IEEE TRANSACTIONS ON CLOUD COMPUTING

Optimal Resource Allocation of
Cloud-Based Spark Applications

Danilo Ardagna, Enrico Barbierato, Eugenio Gianniti, and Marco Lattuada

Abstract—Nowadays, the big data paradigm is consolidating its central position in the industry, as well as in society at large. Lots of
applications, across disparate domains, operate on huge amounts of data and offer great advantages both for business and research.
According to analysts, cloud computing adoption is steadily increasing to support big data analyses and Spark will probably take a
prominent market position for the next decade.

As big data applications gain more and more importance over time and given the dynamic nature of cloud resources, it is fundamental
to develop intelligent resource management systems to provide Quality of Service guarantees to application end-users.

This paper presents a set of run-time optimization-based resource management policies for advanced big data analytics. Users submit
Spark applications characterized by a priority, and by a hard or soft deadline. Optimization policies identify the minimum capacity to

run a Spark application within the deadline and re-balance the cloud resources in case of heavy load, minimising the weighted
applications tardiness. The solution relies on an initial non-linear programming model formulation and a search space exploration
based on simulation-optimization procedures. Spark applications execution times are estimated by relying on a gamut of techniques,
including machine learning, approximated analyses, and simulation. The benefits of the approach are evaluated on Microsoft Azure
HDInsight and on a private cloud cluster based on Power 8 by considering the TPC-DS industry benchmark. The results demonstrate
that the percentage error of the prediction of the optimal resource usage with respect to system measurement is around 8% on
average. Moreover, the proposed algorithms can address complex problems like computing the optimal redistribution of resources

among tens of applications in few minutes.

Index Terms—Big Data; Quality of Service; Elastic resource provisioning; Cluster management.

1 Introduction

ANY analysts point out that in recent years technologies
M and methodologies that fall within the sphere of big
data have swiftly pervaded and revolutionized many sectors
of industry and economy, becoming one of the primary facili-
tators of competitiveness and innovation [IJ.

IDC reports that big data used to concern highly experi-
mental projects, but now they are used in production [2]. The
market is growing from $130 billion in 2016 to $203 billion
in 2020, with a compound annual growth rate of 11.9 %, with
the banking and manufacturing industries leading in terms of
investments [3]. Moreover, data mining along with big data
analytics are heavily changing our society [4], e.g., in the
financial sector [5] or in healthcare [6].

Cloud computing is an enabling cost-effective technology
for big data. It provides an easy button that allows users to
automatically setup pre-configured clusters. Many companies
have started offering cloud-based big data solutions, such as
Microsoft HDInsight, Amazon Elastic MapReduce, or Google
Cloud Dataproc; IDC estimates that, by 2020, nearly 40 %
of big data analyses will be supported by public clouds [7].
On the economic side, cloud deployments are a convenient
solution for storing huge amounts of data, whereas the pay
per use business model and the elasticity allow cutting upfront
expenses and reduce cluster management, costs.

Given the central role of big data in our society and
the dynamic nature of both cloud environments and big

e D. Ardagna, E. Barbierato, E. Gianniti and M. Lattuada are with
Politecnico di Milano, Dipartimento di Elettronica, Informazione
e Bioingegneria, Via Golgi 42, 20133 Milano, Italy. E-mail:
{name.lastname}@polimi.it

data frameworks, it is of paramount importance today to
develop intelligent resource management systems, which pro-
vide Quality of Service (QoS) guarantees to application end-
users while providing an efficient use of resources [§]. On one
hand, big data cloud infrastructures include high-end I/O and
memory optimized servers and support multiple competing
applications where resource contention might lead to perfor-
mance decline. On the other hand, in modern frameworks
like Apache Hadoop 3 and Spark, resources are dynamically
allocated among ready tasks. This allows a better cluster
utilization, but providing deadline guarantees to big data
analyses has become much more difficult.

In this paper, run-time optimization based resource man-
agement policies for advanced big data analytics are proposed.
Specifically, they can efficiently manage cloud resources pro-
viding differentiated service levels to Spark end-users. Indeed,
each user can submit jobs to be executed characterized by
a priority and by a deadline, which can be hard or soft.
The proposed solution identifies the minimum capacity to
run a Spark application within an a priori deadline and re-
balance the resources of the applications in case of heavy load,
minimising the weighted application tardiness.

The run-time resource management problem is formulated
by means of mathematical models, with the aim of optimizing
the usage of the infrastructural resource. Through a search
space exploration, our approach seeks the optimal virtual
machines (VMs) number for each application. The underlying
optimization problems are tackled by simulation-optimization
procedures able to determine the best configuration. Spark
applications execution times are estimated by relying on a
gamut of techniques, including machine learning (ML), ap-

IEEE TRANSACTIONS ON CLOUD COMPUTING

Optimization Service Spark —

I I
l i (2) !
I ™ Local Search Algorithms |
| Learning [~ IOPT_JR I I OPT_IC I) Broker API Mesos YARN |
| Model |
I I
| \ G I
| (6) 3) Confimuration & G — |) |
| (2) Service |
| 7) Proactive/ |
| Reactive Policies — |
Lundstrom| | dagSim policies ng |

l module (MONASCA)
I I
I I
I

Performance Prediction
Service (9) | Proactive/Reactive Rules
I DI

—_—_————- - e —_

Figure 1. EUBra-BIGSEA run-time framework

proximated analyses, and simulation [9].

The accuracy of the proposed solutions is evaluated on
Microsoft Azure HDInsight and on a private cluster based on
Power 8 by performing experiments based on the TPC-DS
industry benchmark for business intelligence data warehouse
applications. The presented approach proved to achieve good
performance: The experiments performed on real systems
have shown that the percentage error is within 32% of the
measurements in the very worst case, with an average error
around 8%. An extensive scalability analysis demonstrates
that the proposed algorithms can address complex problems
like computing the optimal redistribution of shared resources
among tens of running applications in about three minutes.

The proposed solutions have been developed within the
EUBra-BIGSEA project E| fostering a general framework to
automate the deployment and the resource management of big
data applications with QoS guarantees which is described in
the next section. introduces the problem formulation
and the proposed solution to identify the capacity needed
to support the execution of a Spark application within a
deadline. is devoted to the resource re-balancing
problem, while discusses the experimental results
that validate the proposed solutions. overviews
other literature proposals. Conclusions are finally drawn in

Section 7

2 EUBra-BIGSEA Runtime Architecture

The EUBra-BIGSEA runtime framework consists of a set of
key components designed to satisfy a group of requirements,
specifically: i) handling the resource provision, ii) reducing
costs related to big data application execution, and iii) guar-
anteeing QoS. All the modules are driven by the optimization
of the infrastructure resources usage, which is accomplished
by monitoring and dynamically allocating resources to meet
deadlines.

The considered Spark applications can be executed on
Mesos or, alternatively, on YARN resource managers. Given
an application, its deadline can be classified as hard or soft.
Hard deadlines must be fulfilled; soft deadlines have a priority
associated and can be violated if the system does not have
enough capacity. In this case, the system tries to minimize
the weighted tardiness of the soft deadline applications (i.e.,

1. http://www.eubra-bigsea.eu

2

it will possibly reallocate the cluster nodes in a way that the
weighted sum of application exceeding times with respect to
soft deadlines is minimized).

The applications running on the EUBra-BIGSEA plat-
form are profiled in advance and their resource allocation
is obtained through optimization-based policies on the basis
of the performance requirements. Applications are profiled
according to a set of metrics including: i) the number of stages,
ii) the number of tasks per stage, iii) their average execution
time, and iv) the stage dependencies. Note that the lasts are
modelled as a directed acyclic graph (DAG).

As shown in[Figure 1] the architecture consists of a Broker,
a Configuration and Contextualization Service, a Monitoring
system, a Performance Prediction Service and two software
management layers, i.e., the Optimization Service and the
Proactive/Reactive Policies module.

The entry point of the system is the Broker, which receives
application submissions enriched with additional information,
such as the configuration (in terms of VM type, executors
memory, executors cores, etc.) and the deadlines, and it
triggers the application execution.

The optimal configuration for each application is com-
puted by the Optimization Service, which aims at pursuing
the respect of QoS guarantees and reducing the resource usage
costs. It is composed of two sub-components: i) OPTimizer
Initial Configuration (OPT_IC), a module to provide the
initial capacity configuration (described in and ii)
OPTimizer Job Rebalancer (OPT _JR), a module to rebalance
the applications capacities in case of heavy load (described in
Bection 1),

To compute the optimal solutions, the Performance Pre-
diction Service is exploited: it is composed of two predictor
tools and estimates the application execution time given the
total number of available cores. Specifically, OPT__IC exploits
an ad-hoc discrete event simulator called dagSim [9] providing
off-line accurate results at the cost of long execution times (in
the order of seconds/minutes). On the other end, OPT_JR
uses a different predictor called Lundstrom [9] that provides
on-line less accurate results though performing well in terms
of execution time (sub-second) even for large DAGs.

Reactive and Proactive Policies module provides a bridge
between the users’ application submission and the execution
platform, by adding (or removing) resources according to the
threshold reactions triggered by the monitoring infrastruc-
ture. Violations (or even over-provisioning) trigger the exe-
cution of high-level rules resulting in the adaptation of the in-
frastructure by horizontally or vertically scaling the resources
currently deployed and balancing the load among the physical
servers. The control of the infrastructure is demanded to this
module by exploiting the performance prediction service in
order to understand if an application is early or late with
respect to the deadline (an example of a rule is the following:
if the delay is greater than 10%, then add 20% more nodes).
The actual implementation of the solutions is demanded to
the Configuration € Contextualisation Service, which builds
the initial deployment and applies the horizontal scaling as
suggested by the Reactive and Proactive Policies module.

Finally, the Monitoring system fulfils the task of col-
lecting information regarding the system metrics, such as
batch queues capacity, network and CPU load, or applications
elapsed time.

IEEE TRANSACTIONS ON CLOUD COMPUTING

Since optimization-based policies are effective only when
application performance profiling is performed, the devel-
oped techniques consider mainly batch applications (such
as data acquisition operations, bus trajectory identification,
and social data clustering) while interactive applications are
managed through reactive and proactive rule-based policies.
Rules of this kind, specified by system administrators, are
based on the analysis of the monitoring metrics and trigger
system reconfiguration if the monitoring metric (reactive rule)
or a prediction of the monitoring metric (pro-active rule) is
above or below a given threshold.

As per the infrastructure workflow can be de-
scribed according to the system load conditions. When an
application is submitted to the Broker by specifying an appli-
cation description (i.e., an identifier, the associated deadline,
and other parameters), OPT_IC determines the number of
VMs to be assigned to application execution. Then two cases
can arise: either the system has enough capacity to accommo-
date the execution of the submitted application (light load) or
this can start only by borrowing resources (heavy load) from
soft deadline applications. In particular:

o Light load: Initially, an application with a deadline is
submitted to the system (1), the optimization-based
module verifies (2) if the application was already exe-
cuted. Either the optimal configuration (that describes
the number of VMs to run and their configuration in
terms of RAM and number of cores) is found in the
system history or the optimal configuration is obtained
by interpolating the configurations available in the
history (e.g., considering previous configurations cor-
responding to different deadlines) and by calculating
the real value later (3). The Broker verifies that the
system has enough capacity for the application to be
executed; the actual execution starts after the appli-
cation resource pool is allocated by the Configuration
and Conteztualisation Service (4).

e Heavy load: In this scenario, after steps (1) and (2),
the broker verifies that the system has not enough
capacity for the application execution and triggers a
reconfiguration operation to the optimization-based
module (5), which exploits Lundstrom (6) to deter-
mine the new number of VMs for all the soft deadline
applications. The Optimization Service provides the
new application configuration to the proactive policies
module (7), which actuates the changes in the system.

In both the two load conditions, the Proactive/Reactive
Policies module periodically checks the status of applications
execution (8) and polls the Performance Prediction Service
(9) to predict, given the current system configuration, the
application finishing time.

If a deadline violation is predicted or the resource pool
is over-provisioned, the proactive policies module adapts the
system configuration according to its rules (e.g., increasing
CPU frequencies for the underlying nodes, increasing the
RAM devoted to execution, starting or stopping VMs, etc.),
possibly triggering the execution of the optimization service.

In the next section, the initial capacity allocation problem
is formulated; the problem under heavy load conditions is

described instead in[Section 41

3 Identifying the Initial Configuration

The aim of the OPT_IC component is to identify the min-
imum number of VMs to be allocated to a new application
submitted to the system to fulfill its deadline. The service,
jointly with the monitoring system, can also periodically
estimate the capacity needed by a running application to
complete within its deadline according to its progress. In the
beginning, for the sake of simplicity, only the former scenario
is considered.

OPT_IC computes the application resource need by re-
lying on a mixed integer nonlinear programming (MINLP)
formulation and improves it via a simulation-optimization al-
gorithm. It must be highlighted, at this point, that the quality
of the initial solution can still be improved, mainly because
some of the constraints of MINLP rely on an approximate
performance model obtained via ML. If the strong suit of these
techniques is the regression within the range explored during
the training phase, there is no guarantee on their accuracy
when generalized to other regions of the state space. Since the
profiling activity is time consuming, it is quite unlikely that
extensive information is available for the initial training of the
ML model, hence simulation-based performance models are
exploited, which achieve a good accuracy without depending
too much on the particular configuration under investigation.
The difference in accuracy might cause the need to adjust
the solution with a local search; however, since even the
simulation process is time consuming, the space of possible
cluster configurations has to be explored in the most efficient
way, avoiding the simulation of unpromising configurations.
OPT _IC carries out this task, implementing a simulation-
optimization technique to minimize the number of resources
(i.e., VMs) for each application. This procedure terminates
when a further reduction in the number of resources would
lead to an infeasible solution (i.e., deadline violation). The
optimized solution (number of VMs to be provided to the
application) is then returned to the Broker and deployed
through the Configuration and Contextualization Service.

In the following, some important details on the capacity
allocation problems addressed in this paper are introduced.
A ={i|i=1,...,n} denotes the set of running/submitted
applications, with A9 C A the set of soft deadline appli-
cations, each of which is characterized by a weight w; that
formalizes its (or its end user’s) priority: the higher the weight,
the more important is to meet the prearranged deadline D;.
Each application is assumed to be executed by only one
preassigned VM type characterized by I'; cores per VM. v;
denotes the total number of allocated VMs, with ¢; = I';1; the
total number of cores devoted to application ¢, and with N the
total number of cores available for soft deadline applications.

Moreover, it is assumed that YARN and Mesos are con-
figured in a way that all available cores can be dynamically
assigned for task execution. Finally, in order to limit the risk
of data corruption, and according to the practices suggested
by major cloud vendors, the datasets reside on a cloud storage
service accessible in quasi-constant time.

In order to rigorously model and solve the capacity allo-
cation problem, it is crucial to predict with fair confidence
the execution times of each application under different cluster
sizes. The execution time can be expressed as a function of the
number of allocated cores. In general, any such performance

IEEE TRANSACTIONS ON CLOUD COMPUTING

Table 1
Model parameters

Param. Definition
A Set of applications
A4 C A Set of soft deadline applications
D; Deadline associated to application 7 [s]
w; Weight associated to application ¢
T Number of CPUs available within a VM of application ¢
X§ Coefficient associated to Ci in the model for applica-
tion 7 [s]
x? Constant term in the model for application ¢ [s]
Table 2
Decision variables
Var. Definition
v, Number of VMs devoted to application i execution
ci Total number of cores assigned to application

model needs to be based on a preliminary profiling of the
application in order to be representative of its performance.
In particular, in [I0] it is demonstrated that big data applica-
tions execution time can be approximated, via support vector
regression, by:

T (e:) =x§% +x7- (1)
1

Equation is the result of a ML process to get a first
order approximation of the execution time of Hadoop or Spark
jobs in cloud clusters. In order to select a relevant feature
set, the approach for the analytical bounds for MapReduce
clusters proposed in [I1], [I2] is generalized. This approach
yielded a diverse collection of features including the number of
tasks in each map or reduce phase, or stage in the case of Spark
applications, average and maximum values of task execution
times, average and maximum shuffling times, dataset size, as
well as the number of available cores, of which the reciprocal
is considered. Since most of these features characterize the
application class but cannot be controlled, equation col-
lapses all but ¢;, with the corresponding coefficients, into a
single constant term, x?, that is the linear combination of the
feature values with the SVR-derived weights.

reports a complete list of the parameters used in
the models presented in this and in the next section, whilst
[Table 2l summarizes the decision variables.

The overall goal of OPT__IC is to determine the minimum
number of VMs v; and cores ¢;, such that the submitted
application 7 is executed within its deadline D;:

min v; (Pla)
Ci,Vi
subject to:
ci = Ly, (P1b)
1
Xf; +x{ < Dy, (Plc)

T

¢ €N, (P1d)

4
t N @ Perf. model
AN estimate
o, — D
N a*! 2,1
s - +b
2 \‘~‘~‘
T
a®? 3,2
’ +b
1
1
1
1
:
v V3 v
Figure 2. Hyperbolic jump
v; € N. (Ple)

The objective (Plal) is to minimize the number of VMs
needed for the submitted application. Constraint en-
sures that the overall number of cores is consistent with the
VMs capacity. Further, constraint exploits
to enforce that the completion time meets the arranged
deadline D;. In the end, f provide the definition
domains of the variables.

The nonlinearity in Problem can be easily tackled via
an algebraic transformation of constraint (PId). In this way,
the optimum can be analytically obtained in closed form, as

proven in
Theorem 1. The optimal solution of Problem (P1)) is:

R E R B

Proof. Via algebraic transformations, constraint (Plc) be-
comes:

C

Xi
> —— 3
o 3
whence the minimum is obtained at the next greater integer.
Similarly for v;. O

The efficient space exploration of possible configurations
by OPT_IC is described in l/f identifies the
current solution at iteration k, I (i.e., the most resource hun-
gry infeasible solution) and u¥ (i.e., the feasible configuration
with fewest VMs) the current lower and upper bounds of the
solution. OPT _IC starts from the initial solution VZQ obtained
via equations , but since might be only a preliminary
approximation, the very first step of the procedure is simulat-
ing the initial configuration in order to refine the prediction
(line|1)).

After checking the feasibility of the initial solution, the
search algorithm begins the exploration incrementing the VM
count whenever the solution results infeasible or decreasing it
to save on costs if the current configuration is already feasible.

In order to avoid one-VM steps, which might lead to a very
slow convergence for the optimization procedure, particularly
when dealing with large clusters, the optimization heuristic

IEEE TRANSACTIONS ON CLOUD COMPUTING

Algorithm 1 Local search

Require: 1/? eN
1: t? < simulate V?

2: if 1/1Q is infeasible then
3 Vil — V? +1

4 lil — 1/?

5: else

6: vieuvd—1

7
8
9

: ull — V?
: end if
: repeat k< 1,2,...
10: th < simulate vF
11: update I¥, u¥
12: Vf""l — f (l/f,l/f_l,t?,tf_l
13 check v against (IF, u¥)

14: until uf — lf =1

15: return uf

exploits the fact that the execution time of a Spark application
is inversely proportional to the allocated resources. Hence, at
every iteration k the application execution time is estimated
as:

okt
= S e (4)

k
v

where t; is the estimated execution time and v; the number of
VMs, whilst a; and b; are obtained by fitting the hyperbola to
the two previous steps results (see . Hence, from the
second search step on, a; and b; can be computed using the
predicted execution times returned by the dagSim simulator
and the associated resource allocations in the current iteration
k and in the previous iteration £ — 1. In this way, at every
iteration k it is possible to have an educated guess on the
number of VMs required to meet the deadline D;, as depicted
in where hyperbolas obtained at subsequent steps
are used to determine the next resource allocation to assess
by intersection with the line at height D;. The result of this
operation is:

k+1 af,k_l (5)
vt = ———
' D; — bt

The proposed optimization algorithm aims at combining
the convergence guarantees of dichotomic search with the
fast exploration allowed by specific knowledge on system
performance, such as equations (4)) and . Since equation
requires at least two points, the conditional at lines
provides a second point at one-VM distance and sets the initial
one as lower or upper bound, according to its feasibility. Then
the algorithm searches iteratively the state space performing
simulations and keeping track of the interval enclosing the
optimal solution. Every new step relies on the hyperbolic

function in 7 as shown at line
As already mentioned, OPT__IC mixes dichotomic search
and domain knowledge about performance characteristics in
order to exploit the best of both the worlds. Fitting a hy-
perbola to previous results allows the algorithm to speed up
the exploration by directing it where the system performance
is expected to be reasonably close to the deadline imposed

5

as constraint, yet the use of only the latest two simulations,
dictated by convenience considerations, might hamper con-
vergence with oscillations due to inaccuracies. This issue is
addressed by updating at every iteration the upper bound uf
if last solution is feasible, or the lower bound [¥ otherwise. Fur-
thermore, every new tentative configuration Vf 1 predicted at
linemust belong to the open interval (liC , uf) to be relevant:
at line[T3] the algorithm enforces this behavior, falling back to
the mid point when this property does not hold.

Now, given the monotonic dependency of execution times
on the number of assigned computational nodes, the stopping
criterion at line |14 guarantees that the returned configuration
is the provably optimal solution of Problem .

4 Resource Rebalancing under Heavy Load

At submission time, if the capacity available in the system is
enough to accommodate the deployment of a new application,
then its execution can start. When this is not the case (heavy
load), the infrastructure will try to achieve the best possible
QoS by prioritizing the allocation of resources to hard deadline
applications and reallocating the residual capacity among soft
deadline ones. Given the soft deadline applications execution
progress, OPT__JR determines the new configuration that
minimizes the weighted tardiness of soft deadline applications.

Note that, under heavy load conditions, the newly sub-
mitted application can start its execution only borrowing
resources from soft deadline applications, hence it will receive
the amount of resources established by OPT IC if and only
if: 1) it is a hard deadline application and ii) the infrastructure
has enough capacity to accommodate the requirements of
all the hard deadline applications. Specifically, if the latter
condition cannot be satisfied, the submission is rejected and
system administrators are alerted of the failure.

Since this problem is solved while applications run, the
monitoring system is accessed to assess whether applications
are either executing faster than expected or falling behind
their schedule. For this reason, provided that application ¢
is executing stage s, a new rescaled deadline is computed as
follows: o

D ; = t%D 2] (6)
1

where ¢ is the elapsed time from the submission of the
application obtained through the monitoring system, while
t; is the estimated time to execute the application up to the
end of stage s obtained by dagSim. If the application is faster
than predicted (i.e., it’s early), the ratio is larger than 1, so
the deadline is relaxed. On the contrary, if the application
is slower than predicted (i.e., it’s late), the ratio is smaller
than 1, so the deadline is tightened. The same approach is
exploited in OPT__IC to update the estimation of the number
of necessary VMSs during the application execution.

Given the ML formulation for application execution time,
it is possible to define the tardiness of every application as:

1 +
(Xf; +x9 — D;) , Vie AL (7

This equation uses the positive part because the tardiness is 0
when an application is estimated to meet the deadline. The
minimum weighted tardiness problem can then be formulated
as follows:

IEEE TRANSACTIONS ON CLOUD COMPUTING

1 +
i e 40— D
min - w; (Xl o T Dz) (P2a)
i€ Ad
subject to:

c; =D, Vie A, (P2b)
> T <N, (P2c)
i€ Ad

aeN, VieAd, (P2d)
v; €N, Vie A% (P2e)

Problem is a straightforward weighted tardiness min-
imization under a capacity constraint. The objective func-
tion is the sum of all the tardiness terms associated to
the various applications, each multiplied by the corresponding
weight. The set of constraints specifies the number
of cores available per VM, while constraint enforces
that no more than the remaining N cores are allocated to
soft deadline applications. In the end, constraints —
state that all the variables ¢; and v; are taken from the natural
numbers, as expected given their interpretation.

Taking the continuous relaxation of Problem , it is
possible to consider Karush-Kuhn-Tucker (KKT) conditions
both necessary and sufficient for optimality, given the fact
that Slater’s constraint qualification holds and the objective

function is convex. The following[Theorem 2| provides a closed

form optimal solution for the continuous problem.

Theorem 2. Let A* C A% be the set of tardy applications
and, in order to simplify the notation, call A' = A¢\ Al

For the sake of simplicity, assume application 1 belongs to A*.
Furthermore, let ¢; : Xf% +xY = D.. The optimal solution of

the continuous relazation of Problem (P2]) is:

cj = ¢y, Vj e ./_lt,
Wi X5 : :
i =4 —Lcy, Vie A 1},
X,)
o N — Zjejt Cj
C1 =)
L+ ieangiy \ ws xt
with:
i
i =—, Vie A% 9
v, T ieA (9)
Proof. See Appendix [A] O

only provides a solution for the continuous
relaxation of Problem (P2f). Additionally the ML model used

to formulate tardiness and, consequently, the objective func-
tion is just a first approximation for the system per-
formance. These reasons motivate a search procedure to de-
termine an integer solution and, possibly, leverage the higher
accuracy of simulation-based models to attain more efficiency
or a decrease in global weighted tardiness. per-
forms this solutions space exploration: it receives in input the
set of soft deadline applications and the maximum number of
iterations allowed to run, then it returns the optimized VMs
allocation. The detailed description of its behavior follows.

Algorithm 2 Resource rebalancing

Require: A%, k€N

1 At Al
2: repeat
3 compute ¢ and v as per and @D
4: remove alli € A* : ¢; > ¢
5: until A* does not change
6: round v and make the configuration feasible
7: repeat k < 1,2, ...
8: vold «p
9: L+
10: for i € A4 do
11: for j € AY:j #ido
12: choose Av; and Avj so that I'yAv; = I';Av;
13: evaluate (51-Hj with hyperbola, as per
14: 1f53 <0/\l/ijI/j > 1 then
15: add (Av;, Av;) to L
16: end if
17: end for
18: end for
19: 07 0
20 m* + (0,0)
21: for (Av;, Av;) € L do
22: evaluate 5213- with Lundstrom
23: if (5% < 4;; then
24: m* « (Av;, Avj)
25: end if
26: end for
27: apply m* to v
28: until k = k vV v = p°d

: return v

[\
=)

First of all, the loop at lines PHp| obtains the initial con-
tinuous solution via the formulas. Since A° is not known in
advance, repeatedly applies the formulas —@D
and removes from A" the applications that are not tardy (see
Appendixfor additional discussion). Right after computing
the solution for the continuous relaxation, the VMs allocation
v is heuristically made feasible at line [The adopted ap-
proach is simple: Each v; is rounded to the next greater integer
and, if needed, one VM from the applications with the smallest
weights is removed until the capacity constraint is
satisfied.

At line[7]starts the main loop of the local search algorithm.
FEach iteration amounts to the exploration of a neighborhood
centered around the current optimal solution, with a best
improvement policy. The neighborhood contains all the con-
figurations that can be reached if an application gives up some
VMs and its cores are reassigned to another application, see
line Different applications are possibly hosted on different
VMs, then it is necessary to make sure that these moves
respect the proportionality of virtual central processing units.
For example, if job 7 yields 1 quad-core VM and 7 is hosted
on single-core instances, the latter will receive 4 replicas, thus
leaving unchanged the total resource pool. Since the size of
the neighborhood is O(|.A4[?), relying solely on simulations
for the exploration would make optimization times too long
for use at run time. This is the reason why the neighborhood
is first swept via the algebraic approximation in the two

IEEE TRANSACTIONS ON CLOUD COMPUTING

nested loops at lines [IOHI§ Instead of reevaluating the full
objective function for each move, the algorithm only considers
the partial effect on the weighted tardiness values for ¢ and j:
these terms are called d;;. According to the condition at
line[I4] only the promising moves that do not take all the VMs
from an application (v; — Av; > 1) and improve the overall
weighted tardiness in the hyperbolic approximation ((53 < 0)
are later assessed via simulations.

The second part of the main iteration (lines goes
over all the promising moves identified with the algebraic
approximation and reevaluates them via the simulation with
Lundstrom. The variable m*, initially set to the empty move,
keeps track of the best improving move. At last, the main
cycle concludes by applying the best move and increasing the
iteration count. Line @ states the stopping criterion: either
the algorithm keeps exploring for the maximum number of
iterations k, or the latest neighborhood search did not provide
any improving moves, meaning that the search procedure
reached a local minimum.

5 Experimental Results

The aim of this section is the analysis of the accuracy and of
the scalability of the algorithms when used in the deployment
of real systems.

This section is organized as follows: in the
experimental setup is introduced, then the results of OPT__IC
and OPT_JR are described in [Section 5.2] and [Section 5.3

respectively. Finally, presents an example of the
usage of the proposed algorithms in a real scenario.

5.1 Experimental Setup

The validation of the algorithms is based on TPC-DY] a
standard industry benchmark for evaluating the performance
of data warehouse and big data systems, which is based on a
SQL-like workload. Multiple experiments were conducted and
four cluster configurations were considered to verify that the
proposed algorithms behave consistently on all the scenarios.
The four considered cluster configurations are the following;:

e A3: the benchmarks were deployed on the Microsoft
Azure cluster with the HDInsight Platform as a Ser-
vice (PaaS) offering based on Spark 1.6.2 release and
Ubuntu 14.04E| and exploiting A3 VMs. Each VM
includes 4 cores with 7 GB of RAM and 250 GB local
disk. The configuration of the workers consisted of up
to 48 cores. Each Spark executor had 2 cores with 2 GB
RAM.

e D12v2: a Microsoft Azure cluster with the HDInsight
PaaS offering based on Spark 1.6.2 release and Ubuntu
14.04, but based on the D12v2 VMs. Each VM includes
4 cores, 28 GB of RAM, and 200 GB local SSD. The
number of cores of workers was varied between 12 and
52. Each Spark executor had 2 cores with 8 GB RAM.

e D13v2: a Microsoft Azure cluster with the HDInsight
PaaS offering based on Spark 1.6.2 release and Ubuntu
14.04, but based on the D13v2 VMs. Each VM includes
8 cores, 56 GB of RAM, and 400 GB local SSD.

2. http://www.tpc.org/tpcds/
3. https://azure.microsoft.com/en-us/services/hdinsight/

o%0 ngQe OO

(a) Q26

Figure 3. Directed acyclic graphs

(b) Q52

Table 3
Data set sizes considered during collection of data about real execution
time of queries on clusters.

Query A3 [GB] DI12v2[GB] D13v2[GB] P8 [GB]
Q20 - - 1000 -
Q26 500 500 - 500 - 1000
Q40 500 500 - 500 - 1000
Q52 500 500 1000 500 - 1000
Q55 500 500 1000 500 - 1000

The number of cores of workers was 48. Each Spark
executor had 8 cores with 40 GB RAM.

e P8&8: an in-house cluster based on IBM POWER 8
(P8) available at Politecnico di Milano. It is based on
Spark 1.4.1 running on Red Hat 7.3 and includes six
VMs with 11 cores and 60 GB of RAM each. Fiber
channel disks up to 12 TB of physical storage were
available. Spark executors were configured with 2 cores
and 4 GB RAM while 8 GB were allocated to the
driver. Workers runs were supported by four VMs and
used between 6 and 44 cores.

For what concerns the master, on the Azure deployments two
dedicated master nodes were used and the Spark driver had
4 GB allocated, while on P8 the driver was running on a
dedicated master node with the same VM configuration (11
cores and 60 GB of RAM).

To validate the proposed algorithms the data about the
execution time of different queries from TPC-DS with input
datasets of 500 GB, and 1000 GB on the different clusters
were collected. For each size, a dataset was generated through
the TPC-DS generator. [Table 3|summarizes the combinations
of queries, dataset sizes, and clusters which were considered
during the collection of real data. For every combination, the
profiling process was repeated ten times, considering that the
profiles collect statistical information about applications.

As an example, the DAGs of Q26 and Q52 on Azure at
500 GB are presented in The execution of OPT IC
has been supported by a server equipped with two Intel
Xeon E5530 2.40 GHz processors with 48 GB of RAM, while
OPT __JR has been executed on a server with two Intel Xeon
Silver 4114 2.20 GHz processors with 48 GB of RAM.

5.2 OPT_IC Validation

This subsection presents the results of the validation of
OPT_IC by considering the following goals: i) the behavior
of the algorithm is investigated (in terms of number of itera-
tions, execution time and objective function trend) when the
deadline is reduced, ii) the error in estimating the required
number of cores with different initial deadline is evaluated,
and, finally, iii) the accuracy of the interpolation based on the
database values is assessed.

IEEE TRANSACTIONS ON CLOUD COMPUTING

40 T T T T T T

—Q26-A3

—Q52-A3

—Q26-D12v2
Q52-D12v2

Optimization time [s]

L n " o

0 H H H H
100 200 300 400 500 600 700 800 900
Deadline [s]

1000

Figure 4. OPT_IC execution times for Q26 (500 GB) and Q52 (500 GB)
for Azure deployments

—Q26-A3
‘ L |—os2-A3

Kooeobooo--to_.]—Q26-D12v2
‘ ‘ ‘ —Q52-D12v2

Number of Iterations

100 200 300 400 500 600 700 800 900
Deadline [s]

1000

Figure 5. OPT_IC number of iterations for Q26 (500 GB) and Q52 (500
GB) on Azure deployments

Tests Description

The analysis is performed by providing smaller and smaller
deadlines to verify that more and more resources are allo-
cated. Moreover, the smaller is the deadline, the harder is the
optimization problem to be solved (since a feasible solution
might not exist), so tightening deadlines can lead to a larger
execution time for OPT IC. The deadline values varied in
the range between 100 and 1000s with 100s step. The analysis
includes the execution time, the number of iterations, and the
value of the objective function.

Analysis of the Behavior of the Algorithm

reports the optimization times required for Q26 and
Q52 for both Azure deployments (the dataset size is 500 GB).

It is interesting to observe that for Q26 the optimization
time does not significantly increase even when the problem
becomes infeasible because of the deadline reduction.
reports the number of iterations needed to find the optimal
solution. The range of iterations for all the four combinations
is between 3 and 9, and Q26 on A3 is the query for which the
algorithm requires the largest number of iterations (9). The

number of iterations is small even if, as shown in [Figure 7|

Execution time [s]

Cores

Figure 6. Mean values of real execution time, of ML model approxima-
tion, and dagSim simulation for Q26 (500 GB) executed on D12v2

Execution time [s]

0
10 20 30 40 50 60
Cores

Figure 7. Mean values of real execution time, of ML model approxima-
tion, and dagSim simulation for Q52 (500GB) executed on D12v2

there is a significant difference between the estimations pro-
duced by the ML model, which are used during initialization
phase of OPT_IC, and the estimations of dagSim, which
are used during the actual optimization process. So, even if
the initial solution is far from the correct solution, since the
machine learning models are not accurate, up to 82% mean
absolute percentage error (MAPE) for Q40 on P8 machines,
the algorithm is able in a few iterations to converge to the
final optimal solution.

shows that the execution time for the opti-
mization process for P8 infrastructure is significantly larger
compared to Azure, since the number of tasks that should
be evaluated is larger and dagSim’s execution time grows,
justifying the usage of a cache to store already computed
simulation results. Moreover, the error of the ML model for
this cluster (82% MAPE) is significantly larger than the
maximum error of the ML models for the Azure deployments
(14% MAPE for Q26 on A3 VMs, 53% for Q52 on D12v2).
Nevertheless, as shown in[Figure 9} the number of iterations of
OPT__IC does not present a large increase. This confirms how,
even if the starting point identified through the ML model
prediction is very far from the exact solution, the algorithm is
still able to fast move towards accurate solutions.

IEEE TRANSACTIONS ON CLOUD COMPUTING

.
o]
€ 3
< g
o >
3 +-
g o
e [[[Sy | 3 WP T m M T T nl
” 3 ” ” ” ” ” = o o ” > ® o ” ”
| g3 | | I I I v O oo odd . ~ Yo . .
I— & & I I I I I - < A. D. D ' o S mw % ' ' '
1893 073 I I I R EREEEE TR 3 BT TT e SR S PEEE o
&8s 1 1 1 1 1 Q N 0 N o ' > AN < o ' .
| | | | | | E £ (e eeqNe) : — _ [: :
1NN i ; | ! . ° 20 []] ') ” ” ”
wwwww [t i Bt i B I i S Q 1 o 1 1 1
I I I I I M \\\\\\\ LR " [=} o f------ e re-—- EEE R
I I I I I x i | @ c i i)
” ” ” ” ” w ¢ ” ” @ ” ” ”
| | | | , S~ , , : : :
| | | | | -m ' ' o M ' ' '
| | | | | g3 Lo R . S Looeee e Lo G
I I I I I m ' ' c ' ' '
[P S A R— e R 2 =] : : : : :
' ' ' ' ' @ tm ' ' ow o ' ' '
| | | | | c Lo .. PR L S= ~ Lo R R R
| | | | | g o= ” ” 3o 0 ” ” ”
i i i i i 5 k= : : = (e} : : :
| | | | | e} w [Te) ' ' O.nlw ' ' '
| | | | | s R R S LT SRR) SRR 8g T - L S St
| | | | | o Lo : : = : : :
[- R Y S J— 5 % : : : : :
i i i i i i = L : : =) % : :]
. o [T H S [o e
! ! ! ; ! ! 2 e , , o , , ,
” ” ” ” ” 4 2 ” ” % ” ” ”
I I I I I [Sh=] ' ' o o ' ' '
I I I I I o n © e-===-- L EELEEEET r o - ---=--- reemee= re-een= Ameecmeepencenarafon
R T Y>> R Foes HRR. 3 03 ” ” ® c ” : ”
' ' ! | | | | 3 m ' (o} ' ' '
1 1 1 1 1 1 - 1 1 1 1 1
| y | | | | T = : : o £ ' ' '
i 1 h i i i i > n (S . S S, beeoe N b [4
i i i i i i i c € : : N o : : :
| | | | | | | © .= : , o : i :
! ! ! ! ! , , RN , , ° o , ,
L L L L L L L o S oY) L 3 e r L o
o o o =] o =] o o [o [=] o — o (=} o (=}
g g = 2 8 S] 47 S ® © a] Q Q 3
[s] awn uonnosx3 — .m $9100 JO JaquinN — $9109 JO JIaquinN
SR <
3 3
=
25 2
=)
o [T9)
o 1)
= o
i
2
o
79} c
[=3 [T} o T
T T T il T w Q T T Bl m —~ I e [
0 ! ' ' ' ' — 0 o ! ' ' — m I — I I I I
g al : : : : ° ool : : i 3l i i i i
o | ' ' ' ' c o 1 ' ' (O} I E of I I I I
S R N S L I 18 @ S Wl v S s @ E| I I I i
o o ” ” ! ” 18 O of ” ! 8 Q e 8 ! ! !
, , , , , o , , , S e = , , ,
, , , , , m | 1] , , 3 ERl , , ,
I N S S A I 18 2 L R [L g z | A R AR
: : : : : : : : =) . . .
! ! ! ! ! m ! ! ! F | | |
: : : : . o — ' : : o (e} 1 i i
I v vttt 1T i IS Sty 1R ~ I o i E R o i i i
: : : : : g : : : & R IS S I . I
I el S N . U U lg= < Lo L [R 3@ @ ” ” ”
! ” ! ! ! S0 5 ! ! ” @0 5 ! ! !
: : : : : < : : : < .0 | | |
il il il il il 5 = il il il 5 + i i i
: : : : : g8 0 : : : g3 o ! ” ”
it (it FTTTTTAT T (et al Al Sl Aty L [0) ittt [tttk Sttt ittty St Sty ity QL o I I I
, . . , [cla) , . | [Cla)] | | |
, , , , £ , , , = S S S R /S B
“““ S SRS SRS TN S A = b s 5 m m ” m
0 : v H : : 1< 5 r ” H X g N ” ” ”
, , , , , 9 , , , 5 | | |
: : : : , = , , , 2 | | ,
' ' i i ' " o) ' ' 1, o m l l l
fm- - - - I EEE R am-m-m - - - remmefroamon 18 % ..m e R L GEEE R s S S £ I I I
: : : : 2 : : : [[A A IR
” ” ” ” ” v g ” ; ” < ” ” , ” ” ”
R, O L P P 18 (O oo e P T S 8 O © i , h i i i
: : : : : : D |_|o : : : N & i i i i i i
' ' ' ' ' o ' ' ' ' ' I I I
' T ' ' . ' - o d ' ' = 1 1 1 1 1 1
| ' ' ' ' ' ' ' c I I I I I I
H H H A H S o © H H 3 S o s L H
g g8 g8 8 g g g g O w 9 3 g S . o 8 8 g B B S °
@ %) 5 I IS]) o < .o - M 8 & Q] S w
1 =1 = - =1 % L suoiels)| Jo JaquinN YT
[s] awn uoneziwndo PR ° [s] s uonnoax3
e = O
3~ 35O
a0 m a0 ©
o 20 S
ro rZ

100 200 300 400 500 600 700 800 900 1000
Deadline [s]

Figure 13. Deployment of Q40 (500 GB) and Q55 (500 GB) on P8

infrastructure

Cores
Figure 10. Mean values of real execution time, of ML model approxima-
tion and dagSim simulation for Q40 (1000 GB) executed on P8

IEEE TRANSACTIONS ON CLOUD COMPUTING

Table 4
OPT_IC prediction validation of Q26 (500 GB) and Q52 (500 GB) on
D12v2
Query D [ms] P € [%]

Q26 280,550 24 28 —14.28
Q26 186,067 36 44 —18.18
Q26 158,288 48 52 —8.33
Q52 276,791 24 32 —25.00
Q52 175,395 36 48 —25.00
Q52 150,489 48 56 —14.28

Table 5

OPT_IC prediction validation with Q40 (1000 GB) and Q55 (1000
GB) on P8

Query D [ms] ¢ P e[%)
Q40 2,537,015 6 6 0.00
Q40 1,905, 821 8 8 0.00
Q40 1,566,992 10 10 0.00
Q40 1,337,868 12 12 0.00
Q40 1,165,666 14 14 0.00
Q40 1,044,557 16 16 0.00
Q40 964,752 18 18 0.00
Q40 902,173 20 20 0.00
Q40 854,692 22 22 0.00
Q40 812,298 24 24 0.00
Q40 784,445 26 24 7.69
Q40 763,447 28 26 7.14
Q40 743,283 30 28 6.67
Q40 726,324 32 30 6.25
Q40 718,641 34 30 11.76
Q40 696,641 36 34 5.56
Q40 687,299 38 34 10.53
Q40 664,080 40 40 0.00
Q40 662,526 42 40 4.76
Q40 663,823 44 40 9.09
Q55 1,288,271 6 6 0.00
Q55 971,212 8 8 0.00
Q55 802,620 10 10 0.00
Q55 682,972 12 12 0.00
Q55 598,917 14 14 0.00
Q55 534,180 16 16 0.00
Q55 496,608 18 16 11.11
Q55 461,197 20 18 10.00
Q55 434,755 22 20 9.09
Q55 412,768 24 22 8.33
Q55 399,407 26 22 15.38
Q55 390,949 28 24 14.29
Q55 380,981 30 24 20.00
Q55 373,125 32 24 25.00
Q55 365,936 34 26 23.53
Q55 357,285 36 28 2222
Q55 352,222 38 28 26.32
Q55 346,128 40 30 25.00
Q55 345,276 42 30 28.57
Q55 345,712 44 30 31.82

Finally, [Figure 12| and [Figure 13| show how the obtained
results present the expected characteristics. The tightening
of the deadline produces an increment of the number of
cores. Moreover, the relationship between the deadline and
the required number of cores is not linear, but depicts a convex
curve.

Validation

To evaluate the quality of OPT _IC solutions, the prediction
error € in estimating the required number of cores to satisfy

10

Number of cores

0
200 300 400 500 600 700 800 900 1000
Deadline [s]

Figure 14. Prediction of the optimal number of cores for fulfilling a
deadline constraint using OPT_IC and interpolation approach

the deadline as the main metric is analyzed. € is defined as
follows:

ct—cP

€= (10)

Cr
where ¢ is the real number of cores to run within an a priori
deadline D identified by inspecting the application logs and
cP is the number estimated by OPT__IC.

For the D12v2 deployment, six different cases obtained by
varying deadline and query were considered for the validation
on the Azure cloud. [Table 4] shows the obtained results: the
maximum obtained error is 25%.

shows the results of the validation on the PS8
infrastructure by comparing the real number of cores versus
the predicted value. The deadlines have been set equal to the
actual execution time for each possible value of number of
cores. The error ranges between 0.00% and 11.76% for the
first query (Q40) and between 0.00% and 31.82% for the
second one (Q55). It is worth noting that, even if all the
presented predictions are conservative (i.e., the number of
cores is overestimated), this property cannot be considered
as general. Indeed, in the considered range of number of
cores, OPT__IC makes conservative predictions since dagSim
is also conservative. On the contrary, a non-conservative per-
formance estimation of dagSim (i.e., underestimating execu-
tion time like in 40 cores case) can cause non-conservative
predictions by OPT __IC.

Off-line Interpolation Accuracy

As discussed previously, Figures[[2|and [[3]show the results of
OPT_IC for different combinations of queries and architec-
tures. The y-axis represents the number of cores needed to ful-
fill the deadline reported in the z-axis (varied with 100s step).
It can be noticed how for different queries and for different
deployments, the curves depicting the number of cores vs. the
deadline constraints are always convex. For this reason, the
linear interpolation implemented by the optimization service
when a specific deadline constraint is not available in the
system history lookup table (see is conservative
with respect to the predictions of OPT_IC. In the following,
an illustrative example will be discussed.

IEEE TRANSACTIONS ON CLOUD COMPUTING

Let us consider where the number of cores
required by Q26 when it is executed on A3 VMs (blue curve)

is shown and let us initially assume that OPT_IC has been
executed for only two points, A (deadline set at 200 s) and B
(deadline set at 900 s), i.e., the information about all the other
deadlines is not yet available in the lookup table. The red line
connecting A and B shows the applied linear interpolation on
the only two available data. Let us assume that the query
needs to be run with a 400 s deadline: since this deadline is
not available in the lookup table (i.e., the required number
of core for this deadline has not yet been estimated), the
linear interpolation returns 62 cores as result with an error
of 138%. On the contrary, the optimization service computes
off line that only 28 cores are needed (point C). Then, let us
assume that in the following the query is run with 700-seconds
deadline. As for the previous deadline, the linear interpolation
is calculated, but this time instead of point A and B (the
closest) points C and B are selected. In this case, as shown in
the predicted number of cores is 18, while OPT__IC
determines off-line 14 cores minimum cost configuration with
a lower percentage error equal to 29%.

Since the optimization process is time consuming, this
example shows how the strategy to compute the minimum
cost configuration for a few points during application profiling
is effective. Indeed, the accuracy of the linear interpolation im-
proves when additional runs of the same query are performed
on the production system.

5.3 OPT_JR validation

This section describes the settings and the configurations used
to validate the re-balancer tool and presents the obtained
results. As for OPT_IC, the results are analyzed in terms
of the execution time of the algorithm, and of the obtained
value of the objective function. Moreover, the size of the list
of candidates L of is also comsidered, since it
is related to the number of executions of the performance
prediction service Lundstrom, which is time consuming. Fur-
thermore, the results achieved by the parallel implementation
of the algorithm aimed at reducing OPT__JR execution time
are discussed.

Tests Description

In the following, the experimental setup for the validation of
the OPT__JR tool on a set of six test cases is detailed. All the
tests use the queries presented in and target the P8
cluster. The maximum number of iterations is set to 10. Each
test is characterized by the pressure p defined as:
Cos
I]I\‘;“ (11)
where ¢, 18 the minimum number of cores which does not
cause a deadline violation (obtained through OPT IC) and
N is the number of available cores.

[Table 6]describes Test1, which is the base test and includes
four queries. details the difference of Test2, Test3,
Test4d with respect to Testl. In Test2 NN is increased to get
pressure equal to 0.66: there are more available cores than
required. On the contrary, in Test3 N is decremented to set
the pressure equal to 2.00: the number of available cores is
half of the required.

p:

11

Table 6
OPT_JR model validation Testl. All weights set to 1

Query M m V v DIs
Q26 28 8 4 2 1,000
Q52 28 8 4 2 1,000
Q40 56 18 4 2 1,000
Q55 56 18 4 2 1,000

Table 7

Summary of changes of OPT__JR validation tests with respect to Testl

Test N (500 GB) N (1000 GB) p Weight of Q52
Test1 24 44 1.33 1
Test2 48 88 0.66 1
Test3 16 28 2.00 1
Test4 24 44 1.33 10

In Test4d the weight of Q52 is set to 10 to show how
the algorithm actually considers weights in the computation
of the solution. Each test has been run with two different
configurations: in the first the dataset of all the queries has
been set to 500 GB, in the second the dataset of all the queries
has been set of 1000 GB. On the contrary, Test5 is a more
complex test whose details are shown in [Table 8 multiple
instances of the same query are indeed considered so that the
overall number of running application is 10. The dataset size
of all the queries have been set to 500 GB for the first instance
and to 1000 GB for the second one. Finally, Test6 uses the
same applications of Test5 with both the configurations at
the same time (i.e., all the queries of are added twice).
N has been set to 78 in the first instance of Test5, 150 in
the second instance of Test5, and 226 in the only instance of
Test6.

Analysis of the Behavior of the Algorithm

This section presents the experimental results obtained with
OPT _JR on the tests presented above. By comparing the
parameters and the results for Testl, Test2, and Test3, it
is possible to see that by reducing the number of available
cores, both the number of iterations (see, e.g., [Figure 15|
and the execution time (see tend to increase. This

was expected, since the smaller number of available cores (in

Table 8
OPT_JR model validation Test5

Query M m V v DIs
Q40 56 18 4 2 600
Q55 56 18 4 2 800
Q26 28 8 4 2 800
Q40 56 18 4 2 800
Q52 28 8 4 2 800
Q55 56 18 4 2 800
Q26 28 8 4 2 1,000
Q40 56 18 4 2 1,000
Q52 28 8 4 2 1,000
Q55 56 18 4 2 1,000

IEEE TRANSACTIONS ON CLOUD COMPUTING

5e+06 T T T
! ! ! —Testl

—Test2
— Test3
Test4
Test5
— Test6

4e+06 [

3e+06 -~~~ =N\ oo oo CRCEEELTESERED

2e+06 [""" oo Fommmmemeeees e o 1

Total Objective Function [s]

1e+06

Iteration Number

Figure 15. OPT_JR validation (1000 GB): Total Objective Function vs.
Iterations number

30 T T T
! ! ! —Testl

—Test2
—Test3
Test4
Test5
——Test6

25

N
=]

,,,

Candidates List Size
=
[%2]

=
o

Iteration Number

Figure 16. OPT_JR validation: size of Candidates List L vs. lteration
number

Test3) makes the problem more difficult to be solved. For
Test2 a single point is reported: in the first iteration, the
objective function is always 0 since the tardiness of all the
queries is 0.

The curves reporting the values of the total objective
functions (see lower down progressively on each
iteration proving that the overall local search is able to
improve the initial heuristic assignment by selecting the best
core configuration switch at each iteration. In all the tests
the algorithm stops before reaching the maximum number of
iterations (10) since the Candidate List L becomes empty,
demonstrating that OPT__JR identifies in few iterations the
final local optimum solution. Since no change is actually
applied during the last iteration, there is no improvement in
the objective function in the final step.

Finally, the results about the candidates list L size are
presented in This value plays a crucial role to
understand the performance of the algorithm since the size
of the list corresponds to the number of times the predic-
tor is invoked (a time-consuming operation since it implies,
among different things, a call to the Lundstrom tool as an
external process). Moreover, the size of L list has a monotonic
decreasing behavior with respect to the number of algorithm

12

Table 9
Number of cores assigned to Q52

Test c

Test1 8

Test2 12

Test3 4

Test4 12

Table 10
OPT_JR execution times and Speedup (SU) with different number of
threads
ST MT(2) MT(4)

Test Size Time[s] Time [s] SU Time [s] SU
Test1 500 13.73 12.18 1.13 8.86 1.55
Testl 1000 34.86 25.61 1.36 20.31 1.72
Test2 500 13.88 11.64 1.19 8.96 1.55
Test2 1000 19.21 14.34 1.34 11.34 1.69
Test3 500 13.78 11.65 1.18 8.83 1.56
Test3 1000 45.70 3491 1.31 29.43 1.55
Test4 500 13.77 11.62 1.19 9.33 1.48
Test4 1000 34.09 25.66 1.33 20.33 1.68
Testb 500 60.86 48.99 1.24 42.23 1.44
Test5 1000 224.89 160.75 1.40 128.40 1.75
Test6 - 313.04 229.82 1.36 181.10 1.73

iteration. Also in this graph, only one point is reported
for Test2: since the initial solution already satisfies all the
deadlines, no further change is evaluated.

shows the different number of cores assigned to
Q52 in different tests when the dataset size is set to 1000 GB
and how the different parameters can impact on the identified
solution. The minimum number of cores necessary to satisfy
the deadline (1000s) would be 12. In Test1, since the number
of available cores is less than the required (p is 1.33), not
all the required resources can be assigned. For this reason,
OPT__JR assigns to Q52 only 8 cores. On the contrary, Test2
is characterized by p < 1 (i.e., there are more resources than
required), so all the necessary cores (12) can be given to
Q52. Test3 is characterized by p = 2.00: for this reason, the
number of cores of Q52 is even lower than in Testl (4 vs. 8).
Finally, in Test4 there are not enough resources to satisfy all
the requirements. Nevertheless, since Q52 has a larger weight
than the other queries receives all the required cores (12).

Performance Evaluation

OPT__JR exploits a set of OpenMP directives E|t0 execute the
re-balancer in multi-thread mode. The objective of using this
approach consists of exploring with a parallel process the local
neighborhood in such a way that the Lundstrom performance
predictor can be invoked in a multi-thread way over multiple
candidates.

shows the speed-up performance obtained on
Testl - Testh (both with dataset size equal to 500 GB and
to 1000 GB) and Test6. Specifically, the tests were executed
with Lundstrom predictor in single and multi-thread mode
(using 2 and 4 cores). The usage of more than 4 processors
does not provide significant advantages on these tests because

4. https: /http://www.openmp.org/

IEEE TRANSACTIONS ON CLOUD COMPUTING

Table 11
Description of the case study scenario

Query Dataset Size [GB] W Submission Time D [s]
Q20 1000 5 to 780
Q52 1000 1 t1 = top + 320s 600
Q55 1000 1 t1 = to + 320s 600
I I
i ‘ i | 1

1 I
1 i Q52 ! :
| | | ! !
| | | |
| | | |
! I
! I
1 | 1 : :
| : | ¥ _
to 3] 12 t3 tyts

Figure 17. Usage of resources of queries run in the case study

of the limited size of the candidate move list L (see.
The above results suggest that the proposed approach is
adequate to manage at run-time real clusters supporting long
running batch queries as the time requested to obtain a new
configurations is in the range of a few minutes.

5.4 Real Scenario Case Study

This section presents the behavior of OPT_IC and of
OPT__JR in a real use case. The considered scenario consists
of three queries (Q20, Q52, and Q55) submitted for execution
at different time instants on a 6 D13v2 VMs cluster with 1000
GB dataset and a total number of cores N = 48. All the
queries have been initially executed separately to collect the
execution logs to be exploited by dagSim.

The scenario details are presented in Initially
(to), only Q20 is submitted for execution on the cluster with
its deadline set to 780 seconds. OPT IC estimates 16 cores
(corresponding to two VMs) to fulfill the deadline. Since the
full cluster is initially available, all the required VMs can
be assigned to Q20. After about 320 seconds (¢1), two new
queries (Q52 and Q55) are submitted with deadline set to
600s for both of them. OPT_IC estimates that 32 cores (4
VMs) should be assigned to each query to satisfy the deadline.
Since the cluster has not enough capacity, the system is in
heavy load condition. OPT__JR is triggered to minimize the
weighted tardiness by rebalancing VMs across queries: in the
identified solution two VMs are assigned to each query. It is
worth noting that with this configuration, Q20 (which has the
largest weight) is expected to meet its deadline while Q52 and
Q55 do not.

After about 250 seconds (t3), Q20 ends its execution.
Nevertheless, the system is still in heavy load condition: the
execution of Q52 and Q55 was slowed down by the limited
number of cores, so each query would require more than the
initially estimated number of cores. For this reason OPT_JR
is executed again to rebalance cores between Q52 and Q55.
The tardiness of the two queries is similar, so OPT__JR assigns
to each them half of the available resources (24 cores, 3
VMs). The detection of the end of Q20 and the successive

13

invocation of OPT__JR takes only some seconds, but the
implementation of the suggested solution (i.e., booting and
update of the Spark configuration) takes some minutes. At
time t3 = t2 + 340 the new resources are actually available
to Q52 and Q55 and the queries run with three VMs each
from now on. When Q55 ends (t4), Q52 is still running and
its end is foreseen in few seconds. For this reason the number
of its executors is not incremented, since the overhead of the
rescaling can nullify the benefits of the incremented resources.
Finally, in few seconds also Q52 ends so that the presented
scenario is completed.

To evaluate the accuracy of OPT_JR, the value of its
objective function (i.e., the overall weighted tardiness) is
compared with the actual value at each its invocation. At
t1, the contributions to the objective functions are provided
only by Q52 and Q55 since Q20 is expected to end before its
deadline. The estimated objective function is 908s while its
actual value is 924s. The obtained error is very low (1.73%)
thanks to the good accuracy of the simulator. It is worth
noting that both in the computation of the estimated and
of the real objective function, Q52 and Q55 are assumed to be
always executed with the resources allocated to them at the
moment. Since, more resources will then be made available
to them, the final value of the sum of the tardiness will be
smaller.

The second invocation of OPT JR occurs at to: the esti-
mated tardiness value is 320s while the actual value is 406s so
that the obtained error is 21%. The larger error is mainly due
by the delay in the assignment of the new resources. OPT__JR
is assuming that they will be available at t5, but they were
available only at t3. This delay causes also the postponing
of the end of the execution of Q52 and of Q55, resulting in
having tardiness larger than estimated for both the queries.
Nevertheless, the use of OPT__IC and of OPT__JR allows the
user to satisfy the deadline of the query Q20 with the higher
weight and to minimize the tardiness of the others.

6 Related Work

Provisioning and scheduling resources for big data applica-
tions in cloud infrastructures face several challenges such as
dynamicity of queries, load fluctuation, performance unpre-
dictability, and heterogeneity of resources. One of the main
challenges for big data cluster frameworks is how to partition
and dynamically allocate the resources to reach high efficiency
and scalability. Resource partitioning and dynamic allocation
mechanisms, indeed, are enablers for providing efficient re-
source provisioning and improve system utilization. Recently,
significant work has been performed to address these issues
decoupling also the resource management from the program-
ming model. A number of technologies have been proposed,
such as YARN [I3], Mesos [14], Omega [15], and Borg [16].

AROMA [I7] is one of the first frameworks for the auto-
mated resource allocation and configuration of MapReduce
clusters. AROMA mines historical execution data in order
to profile past submissions and match incoming jobs to the
available past signatures for predicting the performance. In
this way, the proposed system can avoid deadline violations
stated in Service Level Agreements (SLAs) and minimize
the costs, with an average percentage error on completion
estimations around 12%.

IEEE TRANSACTIONS ON CLOUD COMPUTING

More recently, Delimitrou et al. proposed Paragon [1§]
an online and scalable scheduler for large-scale datacenters,
which uses collaborative filtering techniques in order to char-
acterize an unknown incoming application. Paragon handles
resource assignment and leverages information from previous
application runs and offline training in order to cope with per-
formance and interference effects on the application execution.

The Paragon engine has been extended in Quasar [19] to
estimate the impact of horizontal (more servers) and verti-
cal (more resources per server) scaling. The system handles
both resource allocation and assignment. If the performance
deviates from the SLAs constraints, Quasar reclassifies the
workload and adjusts the allocation and/or the assignment
decisions to meet the application deadlines minimizing the
used resources. If on one hand Paragon and Quasar are very
general and take explicitly heterogeneity and workloads in-
terference into account, the frameworks require an exhaustive
offline profiling of some reference applications and to monitor
and to profile the incoming application for several minutes on
separate servers before running on production. Vice versa, the
solutions proposed in this work require only to consider few
(two or three) runs to obtain comparable performance and are
able to minimize soft applications tardiness in case of heavy
load.

Similar ideas have been implemented by Spark inventors
in Hemingway [20], which, however, is specialized in the
identification of the optimal cluster configuration for Spark
MLIib based applications. Hemingway takes into account
some machine learning algorithm peculiarities (e.g., how the
convergence rate may be affected by the cluster size), adopts
experiment design to collect as few training points as possible,
and achieves an average prediction error under 20%.

In [2I] the authors propose CCRP, a framework aimed
at increasing the data center utilization by assigning comple-
mentary jobs to different resource types. Resources to jobs
assignment is formulated as a classical integer linear program-
ming problem with the goal to maximize cluster utilization.
The problem is then heuristically solved by assigning comple-
mentary jobs (whose demands on multiple resource types are
complementary to each other) to the same VM to increase
the resource utilization. Jobs are classified in short and long
running through a non-linear classifier. Moreover, an oppor-
tunistic allocation scheme is adopted and unused resources
of short jobs (estimated through a deep neural network) are
reallocated to other jobs. Authors demonstrated that their
approach can achieve 50% higher resource utilization with
respect to state of the art solutions, however no deadline
guarantees can be provided to jobs execution.

Finally, Alipourfard et al. [22] have presented CherryPick,
a black box system that leverages Bayesian optimization to
find near-optimal cloud configurations that minimize cloud
usage cost for MapReduce and Spark applications. The au-
thors’ approach also guarantees application performance and
limits the search overhead for recurring big data analytics
jobs, driving the search to improve the prediction accuracy
of those configuration, which are close to the best for a
specific deadline. This work is suitable to optimize recurrent
workloads i.e., identifies only the minimum capacity to pro-
vide to an application to complete within the same deadline.
Vice versa, our approach can manage competing applications
under scarce resources and has demonstrated to provide good

14

performance prediction and deadline achievement capabilities
across multiple settings.

7 Conclusions & Future Work

In this paper, optimization policies for the run-time manage-
ment of Spark applications on cloud clusters have been pro-
posed. Two main problems have been considered: (i) how to
determine the minimum capacity to devote to an application
to fulfill a deadline, and (ii) under heavy load, how to re-
balance system capacity to minimise the weighted tardiness
for soft deadline applications. Simulation-optimization heuris-
tics have been developed. Starting from an initial solution ob-
tained through a relaxed non-linear programming model, the
solutions space is efficiently explored by exploiting machine
learning, approximated analytical techniques, and simulation
to estimate application performance. In this way, a favorable
trade-off between application performance prediction accu-
racy and solution algorithms running times can be obtained.

A comprehensive experimental validation proved how the
approach is effective to manage resources of both private and
public cloud clusters. Results demonstrated that the average
percentage error of the proposed resources allocation with
respect to the real optimal solution is around 8%. Moreover,
complex problems like computing the optimal redistribution
of resources among tens of applications can be tackled in few
minutes.

Future work will extend the optimization framework to
support the resource provisioning of continuous applications
integrating batch and streaming workloads. Moreover, clus-
ters including GPU resources to support advanced deep learn-
ing Spark applications will be also considered.

Acknowledgments

The results of this work have been partially funded by
EUBra-BIGSEA (grant agreement no. 690116), a Research
and Innovation Action funded by the European Commission
under the Cooperation Programme, Horizon 2020 and the
Ministério de Ciéncia, Tecnologia e Inovagdo, RNP /Brazil
(grant GA0000000650/04).

Eugenio Gianniti is also partially supported by the DICE
H2020 research project (grant agreement no. 644869).

Spark experiments have been supported by Microsoft un-
der the Top Compsci University Azure Adoption program.

References

[1] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou,
J. M. Patel, R. Ramakrishnan, and C. Shahabi, “Big Data and
its technical challenges,” Commun. ACM, vol. 57, no. 7, pp. 86—

94, Jul. 2014.

2] D. Henschen. (2016) Spark Summit East
Report: Enterprise Appeal Grows. [On-
line]. Available: https://www.constellationr.com/blog-news/

spark-summit-east-report-enterprise-appeal-grows

[3] (2017, Mar.) Worldwide semiannual Big Data and analytics
spending guide. [Online]. Available: https://www.idc.com/
getdoc.jsp?containerld=IDC__P33195

[4] Forbes, “Data Mining adoption in Target Industries,” https://
blogs.forbes.com /louiscolumbus/data-mining-adoption/, 2016,
online; accessed 3 May 2018.

https://www.constellationr.com/blog-news/spark-summit-east-report-enterprise-appeal-grows
https://www.constellationr.com/blog-news/spark-summit-east-report-enterprise-appeal-grows
https://www.idc.com/getdoc.jsp?containerId=IDC_P33195
https://www.idc.com/getdoc.jsp?containerId=IDC_P33195
https://blogs.forbes.com/louiscolumbus/data-mining-adoption/
https://blogs.forbes.com/louiscolumbus/data-mining-adoption/

IEEE TRANSACTIONS ON CLOUD COMPUTING

[5] Datameer, “3 Top Big Data Use Cases in Financial
Services. How Financial Services Companies are Gain-
ing Momentum in Big Data Analytics and Getting Re-
sults,” |https://www.datameer.com/wp-content/uploads/2018/
02/big-data-use-case-financial-services.pdf, 2016, online; ac-
cessed 3 May 2018.

, “Five New Big Data Use Cases for 2018 — Health-

care Precision Medicine,” https://www.datameer.com/blog/

[6]

five-new-big-data-use-cases-2018-part-3/, 2018, online; ac-
cessed 3 May 2018.
[7] The digital universe in 2020. [Online]. Available: http:

//idcdocserv.com/1414

[8] J. Kross and H. Krcmar, “Model-based performance evaluation
of batch and stream applications for Big Data,” in MASCOTS
Proc., 2017.

[9] D. Ardagna, E. Barbierato, A. Evangelinou, E. Gianniti,
M. Gribaudo, T. B. M. Pinto, A. Guimaraes, A. P. C. da Silva,
and J. M. Almeida, “Performance Prediction of Cloud-Based Big
Data Applications,” in ICPE, 2018.

[10] E. Ataie, E. Gianniti, D. Ardagna, and A. Movaghar, “A com-
bined analytical modeling machine learning approach for perfor-
mance prediction of MapReduce jobs in cloud environment,” in
SYNASC, 2016.

[11] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Auto-
matic resource inference and allocation for MapReduce environ-
ments,” in Proceedings of the Eighth International Conference
on Autonomic Computing, Jun. 2011.

[12] M. Malekimajd, D. Ardagna, M. Ciavotta, A. M. Rizzi,
and M. Passacantando, “Optimal Map Reduce job capacity
allocation in Cloud systems,” SIGMETRICS Perform. Ewval.
Rev., vol. 42, no. 4, pp. 51-61, Jun. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2788402.2788410

[13] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler, “Apache hadoop yarn: Yet another resource
negotiator,” in SOCC 2018 Proc., 2013.

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data center,”
in Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 295-308. [Online].
Available: http://dl.acm.org/citation.cfm?id=1972457.1972488

[15] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: flexible, scalable schedulers for large
compute clusters,” in SIGOPS Furopean Conference on
Computer Systems (EuroSys), Prague, Czech Republic, 2013,
pp. 351-364. [Online]. Available: http://eurosys2013.tudos.org/
wp-content /uploads/2013/paper/Schwarzkopf.pdf

[16] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at google with
borg,” in EuroSys 2015 Proc., 2015.

[17] P. Lama and X. Zhou, “AROMA: automated resource allocation
and configuration of mapreduce environment in the cloud,” in
ICAC 2012 Proc., 2012, pp. 63-72.

[18] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware schedul-
ing for heterogeneous datacenters,” 2013.

, “Quasar: Resource-efficient and qos-aware cluster manage-
ment,” in ASPLOS 2014 Proc., 2014.

[20] X. Pan, S. Venkataraman, Z. Tai, and J. Gonzalez, “Heming-
way: Modeling distributed optimization algorithms,” CoRR, vol.
abs/1702.05865, 2017.

[21] J. Liu, H. Shen, and H. S. Narman, “Ccrp: Customized coopera-
tive resource provisioning for high resource utilization in clouds,”
in IEEFE Big Data 2016 Proc., 2016.

[22] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively unearthing the best Cloud
configurations for big data analytics,” in NSDI Proc., 2017.

(19]

Danilo Ardagna is an Associate Professor at the Dipartimento di
Elettronica Informazione and Bioingegneria at Politecnico di Milano,
Milan, Italy. He received the Ph.D. degree in Computer Engineering from
Politecnico di Milano in 2004. His work focuses on performance modeling

15

of software systems and on the design, prototyping, and evaluation of
optimization algorithms for resource management and planning of Cloud
and Big Data systems.

Enrico Barbierato earned a MSc and a PhD in Computer Science from
University of Turin (ltaly) and a second MSc in Advanced Studies
in Artificial Intelligence from the Katholieke Universiteit of Leuven
(Belgium). His professional experience in the private sector since 1992
concerned Finance, Telecom and Energy&Utilities markets. Enrico joined
Dipartimento di Elettronica, Informazione e Bioingegneria of Politecnico
of Milan in 2016 as a temporary researcher and teaching assistant. His
initial research activity regarded the study of abductive expert systems
and deadlock avoidance strategies in scenarios deploying autonomous
guided vehicles, to later shift to the performance evaluation of multifor-
malism models and applications of Markovian Agents.

Eugenio Gianniti is currently pursuing his Ph.D. degree in Computer
Engineering at Politecnico di Milano, Italy. His research interest lies
mostly in optimization techniques for the resource management of data-
intensive applications hosted on Clouds, as well as in the performance
modeling of such systems via both simulation and analytical methods.

Marco Lattuada received the Master and the Ph.D. degrees in Com-
puter Engineering from Politecnico di Milano, Italy, in 2006 and 2010
respectively. In 2012 and in 2013 he was visiting researcher at European
Space Agency. Since 2010, he has been temporary researcher and
lecturer at Dipartimento di Elettronica, Informazione e Bioingegneria
of Politecnico di Milano. His research interests include methodologies
for performance estimation of big data applications running on cloud
cluster, methodologies for High Level Synthesis, and methodologies for
performance estimation and automatic generation of code for multipro-
cessor embedded heterogeneous architectures.

https://www.datameer.com/wp-content/uploads/2018/02/big-data-use-case-financial-services.pdf
https://www.datameer.com/wp-content/uploads/2018/02/big-data-use-case-financial-services.pdf
https://www.datameer.com/blog/five-new-big-data-use-cases-2018-part-3/
https://www.datameer.com/blog/five-new-big-data-use-cases-2018-part-3/
http://idcdocserv.com/1414
http://idcdocserv.com/1414
http://doi.acm.org/10.1145/2788402.2788410
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf

IEEE TRANSACTIONS ON CLOUD COMPUTING

Appendix A

Proof

Proof of [Theorem 2|

Proof. The objective function (P2a)) is irregular, but introduc-
ing € and exploiting constraints (P2b)) it is possible to give the
following regular formulation:

mln Z w; (le +x? — D;) (P3a)
1€ Ad
subject to:
> ¢ <N, (P3b)
1€ Ad
i <¢, Vie A, (P3c)
c; >0, Vie Al (P3d)

Constraints enforce that no application receives
more resources than needed to achieve zero tardiness, hence
contributions to the objective function remain nonnegative as
expected.

The Lagrangian of Problem is given by:

Le)=) w

1
(xz +x9 - Di>+

i€ Ad
ALY =N+
i€ Ad (12)
+ Z)\ZZ(CZ _Ei)+
icAd
i€ Ad
and stationarity conditions lead to:
oL 6 _
= WG AN LN =0, Vie Al (13)
de; c
while complementary slackness conditions are:
WA - =0, \N>0, VicAY, (14a)
icAd
M(c;i—c)=0, Xi>0, VieA', (14b)
N =0, Xf>0, VieAl (l4c)

¢; > 0 by the definition of tardiness: thanks to the condi-
tions (T4d), it holds A¢ = 0, Vi € AY. From the KKT

descends:

C
AN £ AF = wg Vi € A, (15)
K3

In heavy load conditions, >, 4a ¢; > IN. Such inequality
implies that 37 : ¢; < ¢&;, then by it holds A = 0, which,
added to (T5)), yields AN > 0. In particular, this implies that
constraint (P3b)) is active in every optimal solution.

The optimal solution features a set of applications with
strictly positive tardiness, equivalently defined as A* =

16

{ieAd:¢ < cz} As already observed for i, A\§ = 0, Vi €
A'. Exploiting (T5)), it holds that:

wix§ WiX;
G T V(i) e A A (16)
% J
and:

w. ¢
i =cyy | =X e A (17)

w1 X1
Let A* = A9\ A, hence ¢; = &, Vi € A*. Substituting

into constraint (P3b)) taken as equality:

N = Zcz—l— Z

ic A 1€ A\ {1}

7701 +c, (18)

w1 1

whence comes, via simple algebraic transformations, the for-
mula for ¢; that completes the optimal system . O

	Introduction
	EUBra-BIGSEA Runtime Architecture
	Identifying the Initial Configuration
	Resource Rebalancing under Heavy Load
	Experimental Results
	Experimental Setup
	optic Validation
	optjr validation
	Real Scenario Case Study

	Related Work
	Conclusions & Future Work
	References
	Biographies
	Danilo Ardagna
	Enrico Barbierato
	Eugenio Gianniti
	Marco Lattuada

	Appendix A: Proof

