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Cutting the Unnecessary Long Tail:
Cost-Effective Big Data Clustering in the Cloud

Dongwei Li, Shuliang Wang, Nan Gao, Qiang He, and Yun Yang

Abstract—Clustering big data often requires tremendous computational resources where cloud computing is undoubtedly one of the
promising solutions. However, the computation cost in the cloud can be unexpectedly high if it cannot be managed properly. The long
tail phenomenon has been observed widely in the big data clustering area, which indicates that the majority of time is often consumed
in the middle to late stages in the clustering process. In this research, we try to cut the unnecessary long tail in the clustering process
to achieve a sufficiently satisfactory accuracy at the lowest possible computation cost. A novel approach is proposed to achieve
cost-effective big data clustering in the cloud. By training the regression model with the sampling data, we can make widely used
k-means and EM (Expectation-Maximization) algorithms stop automatically at an early point when the desired accuracy is obtained.
Experiments are conducted on four popular data sets and the results demonstrate that both k-means and EM algorithms can achieve
high cost-effectiveness in the cloud with our proposed approach. For example, in the case studies with the much more efficient
k-means algorithm, we find that achieving a 99% accuracy needs only 47.71%-71.14% of the computation cost required for achieving a
100% accuracy while the less efficient EM algorithm needs 16.69%-32.04% of the computation cost. To put that into perspective, in the
United States land use classification example, our approach can save up to $94,687.49 for the government in each use.

Index Terms—Cloud computing, cost-effectiveness, clustering algorithms, big data, data mining.
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1 INTRODUCTION

THE long tail refers to the phenomenon where the portion
of the distribution has a large number of occurrences far

from the head or central part of the distribution, which is
commonly observed in recommendation systems and data
mining [1], [2]. In recent years, with the explosive growth of
data in many areas such as remote sensing [3], [4], business
[5], and bioinformatics [6], the capability for data generation
becomes so powerful and enormous. Clustering algorithms
have been widely used as one of the most powerful meta-
learning tools for accurate analysis of massive volumes
of data generated by modern devices. The main goal of
clustering is to categorize data points into clusters such that
those grouped in the same cluster are similar according to
specific metrics. During the clustering process, it is usual
that the clusters are formed quickly at the early stage while
changes slowly during the middle to late stages. This is the
long tail in clustering [7].

In the area of clustering, there have been lots of attempts
to analyze and categorize the data for the huge number of
applications. However, one of the major issues in using clus-
tering algorithms is that it often requires tremendous com-
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putational resources especially when processing large-scale
data sets. To illustrate this, we use the k-means algorithm to
cluster remote sensing images. For k clusters and p pixels, a
total of k × p distances need be computed at each iteration.
For example, for 10 classes and 40000 (200 × 200) pixels,
50 iterations of the k-means clustering require 20 million
multiplications for every image. Usually, the remote sensing
data sets are huge and consist of tens of thousands of images
such as SAT-6 [8], AID [9], NWPU-RESISC45 [10]. As a
result, processing such data is undoubtedly computationally
intensive and extremely costly.

Small and medium-sized organizations usually cannot
afford the exorbitant in-house IT infrastructure for process-
ing such a large amount of data. Naturally, cloud comput-
ing, the latest distributed computing paradigm which elim-
inates the need to maintain expensive computing hardware,
dedicated space, and software, becomes the best choice for
them [11].

Cloud computing adopts the pay-as-you-go model,
where users are charged flexibly according to the usage of
cloud services such as computational resources. However,
the computation cost in the cloud can be unexpectedly high
if users cannot manage it properly, which also becomes a
bottleneck for big data mining in the cloud. For instance,
running 50 m4-2xlarge EC2 virtual machine (VM) instances
in Amazons Sydney datacenter costs $18,000 per month [12].

In most clustering situations, it is not always necessary to
achieve the optimal solution because users often do not need
100%. Take the marketing for example, based on various
customer interests, age and product holding information,
clustering techniques have been used for creating customer
groups. In this situation, a reasonable margin of inaccuracy
is acceptable because marketers do not need their customers
to be grouped with 100% accuracy. As long as they have
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a general picture of the clustering result, they are able to
make a decision. In fact, there will never be completely accu-
rate, e.g., weather forecasting or land use statistics. In such
scenarios, stopping the clustering process at a reasonable
point is important in saving computation costs if it is more
preferable to achieve a sufficiently satisfied accuracy at a
low computation cost than a 100% accuracy at a high cost.

Thus, cutting the unnecessary long tail in the clustering
process is a promising solution to cost-effective clustering.
In other words, we need to study how to achieve a suffi-
ciently satisfactory clustering accuracy at the lowest possible
computation cost.

Cost-effective clustering in the cloud allows big data
analytics to be applied in a broader range of fields by more
businesses and organizations, especially small and medium-
sized ones with the limited budget. He et al. observed the
long tail phenomenon and studied the cost effectiveness
of the k-means algorithm in the cloud. They found that
achieving 99% accuracy with the k-means algorithm only
needs a bit more than 20% of computation time on av-
erage [7]. However, when to stop the k-means algorithm
automatically with the desired accuracy has not been well
investigated by researchers up to now.

There is a variety of clustering techniques that can be
adopted for exploration and demonstration of the cost ef-
fectiveness of big data clustering in the cloud. Among the
top 10 data mining algorithms discussed by Wu et al. [13], k-
means [14] and EM (Expectation Maximization) algorithms
[15] belong to the field of clustering. Furthermore, k-means
and EM are both iterative algorithms and converge to the
final (optimal) result iteratively [16], [17], which provides
possibilities for us to calculate the accuracy of the inter-
mediate clustering result at each iteration of the clustering
process. Therefore, we choose k-means and EM algorithms
to explore and demonstrate the cost-effective clustering in
the cloud.

The contributions of the paper are as follows:

1) We demonstrated the long tail phenomenon in the
clustering process, and defined the cost effective-
ness problem of k-means and EM clustering algo-
rithms in the cloud.

2) To the best of our knowledge, this is the first pa-
per to achieve cost-effective clustering in the cloud
through cutting the unnecessary long tail. We pro-
posed a regression model between the change rate
of objective function and clustering accuracy.

3) We compared the excellent performance of cost ef-
fectiveness of k-means and EM algorithms on mul-
tiple benchmark data sets, and discussed the threats
to validity of the results.

The remainder of the paper is organized as follows. Section
2 presents a motivating example and analyzes the research
problem. Then, Section 3 describes the methodologies used
in the cost-effectiveness problem and Section 4 proposes
a novel approach for cost-effective big data clustering in
the cloud. Section 5 displays the results of experiments
conducted on different data sets. Section 6 surveys the
related work. Finally, Section 7 addresses the conclusions
and future work.

2 MOTIVATING EXAMPLE AND PROBLEM ANALY-
SIS

In this section, we introduce an example to motivate cost-
effective big data clustering and then analyze the research
problem.

2.1 Motivating Example

Knowledge about land use and land cover has become
increasingly important in overcoming the problems such
as uncontrolled development, deteriorating environmental
quality, loss of prime agricultural lands, destruction of im-
portant wetlands, and loss of fish and wildlife habitat [18].
The U.S. Department of Agriculture reported that, during
the 1960s, a total of 730,000 acres were urbanized each year,
transportation land uses expanded by 130,000 acres per year,
and recreational area increased by about 1 million acres
per year. The present distribution and area of agricultural,
recreational, urban lands, as well as their changing propor-
tions, are needed by legislators, planners, state and local
government officials to determine better land use policies
and implement effective plans for regional development.

The recent advances in remote sensing techniques give
birth to explosive growth of remote sensing images, which
can be used effectively to calculate the current use of land
sources. Generally, remote sensing images in the specified
district have similar spectral characteristics and contain
similar components such as forest, water, road, building,
grassland and wasteland. By clustering the pixels in remote
sensing images that are spectrally similar, we can get an
intuitive overview of remote sensing objects without any
prior knowledge, which is significant in the classification
statistics on land use.

Suppose that the state governor plans to have statistics
about the land use classification of California. According to
the high solution aerial images from USGS National Map
Urban Area Imagery collection, the partitioned remote sens-
ing images should be extracted from the original data set,
the solution of which is 1 foot per pixel. Since the California
area is about 423,970 km2, it is required to process tens of
thousands of remote sensing images. The computation cost
would be extremely high.

2.2 Problem Analysis

Remote sensing clustering for land use classification is both
computation- and data-intensive. For a single machine, the
limitation of its hardware resources results in a bottleneck in
processing such huge data. This bottleneck can be avoided
if we run the remote sensing images clustering in the cloud.
The cloud can offer virtually unlimited computational re-
sources for processing large data sets. Cloud computing
adopts the pay-as-you-go model [19] and enables flexible
and on-demand access to computational resources, which
allow big data clustering to be performed by using only
necessary computational resources for a needed period of
time. Since the cloud cost is the main concern for users,
how to achieve cost effectiveness has become a critical issue
for both academia and industry. For clustering applications
such as land use classification, it is usually acceptable for
the governor if the accuracy is within a reasonable range.
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Due to the long tail phenomenon (see Section 3.4) in the
clustering process, a sufficient clustering accuracy may be
obtained within a short time. After that, incremental ac-
curacy improvement usually takes a relatively long time
in the remainder of the clustering process. Thus, we need
to consider the utilization of this phenomenon and find
an appropriate point to terminate the clustering process to
achieve satisfactory accuracy at a low cost.

3 METHODOLOGY

This section presents our study of cost-effective clustering,
including the candidate clustering techniques, the accuracy
calculation method, the cloud cost computing model, and
cost-effective clustering analysis. Clustering is a powerful
method for analyzing massive volumes of data. The main
idea of clustering is to minimize a certain criterion function
usually taken up as a function of the deviations among all
patterns from their respective cluster centers. Usually, the
minimization of the criterion function is sought to utilize
an iterative scheme that starts with a chosen initial cluster
configuration of the data, then alters the cluster membership
in an iterative manner to obtain a better configuration.
Appendix A lists the key notations used in this paper.

3.1 Candidate Clustering Techniques
Clustering is an unsupervised method for finding patterns
based on features [20]. Usually, a feature point can be
represented by a vector x = (x1, x2, ..., xd). Based on the
distance measure among feature vectors, a label will be
assigned to each feature. Here, we take the popular k-means
and EM algorithms as examples to demonstrate the cost
effectiveness of big data clustering in the cloud.

3.1.1 K-means Algorithm
The k-means algorithm proposed by Mac Queen [14] is
one of the simplest and most popular techniques in data
mining. It begins with k initial centers and each point will
be assigned with a label based on the distance between
the point and the cluster centers. The steps of the k-means
algorithm are as follows:

Step 1: Select k points as initial centers C =
{c1, c2, ..., ck}.

Step 2: For each i ∈ {1, 2, ..., k}, set cluster Ci as the set
of data points that are closer to ci than to cj for all j 6= i.

Step 3: Recompute ci as the center of Ci:

ci =
1

|Ci|
∑
x∈Ci

x. (1)

Step 4: Repeat Steps 2 and 3 until C no longer changes.
During the process, let µi represent the mean of cluster
Ci. Then the goal of k-means is to minimize the criterion
function in an iterative manner:

J =
k∑
i=1

∑
x∈Ci

‖x− µi‖2 (2)

In Equation (2), the squared Euclidean distance is
adopted to represent the metric of ‖xi − µk‖2 due to its
computational simplicity since the cluster at each iteration
can be calculated in a straightforward manner. The time

complexity of the k-means algorithm is O(nkdi), where n
is the number of d dimensional data points in the data set,
k is the number of clusters and i is the number of iterations
for the clustering process to complete (i.e. converge).

3.1.2 EM Algorithm
The Expectation-Maximization (EM) algorithm is designed
to estimate the maximum likelihood parameters of a statis-
tical model in many situations, such as the one where the
equations cannot be solved. EM approximates the unknown
model parameters iteratively with the Expectation step (E
step) and the Maximization step (M step) which are as
follows:

E step calculates the expected value of the log-likelihood
function, with respect to the conditional distribution of Z
given X under the current estimate of the parameters θt

Q(θ|θt) = EZ|X,θt(logL(θ;X,Z)) (3)

M step finds the parameters that maximize this quantity:

θt+1 = argmax
θ

Q(θ|θt) (4)

The EM algorithm seeks to find the maximum likelihood
estimation (MLE) by iterating the above two steps.

3.2 Accuracy Calculation

Accuracy is a crucial measurement for evaluating the effec-
tiveness of big data clustering. For the purpose of demon-
strating the gradual increase of the clustering accuracy
iteration by iteration, we use the final clustering result
as the reference partition noted by Pf as 100% accuracy.
Through the comparison between the clustering results
achieved at each iteration of the algorithm, we can demon-
strate how the accuracy of the intermediate partition result
Pi ∈ {P1, P2, ..., Pf} increases.

The accuracy can be measured by the similarity between
Pi and Pf . In our research, we use the Rand Index [21] to
assess the similarity, which is a popular accuracy calculation
method in the data clustering field. The Rand Index mea-
sures the similarity between two data clustering partitions.
Each partition is viewed as a collection of n × (n − 1)/2
pairs of elements, where n is the size of the data set. For
each pair of data points, a partition either assigns them to
the same cluster or different clusters. Thus, the similarity
between partitions P1 and P2 can be calculated as follows:

Rand(P1, P2) =
n11 + n00

n00 + n01 + n10 + n11
=
n11 + n00(n

2

) (5)

where:
n11: the number of pairs of elements that are placed in

the same clusters both in P1 and P2;
n00: the number of pairs of elements that are placed in

the different clusters both in P1 and P2;
n01: the number of pairs of elements that are placed in

the same clusters in P1 but in different clusters in P2;
n10: the number of pairs of elements that are placed in

different clusters in P1, but in the same clusters in P2.
Using the Rand Index as the similarity calculation mea-

sure, we can compute the clustering accuracy at each itera-
tion of the clustering process. Take Fig. 1 for example, for the
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Fig. 1. An example of calculating Rand Index between P1 and P2

pairs which are placed in the same cluster (i.e., same color)
in P1 and P2 contains (a1, a2), (a1, a3), (a2, a3), (a5, a6),
(a8, a9). The pairs that are placed in different clusters in
both P1 and P2 include (a1, a5), (a1, a6), (a1, a7), (a1, a8),
(a1, a9), (a2, a5), (a2, a6),(a2, a7), (a2, a8), (a2, a9),
(a3, a5), (a3, a6), (a3, a7), (a3, a8), (a3, a9), (a4, a7),
(a4, a8), (a4, a9), (a5, a8), (a5, a9), (a6, a8), (a6, a9). Then,
there is Rand(P1, P2) = (5 + 22)/36 = 75%. Obviously,
the value of Rand Index increases with iterations and at
the final iteration of clustering process, where Pi = Pf ,
there is Rand(Pi, Pf ) = 1, which indicates that the process
completes with a 100% accuracy.

3.3 Cloud Computing Cost Model
The cost of computation resources when clustering big data
can be calculated by the cost models offered by cloud
vendors. In this research, we use Amazons Elastic Com-
pute Cloud (Amazon EC2) web services, which offer four
different cost models: on-demand, reserved instances, spot
instances, and dedicated hosts. The on-demand cost model
is the basic cost model, under which computing capacities
are paid for by the hours without long-term commitments
or upfront payments.

In this research, the on-demand cost model is employed
to calculate the computation cost incurred during the clus-
tering process:

Costcomp = Priceunit × Timecomp (6)

Computation time Timecomp is measured by the time taken
by the clustering process. The unit price Priceunit is de-
cided by the computational resource employed in running
the algorithm. Take EC2 for example, there are seven ma-
jor categories of EC2 VM instances: Linux, SLES, RHEL,
windows, windows with SQL Standard, Windows with
SQL Web and Windows with SQL Enterprise. In different
categories, there are various types of EC2 VM instances
available at different unit prices. For instance, in Windows
category, 36 EC2 instances are displayed for 4 types: General
Purpose, Compute Optimized, Memory Optimized, and
Storage Optimized. The unit prices differ across different
areas and range from $0.0066 to $38.054 per hour.

In this research, we use the computation time as an
indicator of the computation cost for simplicity. When we
use a specific Amazon EC2 VM instance, it can be found that

(a) The k-means algorithm (b) The EM algorithm

Fig. 2. Objective function over computation time

Fig. 3. The long tail phenomenon in the clustering process

the computation cost and computation time are positively
correlated. Generally, the longer the computation time, the
higher the computation cost is.

Before running the algorithms, some other costs may
occur such as the transfer cost and storage cost of the big
data set in the cloud. However, the costs incurred by data
storage and data transfer are independent of the clustering
process. Thus, in this research, we focus only on the cost
incurred by the computation of the clustering process and
isolate it from the other costs.

3.4 Cost-effective Clustering Analysis

He et al. [7] demonstrated the long tail phenomenon using
the k-means algorithm as an example. The same long tail
phenomenon can also be found in our experiments using
both k-means and EM algorithms (see Section 5), which
makes it possible to compute and demonstrate the accuracy
of the intermediate clustering result with incurred cost at
each iteration of the clustering process.

In the clustering process, the long tail phenomenon is
based on the convergence property of clustering algorithms.
In the k-means algorithm, the objective function (sum of
mean square of all points) is monotonically decreasing iter-
atively and can converge in finite steps. A rigorous proof
of convergence property for k-means is given in [16]. For
the EM algorithm, the objective function (log likelihood)
is monotonically increasing and guaranteed to find a local
maximum for the model parameters estimate [17]. From
Fig. 2, we can see the change in the value of the objective
function over computation time.
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(a) The k-means algorithm (b) The EM algorithm

Fig. 4. The change rate of objective function over accuracy

As the clustering process continues and the clustering
results stabilizes gradually, the convergence of k-means and
EM become very slow, especially at the middle to late stage
of clustering, which incur high costs for big data clustering.
Fig. 3 shows the long tail phenomenon in the clustering pro-
cess, where y-axis means the clustering accuracy calculated
using Rand Index.

For the cost-effective clustering problem, the conver-
gence rates of the objective functions for k-means and EM at
a certain point can be analyzed with the clustering accuracy
at the same time. This way, we can explore the relationship
between them and propose a solution to cost-effective big
data clustering in the cloud.

4 PROPOSED APPROACH FOR BIG DATA CLUS-
TERING IN THE CLOUD

In the k-means and EM clustering process, the objective
function J monotonically changes iteratively until con-
verges in finite steps. For i ∈ {1, 2, ..., f}, the clustering
partition Pi is updated one iteration after another and
gradually approaches the final result Pf , which means that
the label of each point is updated iteratively and clustering
accuracy Rand(Pi, Pf ) approaches 100%. Therefore, we set
ri = Rand(Pi, Pf ) to represent the clustering accuracy at
the ith iteration.

The objective functions of k-means and EM algorithms
are both monotonic and tend to converge over iterations
[16], [17]. However, the value of objective function can be
extremely dissimilar for different clustering algorithms (see
Fig. 2) and can not be compared directly through the single
value. Even with the same algorithm, the different distri-
bution of data will lead to very distinct value of objective
function. Therefore, in this research, we define the change
rate of the value of the objective function at the ith iteration
of the clustering process by hi:

hi =
|Ji − Ji−1|
|Ji−1|

, i ∈ {2, 3, ...f} (7)

where Ji indicates the value of the objective function at the
ith iteration during the clustering process. As the clustering
converges, the accuracy ri increases to 1 while hi decreases
to 0. Therefore, there is a significant negative correlation
between hi and ri (see Fig. 4).

In big data clustering, given a set of data points D, a
random sampling strategy needs to be adopted first, and
then the data set is partitioned into n groups and each group

has k = D/n individuals. Random sampling is also called
probability sampling, where each subject of k individuals
has the same probability of being chosen for the samples
as other subjects of k individuals [22]. Therefore, when
the random sampling is done, each sample is an unbiased
representation of the entire data and has the very same
distribution pattern as other samples. After that, n samples
are split into training set and validation set.

In the training set, we utilize the regression analysis to
develop a prediction model for estimating the relationship
between hi and ri during the clustering process. The first
concern is how to select the best regression model. In
statistics, the sum squares due to error (SSE), R-square,
adjusted R-square, and root mean squared error (RMSE)
are commonly used as standard statistical metrics [23] for
measuring the performance of the regression model. Gen-
erally, the closer the SSE and RMSE are to 0, the better
the regression model selection and fitting, hence the more
successful the data forecast. R-square and adjusted R-square
range between 0 and 1, with a value closer to 1 indicating a
better fit.

Based on comprehensive experiments, we found that the
quadratic polynomial regression model shows the best fit
than other popular regression models in most cases, such
as linear regression, three-degree polynomial regression,
exponential regression, logistic regression, lasso regression,
etc. The quadratic polynomial model is as follows [24]:

hi = β0 + β1 × ri + β2 × ri2 + ε, i ∈ {1, 2, ...f}, (8)

where ε is an unobserved random error with mean zero
conditioned on a scalar variable Rand(i). β0, β1, β2 are esti-
mated parameters which represent the relationship between
hi and ri.

By establishing the regression model between these two
variables in the training data set, we can estimate the
changes in hj against the changes in rj . Then, we conduct
the clustering process iteratively in the validation data set
when hi ≤ hj . After that, we can terminate the clustering
process to reduces unnecessary iterations and save compu-
tation costs.

To evaluate the proposed approach, we define the total
computation time first. The total computation time Timecomp
includes the overall clustering time for the training data
set Timetrain, and the early-stop computation time Timeactual
when clustering reaches the desired accuracy, which can be
calculated as:

Timecomp = Timetrain + Timeactual (9)

The training process is conducted only once. When it
is finished, the regression model can be applied repeatedly
for many applications. Thus, Timetrain is negligible compared
to the overall cost in the long term (see Section 5.4 for the
corresponding experimental analysis). Since computation
time is the only indicator of the cost in our research, the cost
effectiveness percentage Costeffective can also be represented
as follows:

Costeffective ≈
Timeactual

Timefull
(10)



6

TABLE 1
Description of the extracted features

Dataset Instances Attributes Classes
3D Road Network 434,874 4 4, 8
Skin Segmentation 245,057 4 2
Poker Hand 1,025,010 11 10
SpaceNet >3,117,858,324 3 6

where Timefull means the expected computation time in the
clustering when achieves a 100% accuracy. The smaller the
value of Costeffective is, the more cost effective the clustering
will be.

5 EXPERIMENT RESULT

In this section, we first describe the data sets and the exper-
imental settings. Then, we evaluate the cost-effectiveness of
the proposed approach. Finally, we discuss the performance
of different clustering algorithms and illustrate the threats
to validity.

5.1 Data Set Description
We have applied our approach to the 3D Road Network,
Skin Segmentation, Poker Hand data sets from UCI machine
learning repository and the SpaceNet data set of high-
solution satellite images from DigitalGlobe (see Table 1).
The above data sets are the benchmarks for many studies
in machine learning research and have been cited in high-
impact peer-reviewed venues [25], [26], [27], [28].

The 3D Road Network data set has a total of 434,874
3-dimensional data points without class labels. It contains
the longitude, latitude and altitude information about a
road network covering a region of 185 × 135 km2 in North
Jutland, Denmark.

The Skin Segmentation data set has a total of 245,057
instances and is collected by randomly sampling B, G, R val-
ues from face images of various age groups, race groups and
genders obtained from FERET database and PAL database.
The data set is made up of 2 classes: the skin samples and
non-skin samples.

The Poker Hand data set consists of 1,025,010 records
and each record is an example of a hand consisting of five
playing cards drawn from a standard deck of 52. Each card
is described with two attributes (suit and rank), for a total
of 10 predictive attributes. There is one attribute (class) that
describes the ”Poker Hand”.

The SpaceNet data set is an online repository of freely
available satellite imagery collected from DigitalGlobe’s
commercial satellites that includes more than 17,533 high-
resolution images (438 × 406 pixels) in Rio De Janeiro, Las
Vegas, Shanghai, and Khartoum areas. This data set contains
a wealth of geospatial information relevant to many down-
stream use cases such as infrastructure mapping and land
use classification.

5.2 Experimental Setup
Given the data sets at hand, the main purpose of the
experimental setup is to use a default configuration on the
parameters of the clustering algorithms. In general, finding

an optimal number of clusters is an ill-posed problem of
crucial relevance in clusters analysis [29]. Thus, we have
chosen the number of clusters with respect to the number of
unique class labels in the Skin Segmentation (2 classes) and
the Poker Hand (10 classes) data sets. Since the 3D Road
Network data set does not have class labels, we ran the
data set with k = 4, 8. Usually, the number of clustering
for remote sensing images is lower than 10 and can be set
in required scenarios [30]. Thus, with the SpaceNet data set,
we attempt to partition the images into six regions of pixels
that can be given a common label, such as forest, water,
road, building, grassland and wasteland for the land use
classification as described in the motivating example, i.e.,
k = 6.

For non-image data sets, including the Skin Segmenta-
tion, the Poker Hand and the 3D Road Network data sets,
a random sampling generation strategy was applied. In our
research, for data set consisted of n points, we randomly
select m data with n/m times. For example, for a data set
consisted of 500,000 points, it can be divided into 20, 000×25
(25 groups and each group has 20,000 points), 10, 000 × 50,
5, 000× 100 etc. After extensive experiments, we found that
when the data set has more groups and group size is larger
(which means that we need to find a balance to make both of
the groups number and size not too small), the experimental
result usually shows better performance. Generally, when
each group’s size is above 10,000 points and the number
of groups is above 50, our approach achieves better results.
The above phenomenon also indicates that the larger the
data set, the more effective our method is. For SpaceNet
imagery data set, since each satellite image has 438 × 406
data points, we regard each image as a sampling group for
simplicity and there are 17,533 groups in total. Although the
sampling size of SpaceNet data set is larger than the non-
image data sets, this grouping strategy is still reasonable
considering huge number of groups.

In the experiments, we use the 10-fold cross-validation
to divide the groups into the training set and the validation
set. For image data set (SpaceNet), each image is considered
as a group. As the remote sensing data set is huge, we select
100 sample images as the training data set that can simulate
the regression model quite accurately.

The experiments were implemented on Matlab r2013a
and conducted on a machine with a 2.20 GHz Intel (R) Core
(TM) i3 processor and 10G memory. The operating system
is 64-bit Windows 7 enterprise.

5.3 Experimental Performance

In this section, we present and discuss the results achieved
by the candidate clustering algorithms for the given data
sets. Firstly, a data set sampling strategy is applied and
the data sets are then divided into training data set and
validation data set. We will introduce the experimental
performance of our approach in the training process and
validation process.

5.3.1 Training Process
Illustrating Long Tail Phenomenon. Fig. 5 shows the in-
crease in the clustering accuracy over iterations during the
clustering process for one group from the training set. Each
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(a) The k-means algorithm (b) The EM algorithm

Fig. 5. The clustering accuracy over computation time

(a) The k-means algorithm (b) The EM algorithm

Fig. 6. The regression model in training set (3D Network Road k=4)

marker on the curve indicates the intermediate partition
at every iteration. It can be seen that the k-means algo-
rithm first takes a relatively small number of iterations
(19 iterations) to reach a high accuracy (95.06%), and then
takes a large number of iterations (37 more iterations) to
converge to the accuracy of 100%. This confirms the long tail
phenomenon discussed in Section 3.3, which indicates that
the majority of computation time is consumed at the middle
to late stages. In our experiments, we also observed the long
tail phenomenon with the different data sets using both k-
means and EM, which indicates the feasibility of stopping
at an early point of the clustering to achieve the desired
accuracy.

In addition, fluctuations of accuracy may be observed
in the early stage in clustering which is normal due to the
chosen initial points. However, how to select the optimal
initial points is not part of this research, so we do not discuss
it in this paper.

Building Regression Model. We have explored the re-
lationship between the change rate of the value of objective
function hi calculated using (8) and clustering accuracy ri
at the same iteration. In Fig. 6a, we see the relationships
between hi and ri from all groups in the training data
set (3D Road Network k = 4) by the k-means algorithm,
which is represented by a series of scattered points. Then
we can obtain the regression model by Matlab cftool box
[31] through the points using (8) as follows:

hi = 1.83× ri2 − 3.66× ri + 1.83

This regression model illustrates the general relationship
between hi and ri in the k-means algorithm. Similarly, we
obtain the regression model by the EM algorithm using (8)
as follows (see Fig. 6b):

hi = 0.007232× ri2 − 0.01479× ri + 0.007558

TABLE 2
The relation between accuracy and change rate of objective functions

in K-means and EM

Desired Accuracy 90% 95% 99% 99.9%

hj (k-means) 1.83e-2 4.60e-3 1.83e-4 1.83e-6
hj (EM) 1.05e-4 3.44e-5 3.98e-6 3.33e-7

Setting Desired Accuracy. Then, we can set the desired
accuracy rj and calculate the corresponding hj through
the regression model obtained from the training process.
Here, due to the page limit, we only consider the situations
when desired accuracies are set for rj = 90%, 95%, 99% and
99.9% which we believe are sufficient. Table 2 displays the
relationship between the desired accuracy and change rate
of the value of the objective function intuitively in 3D Road
Network data set when k = 4.

The candidate clustering algorithms are terminated in
the iterative process once the change rate of the objective
function hi is below the set value hj , i.e., hi ≤ hj . In a
real-world application, the clustering task will stop when it
reaches the desired accuracy.

5.3.2 Validation Process
To validate the performance of the proposed approach, we
mainly focus on two aspects: cost effectiveness and achieved
accuracy.

Cost-effectiveness Validation. We run validation set for
different data sets and obtain the total clustering completion
time Timefull for k-means and EM algorithms. Fig. 7 shows
the percentages of actual computation time Timeactual by
using our approach in different data sets. By setting the de-
sired accuracy, the candidate algorithms can stop at an early
point. After using Eq. (10), the average actual computation
time is only at 23.74%, 33.50%, 56.57% and 81.06% of the
total time when desired accuracies are 90%, 95%, 99%, and
99.9% respectively using the k-means algorithm. Similarly,
for EM algorithm, the average actual computation time
accounts for 9.4%, 14.46%, 20.73%, and 32.78% respectively
of the total computation time. Since the cloud computation
cost is directly related to computation time, both k-means
and EM algorithms can achieve high cost effectiveness in
the clustering process in the cloud using our approach.

Achieved Accuracy Validation. In the experiment, we
record the expected stop point for different desired accura-
cies and calculate the real achieved accuracies. From Table 3
and Table 4, we can see that the average achieved accuracies
are 92.09%, 95.47%, 98.50% and 99.81% when corresponding
desired accuracies are 90%, 95%, 99%, 99.9% respectively for
the k-means algorithm. Similarly, for the EM algorithm, the
average achieved accuracies are 90.24%, 96.08%, 99.11% and
99.76% respectively with the same desired accuracy. The
numbers in parentheses represent the standard deviations
that are generated by different groups for the data set in
the clustering process. Fig. 8a and Fig. 8b are the box plots
of desired accuracy and achieved accuracy in one group of
SpaceNet validation set. It clearly shows that the average
of actual achieved accuracy is very close to the desired ac-
curacy for both algorithms. The standard deviation is small
especially when desired accuracy reaches 99% and 99.9%,



8

TABLE 3
Achieved accuracy for K-means

Dataset / k Desired Accuracy (Standard Deviation)

>90% >95% >99% >99.9%
3D Road / 4 91.67% (0.1670) 95.84% (0.0094) 99.14% (0.0040) 99.93% (0.0015)
3D Road / 8 90.92% (0.0207) 94.33% (0.0278) 97.78% (0.0226) 99.77% (0.0059)
Skin Seg / 2 91.79% (0.0068) 96.86% (0.0050) 98.87% (0.0036) 99.75% (0.0013)
Poker Hand / 10 94.00% (0.0235) 95.58% (0.0240) 98.09% (0.0211) 99.80% (0.0061)
SpaceNet / 6 92.05% (0.0349) 94.75% (0.0341) 98.64% (0.0098) 99.79% (0.0036)
Average 92.09% 95.47% 98.50% 99.81%

TABLE 4
Acheived accuracy for EM

Dataset / k Desired Accuracy (Standard Deviation)

>90% >95% >99% >99.9%
3D Road / 4 90.71% (0.1599) 95.16% (0.0551) 98.07% (0.0310) 99.63% (0.0015)
3D Road / 8 91.67% (0.0467) 95.84% (0.0094) 99.14% (0.0040) 99.93% (0.0015)
Skin Seg / 2 91.15% (0.1138) 99.93% (0.0004) 99.97% (0.0003) 99.99% (0.0002)
Poker Hand / 10 88.53% (0.0711) 94.67% (0.0505) 98.17% (0.0297) 99.31% (0.0168)
SpaceNet / 6 89.12% (0.0492) 94.81% (0.0384) 99.24% (0.0181) 99.95% (0.0006)
Average 90.24% 96.08% 99.11% 99.76%

(a) The k-means algorithm

(b) The EM algorithm

Fig. 7. The percentage of computation time with different desired accu-
racies by using k-means and EM

(a) The k-means algorithm

(b) The EM algorithm

Fig. 8. The box plots of desired accuracy and achieved accuracy
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which proves the high precision of the quadratic polyno-
mial regression in the experiment. When required accuracy
is 90% and 95%, the achieved accuracy of EM algorithm
has larger variation than that of k-means algorithm, which
means k-means has better goodness of fit of the regression
model than EM algorithm (corresponding to Fig. 6b). To sum
up, k-means is more stable in achieved accuracy than EM in
which more anomalies and larger variation can be observed.

5.4 Discussion

From the experiments, we can draw three main conclu-
sions: 1) the higher the desired accuracy, the longer the
computation time (i.e., the less the saved time). Users can
save much more money with lower but sufficient accuracy
(such as 99%) by using our proposed approach; 2) The
performance of cost effectiveness varies with the data sets. It
is undoubtedly that our approach can achieve cost effective-
ness for different data sets and can be applied in broader
fields; 3) The performance of cost effectiveness varies in
different clustering techniques. Compared with the k-means
algorithm, though the EM algorithm has higher percentages
of time-saving with our approach, it normally takes much
longer time to converge than k-means as illustrated in
Fig. 5. Therefore, the actual computation time of k-means
algorithm is usually less than the EM algorithm due to
its rapid convergence. In real-world applications, different
clustering techniques have different application scenarios,
it is up to the users to decide which clustering algorithm
to adopted. With our approach, they can all achieve cost
effectiveness to various degrees.

For example, in the case studies with the much more
efficient k-means algorithm (see Fig. 5 for efficiency), we
find that achieving 99% accuracy needs 47.71%-71.14% com-
putation cost of 100% accuracy while the less efficient EM
algorithm needs 16.69%-32.04% of the total computation
cost. More specifically, for the SpaceNet data set, the training
process for 100 remote sensing images (using the k-means
algorithm) took 1, 169.46 seconds and was only computed
once. In Section 2.1, we presented the California land use
statistics as example for 423, 970 km2 land, which need
approximately 2.567 × 107 partitioned remote sensing im-
ages (438 × 406 pixels) of each covering a 16, 520.74m2

land. With our approach, the saved computation time is
approximately 19, 256.73 hours when the desired accuracy
is 99%. According to the Amazon EC2 pricing [12], if we
run m5.large virtual machine instances, the saved cloud
computation cost amounts to $4, 082.43 for California with
the total computation cost of $14, 145.63. Apparently, the
training cost ($0.039) is negligible to the whole computa-
tion cost. In real-world applications, the training process is
performed once and when it is finished, we can use the
regression model many times. For example, we can use the
same regression model to conduct the whole United States
land use statistics, which will save huge computation cost
up to $94, 687.49 in each use.

5.5 Threats to Validity

In this section, some key threats to the validity will be
discussed as follows.

Threats to construct validity. The main threat to the con-
struct validity is the adopted metric to evaluate the accu-
racy of every intermediate partition during the clustering
iterative process. In the paper, we use the Rand Index as
the adopted metric. As introduced in Section 3.2, the Rand
Index relies on the final partition in the clustering and it is
an external clustering index. In most clustering algorithms,
the evaluation criteria are divided into internal and external
clustering indices. The internal evaluation criterion is to
evaluate the goodness of a data partition without prior
knowledge from the data sets, which includes Compactness
(CP), Separation (SP), Davies-Bouldin Index (DB), Dunn
Validity Index (DVI), etc. [29]. And the external evaluation
criterion is to assess how accurately a clustering technique
partitions the data relative to their correct class labels. In
real-world clustering, it is difficult and impractical to re-
trieve the correct class labels. Thus, the Rand Index is not the
usual choice for the real world big data clustering. However,
this threat to validity is minimal because our objective is to
explore and demonstrate how to stop a clustering process
at some point to achieve high cost-effectiveness. The Rand
Index can accurately evaluate how close an intermediate
partition to the final partition in the training process while
internal indices might not be consistently correlated with
Rand Index.

Threats to conclusion validity. The central threat to the
conclusion validity is the reliability of the final partition
of the clustering iterative process as the optimal partition.
Since the k-means and EM algorithms do not guarantee a
global optimum, they attempt to approximate the optimal
partition. Therefore, the final partition of the clustering
result is not necessarily the optimal partition. So, Fig. 5 do
not necessarily demonstrate how the intermediate partition
approaches the real optimal partition. Nevertheless, we are
able to consider the final partition adequately reliable for
demonstrating the long tail phenomenon in the clustering
process because in the optimal situations, the k-means and
EM algorithms are likely to take more time and result in a
more significant long tail phenomenon. Thus, the threat to
the conclusion validity exists but is not significant.

Threats to external validity. The main threat to the external
validity in our research is the representativeness of the data
sets used in the experiments. In the experiments, we used
the 3D Road Network, Skin Segmentation, Poker Hand and
SpaceNet data sets. All the data sets are real-world data
sets. They may have their own characteristics and thus do
not comprehensively present all data sets. However, the
main features are familiar such as the negative relationship
between change rate of the value of the objective function
and the clustering accuracy. In the meantime, the high
cost-effectiveness and small standard deviation in all given
data sets indicate that the threat to the external validity is
minimal.

Threats to internal validity. The crucial threat to inter-
nal validity is the selection of the regression model. In
the experiments, we found that the quadratic polynomial
regression model shows the best result of R-squared and
SSE for all given data sets. However, it is impossible to
exhaust every data set in the real world to ensure if the
quadratic polynomial model is the best regression model.
For instance, the regression model may be one degree, three-
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degree polynomial models or even non-polynomial model
such as the exponential model in some special data sets.
Nevertheless, different types of regression models can also
be applied in our approach to achieve cost-effectiveness for
the big data clustering in the cloud. Thus, the threat to the
internal validity is minimal.

6 RELATED WORK

With the development of the pay-as-you-go model, the IT
resources are usually provisioned and utilized by cloud
computing. Since the majority of advantages offered by
cloud computing are built around the flexibility of the
pay-as-you-go cost model, cost-effectiveness has become a
critical issue in cloud computing filed. With the improving
cloud services from the cloud vendors, many scientists focus
on the performance as well as cost-effectiveness of public
cloud services. Intensive research work has been made on
the cost-effective computation in the cloud environment.
A Semi-Elastic Cluster (SEC) computing model [32] has
been proposed for organizations to reserve and dynamically
resize a virtual cloud-based cluster. The race-driven results
show that such a model has a 61% percent cost saving
than individual users acquiring and managing cloud re-
sources without causing longer average job wait time. And
a new MapReduce cloud service model Cura was presented
to provide a cost-effective solution to efficiently handle
MapReduce production resources, which implemented a
globally efficient resource allocation scheme that signifi-
cantly reduces the resource usage cost in the cloud. A new
task scheduler Flutter [33], was designed and implemented
which reduces both the completion time and network cost
of big data processing jobs across geographically distributed
data centers.

Cost-effectiveness of scientific computing applications
has also been studied by Berriman et al. using Amazons
EC2 [34]. They compared Amazons EC2 with the Abe high-
performance cluster and drew the conclusion that the Ama-
zon EC2 offers better performance and value for processor-
and memory-limited applications than for I/O-bound ap-
plications. A similar study was conducted by Carlyles team
to compare the computation cost of high-performance in
traditional HPC environments and in Amazons EC2 envi-
ronments, using Purdue Universitys HPC community clus-
ter program [35]. Their research showed that an in-house
cluster is more cost-effective when the organization having
sufficient demand that fully utilizes the cluster or having
an IT department capable of sustaining IT infrastructure or
having cyber-enabled research as a priority. These features
of in-house clusters, in fact confirm the flexibility and cost
effectiveness of running computation-intensive applications
in the commercial clouds. Wang et al. proposed a stochastic
multi-tenant framework for investigating the response time
of cloud services as a stochastic metric with a general prob-
ability distribution [36]. In a similar study, by comparing
between the scaling out strategies with the scaling up strate-
gies, the performance of Amazons cloud services was tested
with five benchmark applications and scaling up is found
more cost-effective in sustaining heavier workload [37]. To
find the minimum cost of storing and regenerating datasets
in multiple clouds, a novel algorithm was proposed which

achieved the best trade-off among computation, storage
and bandwidth cost in the cloud [38]. Jawad et al. [39]
proposed a smart power management system to minimize
the operation cost of data center, which coordinates the data
center workload, diesel generators, battery bank,renewable
power, real-time trade electricity price and day-ahead power
market to reduce consumption cost.

The current research for cloud computing shows the
popularity of running computation-intensive applications in
the cloud, which describes a general overview about cost
effectiveness for big data clustering in the cloud through
a comparison between the cloud environment and a tradi-
tional cluster environment. Additionally, to save cost in the
cloud, it is also critical for clustering algorithms to improve
their efficiency and to reduce processing time. To deal with
the problem, many approaches have been proposed. To
optimize the k-means algorithm, how to select k appropriate
initial centers is a key issue and there have been many pieces
of work on this matter [40], [41], [42]. For the EM algorithm,
Liu et al. used the parameter expansion to accelerate EM
[43]. However, such approaches rarely considered the eco-
nomic efficiency. Up until now, none of the existing research
has considered the k-means or EM algorithm from the cost-
effective perspective about cost-effective big data clustering
in the cloud. He et al. found the phenomenon that achieving
99% accuracy of k-means only needs an average of 20%+
of the total computation time [7] but they did not offer a
solution for terminating the clustering algorithm at an early
point with the desired accuracy.

In our research, from a different and important perspec-
tive, we take a look at the issue of cost-effectiveness how
to achieve a sufficiently satisfactory accuracy at a relatively
small proportion of the total cost of achieving 100% accuracy
by stopping the clustering process at an early point before
its completion.

7 CONCLUSION AND FUTURE WORK

In this research, we proposed a novel approach for cutting
the unnecessary long tail to achieve cost-effective big data
clustering in the cloud. Users can achieve sufficiently sat-
isfactory accuracies at the lowest possible costs by setting
their desired accuracies. With our approach, both widely
used k-means and EM algorithms show high cost effective-
ness in the clustering process. For the k-means algorithm,
achieving 99% accuracy only needs 47.71%-71.14% of the
computation time for achieving a 100% accuracy. And for
the EM algorithm, achieving a 99% accuracy needs 16.69%-
32.04%. By applying our proposed approach, the govern-
ment will save up to $94, 687.49 for the United States land
use statistics for each run.

To the best of our knowledge, this is the very first
paper to achieve cost effectiveness for big data clustering
in the cloud by cutting the unnecessary long tail. This
work presents a significant first step toward cost-effective
clustering in the cloud. As a contribution, our approach can
be easily deployed in various fields which need to clustering
big data with limited budget.

Since k-means and EM algorithms may not be suitable
for time-series data and spatiotemporal data, in the future,
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we plan to investigate the cost effectiveness of the cluster-
ing algorithms for those data types. In addition, it is also
valuable to explore the relationship between the achieved
accuracy and acquired accuracy, and control the margin of
error by artificial setting.
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APPENDIX A
The notations used in this paper are shown in Table A.1.

TABLE A.1
Table of notations

Notation Definition

D A given data set to be partitioned
x A feature point with dimensions
k The number of clusters

n
The number of iterations in the clustering
process

ci, cj The cluster centers
C The cluster centers set

Ci
The set of data points that are closer to ci than
to cj for all j 6= i

Pi The clustering partition at the ith iteration.
Rand(Pi, Pj) The rand index of two partitions Pi, Pj

ri, rj The clustering accuracy at the th iteration
J The objective function of clustering algorithm

Ji
The value of the objective function at the ith
iteration

hi, hj
The change rate of objective function at the
i, jth iteration

Timecomp The total computation time
Timetrain The computation time for training

Timeactual
The computation time when accuracy reaches
users desired accuracy

Timefull
The computation time when clustering reaches
100% accuracy

Costeffective The cost effectiveness percentage
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