and Applications. ~Springer, 1987, pp.
7-15.

E. Kwan, S. Lightstone, A. Storm, and L. Wu, “Automatic con-
figuration for ibm db2 universal database,” in Proc. of IBM Perf
Technical Report, 2002.

V. BYCHKOVSKY, J. CIPAR, A. WEN, L. HU, and S. MOHAP-
ATRA, “Spiral: Self-tuning services via real-time machine learn-
ing,” https:/ /code.fb.com/data-infrastructure/spiral-self-tuning-
services-via-real-time-machine-learning/, 2018.

H. Sagan, Space-filling curves. Springer Science & Business Media,
2012.

W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order
things,” in Advances in Neural Information Processing Systems, 1998,
pp. 451-457.

T. S. Madhulatha, “An overview on clustering methods,” arXiv
preprint arXiv:1205.1117, 2012.

M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison
of three methods for selecting values of input variables in the
analysis of output from a computer code,” Technometrics, vol. 42,
no. 1, pp. 55-61, 2000.

R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proceedings of the 23rd ICML.
ACM, 2006, pp. 161-168.

J. H. Friedman, “Greedy function approximation: a gradient boost-
ing machine,” Annals of statistics, pp. 1189-1232, 2001.

B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang, “A smart
hill-climbing algorithm for application server configuration,” in
Proceedings of the 13th international conference on World Wide Web.
ACM, 2004, pp. 287-296.

	1 Introduction
	2 Motivation and Related Work
	2.1 Challenge: Non-Smooth Complicated Curves
	2.2 Challenge: The Sample Size
	2.3 Challenge: Irrelevant Optimization Steps
	2.4 Related Work

	3 Design Overview
	4 Modeling Comparisons
	4.1 The Comparison-Based View
	4.2 Inducing Samples for Modeling
	4.3 Modeling Comparison as Classification

	5 Tuning with an Imprecise Classifier
	5.1 Finding Better PerfConf Settings
	5.2 Clustering to Locate Promising Subspaces
	5.3 Searching for the Best

	6 The ClassyTune System
	6.1 Main Components
	6.2 The Tuning Algorithm
	6.3 Implementation

	7 Evaluation
	7.1 Experimental Settings
	7.2 Selecting the Classification Model
	7.3 Tuning Efficacy
	7.4 Understanding Comparison-Based Tuning Process
	7.5 Sample Induction Method
	7.6 High-dimensional Tuning
	7.7 Tuning Time
	7.8 Cloud Resource Reduction via Performance Tuning

	8 Conclusion
	References

