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Abstract. In the age of cloud computing, cloud users with limited storage can outsource
their data to remote servers. These servers, in lieu of monetary benefits, offer retrievability
of their clients’ data at any point of time. Secure cloud storage protocols enable a client to
check integrity of outsourced data. In this work, we explore the possibility of constructing
a secure cloud storage for dynamic data by leveraging the algorithms involved in secure
network coding. We show that some of the secure network coding schemes can be used
to construct efficient secure cloud storage protocols for dynamic data, and we construct
such a protocol (DSCS I) based on a secure network coding protocol. To the best of our
knowledge, DSCS I is the first secure cloud storage protocol for dynamic data constructed
using secure network coding techniques which is secure in the standard model. Although
generic dynamic data support arbitrary insertions, deletions and modifications, append-

only data find numerous applications in the real world. We construct another secure cloud
storage protocol (DSCS II) specific to append-only data — that overcomes some limitations
of DSCS I. Finally, we provide prototype implementations for DSCS I and DSCS II in order
to evaluate their performance.

Keywords: Secure cloud storage, network coding, dynamic data, append-only data, public
verifiability.

1 Introduction

With the advent of cloud computing, cloud servers offer to their clients (cloud users) various ser-
vices that include delegation of huge amount of computation and outsourcing large amount of data.
For example, a client having a smart phone with a low-performance processor or limited storage
cannot accomplish heavy computation or store large volume of data. Under such circumstances,
she can delegate her computation/storage to the cloud server.

In case of storage outsourcing, the cloud server stores massive data on behalf of its clients (data
owners). However, a malicious cloud server can delete some of the client’s data (that are accessed
infrequently) to save some space. Secure cloud storage protocols (two-party protocols between
the client and the server) provide a mechanism to detect if the server stores the client’s data
untampered. Based on the nature of the outsourced data, these protocols are classified as: secure
cloud storage protocols for static data (SSCS) [4,24,36] and for dynamic data (DSCS) [18,40,11,37].
For static data, the client cannot change her data after the initial outsourcing (e.g., backup/archival
data). Dynamic data are more generic in that the client can modify her data as often as needed.
In secure cloud storage protocols, the client can audit the outsourced data without accessing the
whole data file, and still be able to detect unwanted changes in data done by a malicious server.
During an audit, the client sends a random challenge to the server which produces proofs of storage
(computed on the stored data) corresponding to that challenge. Secure cloud storage protocols
are publicly verifiable if an audit can be performed by any third party auditor (TPA) using public
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Fig. 1. The entities involved in a secure cloud storage protocol.

parameters; or privately verifiable if an auditor needs some secret information of the client. The
entities involved in a secure cloud storage protocol and the interaction among them are shown in
Figure 1.

In a network coding protocol [2,26], each intermediate node (except sender/receiver nodes) on
a network path combines incoming packets to output another packet. These protocols enjoy higher
throughput, efficiency and scalability than the store-and-forward routing, but they are prone to
pollution attacks by malicious intermediate nodes injecting invalid packets. These packets produce
more such packets downstream, and the receiver might not finally decode the file sent by the
sender node. Secure network coding (SNC) protocols use cryptographic techniques to prevent these
attacks: the sender authenticates each packet by attaching a small tag to it. These authentication
tags are generated using homomorphic message authentication codes (MACs) [1] or homomorphic
signatures [14,8,21,12]. Due to homomorphic property, an intermediate node can combine incoming
packets (and their tags) into a packet and its tag.

In this work, we look at the problem of constructing a secure cloud storage protocol for dynamic
data (DSCS) from a different perspective. We investigate whether we can construct an efficient
DSCS protocol using an SNC protocol. In a previous work, Chen et al. [15] reveal a relationship
between secure cloud storage and secure network coding. In particular, they show that one can
exploit some of the algorithms involved in an SNC protocol in order to construct a secure cloud
storage protocol for static data. However, their construction does not handle dynamic data —
that makes it insufficient in many applications where a client needs to update (insert, delete or
modify) the remote data efficiently. Further investigations are needed towards an efficient DSCS
construction using a secure network coding (SNC) protocol.

Network coding techniques have been used to construct distributed storage systems [16,30]
where the client’s data are disseminated across multiple servers. However, they primarily aim to
reduce the repair bandwidth when some of the servers fail. On the other hand, we explore whether
we can exploit the algorithms involved in an SNC protocol to construct an efficient and secure
cloud storage protocol for dynamic data (for a single storage server).

Although dynamic data are generic in the sense that they support arbitrary update (inser-
tion, deletion and modification) operations, append-only data (where new data corresponding to
a data file are inserted only at the end of the file) find numerous applications as well. These ap-
plications primarily maintain archival as well as current data by appending the current data to
the existing datasets. Examples of append-only data include data obtained from CCTV cameras,
ledgers containing monetary transactions, medical history of patients, data stored at append-only
databases, and so on. Append-only data are also useful for maintaining other log structures (e.g.,
certificates are stored using append-only log structures in certificate transparency schemes [25]).
In many of such applications, the data owner requires a cloud server to store the bulk data in
an untampered and retrievable fashion with append being the only permissible update. Although
secure cloud storage schemes for generic dynamic data also work for append-only data, a more
efficient solution (specific to append-only data files) would be helpful in this scenario.



Our Contribution: Our major contributions in this work are summarized as follows.

– We explore the possibility of providing a generic construction of a DSCS protocol from any
SNC protocol. We discuss the challenges for a generic construction in details and identify some
SNC protocols suitable for constructing efficient DSCS protocols.

– We construct a publicly verifiable DSCS protocol (DSCS I) from an SNC protocol [12]. DSCS
I handles dynamic data, i.e., a client can efficiently perform updates (insertion, deletion and
modification) on the outsourced data. We discuss the (asymptotic) performance and certain
limitations of DSCS I.

– We provide the formal security definition of a DSCS protocol and prove the security of DSCS
I.

– As append-only data are a special case of generic dynamic data, we can use DSCS I (which
is based on [12]) for append-only data. However, we identify some SNC protocols that are not
suitable for building a secure cloud storage for generic dynamic data, but efficient secure cloud
storage protocols for append-only data can be constructed from them. We construct such a
publicly verifiable secure cloud storage protocol (DSCS II) for append-only data by using an
SNC protocol proposed by Boneh et al. [8].

– We discuss the (asymptotic) performance of DSCS II which overcomes some limitations of
DSCS I.

– We implement DSCS I and DSCS II and evaluate their performance based on storage overhead,
computational cost and communication cost.

2 Preliminaries and Background

We denote an element a chosen uniformly at random from a set X by a
R
←− X , a finite field by

F and the security parameter by λ. An algorithm A(1λ) is probabilistic polynomial-time (PPT)
if its running time is polynomial in λ and its output y depends on the internal coin tosses of A.
A function f : N→ R is negligible in λ if f(λ) < 1

λc , for all positive integers c and all sufficiently
large λ. For two integers a and b (a ≤ b), [a, b] denotes the set {a, a+1, . . . , b}. The multiplication
of a vector v by a scalar s is denoted by s · v.

2.1 Bilinear Maps

Let G1, G2 and GT be multiplicative cyclic groups of prime order p. Let g1 and g2 be generators of
G1 and G2, respectively. A bilinear map (or pairing) [20] is a function e : G1×G2 → GT such that:
1. for all u ∈ G1, v ∈ G2, a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab (bilinear property); 2. e is non-
degenerate, i.e., e(g1, g2) 6= 1; 3. for all u1, u2 ∈ G1, v ∈ G2, we have e(u1 ·u2, v) = e(u1, v)·e(u2, v).

2.2 Secure Network Coding

In a computer network, a sender (or source) node sends packets to a receiver (or target) node
through intermediate nodes (or routers). In network coding [2], each intermediate node encodes
the incoming packets to form another packet and forwards this packet downstream.

In this work, we consider random linear network coding [23,22], where each intermediate node
encodes the incoming packets linearly using random coefficients. We assume that each packet is a
vector and each of its component is an element of a finite field F. Then, a file to be transmitted can
be viewed as a set of m vectors v1, v2, . . . , vm ∈ F

n. For each i ∈ [1,m], the sender augments vi
to form another vector ui = [vi ei] ∈ F

n+m, where ei is the m-dimensional unit vector containing
1 in the i-th position and 0 in others, and transmits these augmented vectors (or packets). Let
V ⊂ F

n+m be the linear subspace spanned by u1, u2, . . . , um. A random file identifier fid is
associated with the file (or V ). Upon receiving l packets y1, y2, . . . , yl ∈ F

n+m, an intermediate

node chooses l coefficients ν1, ν2, . . . , νl
R
←− F and outputs a packet w =

∑l

i=1 νi · yi ∈ F
n+m (as

shown in Figure 2). This packet is of the form w = [w1, w2, . . . , wn, c1, c2, . . . , cm] ∈ V , where
c1, c2, . . . , cm ∈ F and wj =

∑m

i=1 civij for each j ∈ [1, n]. Given m linearly independent vectors,
the receiver solves a system of linear equations to obtain the original file.



Fig. 2. Linear combination of input packets for an intermediate node

In a secure network coding (SNC) protocol, authentication tags are attached to packets, which
are computed using homomorphic MACs [1] or homomorphic signatures [14,8,21,12]. The homo-
morphic property enables an intermediate node to combine the tags of the incoming packets into
a tag for the output packet. We define an SNC protocol as follows [12]. All algorithms take m and
n as inputs.

Definition 1 (Secure Network Coding). An SNC protocol consists of the following algorithms.

– KeyGen(1λ,m, n): The sender runs this algorithm in order to generate a secret key-public key
pair K = (sk, pk).

– TagGen(V, sk,m, n, fid): On input a linear subspace V ⊂ F
n+m, the secret key sk and a

random file identifier fid associated with V , the sender runs this algorithm to produce an
authentication tag t for V .

– Combine({yi, ti, νi}1≤i≤l, pk,m, n, fid): Given l incoming packets y1, y2, . . . , yl ∈ F
n+m for

fid and their corresponding tags t1, t2, . . . , tl, an intermediate node chooses l coefficients

ν1, ν2, . . . , νl
R
←− F and runs this algorithm. The algorithm outputs a packet w =

∑l

i=1 νi · yi ∈
F
n+m and its tag t.

– Verify(w, t, K̄,m, n, fid): Given a packet w for fid and its tag t, an intermediate node or the
receiver node executes this algorithm. This algorithm returns 1 if t is a valid tag for the packet
w; it returns 0, otherwise.

For some SNC protocols (e.g., [8,21,12]), verification requires only the public key pk (i.e.,
K̄ = pk). For other SNC protocols (e.g., [1]), the secret key sk is required for verification (i.e.,
K̄ = sk).

Security of a Secure Network Coding Protocol: The security of an SNC protocol based
on homomorphic signatures is defined by the following security game between a challenger and a
probabilistic polynomial-time adversary A [12].

– Setup: A provides the values m and n of its choice to the challenger. The challenger runs
KeyGen(1λ,m, n) to output K = (sk, pk) and returns pk to A.

– Queries: Let q be a polynomial in λ. The adversary A adaptively chooses a sequence of
q vector spaces Vi ⊂ F

n+m defined by respective augmented basis vectors {ui1, ui2, . . . , uim}
and asks the challenger to authenticate the vector spaces. For each 1 ≤ i ≤ q, the challenger
chooses a random file identifier fidi from a predefined space, generates an authentication tag
ti for Vi by running TagGen(Vi, sk,m, n, fidi) and gives ti to A.

– Forgery: The adversary A outputs (fid∗,w∗, t∗).

Let the adversary A output the vector w∗ = [w∗
1 , w

∗
2 , . . . , w

∗
n+m] ∈ F

n+m. The adversary A
wins the security game if: [w∗

n+1, w
∗
n+2, . . . , w

∗
n+m] ∈ F

m is not equal to the all-zero vector 0m,
Verify(w∗, t∗, pk,m, n, fid∗) = 1 and one of the following conditions is satisfied:



1. fid∗ 6= fidi for all i ∈ [1, q] (type-1 forgery)
2. fid∗ = fidi for some i ∈ [1, q], but w∗ 6∈ Vi (type-2 forgery).

For a secure network coding (SNC) protocol, the probability that the adversary A wins the
security game is negligible in the security parameter λ.

We note that the security game for a secure network coding protocol based on homomorphic
MACs is same as the game described above, except that the algorithm KeyGen now produces a
secret key only (unknown to A) and the verification algorithm Verify requires the knowledge of
this secret key.

2.3 Secure Cloud Storage

Provable Data Possession (PDP): Ateniese et al. [4] introduce provable data possession
(PDP) where the client (data owner) splits the data file into blocks, computes an authentication
tag (e.g., MAC) for each block, and uploads the blocks along with their tags. During an audit, the
client asks the server to prove the integrity of a predefined number of random blocks (challenge).
The server computes a proof (response) based on the challenge and the stored data, and sends it
to the client. A valid proof ensures retrievability of almost all blocks in the file. Ateniese et al. [4]
also introduce the notion of public verifiability where the client can delegate the auditing task to a
third party auditor (TPA). The TPA with the knowledge of the public key can perform an audit.
For privately verifiable schemes, only the client having the secret key can verify the proof sent by
the server. Other PDP schemes include [5,18,40,39,19].

Proofs of Retrievability (POR): Juels and Kaliski [24] introduce proofs of retrievability
(POR) for static data file that ensures retrievability of all of its blocks. According to Shacham and
Waters [36], the underlying idea is to encode the file with an erasure code [27,34], authenticate
the blocks of the encoded file, and upload them on the server. With this technique, the server
has to delete/modify a considerable number of blocks to actually delete/modify a single block
— which can be detected with high probability. Following the work by Juels and Kaliski, several
POR schemes have been proposed [10,17,38,11,37,13,3,9]. Some of these schemes are designed for
static data, and the rest allow the client to modify data after the initial outsourcing.

We define a DSCS protocol as follows [18]. It can be a PDP/POR protocol based on the
retrievability guarantee of data. The client (or a TPA) can be the verifier (or auditor).

Definition 2 (Secure Cloud Storage for Dynamic Data). A DSCS protocol consists of the
following algorithms.

– KeyGen(1λ): This algorithm generates a secret key-public key pair K = (sk, pk) for the client.
– Outsource(F,K, fid): The client splits the file F associated with the file identifier fid into m

blocks and computes authentication tags for them using her secret key sk. She constructs an
authenticated data structure M on the tags (for checking freshness of the data) and computes
some metadata dM for M . Finally, the client uploads F ′ (the file F and the tags) along with
M to the cloud storage server. She stores dM (and m) or includes them in pk.

– AuthRead(i, F ′,M, pk, dM ,m, fid): When the client asks for the i-th block, the server sends
her the i-th block vi, its tag ti and a proof Π(i) (related to M) for ti.

– VerifyRead(i, pk, dM ,m, vi, ti, Π(i), fid): The client checks if ti is a valid tag for vi and if
Π(i) matches with the latest metadata dM . She outputs 1 if both of them are satisfied; she
outputs 0, otherwise.

– InitUpdate(i, updtype, pk, dM ,m, fid): The variable updtype indicates whether the update is
an insertion (after) or a modification (of) or the deletion of the i-th block. Depending on
updtype, the client asks the server to perform the required update on the file associated with
fid (update information is specified in info).

– PerformUpdate(i, updtype, F ′,M, info, pk, fid): The cloud server performs the update on the
file associated with fid and sends the client a proof Π.

– VerifyUpdate(i, updtype, info, Π, pk, dM ,m, fid): Upon receiving the proof Π for the file as-
sociated with fid, the client checks whether Π is a valid proof.

– Challenge(pk, l, fid): During an audit, the verifier sends to the server a challenge set Q of
cardinality l = O(λ) containing the block-indices she wants to audit.



– Prove(Q, pk, F ′,M, fid): The server computes a proof of storage T for Q and sends it to the
verifier.

– Verify(Q, T, K̄, dM ,m, fid): The verifier checks if T is a valid proof of storage for Q. The
verifier outputs 1 if both the proofs pass the verification; she outputs 0, otherwise.

A DSCS protocol consists of the following sub-protocols: Init, Read, Write and Audit. The client
performs Init that consists of the algorithms KeyGen and Outsource. Read (that includes AuthRead
and VerifyRead) and Write (that comprises InitUpdate, PerformUpdate and VerifyUpdate) are
performed by the client and the server interactively. The verifier interacts with the server via
Audit that consists of Challenge, Prove and Verify. In a blockless verification [18], the proof T
includes a single aggregated block corresponding to the blocks indexed by Q — which reduces the
communication bandwidth significantly. For a privately verifiable DSCS protocol, pk = null and
K̄ = sk. For a publicly verifiable DSCS protocol, K̄ = pk and pk includes both m and dM .

2.4 Authenticated Data Structures Used in DSCS

Existing DSCS protocols use authenticated data structures (e.g., Merkle hash trees [28], rank-based
authenticated skip lists [18] and rank-based RSA trees [18]) to ensure that the server stores the
latest version of the client’s data. The number of levels in a rank-based authenticated skip list [18]
is logarithmic in m with high probability [33]. Thus, the proof size, server computation time and
client verification time are O(logm) with high probability. We briefly discuss the algorithms of a
rank-based authenticated skip list stored remotely in a server. We refer to Appendix C for details.

– ListInit(t1, . . . , tm): Given an ordered list of elements {t1, . . . , tm}, the client constructs a rank-
based authenticated skip list M using a collision-resistant hash function h to label its nodes.
She stores m and the label of the root as the metadata dM .

– ListAuthRead(i,m,M): When the client asks the server for the i-th element ti, the server
sends the element along with a skip-list proof Π(i) to the client.

– ListVerifyRead(i, dM , ti, Π(i),m): Given (ti, Π(i)), the client checks if the proof corresponds
to the latest metadata dM stored at her end. The client outputs 1 if the proof is valid; she
outputs 0, otherwise.

– ListInitUpdate(i, updtype, dM , t
′
i,m): The client initiates an update to be performed on the

skip list stored by the server. An update can be an insertion after or a modification of or the
deletion of the i-th element. The type of the update is stored in a variable updtype. From
the server’s response, the client computes d′M , that should be the new metadata if the server
performs the update correctly, and updates m (for insertion/deletion). She stores d′M at her
end temporarily and asks the server to perform the update specifying the location i, updtype
and the new element t′i (null for deletion).

– ListPerformUpdate(i, updtype, t′i,M): Based on the value of updtype, the server performs the
required update, computes a proof Π similar to the one generated during ListAuthRead and
sends Π to the client.

– ListVerifyUpdate(i, updtype, t′i, d
′
M , Π,m): The client verifies Π and computes dnew from it.

If Π is a valid proof and d′M = dnew , the client sets dM = d′M , deletes d′M and outputs 1.
Otherwise, she changes m to its previous value, deletes d′M and outputs 0.

Due to the collision-resistance property of h, the server cannot produce a valid proof Π (during a
read/update) without storing the elements correctly.

3 Construction of a DSCS Protocol Using an SNC Protocol

Chen et al. [15] propose a generic construction of a secure cloud storage protocol for static data
from any SNC protocol. They consider the data file F to be a collection of m blocks or vectors
(each of dimension n). The client outsources the vectors along with their authentication tags
to the server. Computing these tags exploits the algorithm SNC.TagGen. During an audit, the
client sends a subset Q of {1, 2, . . . ,m} to the server. The server augments the requested vectors,
combines them linearly in an authenticated fashion using SNC.Combine (blockless verification)



and sends the output vector along with its tag to the client. The client then verifies the authenticity
of the received vector (using SNC.Verify).

In an SNC protocol, the number of vectors in the file to be transmitted is fixed, as the dimension
of the coefficient vectors used to augment the original vectors has to be known a priori. So, a
generic construction of a secure cloud storage as described in [15] is suitable for static data only.
However, clients in a DSCS protocol can update (insert, delete and modify) their data after the
initial outsourcing. We identify certain challenges towards providing a generic construction of an
efficient DSCS protocol from an SNC protocol as follows. We refer to Appendix A for details.

1. The DSCS protocol must handle the varying values of m appropriately for insertions and
deletions.

2. The index of a vector should not be embedded in its tag. Otherwise, for inserting or deleting
a vector, the client has to recompute the tags for all subsequent vectors as their indices would
change as well.

3. Freshness of the client’s data must be guaranteed, i.e., the server must store the up-to-date
data.

4. Public verifiability is often desired where a third party auditor (TPA) can audit on the client’s
behalf.

3.1 DSCS I: A DSCS Protocol Using an SNC Protocol

In this section, we construct a publicly verifiable DSCS protocol (DSCS I) from the SNC protocol
proposed by Catalano et al. [12] which is secure in the standard model. DSCS I uses a rank-based
authenticated skip list to ensure the freshness of the dynamic data. Let h be the collision-resistant
hash function used in the rank-based authenticated skip list. We assume that the file F to be out-
sourced is a collection of m vectors (or blocks, according to Definition 2) each of dimension n. We
note that a data block is the unit the file is split into, such that an authentication tag is assigned
to each block (thus, in this paper, a block represents a vector). We call each of the n components
of a vector a segment. We assume that each such segment is λ-bit long. We describe the algo-
rithms involved in DSCS I as follows. We note that the algorithms KeyGen, Outsource, Prove and
Verify in DSCS I call the algorithms SNC.KeyGen, SNC.TagGen, SNC.Combine and SNC.Verify
(respectively) of the underlying SNC protocol [12] along with performing other operations related
to the skip list.

– KeyGen(1λ,m, n): The client selects two random safe primes4 p, q such that N = pq pro-
vides λ-bit security as an RSA modulus. She takes a (λ + 1)-bit random prime e and the

file identifier fid = e. She selects g, g1, . . . , gn, h1, . . . , hm
R
←− Z

∗
N . The public key pk is

(N, e, g, g1, . . . , gn, h1, . . . , hm, dM ,m, n). The secret key sk is (p, q). Let K = (sk, pk) and
dM = null.

– Outsource(F,K, fid): The file F (associated with fid) consists of m vectors each having n
segments such that a segment is a bit-string of length λ (an element of Fe). For each 1 ≤ i ≤ m,

the i-th vector vi is of the form [vi1, . . . , vin] ∈ F
n
e . For each vi, the client selects si

R
←− Fe and

computes xi such that

xei = gsi(

n
∏

j=1

g
vij
j )hi mod N. (1)

Now, ti = (si, xi) acts as an authentication tag for vi. The client constructs a rank-based
authenticated skip list M on the tags {ti}1≤i≤m and computes the metadata dM (the label
of the root node of M). She updates dM in the public key pk and uploads the file F ′ =
{(vi, ti)}1≤i≤m along with M to the server.

– AuthRead(i, F ′,M, pk, fid): The client and the server execute ListAuthRead(i,m,M) for the
skip list M . The server sends the i-th vector vi, its tag ti and a skip-list proof Π(i) for ti to
the client.

4 A safe prime is of the form 2p′ + 1, where p′ is also a prime.



– VerifyRead(i, pk, vi, ti, Π(i), fid): The client, given vi = [vi1, . . . , vin], ti = (si, xi) and Π(i),
outputs 1 if ListVerifyRead(i, dM , ti, Π(i),m) = 1 and

xei = gsi(

n
∏

j=1

g
vij
j )hi mod N. (2)

The client outputs 0, otherwise.
– InitUpdate(i, updtype, pk, fid): The value of the variable updtype indicates if the update is

an insertion after or a modification of or the deletion of the i-th vector. The client performs
one of the following operations and temporarily stores d′M at her end.

1. For insertion, the client selects h′
R
←− Z

∗
N , generates the new vector-tag pair (v′, t′) and

runs ListInitUpdate on (i, updtype, dM , t
′,m). She sends (h′, v′) to the server.

2. For modification, the client generates the new vector-tag pair (v′, t′), runs ListInitUpdate
on (i, updtype, dM , t

′,m), sends v′ to the server.
3. For deletion, the client runs ListInitUpdate on (i, updtype, dM , t

′,m), where t′ is null.
– PerformUpdate(i, updtype, F ′,M, h′, v′, t′, pk, fid): We assume that, for efficiency, the server

keeps a copy of the ordered list L of hj values for 1 ≤ j ≤ m. The server performs one of the
following operations.
1. For insertion, the server sets m = m + 1, inserts h′ in the (i + 1)-th position of L and

inserts v′ after the i-th vector. The server runs ListPerformUpdate on (i, updtype, t′,M).
2. For modification (h′ is null), the cloud server modifies the i-th vector to v′ and runs

ListPerformUpdate(i, updtype, t′,M).
3. For deletion (h′, v′ and t′ are null), the server sets m = m−1, deletes hi from L and runs

ListPerformUpdate(i, updtype, null,M).
– VerifyUpdate(i, updtype, t′, d′M , Π, pk, fid): Upon receiving the proof from the server, the

client performs ListVerifyUpdate(i, updtype, t′, d′M , Π,m). If its output is 1, the client outputs
1 and updates her public key (the latest values of m, dM and hj for j ∈ [1,m]) accordingly.
Otherwise, she outputs 0.

– Challenge(pk, l, fid): During an audit, the verifier selects I, a random l-element subset of

[1,m]. Then, she generates a challenge set Q = {(i, νi)}i∈I , where each νi
R
←− Fe. She sends Q

to the server.
– Prove(Q, pk, F ′,M, fid): The server computes s =

∑

i∈I νisi mod e and s′ = (
∑

i∈I νisi−s)/e.
For each i ∈ I, the server forms ui = [vi ei] ∈ F

n+m
e by augmenting vi with the unit coefficient

vector ei. It computes w =
∑

i∈I νi · ui mod e ∈ F
n+m
e , w′ = (

∑

i∈I νi · ui −w)/e ∈ F
n+m
e and

x =

∏

i∈I x
νi
i

gs′
∏n

j=1 g
w′

j

j

∏m

j=1 h
w′

n+j

j

mod N. (3)

Let y ∈ F
n
e be the first n entries of w and t = (s, x). The server sends T = (T1, T2) as a proof

of storage for Q, where T1 = (y, t) and T2 = {(ti, Π(i))}i∈I .
– Verify(Q, T, pk, fid): Using Q = {(i, νi)}i∈I and T = (T1, T2) sent by the server, the verifier

constructs a vector w = [w1, . . . , wn, wn+1, . . . , wn+m] ∈ F
n+m
e , where the first n entries of w

are same as those of y and the (n + i)-th entry is νi if i ∈ I (0 if i 6∈ I). For each i ∈ I,
the verifier checks if Π(i) is a valid proof for ti = (si, xi) with respect to dM . She computes

s̄ =
∑

i∈I νisi mod e and verifies whether s̄
?
= s. Finally, she checks if

xe
?
= gs

n
∏

j=1

g
wj

j

m
∏

j=1

h
wn+j

j mod N. (4)

The verifier outputs 0 if any verification fails; she outputs 1, otherwise.

Correctness of Eqn. 4: For each i ∈ I, vi is augmented with ei to form ui = [vi ei] ∈ F
n+m
e . So,

we can rewrite Eqn. 1 as

xei = gsi(

n
∏

j=1

g
vij
j )hi mod N = gsi

n
∏

j=1

g
uij

j

m
∏

j=1

h
ui(n+j)

j mod N.



For an honest server storing the challenged vectors correctly,

xe =

∏

i∈I (x
e
i )

νi

(

gs′
∏n

j=1 g
w′

j

j

∏m
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w′

n+j

j

)e mod N

=
g
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i∈I
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∏n

j=1 g
∑

i∈I
νiuij

j

∏m
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νiui(n+j)

j
(
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w′

j

j

∏m
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w′

n+j

j

)e mod N

= g
∑

i∈I νisi−es′
n
∏

j=1

g
∑

i∈I νiuij−ew′

j

j
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∏

j=1

h
∑

i∈I νiui(n+j)−ew′

n+j

j mod N

= gs
n
∏

j=1

g
wj

j

m
∏

j=1

h
wn+j

j mod N.

4 Security of DSCS I

A secure DSCS protocol has the following properties [18,37].

Authenticity: The server cannot produce a valid proof of storage T ′ (corresponding to Q) without
storing the challenged vectors and tags untampered, except with a probability negligible in λ.

Freshness: The server must store the up-to-date data file F .

Retrievability: Given a PPT adversary A that correctly responds to Q with a non-negligible
probability, there exists a polynomial-time extractor E that can extract (at least) the challenged
vectors (except with a negligible probability) by challenging A for a polynomial (in λ) number of
times and verifying A’s responses.

4.1 Security Model

DSCS I offers the guarantee of dynamic provable data possession (DPDP) [18]. The untrusted
server (acting as a PPT adversary A) can be malicious exhibiting Byzantine behavior and corrupt
the client’s data arbitrarily, i.e., it can apply updates of its choice. The data possession game
between a challenger C and A is as follows.

– C runs KeyGen to generate (sk, pk) and gives pk to A. A selects a file F associated with the
identifier fid to store. C processes F to form another file F ′ with the help of sk and returns
F ′ to A. C stores only some metadata to verify the future updates.

– A adaptively chooses a sequence of operations defined by {opi}1≤i≤q1 (q1 is polynomial in the
security parameter λ), where opi is an authenticated read, an authenticated update (write) or
an audit. C executes these operations on the file stored by A. For an update operation defined
by (updtype, info), C verifies the proof (sent by A) by running VerifyUpdate and updates
her metadata if and only if the proof passes verification. A is notified about the result of
verification for each opi. A can corrupt the file in an arbitrary way during the execution of
these operations, i.e., it can update any part of the file that need not be the same as those
specified in {opi}1≤i≤q1 .

– Let F ∗ be the final state of the file after q1 operations. C has the latest metadata for the file
F ∗. C challenges A with a random challenge set Q, and A returns a proof T = (T1, T2) to C.
A wins the game if the proof passes verification. C can challenge A for q2 (polynomial in λ)
times to extract (at least) the challenged vectors of F ∗.

Definition 3 (Security of a DSCS Protocol). A DSCS protocol is secure if, for any prob-
abilistic polynomial-time adversary A who can win the data possession game mentioned above
with some non-negligible probability, there exists a polynomial-time extractor E that can extract
(at least) the challenged vectors by interacting (via challenge-response) with A polynomially many
times.



4.2 Security Analysis of DSCS I

We state and prove Theorem 1 to analyze the security of DSCS I which depends on the security
of the underlying SNC protocol [12]. The SNC protocol [12] in turn derives its security from the
Strong RSA assumption [6].

Theorem 1. Given that the hash function used to construct the rank-based authenticated skip list
is collision-resistant and the underlying network coding protocol is secure, the DSCS I protocol is
secure in the standard model according to Definition 3.

Proof. We use the following claims to prove Theorem 1.

Claim 1 Given that the hash function used to construct the rank-based authenticated skip list is
collision-resistant and the underlying network coding scheme is secure, the authenticity of the data
file is guaranteed in DSCS I.

Proof. Authenticity of data demands that the cloud server, without storing the challenged vectors
and their respective authentication tags appropriately, cannot produce a valid response T ′ =
(T ′

1, T
′
2) = ((y′, t′), T ′

2) for a challenge set Q = {(i, νi)}i∈I during the data possession game (and
during the extraction phase). The data file F with a random (but unique) fid is identified by
the augmented vectors ui = [vi ei] ∈ F

n+m
e for i ∈ [1,m]. Let T = (T1, T2) = ((y, t), T2) be the

response computed honestly for the same challenge set Q; thus, Verify(Q, T, pk, fid) = 1. We
consider two cases and prove that the adversary can generate neither a valid T ′

1 (Case I) nor a
valid T ′

2 (Case II).
Case I: We show that if there exists a PPT adversary A that can break the authenticity of
DSCS I, the security of the underlying SNC protocol is compromised.

If possible, we assume that, when challenged with Q = {(i, νi)}i∈I during the data possession
game or the extraction phase, the adversary A produces a valid (but incorrect) response T ′ =
(T ′

1, T2) = ((y′, t′), T2) such that y′ 6= y (where T = (T1, T2) = ((y, t), T2) is the correct response).
As T ′ is a valid response, Verify(Q, T ′, pk, fid) = 1. Let w = [w1, . . . , wn, wn+1, . . . , wn+m] ∈ F

n+m
e

be a vector, where the first n entries of w are same as those of y and the (n + i)-th entry is
νi if i ∈ I (0 if i 6∈ I). Let w′ = [w′

1, . . . , w
′
n, w

′
n+1, . . . , w

′
n+m] ∈ F

n+m
e be another vector,

where the first n entries of w′ are same as those of y′ and the (n + i)-th entry is νi if i ∈ I
(0 if i 6∈ I). Clearly, w 6= w′ (as y 6= y′). We observe that the algorithm Verify executes the
algorithm SNC.Verify (see Eqn. 4 in Section 3.1). As Verify(Q, T ′, pk, fid) outputs 1, it follows
that SNC.Verify(w′, t′, pk,m, n, fid) = 1 (otherwise, the algorithm Verify would output 0). We
consider only the case where y 6= y′. We do not take into account the case where y = y′ but t 6= t′,
since the tag for a vector y is unique (in this case, SNC.Verify(y, t′, pk,m, n, fid) outputs 0 —
which implies that Verify(Q, T ′, pk, fid) also outputs 0).

We also note that, for a given challenge set Q, the set of indices I and the corresponding
coefficients νi (for i ∈ I) are randomly chosen by the challenger (data possession game) or by the
extractor (extraction phase). As the correct values of the basis vectors u1, . . . , um for F are unique
at a given point of time, their linear combination using fixed coefficients (i-th coefficient is νi or 0
depending on whether i ∈ I or i 6∈ I) is also unique. This unique linear combination is w (6= w′).
As the last m entries of w′ are same as those of w, it follows that w′ 6∈ span(u1, . . . , um).

To sum up, the pair (w′, t′) thus constructed for the data file F (identified by fid) satisfies
the following conditions: [w′

n+1, w
′
n+2, . . . , w

′
n+m] ∈ F

m
e is not equal to the all-zero vector 0m,

SNC.Verify(w′, t′, pk,m, n, fid) outputs 1 and w′ 6∈ span(u1, . . . , um). This implies a type-2 forgery
on the secure network coding protocol [12] we use in DSCS I (security of an SNC protocol is
discussed in Section 2.2). However, since this network coding protocol is secure in the standard
model, the adversary cannot produce such a response T ′

1 = (y′, t′), except with some probability
negligible in the security parameter λ.
Case II In DSCS I, the hash function h used to compute the labels of the nodes in the rank-
based authenticated skip list M is collision-resistant. To produce a valid skip-list proof T ′

2 6= T2
with respect to the latest metadata dM (the label of the root node of the skip list), the adversary
has to find a collision for the hash function h in some level of the rank-based authenticated skip
list. As h is taken to be collision-resistant, the adversary can forge a skip-list proof only with a
probability negligible in λ.



This completes the proof of Claim 1. �

Claim 2 Given that the hash function used to construct the rank-based authenticated skip list is
collision-resistant, the freshness of the data file is guaranteed in the DSCS I protocol.

Proof. Freshness of the data file is maintained using the rank-based authenticated skip list built
over the authentication tags. For each update request made by the adversary during the data
possession game, the challenger runs the algorithm InitUpdate (which in turn calls the algorithm
ListInitUpdate) to compute the new metadata d′M from the skip-list proof Π provided by the
adversary. After the adversary performs the update, it sends another proof Π ′ corresponding
to the updated skip list. Then, the challenger runs the algorithm VerifyUpdate (which in turn

calls the algorithm ListVerifyUpdate) to compute dnew from Π ′ and to check if d′M
?
= dnew . The

challenger updates the latest metadata dM = d′M if and only if d′M = dnew and Π ′ is a valid proof.
If the adversary is able to make the challenger output 1 during some execution of VerifyUpdate
without storing the latest authentication tags, then it must have found a collision for the hash
function h in some level of the rank-based authenticated skip list. However, as h is taken to be
collision-resistant, this event (forging a skip-list proof) occurs with a negligible probability.

On the other hand, for each audit during the data possession game or the extraction phase,
freshness of authentication tags is guaranteed by checking the validity of the skip-list proof T2 =
{(ti, Π(i))}i∈I with respect to the latest metadata dM (using the algorithm Verify). The output
of Verify is 1 if and only if T2 is a valid skip-list proof. Again, if the adversary is able to forge a
skip-list proof (with respect to dM ) without storing the latest authentication tags, then it must
have found a collision for the hash function h in some level of the rank-based authenticated skip
list — which occurs only with a negligible probability.

Finally, although the correct value of the set of basis vectors u1, . . . , um for F is unique at
a given point of time, it is changed for each update. The malicious adversary might discard
modifications of some of these vectors and keep an older version of them (along with up-to-date
authentication tags). Thus, when challenged for some of these vectors, the adversary provides a
proof T1 = (y, t) = (y, (s, x)) which is correct but computed on older data. We note that the
algorithm Verify computes s̄ =

∑

i∈I νisi mod e (si values are obtained from T2 = {(ti, Π(i))}i∈I)
and checks whether s̄ is equal to s (s is a part of T1). However, as the coefficients νi in the challenge
set Q are randomly chosen by the challenger, the value of s would be equal to s̄ =

∑

i∈I νisi mod e

only with probability 1/e which is again negligible in λ (since e = Θ(2λ+1)).
This completes the proof of Claim 2. �

We define a polynomial-time extractor algorithm E that can extract (at least) the challenged
vectors (except with negligible probability) by interacting with an adversary A that wins the data
possession game mentioned above with some non-negligible probability. As DSCS I satisfies the
authenticity and freshness properties mentioned above, A cannot produce a proof T = (T1, T2)
for a given challenge set Q = {(i, νi)}i∈I without storing the challenged vectors and their corre-
sponding tags properly, except with some negligible probability. This means that if the output
of the algorithm Verify is 1 during the extraction phase, the vector y in the proof is the linear
combination of the original data vectors vi for i ∈ I using coefficients {νi}i∈I .

Suppose the extractor E wants to extract l vectors indexed by J . It challenges A with Q =
{(i, νi)}i∈J . If the proof is valid (checked using Verify), E initializes a matrixME as [ν1i]i∈J , where
ν1i = νi for each i ∈ J . The extractor challenges A for the same J but with different random
coefficients. If the algorithm Verify outputs 1 and the vector of coefficients is linearly independent
to the existing rows of ME , then E appends this vector to ME as a row. The extractor E runs
this algorithm until the matrix ME has l linearly independent rows. So, the final form of the
full-rank matrix ME is [νji]j∈[1,l],i∈J . Then, the challenged vectors can be extracted with the help
of Gaussian elimination.

This completes the proof of Theorem 1. �

4.3 Probabilistic Guarantees of DSCS I

If the cloud server corrupts a constant (say, β) fraction of vectors present in a data file, then the
server passes an audit with probability pcheat = (1−β)l, where l is the cardinality of the challenge



Table 1. Comparison among secure cloud storage protocols achieving PDP guarantees

Secure cloud storage Type of Computation Computation Communication Public Security
protocols data for verifier for server complexity verifiability model

PDP [4] Static O(1) O(1) O(1) Yes RO†

Scalable PDP [5] Dynamic‡ O(1) O(1) O(1) No RO

DPDP I [18] Dynamic O(log m̃) O(log m̃) O(log m̃) Yes§ Standard

DPDP II [18] Dynamic O(log m̃) O(m̃ǫ log m̃)⋆ O(log m̃) Yes§ Standard

Wang et al. [40] Dynamic O(log m̃) O(log m̃) O(log m̃) Yes RO

Wang et al. [39] Dynamic O(log m̃) O(log m̃) O(log m̃) Yes RO

FlexDPDP [19] Dynamic O(log m̃) O(log m̃) O(log m̃) Yes§ Standard

Chen et al. [15] Static O(1) O(1) O(1) Yes Standard

DSCS I (in this work) Dynamic O(logm) O(logm) O(logm) Yes Standard

DSCS II (in this work) Dynamic¶ O(1) O(1) O(1) Yes RO

For simplicity, we exclude the security parameter λ from complexity parameters (for an audit). The
value m̃ denotes the number of blocks the data file is split into (such that an authentication tag is
associated with each block). For example, m̃ = m in our DSCS (I and II) protocols, where m denotes
the number of vectors. The term O(ñ) is added implicitly to each complexity parameter, where ñ is
the size of each block. For example, ñ = n in DSCS I and II, where a vector having n segments is
considered as a block. For all protocols, storage at the verifier side is O(1), and storage at the server
side is O(|F ′|) where F ′ is the outsourced file. If l is the cardinality of the challenge set and the server
corrupts β fraction of the file, the detection probability pdetect = 1 − (1 − β)l for all the protocols
(except, in DPDP II, pdetect = 1− (1− β)Ω(log m̃)).
† RO denotes the random oracle model [7].
‡ Scalable PDP supports deletion, modification and append operations; insertion of a block in an
arbitrary location is not supported.
§ Although the authors do not claim public verifiability explicitly, the protocol can be made publicly
verifiable by making d

M̃
and m̃ public.

⋆ ǫ is a constant such that 0 < ǫ < 1.
¶ DSCS II supports only append operations; (arbitrary) insertion, deletion and modification operations
are not supported.

set Q. The probability pcheat is very small for large values of l. Typically, l is taken to be O(λ) in
order to make the probability pcheat negligible in λ. Thus, the verifier detects a malicious server
corrupting β-fraction of the data file with probability pdetect = 1 − pcheat = 1 − (1 − β)l, and it
guarantees the integrity of almost all vectors of the file.

5 Performance Analysis of DSCS I

5.1 Efficiency of DSCS I

The computational cost of DSCS I is dominated by the cost of exponentiations (modulo N).
To generate x in the tag for a vector, the client has to perform a multi-exponentiation [29] and
calculate the e-th root of the result (see Eqn. 1). The server requires two multi-exponentiations
to calculate x (see Eqn. 3). To verify a proof using Verify, the verifier has to perform a multi-
exponentiation and a single exponentiation (see Eqn. 4). Due to the properties of a skip list [33],
the size of each proof Π (related to the rank-based authenticated skip list), the time required
to generate Π and the time required to verify Π are O(logm) with high probability. As DSCS I
provides provable data possession (PDP) guarantees, we compare DSCS I with other PDP schemes
based on different parameters related to an audit as shown in Table 1.

5.2 Limitations of DSCS I

We discuss a few limitations of DSCS I compared to DPDP I [18] (specifically) as both of them
handle dynamic data, offer public verifiability and are secure in the standard model.

1. The size of the public key in DSCS I is O(m+ n), whereas that in DPDP I is constant.



2. A tag in DSCS I is of the form (s, x), where s ∈ Fe and x ∈ Z
∗
N . A tag in DPDP I is an

element of Z∗
N . Thus, the size of a tag in DSCS I is larger than that in DPDP I by λ+ 1 bits

(as e is a (λ + 1)-bit prime).
3. In DSCS I, the values of dM , m and hi in the public key must be changed for each insertion

or deletion (a modification requires changing only the value of dM ), whereas only the values
of dM̃ and m̃ need to be changed in DPDP I. However, if the server keeps a local copy of the
public key (an ordered list containing hi values for i ∈ [1,m]), then small changes are required
at the server side. The server inserts the new h value (sent by the client) in (i+1)-th position
in the list (for insertion) or discards the i-th h value (for deletion).

We note that the existing secure cloud storage protocol for static data [15] based on the
same SNC protocol [12] also suffers from the first two limitations mentioned above. However, in
this paper, we explore whether a DSCS protocol can be constructed from an SNC protocol. A
more efficient (in terms of the size of the public key or a tag) SNC protocol can lead to a more
efficient DSCS protocol. In the following section, we propose another DSCS protocol (DSCS II)
for append-only data that is much more efficient than DSCS I.

6 More Efficient Solutions for Append-only Data

In this section, we identify SNC protocols [8,21] that can be used for constructing DSCS protocols
for append-only data, and we indeed provide an efficient DSCS protocol (DSCS II) for append-only
data using an SNC protocol proposed by Boneh et al. [8] (Appendix B discusses this SNC protocol).
As discussed in Appendix A, this SNC protocol is not suitable for constructing an efficient secure
cloud storage for generic dynamic data as block-indices are embedded in tags. However, this issue
does not arise for append-only data where data blocks (or vectors) are inserted at the end only
(thus the index of a new block does not affect that of an existing block). Moreover, unlike [12],
the public-key size in [8] does not depend on m, the number of vectors in the data file. These two
crucial observations lead us to construct a more efficient SNC-based DSCS protocol for append-only
data.

6.1 DSCS II: A DSCS Protocol for Append-only Data

We describe our DSCS II protocol for append-only data. As append is the only operation allowed
in DSCS II, we do not need freshness of data (and authenticated data structures). This is because
existing data blocks are never updated for an append, and there is no older but valid version of a
data block that the server can retain. For the same reason, DSCS II does not include VerifyUpdate
that was used in DSCS I. DSCS II consists of the following algorithms.

– KeyGen(1λ,m, n): Let G = (G1, G2, GT , e, ψ) be a bilinear group tuple, where G1, G2 and GT

are multiplicative cyclic groups of prime order p > 2λ, and the functions e : G1 × G2 → GT

(bilinear map) and ψ : G2 → G1 are efficiently computable. The client selects g1, . . . , gn
R
←−

G1\{1}, h
R
←− G2\{1} and α

R
←− Fp. She takes z = hα and chooses a random file identifier fid

∈ {0, 1}λ. Let H : Z× Z→ G1 be a hash function considered to be a random oracle [7]. The
public key is pk = (G, H, g1, . . . , gn, h, z,m, n), and the secret key is sk = α. Let K = (sk, pk).

– Outsource(F,K, fid): The file F (associated with fid) consists of m vectors each having n
segments. Let each segment be an element of Fp. Then, for each 1 ≤ i ≤ m, the client computes
an authentication tag for the i-th vector vi = [vi1, . . . , vin] ∈ F

n
p as

ti =



H(fid||i)

n
∏

j=1

g
vij
j





α

(5)

(see Eqn. 9 in Appendix B). The client uploads the file F ′ = {(vi, ti)}1≤i≤m to the cloud
server.

– AuthRead(i, F ′, pk, fid): In order to read the i-th vector, the client sends the index i to the
server. The server sends the i-th vector vi and its tag ti.



– VerifyRead(i, pk, sk, vi, ti, fid): Upon receiving vi = [vi1, . . . , vin] and ti, the client outputs 1
if

ti =



H(fid||i)

n
∏

j=1

g
vij
j





α

. (6)

The client outputs 0, otherwise.
– InitUpdate(pk, fid): The client sends a vector-tag pair (v′, t′) to the server and sets m = m+1

in pk.
– PerformUpdate(F ′, v′, t′, pk, fid): The server inserts v′ after the m-th vector (i.e., at the end

of the data file) and sets m = m+ 1.
– Challenge(pk, l, fid): During an audit, the verifier selects I, a random l-element subset of

[1,m]. She generates a challenge set Q = {(i, νi)}i∈I , where each νi
R
←− Fp. The verifier sends

Q to the server.
– Prove(Q, pk, F ′, fid): For each i ∈ I, the server forms ui = [vi ei] ∈ F

n+m
p by augmenting vi

with the unit coefficient vector ei. It computes a tag

t =
∏

i∈I

tνii (7)

for the vector w =
∑

i∈I νi · ui ∈ F
n+m
p . Let y ∈ F

n
p be the first n entries of w. The server

sends T = (y, t) to the verifier as a proof of storage with respect to Q.
– Verify(Q, T, pk, fid): Using Q = {(i, νi)}i∈I and T = (y, t) sent by the server, the verifier

constructs a vector w = [w1, . . . , wn, wn+1, . . . , wn+m] ∈ F
n+m
p , where the first n entries of w

are same as those of y and the (n + i)-th entry is νi if i ∈ I (0 if i 6∈ I). Finally, the verifier
outputs 1 if

e(t, h) = e





m
∏

j=1

H(fid||j)wn+j

n
∏

j=1

g
wj

j , z



 . (8)

The verifier outputs 0, otherwise.

Correctness of Eqn. 8: For each i ∈ I, vi is augmented with ei to form ui = [vi ei] ∈ F
n+m
e . So,

we can rewrite Eqn. 5 as

ti =



H(fid||i)

n
∏

j=1

g
vij
j





α

=





m
∏

j=1

H(fid||j)ui(n+j)

n
∏

j=1

g
uij

j





α

.

For an honest server storing the challenged vectors correctly,

t =
∏

i∈I

tνii =





m
∏

j=1

H(fid||j)
∑

i∈I
νiui(n+j)

n
∏

j=1

g
∑

i∈I νiuij

j





α

=





m
∏

j=1

H(fid||j)wn+j

n
∏

j=1

g
wj

j





α

.

Substituting the value of t in e(t, h), we get

e(t, h) = e









m
∏

j=1

H(fid||j)wn+j

n
∏

j=1

g
wj

j





α

, h





= e





m
∏

j=1

H(fid||j)wn+j

n
∏

j=1

g
wj

j , hα





= e





m
∏

j=1

H(fid||j)wn+j

n
∏

j=1

g
wj

j , z



 .

Observations: We make the following observations.



– The DSCS II protocol supports only append operations at the end of the data file.
– DSCS II is publicly verifiable in that anyone with the knowledge of the public key can perform

an audit.
– As we have discussed earlier, since DSCS II supports only append operations on the data file,

the freshness property is not required in DSCS II. Thus, DSCS II does not need authenticated
data structures (e.g., rank-based authenticated skip lists) in order to achieve freshness of data.
Therefore, we do not require the algorithm VerifyUpdate in DSCS II.

– DSCS II is secure in the random oracle model [7]. The security game and the security proof
of DSCS II are similar to that of DSCS I, except that append is the only permissible update
and that freshness is not required in DSCS II. The guarantee of authenticity comes from the
security of the underlying SNC protocol [8] that is secure in the random oracle model.

6.2 Efficiency of DSCS II

While executing the algorithm Outsource, the client has to perform a multi-exponentiation to
generate the value of an authentication tag for each vector t (see Eqn. 5). The server requires one
multi-exponentiation to calculate the value of t (see Eqn. 7 in the algorithm Prove). The verifier
has to perform two multi-exponentiations and two pairing operations (see Eqn. 8) to verify a proof
using the algorithm Verify. We note that each of the parameters — the size of a proof, the time
required to generate a proof and the time required to verify a proof — is constant (independent
of m) in DSCS II. Different efficiency parameters of DSCS II related to an audit are shown in
Table 1. Detailed experimental evaluation of DSCS II is given in Section 7.3.

An authentication tag t in DSCS II belongs to G1, and thus is 2λ bits long [20]. The DSCS II
protocol for append-only data overcomes some of the limitations of our DSCS I protocol described
in Section 3.1 as follows.

1. In DSCS II, the size of the public key is O(n) (which is O(m+n) in DSCS I), where n (≪ m)
is decided during setup and kept unchanged during the protocol execution.

2. In DSCS II, only m needs to be modified for each append operation — which is similar to
DPDP I [18].

7 Experimental Results

In this section, we evaluate the performance of DSCS I and DSCS II.

7.1 Evaluation Methodology

We measure storage overhead (server), communication (between client and server) and computa-
tion cost (client and server) on a 2.5 GHz Intel i5 processor with 8GB RAM. For cryptographic
operations, we use the OpenSSL library 1.0.2 [31] for DSCS I and the pairing-based cryptography
(PBC) library 0.5.14 [32] for DSCS II. As we use two different libraries to implement DSCS I and
DSCS II, the computation time taken by similar cryptographic operations (e.g., random number
generation) varies for these protocols.

In our experiments, each file comprises m data blocks (or vectors) each of size n′. We note
that each data block in DSCS I and DSCS II comprises n of data segments. Thus, n′ = n× sseg ,
where sseg is the size of each data segment. In our experiments, we fix the value of n′ (block size)
to be 500 KB, and thus the value of m (number of blocks) varies for files according to their size.
We experiment with file sizes 1, 10, 50, 200 and 500 MB, except in the comparison with [15] given
in Table 4 and Table 5. We take the security parameter λ = 112 which is same as that considered
in [15]. The results reported in the following sections are taken to be the average by running
the respective experiments 50 times. During an update (and an audit), the communication cost
reported here includes only the size of tags and the size of proofs. We note that these algorithms
need to communicate a block (of constant size) also. For ease of comparison, we do not take the
block size into consideration (similar to [15]).



Table 2. Storage overhead for the server and communication cost in DSCS I

File size Storage cost for tags Storage
|Q|

Communication cost (KB)
(MB) and skip list (KB) overhead Audit Insert Modify Delete

1 1.03 0.10% 2 3.58 2.54 2.28 2.00

10 8.75 0.09% 10 16.83 2.54 2.28 2.00

50 39.25 0.08% 10 16.83 2.54 2.28 2.00

200 153.86 0.08% 112 185.74 2.54 2.28 2.00

500 382.34 0.08% 112 185.74 2.54 2.28 2.00

Table 3. Computation cost for the client C and the server S in DSCS I

File Outsource
|Q|

Challenge Prove Verify Insert Delete Modify
size (sec) (msec) (sec) (sec) (sec) (sec) (sec)
(MB) C C S C C S C S C S

1 10.03 2 0.01 9.52 5.15 5.50 0.01 0.001 0.001 5.41 0.01

10 100.08 10 0.02 9.58 5.00 5.49 0.10 0.001 0.009 5.39 0.11

50 501.30 10 0.02 9.76 5.07 5.46 0.49 0.002 0.489 5.45 0.49

200 2008.93 112 0.23 14.63 5.08 5.50 6.29 0.002 6.287 5.50 6.28

500 5717.74 112 0.29 15.61 5.07 5.52 13.04 0.002 13.016 5.45 13.00

7.2 Experimental Results for DSCS I

We take p and q to be 1024-bit primes such that N = pq is a 2048-bit RSA modulus that provides
112-bit security.

Storage Overhead: The client only needs to store her secret key and a metadata (the root-
digest of the rank-based authenticated skip list) — which incurs a constant storage cost. On the
other hand, the server needs to store, along with the data file, all the authentication information
including the skip list and the tags. This storage overhead is shown in Table 2. We observe that,
given a fixed block size n′, the percentage of additional storage remains almost constant as the
file size increases. Thus, the server bears a trivial storage overhead even after supporting dynamic
operations.

Communication Cost: During an audit, the communication cost depends on the number of
challenged blocks (i.e., |Q|) which is a small constant. In response to Q, the server sends proofs to
the client. The proof size depends on two factors: the size of a constant aggregated block (along
with that of an aggregated tag) and the size of the skip-list proofs for the queried blocks. The
second factor brings some variation in the proof size as the number of queried blocks changes. As
we later compare the performance of DSCS I with that of [15], we do not include the block size in
the cost (similar to [15]). From Table 2, we observe that, in spite of having data dynamics, DSCS
I consumes low bandwidth.

During an update, the communication cost depends on the type of update. For an insertion,
the client sends to the server an index, a public parameter h, the new data block along with its
tag. For a modification, client only needs to send an index, the modified block and its tag. For a
deletion, communication includes the index of the block to be deleted. For each update, the server
returns a proof to the client. The communication cost is reported in Table 2 for each update.

Computation Cost: We report the computation cost for the following phases of DSCS I: out-
sourcing (client), challenge generation (client), proof generation (server), proof verification (client),
and updates on the outsourced file (client and server). The time for outsourcing includes splitting
the file into blocks, tag computation and building a skip list.

The experimental results have been shown in Table 3. It is evident that the initial outsourcing
of the data file is computationally expensive, but it is a one-time process. It grows as the file size
increases. It depends on several factors like the block size n′, the number of blocks m in a file and
the number of segments n in each block. Given a data file and the size of each segment in a block,
if n′ is taken to be large, the computation time for generating a single tag increases as there are
more segments per block (i.e., more components in each vector). On the other hand, if n′ is taken
to be small, the time taken for computing all the tags (and building the skip list) increases as the



Table 4. Comparison based on computation cost

File
n′ m

Outsource Challenge Prove Verify
size (sec) (msec) (sec) (sec)
(MB) [15] DSCS I [15] DSCS I [15] DSCS I [15] DSCS I

1.45 1 KB 1488 1119.60 30.78 0.04 0.24 0.93 0.08 0.73 0.04

23.5 1 KB 24089 18409.61 1144.91 2.00 0.25 1.01 0.11 0.77 0.04

121 1 MB 122 87137.90 1222.60 0.38 0.23 970.69 29.29 738.41 10.34

432 1 MB 433 325039.36 4463.70 4.20 0.22 976.57 30.19 741.24 10.62

Table 5. Comparison based on storage overhead and communication cost

File size
n′ m

Storage overhead Communication cost (audit)
(MB) [15] DSCS I [15] DSCS I

1.45 1 KB 1488 0.54 MB 0.58 MB 376 B 185.74 KB

23.5 1 KB 24089 8.68 MB 8.86 MB 376 B 185.74 KB

121 1 MB 122 0.04 MB 0.05 MB 376 B 185.74 KB

432 1 MB 433 0.16 MB 0.17 MB 376 B 185.74 KB

number of blocks m increases and so does the number of tags. Therefore, an appropriate value
results in a good trade-off between them.

The time for challenge generation is small as much computation is not involved in this phase.
Proof generation time does not depend on the file size but on the number of blocks queried (|Q|).
This includes both the time for generating an aggregated block (along with the aggregated tag)
and the time for computing the skip-list proof for each challenged block. The time for proof
verification includes the time for matching the aggregated block with the aggregated tag and the
time for verifying the skip-list proof for each challenged block. The computation time for updates
is shown in Table 3 for the client C and the server S separately.

Comparison between DSCS I and Existing SNC-based Secure Cloud Storage: Chen
et al. [15] use the SNC protocol proposed by Catalano et al. [12] to construct a secure cloud storage
for static data. Our DSCS I construction for dynamic data also exploits the same SNC protocol.
We prepare two comprehensive comparison tables (Table 4 and Table 5) by taking results from the
work of Chen et al. [15] (reported for a 3.1 GHz Intel i3 processor with 4GB RAM) and the results
obtained from our experiments. The experiments are done for the same values of parameters (the
file size and the values of n′ and m) as reported in [15]. Table 4 shows that the computation
cost for DSCS I is much less than that for [15]. This is possibly due to the difference in the
architectures these two schemes are implemented on. Here, we have considered only the cost for
initial outsourcing and an audit (as [15] does not support updates on the data file).

From Table 5, we observe that, compared to [15], DSCS I demands some extra storage that
is attributed to the skip list (for handling the dynamic data efficiently). This results in a slight
increase in the storage overhead at the server side. During an audit, [15] requires a (constant)
communication cost of 376 B for different file sizes (as the proof consists of an aggregated block
and its tag). On the other hand, the proof sent by the server in DSCS I includes not only an
aggregated block (and its tag) but also a skip-list proof for each of the queried blocks. This results
in higher communication cost required for an audit in DSCS I — which is expected and justified
as DSCS I handles data dynamics.

Comparison between DSCS I and DPDP I: We compare the performance of DSCS I with
that of DPDP I [18] as both of them handle dynamic data, offer public verifiability and are secure
in the standard model. Moreover, like [18], DSCS I uses a rank-based authenticated skip list as
the authenticated data structure. We implement DPDP I and report the experimental results in
Table 6 and Table 7. For ease of comparison, we keep the parameters same as DSCS I (Table 2
and Table 3). From these tables, we observe that, although DPDP I performs slightly better than
DSCS I, the overall performance of DSCS I is comparable with that of DPDP I. However, we
stress that, in this work, we look at the possibility and issues of constructing DSCS protocols
using secure network coding techniques.



Table 6. Storage overhead for the server and communication cost in DPDP I

File size Storage cost for tags Storage
|Q|

Communication cost (KB)
(MB) and skip list (KB) overhead Audit Insert Modify Delete

1 0.71 0.07% 2 1.70 1.20 1.10 1.00

10 7.37 0.07% 10 11.30 1.20 1.10 1.00

50 34.70 0.07% 10 12.50 1.20 1.10 1.00

200 141.90 0.07% 112 144.48 1.20 1.10 1.00

500 354.90 0.07% 112 146.98 1.20 1.10 1.00

Table 7. Computation cost for the client C and the server S in DPDP I

File Outsource
|Q|

Challenge Prove Verify Insert Delete Modify
size (sec) (msec) (sec) (sec) (sec) (sec) (sec)
(MB) C C S C C S C S C S

1 10.33 2 0.01 0.08 0.002 4.89 0.01 0.001 0.01 4.89 0.01

10 83.099 10 0.02 0.37 0.004 4.99 0.09 0.001 0.08 4.99 0.09

50 445.26 10 0.03 0.36 0.005 5.01 0.38 0.002 0.30 5.01 0.38

200 1640.05 112 0.28 3.91 0.025 4.53 5.39 0.002 4.93 4.53 5.39

500 3950.26 112 0.28 4.17 0.025 4.87 10.29 0.002 8.23 4.87 10.29

7.3 Experimental Results for DSCS II

The additional storage cost (storage overhead at the server S) for DSCS II accounts for the
authentication tags only. The storage overhead is reported in Table 8. After the initial outsourcing
of the data file, the client C and the server S need to communicate with each other either during
an audit or during an append. The communication cost during an audit for Q data blocks includes
the size of the aggregated tag (the size of the single aggregated block is not reported here). The
communication costs for an audit and an append are reported in Table 8. Table 9 summarizes the
computation cost for DSCS II incurred during the initial outsourcing, an audit and an append.
We note that the time needed to generate a tag is much more expensive (compared to DSCS I)
due to the costly operations in bilinear groups implemented using the PBC library.

8 Conclusion

In this work, we have proposed a secure cloud storage protocol for dynamic data (DSCS I) based
on a secure network coding (SNC) protocol. To the best of our knowledge, this is the first SNC-
based DSCS protocol that is secure in the standard model and enjoys public verifiability. We have
discussed some challenges while constructing an efficient DSCS protocol from an SNC protocol. We
have also identified some limitations of an SNC-based secure cloud storage protocol for dynamic
data. However, some of these limitations follow from the underlying SNC protocol used. A more
efficient SNC protocol can give us a DSCS protocol with better efficiency. We have also identified
certain SNC protocols suitable for append-only data and constructed an efficient DSCS protocol
(DSCS II) for append-only data. We have shown that DSCS II overcomes some limitations of
DSCS I. Finally, we have provided prototype implementations of DSCS I and DSCS II in order
to show their practicality and compared the performance of DSCS I with that of an SNC-based
secure cloud storage for static data and that of DPDP I.
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Appendix

A On Generic Construction of an Efficient DSCS Protocol from an

SNC Protocol

We identify certain challenges towards providing a generic construction of an efficient DSCS
protocol from an SNC protocol. We describe these challenges as follows.

1. The DSCS protocol must handle the varying values of m appropriately. In a network coding
protocol, the sender splits the file into m vectors (or blocks) and augments them with unit
coefficient vectors before sending them into the network. The length of these coefficient vectors
is m which remains constant during transmission. On the other hand, in a DSCS protocol, the
number of vectors may vary (for an insertion and a deletion). Therefore, both the client and
the server need to keep the latest value of m.
For a privately verifiable DSCS protocol, the client and the server keep the up-to-date value
of m. For a publicly verifiable DSCS protocol, the client includes the value of m in her public
key and updates its value for each authenticated insertion and deletion. Thus, its latest value
is known to the third party auditor (TPA) as well.

2. The index of a vector should not be embedded in its authentication tag. In an SNC protocol,
the file to be transmitted is divided into m vectors v1, v2, . . . , vm, where each vi ∈ F

n for
i ∈ [1,m] (F is replaced by Z in [21]). The sender augments vi to form ui = [vi ei] ∈ F

n+m

for i ∈ [1,m], where ei is the m-dimensional unit vector containing 1 in i-th position and 0
in others. Let V ⊂ F

n+m be the linear subspace spanned by these augmented basis vectors
u1, u2, . . . , um. The sender authenticates the subspace V by authenticating these augmented
vectors before transmitting them to the network. In a SNC protocol based on homomorphic
MACs [1], the sender generates a MAC for the i-th basis vector ui and the index i serves as an
input to the pseudorandom function used to generate the MAC. On the other hand, for some
protocols based on homomorphic signatures, i is embedded in the tag ti for the i-th augmented
vector. For example, H(fid||i) is embedded in ti [8,21], where fid is the file identifier and H
is a hash function. Appendix B gives a brief overview of the protocol in [8] and shows how ti
includes the value H(fid||i) (see Eqn. 9).
These SNC protocols are not suitable for the construction of an efficient secure cloud storage
protocol for generic dynamic data due to the following reason. For generic dynamic data, the
client can insert (or delete) a vector after (or from) a specified index (say, i) of the file. In
both cases, the indices of the subsequent vectors (which were previously residing at positions
i + 1, i + 2, . . . ,m) are changed. Therefore, in order to update the authentication tags for
all these subsequent vectors, the client has to download these vectors and compute the new
tags before uploading the tags to the cloud server. This makes the DSCS protocol inefficient.
However, in a few SNC protocols, instead of embedding vector indices in tags, there is a one-
to-one mapping from the set of indices to some group [14,12], and these group elements are
made public. Efficient DSCS protocols can be constructed from these SNC protocols. In fact,
we construct a DSCS protocol (described in Section 3.1) based on the SNC protocol proposed
by Catalano et al. [12].

3. The freshness of data must be guaranteed. The freshness of storage requires that the server is
storing an up-to-date version of the data. For dynamic data, the client can modify an existing
vector. However, a malicious server may discard the update and keep an old copy of the vector.
As the old copy and its corresponding tag are valid, the client has no way to detect if the server
is storing the latest copy.
We ensure the freshness of the client’s data, in our DSCS construction, using a rank-based
authenticated skip list built over the authentication tags for the vectors. In other words, the
authenticity of the vectors is maintained by their tags, and the integrity of the tags is in turn
maintained by the skip list. When a vector is inserted (or modified), its tag is also updated
and sent to the server. The server updates the skip list accordingly. While deleting a vector,
the server simply removes the corresponding tag from the skip list. Finally, the server sends
to the client a proof that it has performed the required updates properly. In Section 2.4, we
discuss rank-based authenticated skip lists that we use in our construction.



In addition, it is often desired that a DSCS protocol has the following property.

4. Public verifiability For a publicly verifiable DSCS protocol, any third party auditor (TPA)
with the knowledge of the client’s public key can perform audits. In an SNC protocol based
on homomorphic MACs, some secret information (e.g., the secret key of the pseudorandom
function used in [1]) is needed to verify the authenticity of a vector — which restricts a DSCS
protocol constructed using such an SNC protocol to be privately verifiable only.

B A Homomorphic Signature Scheme for Network Coding Proposed

by Boneh, Freeman, Katz and Waters

Boneh et al. [8] propose a homomorphic signature scheme for network coding that is secure in the
random oracle model [7] under the co-computational Diffie Hellman (co-CDH) assumption. Let
G = (G1, G2, GT , e, ψ) be a bilinear group tuple, where G1, G2 and GT are multiplicative cyclic
groups of prime order p, and the functions e : G1 × G2 → GT (bilinear map) and ψ : G2 → G1

are efficiently computable (see Section 2.1). Then, the co-computational Diffie Hellman (co-CDH)
problem in (G1, G2) is to compute gx ∈ G1 given g, h and hx, where g ∈ G1 and h, hx ∈ G2 (for
some x ∈ Zp).

We say that the co-CDH assumption holds in (G1, G2) if, for any probabilistic polynomial-time
adversary A(1λ), the probability

Pr
g

R
←−G1

h,z
R
←−G2

[a← A(g, h, z = hx) : a = gx]

is negligible in λ, where the probability is taken over the internal coin tosses of A and the random
choices of g, h and z. We briefly describe the algorithms involved in this scheme [8].

– KeyGen(1λ,m, n): Let G = (G1, G2, GT , e, ψ) be a bilinear group tuple, where G1, G2 and GT

are multiplicative cyclic groups of prime order p > 2λ, and the functions e : G1 × G2 → GT

(bilinear map) and ψ : G2 → G1 are efficiently computable. Choose g1, . . . , gn
R
←− G1\{1},

h
R
←− G2\{1} and α

R
←− Fp. Take z = hα. Let H : Z × Z→ G1 be a hash function considered

to be a random oracle. The public key is pk = (G, H, g1, . . . , gn, h, z), and the private key is
sk = α.

– TagGen(V, sk,m, n, fid): Given the secret key sk, a linear subspace V ⊂ F
n+m
p spanned by

the augmented vectors u1, u2, . . . , um and a random file identifier fid ∈ {0, 1}λ, the sender
outputs the signature

ti =





m
∏

j=1

H(fid||j)ui(n+j)

n
∏

j=1

g
uij

j





α

for the i-th basis vector ui = [ui1, ui2, . . . , ui(n+m)] ∈ F
n+m
p for each i ∈ [1,m].

– Combine({yi, ti, νi}1≤i≤l, pk,m, n, fid): Given the public key pk, the file identifier fid and l
tuples (each consisting of a vector yi ∈ F

n+m
p , a coefficient νi ∈ Fp and a signature ti), an

intermediate node outputs the signature t =
∏l

i=1 t
νi
i for another vector w =

l
∑

i=1

νi · yi ∈ F
n+m
p .

– Verify(w, t, pk,m, n, fid): Given the public key pk, the unique file identifier fid, a signature
t and a vector w = [w1, w2, . . . , wn+m] ∈ F

n+m
p , an intermediate node or the receiver node

checks whether

e(t, h)
?
= e





m
∏

j=1

H(fid||j)wn+j

n
∏

j=1

g
wj

j , z



 .

If the equality holds, it outputs 1; it outputs 0, otherwise.

We recall that in a secure cloud storage protocol (using secure network coding), the client
divides the file F associated with fid into m vectors (or blocks) each of them having n segments.



Fig. 3. Workflow of a rank-based authenticated skip list built over {t1, t2, . . . , tm}.

The i-th vector vi is of the form [vi1, . . . , vin] ∈ F
n, ∀i ∈ [1,m]. For each vector vi, the client

forms ui = [vi ei] ∈ F
n+m by augmenting the vector vi with the unit coefficient vector ei. If we

use the current SNC protocol [8], the client runs TagGen(V, sk,m, n, fid) to produce a signature
(authentication tag)

ti =





m
∏

j=1

H(fid||j)ui(n+j)

n
∏

j=1

g
uij

j





α

=



H(fid||i)

n
∏

j=1

g
uij

j





α

=



H(fid||i)
n
∏

j=1

g
vij
j





α

,

(9)

for each vector ui (i ∈ [1,m]). We observe that the vector index i is embedded in the tag cor-
responding to the i-th vector. Therefore, the scheme is not suitable for construction of a secure
cloud storage for dynamic (in generic sense) data as mentioned in Appendix A.

C Rank-Based Authenticated Skip List

We choose rank-based authenticated skip lists (over variants of Merkle hash trees) to verify the
freshness of data in our DSCS protocol due to the following reason. In the dynamic versions of
Merkle hash trees (e.g., authenticated red-black trees), a series of insertions after a particular
location makes the tree imbalanced and increases the height of the tree by the number of such
insertions. In the two-party model, as in our case, no efficient rebalancing techniques for such a
tree have been studied [18]. The algorithms for a rank-based authenticated skip list [18] stored
remotely in a server are as follows. In Figure 3, we show the overall workflow of a rank-based
authenticated skip list M built over {t1, t2, . . . , tm}, an ordered list of m elements.

– ListInit(t1, t2, . . . , tm): Let {t1, t2, . . . , tm} be an ordered list of m elements on which a rank-
based authenticated skip listM is to be built. The construction of a rank-based authenticated
skip list over {t1, t2, . . . , t9} is shown in Figure 4(a)–(f).
Initially, the elements {t1, t2, . . . , tm} are kept in a linked list as the bottom-level (Level 0)
nodes (see Figure 4(a)). Let r denote the root node of the skip list. For each node z of the
skip list: right(z) and down(z) are two pointers to the successors of z, rank(z) is the number
of bottom-level nodes reachable from z (including z if z itself is a bottom-level node), high(z)



Fig. 4. Construction of a rank-based authenticated skip list over {t1, t2, . . . , t9}. The root node of the
rank-based authenticated skip list is r. The rank of each node in the final list is written inside it. The
elements are in the bottom-level (Level 0) nodes, and the root node r resides in the highest level (Level
3). The verification path for the fifth element t5 is shown in the final list.



and low(z) are the indices of the leftmost and rightmost bottom-level nodes reachable from
z, f(z) is the label associated with the node z, and l(z) is the level of z. In addition, the j-th
bottom-level node z contains x(z) = tj , ∀j ∈ [1,m]. Initially, for each bottom-level node z,
l(z) is set to be 0. The down pointer down(z) for each such node z (except the rightmost node
corresponding to tm) is set to be null. For the rightmost node, both of its right and down
pointers are set to be null. Other fields of the nodes present in this initial skip list are set
later.
Let us assume that the skip list is built up to i-th level where i ≥ 0. We proceed to construct
the (i+ 1)-th level of the skip list as follows. We start with the leftmost node in the i-th level
and move towards right until we reach the rightmost node in the i-th level. For each node z
in the i-th level, a bit b is selected. Let z′ be the predecessor node of z in the i-th level (i.e.,
right(z′) = z). We note that z′ is null when z is the leftmost node in the i-th level. If the
value of b is 1, another node (say, z′′ having right(z′′), down(z′′), rank(z′′), high(z′′), low(z′′),
f(z′′) and l(z′′)) corresponding to z is added to the (i + 1)-th level. Let z′′′ be the last node
added to the (i + 1)-th level before z′′. We note that z′′′ is null when z is the leftmost node
in the i-th level. The value of l(z′′) is set to be (l(z) + 1), and three pointers are adjusted as
follows: down(z′′) is set to be z, right(z′) is set to be null, and right(z′′′) is set to be z′′. The
value of b is taken to be 1 when z is the leftmost or rightmost node in the i-th level (i.e., a
new node is added to the (i+1)-th level for each of them); otherwise, the value of b is chosen
from {0, 1} uniformly at random. We call a node “redundant” if it is not a bottom-level node
and its right pointer is null. We note that, while setting right(z′) to be null, the node z′

becomes redundant (for i ≥ 1). We remove each such redundant node z′ from the skip list and
let the right pointer of the predecessor node of z′ point to the successor of z′ present in the
lower level (see Figure 4(d)–(e)).
For each level (starting from the bottom level), the following fields of each node z in the skip
list are populated: rank(z), high(z) and low(z). Finally, for each node z, the label f(z) is
computed using a collision-resistant hash function h as

f(z) =











0 if z is null

h(f1) if l(z) = 0

h(f2) if l(z) > 0,

(10)

where f1 = l(z)||rank(z)||x(z)||f(right(z)) and f2 = l(z)||rank(z)||f(down(z))||f(right(z)).
Figure 4(f) illustrates a rank-based authenticated skip list for an ordered list {t1, t2, . . . , t9}.
The rank-based authenticated skip list along with m elements and all the associated informa-
tion are stored in the server. The client stores only the value of m and the label of the root
node r (i.e., f(r)) as the metadata dM .

– ListAuthRead(i,m,M): When the client sends a request to read the i-th element ti, the server
sends the requested element along with a proof Π(i) to the client. The server computes the
proof Π(i) as follows.
We call the sequence of nodes z1, z2, . . . , zk (where z1 is the bottom-level node storing the i-th
element and zk = r is the root node of the skip list) the verification path for the i-th element
in the skip list if z1 is reachable from the root node zk = r through the same nodes (but in the
reverse order). For example, the verification path for t5 is the sequence of nodes z1, z2, z3, z4
as shown in Figure 4(f). The proof Π(i) computed by the server is of the form

Π(i) = (A(z1), A(z2), . . . , A(zk)), (11)

where A(z) = (l(z), q(z), a(z), g(z)). Here, l(z) is the level of the node z, a(z) is 0 (or 1) if
down(z) (or right(z)) points to the previous node of z in the sequence, and q(z) and g(z)
are the rank and label (respectively) of the successor node of z that is not present on the
verification path. We note that, given the proof Π(i), one can compute the label of the root
node r (i.e., f(r)).

– ListVerifyRead(i, dM , ti, Π(i),m): Upon receiving the proof (ti, Π(i)) from the server, the
client checks if the proof corresponds to the latest metadata dM stored at her end. The client
outputs 1 if the proof matches with the metadata; she outputs 0, otherwise.



– ListInitUpdate(i, updtype, dM , t
′
i,m): An update can be an insertion after or a modification

of or the deletion of the i-th bottom-level node. The type of the update is stored in a variable
updtype. The client defines j = i (for an insertion or modification) or j = i−1 (for a deletion).
She executes ListAuthRead(j,m,M) with the server (for the existing skip list M) and verifies
the response sent by the server by calling ListVerifyRead(j, dM , tj , Π(j),m). If the proof does
not match with the metadata dM (the label of the root node of the existing skip list M), she
aborts. Otherwise, she uses the proof Π(j) to compute the metadata d′M that would be the
new label of the root node if the server performs the update correctly and updates the value
of m (if required). The client stores d′M at her end temporarily. Then, she asks the server
to perform the update specifying the location i, updtype (insertion, deletion or modification)
and the new element t′i (null for deletion).

– ListPerformUpdate(i, updtype, t′i,M): Depending on the value of updtype, the server performs
the update asked by the client, computes a proof Π similar to the one generated during
ListAuthRead and sends Π to the client.

– ListVerifyUpdate(i, updtype, t′i, d
′
M , Π,m): On receiving the proofs from the server, the client

verifies the proof Π and computes the new metadata dnew based on Π . If d′M = dnew and
Π is a valid proof, the client sets dM = d′M , deletes the temporary value d′M and outputs 1.
Otherwise, she changes m to its previous value, deletes d′M and outputs 0.


	Secure Cloud Storage with Data Dynamics Using Secure Network Coding Techniques

