
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 1

Architectural Design of Cloud Applications:
a QoS-aware Cost Minimization Approach

Michele Ciavotta, Giovanni Paolo Gibilisco, Danilo Ardagna, Elisabetta Di Nitto and
Marcos Aurélio Almeida da Silva.

Abstract—Cloud Computing has assumed a relevant role in the ICT, profoundly influencing the life-cycle of modern applications in the
manner they are designed, developed, and operated. The Cloud market offers highly diversified services upon which developers and
operators can rely. Yet, its full adoption requires specific and rare expertise. Actually, such services are characterized by a steep
learning curve and, among the other aspects, by significantly different Quality of Service (QoS). In this paper, we tackle the problem of
supporting the design-time performance analysis of Cloud applications and the identification of the optimal strategy for allocating
components onto Cloud resources. In particular, the final goal is to set the basis to overcome the limitations of current
design-alternatives search tools proposing (i) a mathematical formulation for the underlying optimization problem, i.e., determine the
Cloud configuration that minimizes the execution costs of the application over a daily time horizon, fulfilling at once QoS and service
allocation constraints, and (ii) a software solution able to efficiently solve the resource allocation problem. The tool, codenamed
SPACE4Cloud, embodies a hybrid two-level search meta-heuristic for the efficient exploration of the design-alternatives space. The
benefits of this approach are demonstrated in the context of an industrial case study. Furthermore, this work also presents results
where SPACE4Cloud leads to a cost reduction up to 60%, when compared to a first-principle technique based on utilization thresholds,
like the ones typically used in practice. Finally, an extensive scalability analysis indicates that our solution is able to solve large problem
instances within a time frame compatible with a fast-paced design process (less than half an hour in the worst case).

Index Terms—Model-Driven Software Development, Search-based Software Engineering, Performance Assessment, Cloud
Computing, Cost Minimization, Quality of Service

F

1 INTRODUCTION

U Ndeniably, building an application in a Cloud Computing
context showcases significant advantages as it offers the

possibility to rely upon a wide range of preexisting battle-
tested, highly-available, and fully managed services. The cloud
offering covers the whole technological stack from virtual ma-
chines/containers and storage to Databases as a Service, to middle-
ware components like message queues, and to complete Software
as a Service solutions. Nonetheless, the downside is that the
adoption of such services is not painless as it may seem. Among
the other issues, these services show different Quality of Service
(QoS) characteristics and cost, which inevitably impact the overall
performance and cost of the final application.

This paper focuses on supporting the performance analysis of
cloud applications and the identification of an optimized strategy
for allocating application components onto cloud resources.

In general, the problem of architectural optimization is deemed
especially difficult to solve. As Koziolek, Koziolek and Reussner
state in [1], due to the increasing size and complexity of software
systems, architects have to choose from a combinatorially growing
number of design options when seeking for an optimized architec-
ture that, in a traditional in-house scenario, takes the allocation to
the physical resources into account. In this context, the literature
provides methods for automated design-space exploration (see for
instance [2], [3], [4]) and high-level models and tools to support

• M. Ciavotta is with Dipartimento di Informatica, Sistemistica
e Comunicazione, Università di Milano-Bicocca, Italy. E-mail:
michele.ciavotta@unimib.it

• G.P. Gibilisco, D. Ardagna, and E. Di Nitto are with Dipartimento di
Elettronica, Informaione e Bioingegneria, Politecnico di Milano, Italy. E-
mail: name.lastname@polimi.it

• M.A. Almeida da Silva is with Softeam, Paris, France

Manuscript received XXX XXX XXX; revised XXX XXX XXX.

the software architect (see, e.g., Palladio Component Model and
its Palladio Bench, and PerOpteryx design environment [5], [1],
or stochastic process algebra and PEPA Eclipse plugin [6], [7]).
Such methods and tools focus on identifying the best architectural
configuration given a set of QoS requirements, but they do not
support cloud-specific abstractions and do not directly address the
problem of deriving an optimized cloud configuration.

Arguably, the problem becomes significantly more complex
when the design process is broadened in its degrees of freedom by
the possibility to choose among several alternative cloud services
[8]. As a matter of fact, the service selection problem has been
traditionally considered separately from the software architecture
design. The possibility to exploit cloud services, presently offered
in high numbers, each impacting differently the overall application
behavior and execution costs, makes the selection and allocation
tasks particularly cumbersome. Trivially, consider the case of a
single-tier web application executed by a server deployed on top
of a Virtual Machine (VM) service offered by Amazon. In order
to deploy such a simple application, one has to decide the size
of the VM (hereinafter also referred to as type) as well as the
number of its replicas. Picking a few instances of a powerful
VM type like the c4.4xlarge or a higher number of instances of a
less powerful VM type, like the m5.large, can have a significant
effect both in terms of cost and performance. As discussed in [9]
making the wrong decision can significantly degrade performance
and increase applications operational cost by 2-3x on average,
and about 12x in the worst-case. Therefore, this work proposes
an approach wherein the designer firstly defines the high-level
architecture of his/her application and then moves to a step where
he/she allocates cloud services to that architecture and assesses the
validity of the obtained configuration based on some predefined
QoS constraints. This step should precede the actual coding
phase, as part of the architectural design phase; some of the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 2

choices may, in fact, entail specific technological constraints on
the development of the application components. Constraints may
concern, for instance, the use of a specific programming language
as a consequence of the selection of a particular container service,
or the use of a specific API forced by the choice of a particular
Database as a Service.

Evaluating the cost-performance trade-off of a component to
be deployed on a specific cloud resource (throughout this paper
the terms service and resource are used interchangeably), possibly
before that component is developed, it is undoubtedly a non-trivial
task, all the more so for an entire application. Therefore, as part of
this work, we propose an automated tool, namely SPACE4Cloud,
capable of deriving quantitative (performance and cost) informa-
tion on the deployment in the early stages of the design process.
Having quantitative information available at design-time will en-
able designers to make informed decisions about the technology
to use and the architecture to implement to fully exploit the
potentiality the cloud offers. More concretely, SPACE4Cloud is
able to determine, through an efficient generation/assessment of
configuration alternatives, the cloud deployment that minimizes
the resource usage costs while fulfilling QoS and service alloca-
tion constraints. The latter restrict the possible deployment config-
urations to decisions made by the designer, imposing conditions on
the type and characteristics of services to be selected. For instance,
possible allocation constraints for a compute resource might set
the minimum or the maximum number of cores or the available
memory. Our solution, differently from most of those available in
the literature, is specially devised to tackle cloud-based systems,
which are intrinsically dynamic. In particular, it considers resource
performance, price, and the incoming workload as subject to
fluctuation over time. For this reason, our approach introduces
a time-dependent workload profile over a 24-hour time horizon
(which leads to the problem of solving 24 intertwined capacity
allocation problems) and exploits a statistical characterization
(via Random Environment [10]) suitable to capture cloud multi-
tenancy contention and the resulting performance variability of
services. Specifically, SPACE4Cloud models the cost optimization
problem of an application to be deployed in a cloud environment
as structured in two decision levels. The topmost decision level
involves assigning the most appropriate virtual resource type
(namely, IaaS Virtual Machines), selected from the set of those
that meet the service allocation constraints, to each application
tier. The problem faced at the lower level is to estimate, for each
hour of the day and each application tier, the minimum number
of resources that guarantees the overall application to exhibit the
QoS levels established and minimizes the daily execution costs.
The resulting optimization problem is NP-hard and is solved by
a hybrid two-level search-based meta-heuristic.

Compared to previous literature proposals [1], [11], [12], [13],
SPACE4Cloud generates more robust solutions as it considers the
time-dependent nature of the parameters relevant to the analysis
and, in particular, of the workload. Other approaches, instead,
perform capacity allocation only at the workload peaks. Moreover,
SPACE4Cloud outperforms the other approaches also in terms
of time required to perform the optimization. In fact, while the
others tend to require processing times in the range of hours
to provide a solution [13], [14], SPACE4Cloud demonstrated
to be effective and efficient, providing solutions in the span of
minutes (even if, considering the time-varying workload profile,
it solves 24 optimization problem instances instead of a single
one). Finally, when compared with first-principle techniques based

on utilization thresholds [15], [16] (typically used in practice
and implemented by cloud providers, see, e.g., Amazon AWS
Elastic Beanstalk1) our solution enables the designers to generate
architecture configurations that lead to a cost reduction up to 60%.
This paper also reports on the application of SPACE4Cloud to a
real industrial case study where the tool has adequately supported
our industrial partner (Softeam) in evolving the architecture of
their cloud application Modelio2 by identifying an alternative
deployment that proved to be both more scalable with respect to
the one devised initially and with lower operational costs.

SPACE4Cloud is available3 under the open source Apache
2.0 license. The tool is presented in detail, including the internal
components, workflow and bi-level optimization algorithm, in this
work for the first time; nevertheless, references to it can be found
in [17] where an approximate mixed integer linear formulation for
the considered problem is presented and discussed (SPACE4Cloud
exploits that formulation to swiftly identify an initial solution)
and in [14] where our tool is proposed in combination with
PerOpteryx [1] to provide optimization capability over 24-hour
time horizon and the management of more advanced constraints
(i.e., on the response time percentiles).

In the rest of this paper the case study used to motivate our
work (Section 2) is introduced. Then in Sections 3 and 4 the
SPACE4Cloud design approach and its architecture is presented.
Section 5 focuses on the formulation of the optimization problem
and on the design-time exploration algorithm. In Section 6 the
approach is evaluated in the industrial use case scenario and
against first principle heuristics. Moreover, a rigorous scalability
analysis is reported. Finally, Section 7 discusses other proposals
available in the literature whereas Section 8 concludes the paper.

2 THE MODELIO CASE STUDY

Modelio is a software solution that provides support to the most
widely used modeling and methodology standards. It is available
in an open source version as well as and in a family of enterprise
licenses. It is a comprehensive Model Driven Engineering (MDE)
workbench featuring a central IDE that allows various languages
(represented as UML profiles) to be combined in the same model.

The standard version of Modelio is a desktop application;
Softeam decided to extend Modelio’s features and architecture to
enable sharing projects and models among multiple stakeholders
and to provide other prime functionalities like version control and
access policies. The result of this work is a cloud-based extension
of Modelio called Constellation, which has been recently delivered
as a service4. Constellation uses a central repository, implemented
by a Subversion5 (SVN) server, for model governance and ad-
ministration. Users interact with the repository by committing and
retrieving changes of the shared models. Additionally, the SVN
server supplies user authentication and authorization, and provides
a resolution model for conflicts that may arise when multiple users
modify the same model simultaneously.

In a traditional setup, users that acquire Constellation for in-
house deployment would need to provision their infrastructure
and secure the server, which in turn would entail investments for
hardware and maintenance. To facilitate the adoption, Softeam

1. http://aws.amazon.com/elasticbeanstalk/
2. https://www.modelio.org
3. https://github.com/deib-polimi/modaclouds-space4cloud
4. https://www.modeliosoft.com/en/products/modelio-constellation.html
5. https://subversion.apache.org

http://aws.amazon.com/elasticbeanstalk/
https://www.modelio.org
https://github.com/deib-polimi/modaclouds-space4cloud
https://www.modeliosoft.com/en/products/modelio-constellation.html
https://subversion.apache.org

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 3

decided to expand its service portfolio relieving its customers
of this burden by providing a Constellation as a cloud hosting
and management service. This choice appeared necessary as
most of Softeam customers are SMEs and would not be able
to benefit from Constellation if this had implied a significant
management effort. At the same time, such a decision entailed
a significant change in the company’s strategies. In fact, while
traditionally Softeam’s core activity has been exclusively focusing
on developing a single-user desktop product, now it is moving to a
completely different context in which not only it has to deal with
the design and development of a multi-tenant system, but it also
has to operate this system keeping operational costs under control.
This translates into the following requirements:

• The company should be able to study the feasibility of dif-
ferent cloud deployments subject both to QoS constraints
as well as to the specific customers’ needs.

• The cloud operations costs should be kept under control
in order to ensure the company to achieve the shortest
possible payback period.

• Finally, the company wants to be able to set specific
QoS constraints on the components of the Constellation
architecture and wants to exploit the cloud elasticity to
cope with the time-dependent number of connected users
and the related workload.

In the next sections, SPACE4Cloud is presented, showing how
it addresses these concerns, thus helping Softeam in accomplish-
ing its main objectives.

3 THE SPACE4CLOUD DESIGN AND ANALYSIS
APPROACH

Figure 1 shows the modeling workflow supported by the
SPACE4Cloud approach. The first phases concern modeling the
structure of the application in terms of its deployable components
and of its QoS requirements and constraints, as well as the
workload expected for such application. Such workload, in many
cases, is not constant and varies throughout the day. When these
models are completed, the computation of the cloud services
optimal allocation can start. In this phase, the models from the
previous two phases are analyzed in combination with the service
models of the candidate cloud resources. These are stored in the
Repository of Cloud Services.

A service model is a representation of those attributes of a
cloud service that are relevant to the assessment of its QoS. For
instance, in this context, a virtual machine (VM) is modeled in
terms of CPU speed and number of cores, and memory available.
The definition of such traits is not necessarily an easy task
as it requires information to be collected from various sources
and, whenever data is not available, it involves a benchmarking
process [18], [19], [20]. On that account, in the SPACE4Cloud
workflow, this information is assumed to be provided by experts
and maintained in the Repository of cloud services. At the time
of writing the repository6 contains models of services by Amazon
AWS, Microsoft Azure, Flexiscale, ProfitBricks, and CloudSigma.

The final result achieved by the workflow is the assignment
of the application components to cloud resources, taking into
account all requirements and constraints and minimizing the cost
of resources. As such an assignment might be unsatisfactory,

6. https://github.com/deib-polimi/modaclouds-resourcemodel

Fig. 1: Main modeling steps in the SPACE4Cloud approach.

the reiteration of all previous phases is enabled. The following
subsections describe the activities of the modeling workflow in
greater detail.

3.1 Modeling the application

Application modeling includes various aspects ranging from fram-
ing the architectural components to defining the QoS and service
allocation constraints associated with each component. The lan-
guage adopted for all modeling activities is MODACloudML [21],
[22], [23], which is structured as a set of Domain Specific
Languages (DSLs) that allow the application designer to include
all pieces of information that are needed for the execution of
the architectural analysis and optimization process [24]. MODA-
CloudML is supported by Creator4Clouds7, an open source mod-
eling IDE for Cloud applications and QoS modeling.

Figure 2 shows the MODACloudML diagram describing the
main components of the Constellation architecture and their con-
nections. They are: an Administration Server, coupled with an Ad-
ministration Database, to keep track of users, profiles, projects and
resources, and a set of Agents. The SVN Agent hosts the customers’
UML work models; the HTTP Agent provides read-only access to
UML models to be shared among various projects. Finally, the
Agent Manager coordinates the agents, distributing among them
resource-intensive tasks, such as model transformations, document
generation, among the others.

The activity that completes the architectural modeling phase is
the definition of the demanding times (i.e., the distribution of times
required to execute a single request without contention on a refer-
ence system [25]) of the operations offered by Constellation [26].
This step is essential to perform a sound performance analysis
of the modeled application. The demanding times can either
obtained from an educated guess based on experts’ experience or
derived from monitoring a prototype implementation and relying
on state-of-the-art parameter estimation techniques [27], [28]. As
regards Constellation, the second approach has been adopted;
specifically, the response times of prototype components deployed
on an Amazon EC2 Medium instance have been recorded. Notice
that, in order to be able to assess the application behavior on
different configurations, the times gathered experimentally have
to be normalized to phase out the dependency on the particular
benchmark instance. The resulting demanding times are reported
in Table 1.

Figure 2 also reports some constraints on Constellation compo-
nents and operations that specify desired QoS levels. In particular,
the expected time to read a model from the SVN server should be
at most 15 seconds on average. Besides, since committing a model
requires more complex processing since it might include conflict
detection and resolution, the expected average response time for
the commit functionality is set to 60 seconds. For the HTTP server

7. http://forge.modelio.org/projects/creator-4clouds

https://github.com/deib-polimi/modaclouds-resourcemodel
http://forge.modelio.org/projects/creator-4clouds

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 4

Fig. 2: Overview of Constellation architecture, interfaces and constraints.

Operation Average time (ms)
readProjectFirstPageDescription 597
readCompleteProjectConfiguration 723
databaseAccess 900
openProject (SVN) 15,000
update (SVN) 2,500
commit (SVN) 41,000
partialRead (HTTP) 1,000

TABLE 1: Constellation demanding times.

hosting partial, read-only models, the average time for reading a
model is required to be lower than 5 seconds. Besides constraints
on the average response time, constraints on the 95th percentile of
the response time are also defined. This has been done in order to
obtain a fine-grained control on the maximum acceptable response
time for critical functionalities. In the Constellation example, these
constraints are set to 12 seconds for HTTP reads, 30 seconds for
SVN reads and 5 minutes for commits.

Ultimately, the designer can specify requirements in the form
of service allocation constraints, which predicate on the resources
considered for the deployment with the aim of narrowing the space
of possible configurations. These constraints can also be used to
define minimum requirements that cloud resources have to meet in
order to host critical components of the system, like the minimum
amount of cores and memory needed to host a database compo-
nent. For the case of Constellation, technological considerations
impose that the Administration Server, Administration Database,
Agent Manager and the SVN Agent cannot be replicated. As a
consequence, the tiers hosting these components can not scale
(i.e., the number of VMs for these tiers is fixed to 1). Furthermore,
to avoid instantiating these components on cloud resources that
would not guarantee the required levels of QoS, the Constellation
designer has imposed that no component can be deployed on a
VM type featuring less than 2GB of memory, whereas for the
SVN Agent, which performs more time-demanding operations,
the minimum requirement is set to 8GB.

3.2 Modeling the expected load

In order to identify the proper resource capacity for the application
under study, the designer needs to provide a model of how the
application is expected to be used during its normal operation.

Such information is provided in terms of activity diagrams de-
scribing the interactions between users and application along with
the expected probability of occurrence (user behavior, an exten-
sion provided by MODACloudML to traditional UML activity
diagrams). For instance, referring to the Constellation case, the
user behavior is depicted in Figure 3. It shows how one or multiple
teams of users access Constellation to work on shared models.
The user behavior has been built by logging the accesses in the
current Modelio implementation as well as by analyzing common
SVN usage patterns. From these analyses, it results that the users
perform preferably model reads, while updates are less frequent
as, fundamentally, users work on models using the Modelio client
installed on their own machines and commit the updates on the
shared models only a few times per day. The number on the top
left corner of each branch in the diagram identifies its likelihood.
In our example, 5% of requests corresponds to users accessing a
project to obtain its related information while 10% of time users
retrieve model updates or commit changes to the SVN server. The
rest of the time, users access read-only models shared by means
of HTTP fragments.

Besides the behavior of the various classes of users, the
designer has to specify also the expected traffic in terms of the
number of users that hits the application during the operational
time interval. A typical interval is in our view 24 hours, which is
meaningful under the assumption that the traffic shows similar
patterns in different days. Taking into consideration the full
characterization of workload in the 24 hour time period (refer-
ence day) allows SPACE4Cloud to derive different deployment
configurations, one for each hour of the day, thus enabling the
possibility to adapt the size of the infrastructure to the incoming
workload by exploiting the cloud elasticity [13]. Note that, most
of the cloud providers nowadays adopt a hourly billing model89.

For what concerns the case study, it has been used the load
distribution observed in the current installations that shows a daily
pattern with a bi-modal distribution and an average think time of
10s. Such workload, suitably scaled, is also used in Section 6.1 to
evaluate the scalability of the considered architecture.

8. http://aws.amazon.com/ec2/pricing
9. http://www.windowsazure.com/en-us/pricing/details

http://aws.amazon.com/ec2/pricing
http://www.windowsazure.com/en-us/pricing/details

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 5

Fig. 3: Overview of Constellation user behavior.

3.3 Optimizing the Application Deployment

This phase is semi-automated by the SPACE4Cloud tool, provided
that all other activities have produced the corresponding results. In
particular, the tool inputs are i) the repository of cloud services;
ii) the application architecture, together with the information
about the demand of each component, and the QoS and Service
Allocation constraints; and iii) the model of the expected users’
behavior. These models, presented in the previous sections, can
be created using MODACloudML in the Creator4Cloud IDE
and exported in the format used by SPACE4Cloud, which is
an extension of the well-known Palladium Component Model
(PCM) [5], referred to as Extended PCM models in the rest of
the paper. This choice enabled us to exploit a broad set of tools
for QoS analysis developed in other contexts as well as to use
SPACE4Cloud in combination with other solutions [14]. Details
on the SPACE4Cloud tool and on the optimization process are
reported in Sections 4 and 5.

The outcome of this phase is a set of assignments of ap-
plication components to cloud services covering the entire time
horizon, and the minimum level of replication of these services
required to guarantee the desired QoS for each hour.

3.4 Reiteration

Modeling and analyzing the architecture of a cloud application
should be considered as an iterative process. In fact, the optimiza-
tion phase may provide unsatisfactory results that may suggest
designers adopt different architectural patterns or to alter some
other elements such as the allocation constraints or the expected
workload. For instance, in the Constellation case, the result of
the optimization phase, which highlighted a limit of the offered
solution in terms of its scalability with the growth of contempo-
rary users, has encouraged the company to identify a different
architectural alternative as discussed in Section 6.1.2.

4 SPACE4CLOUD: THE OPTIMIZATION TOOL

SPACE4Cloud implements an efficient exploration of the design-
alternatives space that seeks the cloud deployment that minimizes
the resources leasing costs while fulfilling QoS and service allo-
cation constraints over the reference time horizon. To accurately
assess the performance of the application under development
(and, equivalently, to provide QoS guarantees at design time),
SPACE4Cloud translates the design models (videlicet the PCM
models extended with the time-variant workload and Random

Environments [24]), convenient for easy editing, into performance
models, suitable for automated analysis. The input PCM mod-
els are, therefore, converted into Layered Queueing Networks
(LQNs) [26] and processed by a solver. The specific LQN solver
employed in this work is LINE [29], which is currently the
only capable of managing Random Environments and evaluating
response time percentiles. SPACE4Cloud, however, also supports
the LQNS solver [30] (clearly at the cost of sacrificing percentiles
and Random Environments) and can perform availability evalua-
tions via the PCM Reliability Solver [31].

LQNs have been preferred over other performance models
as they allow to represent complex systems (e.g., multi-tier ap-
plications) and resource competition at the software (and not
only hardware) level. Since proving the appropriateness of LQNs
to model cloud solutions is beyond the objective of this study,
the interested reader can refer to [29], [32], [33]; noteworthy,
however, is that [33] estimates the gap between the QoS prediction
using LQN and the average response time measured in a cloud
deployment under precise conditions to be as small as 2%.

Figure 4 highlights the main components of SPACE4Cloud
as well as the links with third-party components. The Initial
Solution Builder derives an initial allocation for the application
under analysis by solving a Mixed Integer Linear Program (MILP)
based on M/G/1 queue models (these are less accurate than
LQNs but can be evaluated through closed formulae). This initial
solution is generated to be biased toward promising regions of the
search space and, thus, improves the performance of the meta-
heuristic algorithm executed within the Tabu-search Optimizer
component (see [12] for another similar approach). Notice that, the
rigorous formulation of the problem, the optimization algorithm,
and their accurate evaluation constitute the innovative core of this
research whereas the formalization of the MILP problem (that is,
ultimately, a particular instance of a formulation, similar to the one
proposed here and yet weaker, as it does not cover the constraints
on the percentiles) as well as the impact of its adoption on the
overall optimization process is not discussed in this paper as it has
already been presented and analyzed in [17].

The MILP Solver Connector decouples SPACE4Cloud from
the specific solver adopted for the MILP. All experiments reported
in this paper have been conducted using CPLEX10 MILP solver;
nevertheless, alternative solutions, e.g., the open source GLPK11,
are supported as well.

The Tabu-search Optimizer component implements a local
search exploration procedure designed to improve the current
best solution iteratively. This method draws its inspiration from
both Tabu [34] and GRASP [35] paradigms and is detailed in
Section 5.3. Concretely, the algorithm generates a new solution
(the candidate solution) iteratively by applying small transforma-
tions (moves) to the current best solution, evaluates it in terms
of feasibility and cost, and if the candidate solution is better
than the current best, the latter is replaced. A candidate solution
for the problem under analysis is composed of 24 allocation
configurations, one for each hour of the day. Each of these leads
to a different LQN model to be evaluated. The evaluation is a
time-demanding task and the main bottleneck for the overall opti-
mization process as it entails two phases, in the first one each LQN
model is analyzed by the external LQN solver to evaluate a number
of performance indexes that are, in turn, compared with the QoS

10. http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
11. http://www.gnu.org/software/glpk/glpk.html

http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.gnu.org/software/glpk/glpk.html

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 6

Partial	Solution	Cache

MILP	solver

Initial	Solution	
Builder

MODACLoudML

Initial solution

SPACE4Cloud

LQN	solver

Multi-thread	connectors

MILP	Solver	
connector

Creator4Clouds

Cost	and	Feasibility	Evaluator

Tabu-search optimizer

Optimized solution

Fig. 4: SPACE4Cloud architecture.

constraints to assess the feasibility of the overall solution. Second,
the tool evaluates the cost of the candidate solution according to
the cost model presented in [24], where an hourly pricing model
is considered for cloud resources. For the proposed tool to be
usable to solve real-life problems, the evaluation process had to
be accelerated by means of a multi-thread connector component
managing the parallel evaluation of the 24 LQN models of a
single solution and a cache-based proxy (Partial Solution Cache)
to store the evaluations of previous solutions for each hour in
the considered time horizon. These additions have significantly
boosted the optimization process since, usually, the Tabu-search
optimizer generates similar solutions; thus, by caching partial
evaluations, the tool can avoid unnecessary executions of the
underlying LQN solver.

Finally, the optimized configuration found can be input to
solutions such as CloudML [21], [36] for the automation of the
deployment process in the selected cloud.

5 DESIGN-TIME ARCHITECTURE OPTIMIZATION

This section presents the principles behind the Tabu-search opti-
mizer component of the SPACE4Cloud architecture. In particular,
in Section 5.1 the problem under analysis is defined. Section 5.2
provides an analytical formulation for the problem, characterizing
objectives and constraints. Finally, in Section 5.3 the optimization
algorithm is outlined.

5.1 Problem definition
As discussed in Section 2, an application is built from several
components, each of them implementing a set of functionalities.
Components (e.g., the Constellation’s Administration Server) are
grouped in tiers, each allocated on a pool of resources (as
VMs); generally, tiers can scale to handle dynamic changes in
the application environment such as fluctuations in the incoming
workload. The resources allocated to different tiers are assumed to
be heterogeneous whereas those exploited within the same tier are
homogeneous. This is not restrictive as it is compliant with auto-
scaling mechanisms offered by current IaaS platforms. In fact,
the management of heterogeneous resources in the same tier is not
considered applicable in public clouds [37], [38], as it complicates
the resource management process and it could even degrade
application performance in case of unbalanced workload [39].

The goal is to find the cheapest configuration (in terms
of resource type and number of replicas for each application
tier) able to fulfill QoS and service allocation constraints for
every hour of the reference day. As discussed previously, service
allocation constraints allow to predicate on the characteristics
of the infrastructure and can include minimum requirements to
host application components (e.g., minimum amount of RAM,
minimum and maximum number of replicas for a tier, maximum
CPU utilization, etc.). QoS constraints allow to predicate on the
service level experienced by the end user (e.g., 95% of commit
requests to be served within 5 min). For the sake of simplicity, in
the following only QoS constraints predicating on functionality-
level response time and service allocation constraints predicating
on memory size are formalized. Other allocation as well as QoS
constraints on other performance metrics (e.g., throughput) can be
introduced similarly.

5.2 Problem Formulation
As said, an application is hosted on a set of tiers, denoted by I ,
that supports the execution of application components. Each tier
consists of multiple homogeneous resources sharing evenly the in-
coming workload. Let V be the set of available types of resources
(e.g, Amazon EC2 m5.large12 or Azure Standard F2s v213) and
T a set defined by the N time intervals in which the reference
period is split (i.e., 24 time intervals of one hour if a day is
considered as reference). Each resource type v ∈ V is character-
ized by the corresponding model stored in the Repository of cloud
services. In particular, the following parameters are relevant for the
optimization: price Cv,t, variable over the time horizon, speed Sv

and memory size Mv , which can be derived from the processing
rate and cost profiles available on the provider’s catalogs.

The workload is described in terms of number of users (pop-
ulation) πt, with t ∈ T , characterized by a certain think time
Z (namely, the average time between the instant a user receives
a response from the system and the one he/she submits a new
request [26]). Each user interacts with the application executing
a request according to the defined user behavior model, like the
one in Figure 3; the set of possible requests is denoted by K.
Each request k ∈ K, in turn, is characterized by a probability
to be executed and by an ordered list of components supporting
its execution (i.e., its execution path [40]). As shown in Figure
5, in Section 6.1, SPACE4Cloud supports the definition of QoS
constraints in terms of thresholds on the average response time
Avg and on the percentiles Perc.

With KAvg ⊆ K and KPerc ⊆ K are denoted the subsets of
requests on which are defined constraints on the average times and
on the percentiles of the response time, respectively. Consequently,
the set of QoS constraints predicating on the average response time
(Rk) can be expressed asE(Rk) ≤ RE

k ∀k ∈ KAvg whereE is
the expectation andR

E

k is a threshold. Similarly, let P (Rk ≤ R
P

k)
be the cumulative distribution function for the response time Rk

representing the probability thatRk takes values below a threshold
R

P

k , the inequalities P (Rk ≤ R
P

k) ≥ αk ∀k ∈ KPerc denote
the requirements that at least a percentage of k-functionality
response times (αk-th percentile) falls in the interval [0, R

P

k].
Since the objective of the problem is to select for each appli-

cation tier both the most suitable resource type and the number

12. http://aws.amazon.com/ec2/instance-types
13. https://docs.microsoft.com/en-us/azure/virtual-machines/windows/

sizes-compute

http://aws.amazon.com/ec2/instance-types
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-compute

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 7

of replicas of that resource over the time horizon, the decision
variables associated with the formulation are accordingly:

• wi,v , which takes value 1 if the resource type v is assigned
to the i-th tier, 0 otherwise;

• zi,v,t, which specifies the number of resources of v type
(replicas) assigned to the i-th tier at time t.

Finally, the set of decision variables wi,v is denoted by W
while Zt represents the set of decision variables zi,v,t at time
t. The complete lists of the model parameters and variables are
summarized in Tables 2 and 3, respectively.

It is worth noticing that the response time Rt
k is at ev-

ery time interval t function of the workload (number of users,
think time), resource types and number of replicas, i.e. Rt

k =
Rt

k(πt, Z,Zt,W). As presented and discussed in [17] Rt
k can

be approximated by M/G/1 (as in the models solved by Initial
Solution Builder) or estimated using LQN models and simula-
tors [30], [26] (as in the Tabu-search Optimizer), thus for the sake
of generality Rt

k is not detailed further.
Given these premises, the optimization problem (P) for the

sake of clarity is formulated as a bi-level optimization problem
featuring an upper-level problem, dealing with the selection of the
resource type for each tier, and a lower-level problem related to
the assignment of the most suitable number of resources to each
tier. More formally, we have

(P) min
∑
i∈I

∑
v∈V

∑
t∈T

Cv,tzi,v,t (1)

Subject to: ∑
v

wi,v = 1 ∀i ∈ I (2)∑
v

Mvwi,v ≥M i ∀i ∈ I (3)

wi,v ∈ {0, 1} ∀i ∈ I, ∀v ∈ V (4)

zi,v,t = arg min
Z

∑
i∈I

∑
v∈V

∑
t∈T

Cv,tzi,v,t (5)

Subject to:

E[Rt
k(πt, Z,Zt,W)] ≤ RE

k ∀k ∈ KAvg,∀t ∈ T (6)

P (Rt
k(πt, Z,Zt,W) ≤ RP

k) ≥ αk ∀k ∈ KPerc, ∀t ∈ T (7)
zi,v,t ≥ wi,v ∀i ∈ I, ∀v ∈ V, ∀t ∈ T (8)

zi,v,t ≤ Θwi,v ∀i ∈ I, ∀v ∈ V, ∀t ∈ T (9)
zi,v,t Integer ∀i ∈ I, ∀v ∈ V, ∀t ∈ T (10)

Where T = {1 . . . N} and Z = {zi,v,t|(i, v, t) ∈ I × V × T }.
Note that, as implemented in most public clouds (e.g., Ama-

zon Autoscaling Groups14), the formulation assumes that during
the execution of the application, only horizontal scaling can be
performed (i.e., the number of replicas is increased or decreased
keeping untouched the type). For this reason, the number of
replicas provisioned for each tier zi,v,t (optimized in the lower-
level models) depends on the time of the day t, while the resource
type wi,v (optimized in the upper-level model) does not. This
assumption eases the configuration process, since fine tuning
the configuration of application components for a certain virtual
resource type (in terms of number of open threads or heap size,
etc.) is a cumbersome task and repeating this process for all of

14. https://aws.amazon.com/it/autoscaling

the types of machines offered by cloud providers would require
an effort for the software architect that can be safely stated
impracticable.

Provided that wi,v are binary variables, condition (2) guar-
antees that exactly one type of resource can be selected for
each tier. Condition (8) in combination with (2) and (4), in turn,
guarantees that a non-empty set of resources is assigned to each
tier. Moreover, condition (9) imposes each tier to be composed by
homogeneous resource; if wi,v = 0 the total number of resources
of type v assigned to tier i is forced to zero and this occurs
for all v ∈ V but one (2). Besides, if wi,v = 1 the number of
replicas assigned to tier i is at least 1 (8) (Θ is an arbitrary large
integer number). Equation (3) ensures that the resource of type
v selected to host tier i fulfills any constraint on the minimum
amount of memory Mi specified for that tier. Finally, equations
(6)-(7) represent the constraints on the average and the percentile
of response times, respectively.

In the light of the considerations made so far, the expression∑
v∈V

Cv,tzi,v,t represents the cost of the resources assigned to

tier i at time t, while
∑
i∈I

∑
v∈V

Cv,tzi,v,t is the cost of the whole

application at time t. Therefore, the total cost of the considered
application over the 24 hours can be calculated summing this latter
value over every time interval. The result of this operation is the
objective function in (1). Ultimately, notice that (P) can also be
formulated in a more compact fashion as (in the more general case
where E(Rk) and P (Rk) are non-linear) a Mixed Integer Non-
Linear Problem, which is NP-hard as it is a generalization of the
Mixed Integer Linear Problem, proven to be NP-hard in [41].

Problem parameters

Index
t time interval
i tier
k functionality
v type of virtual resource
Parameters
πt number of concurrent users at time t
Z users think time
Cv,t cost of a single replica of resource of type v at time t
Sv speed of a resource of type v
Mv memory of a resource of type v
M i memory constraint for tier i
R

E
k maximum average response time for the k-functionality

αk minimum response time percentile value for the k-
functionality

R
P
k response time value representing a percentile (≥ αk-th) of

the response time distribution function associated with the
k-functionality

TABLE 2: Optimization model parameters.

Optimization model decision variables.

wi,v binary variable that is equal to 1 if the VMs type v is
assigned to the i-th tier and equal to 0 otherwise

zi,v,t number of replicas of type v assigned to tier i at time t

TABLE 3: Optimization model decision variables.

5.3 Optimization Algorithm
The aim of this section is to provide a detailed description of
the optimization algorithm implemented within SPACE4Cloud to
solve (P). The faced optimization problem is challenging not only

https://aws.amazon.com/it/autoscaling

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 8

because of its NP-hard nature but also because the assessment
of a solution is time-consuming as it involves the evaluation of
a set of N = |T | LQN models. For this reason a heuristic
approach, capable of efficiently exploring the solution space,
has been adopted. The rationale behind this approach consists
in exploiting the two-level characterization of the problem, by
using two different local search strategies (a process known as
hybridization) to iteratively improve an initial solution. However,
one of the major drawbacks of pure local searches is the possible
cyclical generation of the same solutions, which is particularly
detrimental when dealing with an time-demanding evaluation
process. To prevent such undesirable behavior, a variant of the
local search paradigm, known as Tabu Search (TS) [34], has been
implemented, which exploits a memory structure (tabu list) to
avoid generating recently assessed solutions.

The core of the optimization algorithm can be described as
the alternation of two main phases, each one dedicated to the
optimization of one level of the problem (see Algorithm 1): the
upper level (selection of the must suitable resource/service type
per tier) is addressed by the TSMove sub-routine whereas the
lower level is tackled by the ScaleLS procedure. In this hybrid
solution, TSMove implements a tabu search scheme whereas
ScaleLS realizes a GRASP [35] technique, independently applied
on all the intervals of the reference time horizon. The algorithm
also implements a Restart mechanism that re-runs the optimization
process starting from a new solution generated to address the
search toward poorly explored zones of the solution space. For
this reason, to avoid loosing good solutions, an elitist mechanism
is also present, meaning that the algorithm keeps track of the best
feasible solution discovered along the overall search: the Best.
Nevertheless, the algorithm manages also the best solution found
between two restarts, namely the LocalBest.

As far as the tabu paradigm is concerned, this is implemented
by means of two memory structures: a short term memory and a
long term one. The short term memory stores hash-coded informa-
tion about the most recently generated solutions by TSMove and its
goal is to avoid cycles in the tabu search phase of the algorithm.
The long term memory, in turn, is used to store the frequency
of assignments and evaluations for a particular resource type and
tier. The main difference with respect to the short term memory
is that this structure uses only the assignment of resource types
to tiers to build the hash key, while the short term memory uses
information about the entire solution. The goal of this memory is
to implement an aspiration criterion (more details can be found
in [42]) that enables the search process to escape from local
optima, breaking free from constraints imposed by the short term
memory; through this structure the algorithm is able to quickly
identify poorly explored regions of the search space for the type
assignment problem (i.e., the assignment of VM types).

Algorithm 1 sketches the structure of the proposed optimiza-
tion method. The algorithm starts with the initial solution (step
1), obtained by the Initial Solution Builder solving the MILP
problem presented and discussed in [17]. Since the ScaleLS
procedure operates on feasible solutions only, if the initial solution
is infeasible, the MakeFeasible procedure (step 15) is executed.
This procedure acts progressively increasing the number of virtual
resources of each tier until a feasible configuration is found. Once
feasibility is achieved, ScaleLS is performed (at step 16). The
goal of this procedure is to find the minimum number of replicas
for each tier to fulfill the QoS requirements. It implements the
GRASP that operates independently, and in parallel, on all of the

Algorithm 1: Optimization Algorithm
Input : MaxIter // Maximum number of iterations
Output: Best // Optimized solution

1 LocalBest← MILP()
2 Best, Current← LocalBest
3 Iter ← 0
4 MemST,MemLT ← ()

// Initialization of memory structures
5 while Iter < MaxIter do
6 if Iter > 0 then
7 Candidate← TSMove(Current, MemST)

// New candidate solution
8 if Candidate = Current then
9 Candidate← Restart(Current, MemLT)

// Aspiration mechanism
10 LocalBest← Current

11 Current← Candidate

12 UpdateMemST(MemST ,Current)
// Updating the short-term memory

13 UpdateMemLT(MemLT ,Current)
// Updating the long-term memory

14 if Current is not Feasible then
15 Current← MakeFeasible(Current) // Repair action

16 Current← ScaleLS(Current) // Local search
17 if Current < Best then // Update the best solution
18 Best← Current

19 if Current < LocalBest then
20 LocalBest← Current // Update the local best
21 else
22 Current← LocalBest

23 Iter ← Iter + 1

24 periods; it terminates when a further reduction in the number
of replicas would leads to an unfeasible solution.

The solution space is explored at the upper-level (i.e., type
assignment) by means of the TSMove procedure (step 7). This
procedure selects randomly one of the tiers and alters the related
resource type. The selection of a new type is based on a roulette-
wheel (also known as fitness proportionate) mechanism [42]. The
efficiency of the resource, represented by the speed/cost ratio
(fv = Sv

Avg[Cv,t]
), has been used to estimate the fitness of the each

resource type. The roulette selects a certain resource type with a
probability proportional to its fitness fv , that is pv = fv∑

v∈V fv
;

in this way, types that are more likely to generate high-quality
solutions are preferred in the selection process. This selection
method is commonly used in genetic algorithms but has been
demonstrated to be beneficial also in other approaches.

The short term memory (MemST) is used by TSMove to
avoid generating solutions with a combination tiers/resource types
that has already been evaluated. However, at some point it may
occur that the short term memory impedes the generation of any
new solution; when such a situation arises a restart mechanism
based on the long term memory (MemLT) is performed to build a
new current solution from poorly visited areas of the search space
(step 9). In order to produce a new configuration the algorithm
retrieves the resource type that has been less frequently evaluated
for each tier. Noteworthy is that every time an action affecting
upper-level decisions (TSmove or Restart) is executed, it alters
the structure of the current solution so much that the lower-level
optimization gets invalidated. Consequently, the MakeFeasible and
ScaleLS procedures must be performed on the newly generated
solution. More details can be found in [43].

Note that, if QoS or service assignment constraints are
too stringent and a feasible solution cannot be identified,
SPACE4Cloud returns the best unfeasible solution found, that is
the one that violates the minimum number of constraints.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 9

A brief analysis of the complexity of the optimization algo-
rithm is provided at the end of this section. As is clear from
the pseudo-code presented, the algorithm consists of a core loop
repeated MaxIter times. The main operations performed in the
cycle are, i) TSMove which generates a new solution in constant
time, ii) ScaleLS and iii) MakeFeasible. Assessing the complexity
of the latter two procedures is not immediate however if we
indicate with Q the maximum number of VMs assigned to a tier
(considering all tiers and all instants of time), it is possible to
upper-bounding the number of operations performed by each of
the two procedures. In fact, considering that both methods can
not increase or reduce the number of resources per tier more
that Q times in each time period their complexity is bounded by
O(N×|I|×Q). Consequently, the overall algorithm’s complexity
isO(MaxIter×N×|I|×Q). It is, nevertheless, useful to remark
that the complexity of the algorithm is negligible compared to that
of LINE [29] (the state-of-the-art LQN solver used in this study),
which usually features a compound convergence time that it one
order of magnitude larger.

6 EXPERIMENTAL ANALYSIS

To evaluate the effectiveness of the presented approach, two main
experimental campaigns have been carried out. In the first one,
described in Section 6.1, SPACE4Cloud is exploited in the case
study introduced in Section 2 to analyze the characteristics of
the system under design, identify its limitations and bottlenecks
and enhance the deployment configuration. The second analysis,
presented in Section 6.2, aims at evaluating the scalability of
the proposed solution with respect to the problem size using a
synthetic benchmark. In both campaigns, our solution has also
been compared against a first principle heuristic currently used by
practitioners and SPACE4Cloud outperformed the first principle
heuristic in both experiments, being able to identify feasible cloud
allocations that are significantly less expensive (5-20% for the
case study and 40-60% for the synthetic benchmark). Finally, it
is worth highlighting another significant experimental evidence,
namely that our solution has proved capable of optimizing the
deployment of applications with a large number of tiers in times
compatible with an iterative design process (order of minutes on
commodity machines).

6.1 Case Study Analysis

With the purpose of assessing the applicability of our approach in
a real-world scenario, SPACE4Cloud has been used to study the
architecture of the Constellation extension to Modelio presented
in Section 2.

6.1.1 Initial analysis
The analysis of Constellation has been based on the architecture
described in Section 3.1, which includes the definition of QoS
constraints, service allocation constraints, and demanding times,
and the expected user behavior defined in Section 3.2.

The initial analysis has been focused on SVN and HTTP
services since they are perceived by Softeam as the most critical
for the first release of Constellation. Also, they are the most used
services according to the user behavior defined for the system
(accounting for the 85% of the workload). For the purpose of this
analysis, Microsoft Azure IaaS services have been considered as
target resources.

To understand how Constellation would react to the increase of
its users, various workloads have been considered in different exe-
cutions of the optimization procedure. Specifically, the normalized
bi-modal workload reported in Figure 6 (which has been obtained
from the analysis of real logs) has been scaled in such a way that
the peak values would range from 50 to 500 users, which Softeam
considered, respectively, the worst and the best case scenarios for
the first release of Constellation.

The main findings of this initial analysis are summarized
hereunder. For workloads featuring peaks of users below 200,
SPACE4Cloud proposes to exploit Azure medium-sized virtual
machines to host the HTTP Agent, whereas it proposed to host
the SVN Agent on the most powerful VM type available. Unfor-
tunately, when workloads with higher user peaks are investigated,
the search leads to unfeasible (the constraints associated to the
commit and update operations offered by the SVN Agent are
violated no matter which cloud configuration is considered) and
to the identification of more expensive deployments (due to the
selection of more costly VM types to mitigate the gap between
expected performance and the constraints imposed).

The main reason behind these results is the fact that, according
to the Service Allocation Constraints defined on the Constellation
architecture model (see Section 3.1), the SVN Agent cannot be
replicated; therefore, it cannot rely on the cloud elasticity to
deal with increasing workloads. Furthermore, it exposes frequent
and time demanding operations (namely, commit and update, see
Table 1). SPACE4Cloud seeks to compensate the rigidity imposed
by the allocation constraints by scaling out the other components
of the architecture trying to improve the system performance;
however, since the SVN agent is already allocated on the most
powerful machine, as the load increases, it becomes the bottleneck
and the system inevitably reaches the point where no feasible
deployment can be found. The other components, instead, are less
problematic as they can either scale or are used less frequently.
Thus, this study has been particularly useful to uncover the SVN
Agent as the weakest point and the bottleneck of the architecture.

This is the typical situation wherein a reiteration is needed.
In the Constellation case, the results achieved by SPACE4Cloud
have determined the decision to revise the underlying architectural
decisions and to build a new solution, henceforth referred to as
Conference.

6.1.2 Reiteration
Conference has been created by the Softeam design team as
an attempt to overcome the scalability limit singled out by
SPACE4Cloud. Having identified the SVN Agent as the main
bottleneck of the architecture, the company decided to decouple
SVN updates (reads) from commits (writes) as much as possible.
For this purpose, the set of models upon which the users operate
has been divided into independent parts (fragments) replicated
in separate repositories, managed by a central master server. In
this way, the size of commits and the probability of conflicts is
reduced; ultimately, exploiting multiple repositories also means
being able to perform faster readings as they involve smaller
models.

Consequently, in Conference, update operations are envi-
sioned as executed by multiple replicated agents (ReadOnlyCon-
ferenceReplica), while commits are carried out by a singleton,
namely the Conference Agent. Figure 5 depicts the Conference
architecture. Some Constellation components (introduced in Sec-
tion 3.1) have been maintained whereas a Conference Agent has

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 10

Fig. 5: Conference service architecture and constraints

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20

Us
er
s

Hours

Normalized	workload

Fig. 6: Normalized workload for the Case Study analysis.

replaced the central SVN Agent. As said, instead of executing
large and sporadic commits (see Table 1 and Figure 3 for details),
the Conference Agent commits small, yet more frequent, changes
to the Master server, which, in turn, distributes the modifications
to all replicas of the affected fragment. This is done by calling
the commit method exposed by the ReadOnlyConferenceReplica,
which host replicas of model fragments accessed by users via the
update operation.

As for the previous analysis, some preliminary experiments
have been performed to estimate the demanding times of the
involved operations. Note that, since Conference was not imple-
mented at the time the analysis has been carried out, we relied
on an instance of the Constellation service reproducing a scenario
in which small and frequent commits are performed instead of
large and rare ones. The demanding times for the functionality
implemented only in the Conference architecture are reported in
Table 4 while demands associated to the Administration Server,
Administration database and HTTP server are the same as those
reported in Table 1. Notice that commit and update times are con-
siderably shorter than those featured by the original architecture,
due to the reduced size of the commits and parallel readings. Also,
the expected user behavior changes with this architecture as users
will update their local models either by updating directly from
the central SVN agent or by doing partial updates and they will
commit more frequently smaller chunks of data. The user behavior
model has been updated consequently. More details can be found
in [43].

Figure 7 shows a comparison between the expected response
times for both the commit and update operations in the two consid-
ered architectures, Constellation and Conference. The graphs also
show the threshold values set in the two cases as QoS constraints.

Operation Average time (ms)
openProject (ConferenceAgent) 15,000
commit (ConferenceAgent) 1,500
update (ReadOnlyConferenceReplica) 1,000
commit (ReadOnlyConferenceReplica) 2,500

TABLE 4: Conference-specific demanding times.

Tier 50-200 Users 250-500
Admin Server M M
HTTP Agent M M
Conference Agent M L
ReadOnlyConferenceReplica M M

TABLE 5: Conference deployment at workload peak

From the comparison it results clearly that the Conference archi-
tecture is able to keep the response time below the threshold even
when the maximum number of users grows up to 500. Figure 8
demonstrates a similar situation for what concerns the cost as
the Conference system uses smaller-sized machines scaling the
number of agents according to actual needs of capacity.

Table 5 reports the detail of the allocation of cloud services
configurations at peak, obtained using the Conference architecture.
In the table M, L, and XL refers to medium, large and extra large-
sized Azure VMs, respectively.

6.1.3 Comparison with best practices
Finally, the quality of the deployment obtained via SPACE4Cloud
has been compared against a best practice heuristic approach [44],
[45], [38] currently implemented by IaaS providers to help cus-
tomers to set suitable auto-scaling policies. The rationale behind
this approach is to determine for a particular application a suitable
deployment, that is, the number of cloud resources per tier,
by imposing that the expected average CPU utilization of such
resources must remain below a given threshold value.

This threshold-based heuristic has been implemented with the
following two steps:

1) To reduce costs, for each tier, the cheapest resource type
available at the cloud provider has been selected that
satisfy the service allocation constraints defined (e.g., a
requirement on the minimum memory) in the model.

2) To identify the number of needed replicas, two target
CPU utilization values, of 60% and 80%, respectively

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 11

(a) Expected response time of the commit functionality in the
Constellation and Conference architectures

(b) Expected response time of the update functionality in the
Constellation and Conference architectures

Fig. 7: Analysis of the case study Constellation and Conference architectures

Fig. 8: Cost analysis of the two architectures under evaluation

have been considered (as in [44], [45], [46], [47]). For a
fair comparison, the CPU utilization for each hour of the
considered time horizon is calculated using LQN models
generated by SPACE4Cloud (see Section 4), which are
eventually evaluated using the LINE solver.

Table 6 summarizes the outcome of the analysis conducted
assessing the behavior of Conference under different workload
conditions. In particular, Conference has been optimized for the
bi-modal workload profile presented in Figure 6 scaled in such a
way that the peak values range between 50 and 500 users. The
table reports the deployment costs over the 24 hours obtained
using SPACE4Clouds (for brevity called S4C in Table 6) and the
presented heuristic considering 60% and 80% as utilization thresh-
olds (H60 andH80, respectively). Furthermore, the percentage de-
viations of SPACE4Cloud solution costs with respect to H60 and
H80 outcomes, namely, ∆60 and ∆80, are calculated and reported.
SPACE4Cloud returns for all the experiments a cheaper solution;
in particular, the percentage cost reduction ranges between 10%
and 21% if we compare SPACE4Cloud and the most conservative
heuristic (H60) and within 3-6% when SPACE4Cloud and H80

are compared.

Users S4C ($) H60H60H60 ($) H80H80H80 ($) ∆H60
∆H60∆H60 (%) ∆H80

∆H80∆H80 (%)
50 36.5 40.3 39.2 10.5 2.8
100 37.4 42.8 41.0 14.6 4.5
200 37.5 44.1 41.7 17.6 5.8
300 37.5 44.9 42.0 19.6 6.9
400 37.5 45.5 42.4 21.1 7.3
500 37.6 45.6 42.9 21.3 6.4

TABLE 6: Cost of the best solution found by SPACE4Cloud and
by using a threshold based heuristic.

R² = 0.7697

R² = 0.7496

0

200

400

600

800

1000

1200

1400

1600

4 5 6 7 8 9 10

Optimization Time

2 Tiers 3 Tiers

Fig. 9: Scalability Analysis

6.2 Scalability and Cost Analyses
This section analyzes how the proposed approach scales with
respect to the problem instance size. In particular, the intention
is to show that the presented approach is able to find an optimized
allocation for complex architectural models within reasonable time
and to investigate the behavior of the algorithm (e.g., which is
the effect of the randomness on the solution space exploration?
How does the best solution change during a search?). Finally,
our solution is compared to the first-principle utilization threshold
based heuristics considered in the previous section.

6.2.1 Experimental set-up
The architectural design problem faced in this work presents many
dimensions that affect the solution cost and the time needed to
derive the final optimized allocation. The main dimensions we
have identified are: i) the number of tiers in the architecture
under analysis as this defines the size of the design space in
the formulation of the upper-level problem (see Section 5.2)
as well as the complexity of the optimization algorithm (see
Section 5.3), and ii) the number of components, which increases
the complexity of the underlying LQN performance model. In
order to test SPACE4Cloud performance, an extensive set of
randomly generated application architectures, yet representative
of real-world scenarios, has been analyzed. Since most of the
real applications adopt two or three tiers ([48], [49]), the analysis
focused on such cases whereas the number of components ranges
from a minimum of 4 to a maximum of 10 distinct functionalities
(as in [1], [50]). The execution of a request for each functionality
involves some computation in components hosted on different
tiers. Finally, Amazon EC2 has been selected as a target cloud
provider.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 12

Fig. 10: Scalability analysis case study: distribution of calls within the system components.

Figure 10 refers to the largest model used in the analysis and
highlights the interaction between the various components for the
accomplishment of the three considered classes of functionalities.
As an example, Functionality 1 is offered by component 0, which
is the entry point of the system, and generates a request to
components 1 and 2. In order to serve the incoming requests,
component 1 invokes functionalities offered by component 4 and
5. Functionalities 2 and 3 feature a similar behavior involving in
the computation up to 10 components in total. These components
are placed into three tiers; the first hosting components 0, 1, 4 and
9; the second hosting components 2, 6 and 5; and the third the
remaining ones, that is 3, 8 and 7.

The components are assumed to be characterized by the same
demanding times. This assumption corresponds to the worst case
scenario for our tool. In fact, it corresponds to the case where
all the tiers influence equally the overall performance and cost.
Consequently, every tier has to be analyzed and optimized by
SPACE4Cloud, which otherwise would have identified and mainly
focused on the most critical ones. Ultimately, this means that
numerous candidate solutions have to be evaluated. Vice versa,
if the system has a single bottleneck, our algorithm focuses the
analysis only on the corresponding tier, and the optimal solution
can be identified more easily. The demanding times have been
generated randomly according to other literature proposals [38],
[10], [51], [47]. No memory constraint has been introduced to let
the algorithm decide the type of VM among all possible types
(thus exploring a larger solution space). Response time constraints
have been set 10 times the value of the sum of the demanding
times as in [40].

The analysis has been conducted on different versions of this
application obtained by reducing the number of tiers from 3 to 2 or
the number of components from 10 to 4 with the aim of studying
how the time needed to find the optimized solution and the
related cost changes with the complexity of the application model.
Furthermore, for the most complex model (with 10 components
and 3 tiers), the QoS constraints have been made progressively
stricter up to the point that no feasible solution could be found.
In this way, it was possible to verify that the optimization time of
SPACE4Cloud does not increase significantly.

In all the experiments SPACE4Cloud has been executed on
Amazon EC2, using a c3.xlarge virtual machine with four virtual
CPUs and 7.5GB of memory.

6.2.2 Results

As in Section 6.1.3, here are reported and discussed the outcomes
of a comparative experiment involving SPACE4Cloud and two
utilization heuristics (denoted byH80 andH60, respectively). This
analysis considers the whole benchmark of models discussed in
the previous section.

As shown in Table 7, SPACE4Cloud has always been capable
of finding cheaper solutions compared to the utilization heuristics

|I||I||I| |C||C||C| S4C ($) H60H60H60 ($) H80H80H80 ($) ∆H60
∆H60∆H60 (%) ∆H80

∆H80∆H80 (%)

2

4 18.7 41.0 53.6 65.1 54.4
5 22.0 48.8 63.6 65.4 54.9
6 26.6 61.7 78.8 66.2 56.9
7 28.8 68.8 89.3 67.7 58.1
8 31.8 77.0 99.5 68.0 58.7
9 36.6 89.0 114.4 68.0 58.9
10 38.8 96.1 124.8 68.9 59.6

3

4 26.0 42.6 54.7 52.5 39.0
5 30.1 50.0 64.9 53.6 39.8
6 33.7 61.4 80.7 58.2 45.1
7 33.3 68.8 91.0 63.4 51.6
8 37.6 76.7 101.0 62.8 51.0
9 39.1 88.0 116.6 66.5 55.6
10 42.4 192.0 145.2 77.9 70.8

TABLE 7: Comparison of average costs and savings

(confirming the results obtained for the case study) for all the
considered scenarios. In particular, the average cost reduction with
respect to the most conservative heuristic (with the utilization
threshold set at 60%) is within 50-70% of the total cost while
the cost reduction when the heuristic threshold is raised to 80%
is reduced to 40-60%. Also in this case, the savings are lower
for H80 compared to H60, yet they are much higher than those
presented in Section 6.1.3. This is mainly due to the presence,
in the Constellation case study, of non-scalable components (the
SVN agent), which act as bottlenecks and must be allocated
on powerful and costly machines in order to cope with heavy
workloads; consequently, this reduces SPACE4Cloud’s margin of
optimization. It also worth noting that the savings increase with the
number of tiers |I| and with the number of components involved,
|C|.

Figure 9 reports the time, in seconds, required to find an
optimized solution (including also the execution time of the MILP
solver to identify the initial candidate solution) for applications
deployed in an infrastructure with two and three tiers. In both
cases, the optimization time increases almost linearly with the
number of application components. Even for the most complex
case (an application composed of 10 components), this time
remains below 12 minutes for the case of two tiers and less than
30 minutes for the case of three tiers. Since the solution space for
a certain scenario does not depend on the number of components
(see Section 5.3) the growth in the optimization time is mainly
attributable to the increased complexity of the underlying LQN
models.

Noteworthy is that the algorithm implemented by
SPACE4Cloud exploits some randomness in order to better
explore the solution space; in particular when performing the
TSMove, in step 7 of Algorithm 1, the tier to which the tool applies
the change of the resource type is selected randomly. Furthermore,
the roulette wheel selection mechanism used to select the new
type and performed within the TSMove is non-deterministic. In
order to assess the robustness of the algorithm, relating it to the
embedded randomness, several executions of the optimization

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 13

|I||I||I| |C||C||C| Cost ($) σCostσCostσCost Time (sec) σTimeσTimeσTime

2

4 18.7 0.3 222 12
5 22.0 0.2 473 34
6 26.6 0.6 400 26
7 28.8 0.4 389 20
8 31.8 0.5 492 19
9 36.6 0.2 562 36
10 38.8 0.2 674 45

3

4 26.0 0.5 424 67
5 30.1 1.5 868 136
6 33.7 1.5 686 53
7 33.3 0.6 955 28
8 37.6 2.4 861 28
9 39.1 0.6 1010 27
10 42.4 0.7 1483 57

TABLE 8: Comparison of SPACE4Cloud average and standard
deviation of costs and execution time

procedure have been realized varying the random seed. Table 8
shows the average and the standard deviation for the execution
time of SPACE4Cloud and the cost of the final solution, each
entry of the table has been obtained by performing 10 runs of
the optimization procedure. Overall, 140 instances have been
evaluated. In all the experiments the algorithm proved to be stable
in terms of the execution time, with a standard deviation of the
execution time of at most 15.8% of its average value and a cost
standard deviation of at most 6% of its average value.

7 RELATED WORK

This research lays in the area of Model-Driven Quality Prediction
(MDQP). Over the last two decades, several approaches have
been proposed to integrate the prediction techniques of non-
functional properties into the software engineering process and,
nowadays, several tools exist that are intended to provide feedback
to designers in order to improve performance and reduce costs of
software systems. The starting point of the MDQP process is a set
of models that describe the software system using an established
modeling language such as UML. The second phase of the
MDQP process is the automated transformation of architecture-
level models into predictive performance models like LQN or
Markov Chains (see, e.g., [52], [53]). Meta-models supporting
performance predictions are surveyed in [54], [55] and [2]. The
final goal of this transformation process is to enable the evaluation
of different design configuration and support manual or automated
optimization of the architecture at design-time.

The approaches that are more related to the one presented in
this paper are those that allow users to optimize the architecture
of a software system at design time, also taking into account
the constraints and characteristics of the underlying resources
needed for the execution. In what follows, these approaches are
categorized distinguishing them into rule-based and meta-heuristic
(SPACE4Cloud belongs to this last category).

Rule-based approaches: The first class of approaches
encode best practices and user experience into feedback rules that
are applied as transformations to modify a initial design [56]. In
general, rule-based approaches require a continuous interaction
with the user. This implies the evaluation of a limited number of
alternative configurations and, as a result, the quality of the final
solution depends on the user experience.

An example of this class of tools is the QVTR2 framework
proposed in [57]. It adopts the Query/View/Transformation (QVT)
language for model-to-model transformations and extends QVT
to support feedback rules that can be defined on non-functional

requirements. The framework evaluates the performance of a
candidate architecture and applies the rules specified by the user
in order to derive new configurations.

Xu et al. present in [58] a semi-automatic framework, called
Performance Booster, to analyze and optimize design config-
urations in a semi-automatic way. Their approach starts from
UML models annotated with performance information. In order to
overcome the burden of specifying feedback rules, their solution
includes a set of default rules that encode some well-known best
practices. The framework exploits LQN as performance model in
order to evaluate the QoS of a candidate design. Rules are then
applied in order to find performance issues (e.g., bottlenecks) and
modify the performance model accordingly.

Parsons et al. propose in [59] a framework for detecting
performance anti-patterns. It operates at run-time by monitoring
various performance metric of the system. It exploits data mining
techniques to identify meaningful links in the monitoring data,
which are then fed into a rule-based engine in order to check the
presence of anti-patterns.

A design time approach to identify performance anti-patterns
has been proposed by Cortellessa et al. in [60]. Their approach
relies on model-to-model transformations to derive performance
models that are then analyzed in order to find anti-patterns. Once
an anti-pattern is found, the system proposes alternative solutions
to fix it. The main difference between this approach and other
anti-pattern detection solutions is that the proposed solution is
independent of the modeling language used.

Meta-heuristics: The second class, which includes our
approach, leverages high-level algorithms, often bio-inspired, to
efficiently explore the design space in search of solutions that
optimize particular quality metrics. In [61], Li et al. introduce the
AQOSA toolkit, which makes use of advanced evolutionary multi-
objective optimization algorithms (i.e., NSGA-II and SPEA2)
fully integrated with modeling technologies and performance
analysis techniques. The main drawback of these algorithms is the
significant number of evaluations needed in order to converge to
the Pareto front. For this reason, only simple performance models
can be used to evaluate each solution.

A similar approach has been adopted by Aleti et al. in the
ArcheOpterix framework [11]. That work adopts the Architecture
Analysis & Design Language (AADL) to model the application.
The authors propose a generic framework that exposes most of
the functionality needed to analyze and optimize the application
model. In their evaluation, the authors focused on an embedded
system. They selected a genetic optimization engine in order to op-
timize data transmission reliability and communication overhead
while searching for an assignment to application components in
resource containers.

An approach that combines the automation provided by heuris-
tic approaches and the knowledge embedded in feedback rules
is PerOpteryx [1]. This framework is designed for the opti-
mization of component-based software architectures and is based
on quality performance prediction techniques and meta-models.
It implements a genetic algorithm (namely, NSGA-II) that has
been modified to include the evaluation of feedback rules when
generating a new candidate solution. More recently, this hybrid
approach has been expanded by combining the use of an analytic
optimization techniques with evolutionary algorithm. This tool
shares many similarities with SPACE4Cloud, especially in the
modeling language used to define the application and in the use of
an analytic model in conjunction with a heuristic optimization.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 14

The main difference is that the search space explored by our
tool has been especially tailored for the optimization of cloud
services. Cloud specific properties as the elasticity can not be
considered using PerOpteryx alone, which, unlike our solution,
is also able to generate optimized aggregations of components to
be allocated to the same resource. Another main difference lays
in the optimization approach itself: SPACE4Cloud uses a single-
solution heuristic that, in general, requires a number of evaluations
significantly lower compared to the other; consequently, it is much
faster (a run requires minutes instead of hours [14]). However,
PerOpteryx has the advantage of returning a set of feasible
solutions representing possible trade-offs of different objectives.
This provides the designer with a broad set of alternatives from
which to choose. To combine the advantages of both tools, we
proposed a toolkit and a unified workflow; the interested reader is
referred to [14] for more details.

Frey et al. [13] presented a combined sim-heuristic approach
to solve the problem of migrating existing enterprise software to
cloud platforms considering a combination of a specific cloud en-
vironment, deployment architecture, and run-time reconfiguration
rules. The design space is explored by means of a multi-objective
genetic algorithm. This work has various elements in common
with the one presented in this paper, yet it shows many differences
as well. In particular, the tool by Frey et al. aims at easing
the migration of legacy enterprise systems to the cloud, while
SPACE4Cloud helps the designer to devise a cloud-ready applica-
tion. From the technical point of view, our approach is less general
but much faster; suffice it to say that the largest instance optimized
by SPACE4Cloud in less than thirty minutes (see Section 6.2)
while the CDO simulator (used in [13]) requires “from a few
minutes to several hours” to evaluate a single solution. Moreover,
our solution explicitly considers both service allocation and QoS
constraints during the search process, giving the possibility to
express QoS constraints for many criteria in terms of both average
values and percentiles. Finally, our approach is able to exploit the
cloud elasticity handling a 24-hour time horizon and solving 24
correlated capacity planning problems; other approaches only seek
for solutions sized based on workload peak value. More recently,
[62] proposed a multi-objective optimization framework which
investigates multiple alternative deployments for component based
applications considering on-premise, cloud, and hybrid topologies.
The framework is very similar to PerOpterix and share the same
optimization approach which requires several hours in cluster
deployments to provide the Pareto front.

Two of our previous works [17], [63] deal with problems
similar to the one addressed in this paper. [17] introduces the
MILP model exploited by the Initial Solution Builder (presented
Section 4) to provide an initial solution to the problem. This
model, compared to the general formulation presented in Sec-
tion 5, approximates the response time of a cloud deployment
using M/G/1 queue models, and does not include constraints
on the percentiles. The generated configuration, therefore, only
represents an initial solution with ample room for improvement.
In addition, that work assesses the impact of the adoption of this
initial solution on the performance of SPACE4Cloud and the qual-
ity of the final solution. In [63] we generalize the model presented
in [17] for the scenario of the capacity allocation problem of an
application operated across multiple clouds simultaneously. The
proposed MILP model identifies an initial deployment consisting
in, for each hour of the day and each cloud provider, the type and
number of virtual machines to be allocated to each application tier

as well as the fraction of the total workload to be routed to the
particular cloud.

8 CONCLUSIONS

This paper presented an optimization approach and a tool for
the architectural design of cloud-native applications (deployed
on public IaaS) characterized by variable workloads and subject
to the time-varying performance of cloud infrastructures. Unlike
previous literature proposals, the solution presented here addresses
the problem of identifying a proper time-varying resource alloca-
tion (along a reference day) instead of performing the capacity
planning at peaks. The corresponding optimization problem is
NP-hard and it has been solved using a meta-heuristic procedure
implementing a hybrid two-level local search paradigm, which
proved to be effective even for large-sized problem instances
for various scenarios of interest. Furthermore, a comparison with
commonly adopted techniques has shown that SPACE4Cloud tool
outperforms the best practices providing cost saving up to 60%.
Finally, the use of SPACE4Cloud in the design of an industrial
case study has demonstrated that the proposed approach is capable
of helping improve the application architecture and to support
the software architect to identify adequate architectural solutions
keeping costs under control.

Future work will consider the optimization of mixed IaaS-PaaS
as well as multi-cloud applications also considering the availability
metric among QoS constraints. Moreover, the adoption of robust
optimization techniques will be investigated to cope with the
uncertainty in the workload prediction and to support the choice of
long-term contracts with cloud providers (e.g., Amazon reserved
instances).

ACKNOWLEDGMENTS

The research reported in this article is partially supported by
the European Commission grant no. FP7-ICT-2011-8-318484
(MODAClouds). Cloud costs for the usage of EC2 and Azure
have been covered thanks to Amazon AWS in Education Research
and Windows Azure Research Pass grants.

REFERENCES

[1] A. Koziolek, H. Koziolek, and R. Reussner, “PerOpteryx: Automated
Application of Tactics in Multi-objective Software Architecture Opti-
mization,” in Proc. of QoSA 2011, 2011, pp. 33–42.

[2] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic literature
review,” Software Engineering, IEEE Transactions on, vol. 39, no. 5,
pp. 658–683, 2013.

[3] F. Brosig, P. Meier, S. Becker, A. Koziolek, H. Koziolek, and S. Kounev,
“Quantitative evaluation of model-driven performance analysis and simu-
lation of component-based architectures,” IEEE Transactions on Software
Engineering, vol. 41, no. 2, pp. 157–175, 2015.

[4] M. Scheerer, A. Busch, and A. Koziolek, “Automatic evaluation of
complex design decisions in component-based software architectures,” in
Proceedings of the 15th ACM-IEEE International Conference on Formal
Methods and Models for System Design, ser. MEMOCODE ’17, 2017,
pp. 67–76.

[5] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems and
Software, vol. 82, no. 1, pp. 3–22, 2009.

[6] M. Tribastone, S. Gilmore, and J. Hillston, “Scalable differential analysis
of process algebra models,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 205–219, 2012.

[7] S. Gilmore and J. Hillston, “The pepa workbench: A tool to support a
process algebra-based approach to performance modelling,” in Computer
performance evaluation modelling techniques and tools. Springer, 1994,
pp. 353–368.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 15

[8] A. Megahed, A. Nazeem, P. Yin, S. Tata, H. R. Motahari-Nezhad, and
T. Nakamura, “Optimizing cloud solutioning design,” Future Generation
Comp. Syst., vol. 91, pp. 86–95, 2019.

[9] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively Unearthing the Best Cloud Con-
figurations for Big Data Analytics.” in NSDI, 2017.

[10] G. Casale and M. Tribastone, “Modelling exogenous variability in cloud
deployments,” SIGMETRICS Performance. Evaluation Review, vol. 40,
no. 4, pp. 73–82, 2013.

[11] A. Aleti, S. Björnander, L. Grunske, and I. Meedeniya, “Archeopterix:
An extendable tool for architecture optimization of aadl models,” in Proc.
of MOMPES’09, 2009, pp. 61–71.

[12] A. Koziolek, D. Ardagna, and R. Mirandola, “Hybrid multi-attribute qos
optimization in component based software systems,” Journal of Systems
and Software, vol. 86, no. 10, pp. 2542 – 2558, 2013.

[13] S. Frey, F. Fittkau, and W. Hasselbring, “Search-based genetic optimiza-
tion for deployment and reconfiguration of software in the cloud,” in
Proc. of ICSE ’13, 2013, pp. 512–521.

[14] M. Ciavotta, D. Ardagna, and A. Koziolek, “Palladio optimization
suite: Qos optimization for component-based cloud applications,” EAI
Endorsed Trans. Cloud Systems, vol. 2, no. 6, 2016.

[15] A. Wolke and G. Meixner, “Twospot: A cloud platform for scaling out
web applications dynamically,” in ServiceWave, 2010.

[16] X. Zhu, D. Young, B. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee,
C. Hyser, D.Gmach, R. Gardner, T. Christian, and L. Cherkasova:, “1000
islands: An integrated approach to resource management for virtualized
data centers,” J. of Cluster Computing, vol. 12, no. 1, pp. 45–57, 2009.

[17] D. Ardagna, G. Gibilisco, M. Ciavotta, and A. Lavrentev, “A multi-
model optimization framework for the model driven design of cloud
applications,” in Proc. of SBSE 2014, 2014, pp. 61–76.

[18] A. Evangelinou, M. Ciavotta, G. Kousiouris, and D. Ardagna, “A joint
benchmark-analytic approach for design-time assessment of multi-cloud
applications,” Procedia Computer Science, vol. 68, pp. 67–77, 2015.

[19] A. Kopaneli, G. Kousiouris, G. E. Velez, A. Evangelinou, and T. Var-
varigou, “A model driven approach for supporting the cloud target
selection process,” Procedia Computer Science, vol. 68, pp. 89 – 102,
2015.

[20] A. Evangelinou, M. Ciavotta, D. Ardagna, A. Kopaneli, G. Kousiouris,
and T. A. Varvarigou, “Enterprise applications cloud rightsizing through
a joint benchmarking and optimization approach,” Future Generation
Comp. Syst., vol. 78, pp. 102–114, 2018.

[21] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems,” in Proc. of CLOUD 2013, 2013, pp. 887–894.

[22] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, “Cloudmf:
Applying mde to tame the complexity of managing multi-cloud applica-
tions,” in Proc. of UCC 2014, 2014, pp. 269–277.

[23] E. D. Nitto, P. Matthews, D. Petcu, and A. Solberg, Model-Driven
Development and Operation of Multi-Cloud Applications. Springer,
2017.

[24] D. Franceschelli, D. Ardagna, M. Ciavotta, and E. Di Nitto,
“Space4cloud: a tool for system performance and costevaluation of cloud
systems,” in Proc. of MultiCloud ’13, 2013.

[25] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik, Quantitative system
performance: computer system analysis using queueing network models.
Prentice-Hall, Inc., 1984.

[26] J. Rolia and K. Sevcik, “The method of layers,” IEEE Transactions on
Software Engineering, vol. 21, no. 8, pp. 689–700, 1995.

[27] L. Zhang, X. Meng, S. Meng, and J. Tan, “K-scope: Online performance
tracking for dynamic cloud applications,” in Proc. of ICAC 2013, 2013.

[28] W. Wang, G. Casale, A. Kattepur, and M. K. Nambiar, “QMLE: A
methodology for statistical inference of service demands from queueing
data,” TOMPECS, vol. 3, no. 4, pp. 17:1–17:28, 2018.

[29] J. Perez and G. Casale, “Assessing SLA Compliance from Palladio
Component Models,” in Proc. of SYNASC 2013, 2013, pp. 409–416.

[30] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi, “En-
hanced modeling and solution of layered queueing networks,” IEEE
Transactions on Software Engineering, vol. 35, no. 2, pp. 148–161, 2009.

[31] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, “Architecture-
based reliability prediction with the palladio component model,” IEEE
Transactions on Software Engineering, vol. 38, no. 6, pp. 1319–1339,
2012.

[32] J. Rolia, G. Casale, D. Krishnamurthy, S. Dawson, and S. Kraft, “Pre-
dictive modelling of sap erp applications: Challenges and solutions,” in
Proc. of VALUETOOLS ’09, 2009, pp. 1–9.

[33] N. Ferry, A. Solberg, P. Jamshidi, R. Osman, W. Wang, S. Seycek,
V. Gligor, R. Sucasa, and A. Abhervé, “Modaclouds evaluation report
– final version,” MODAClouds EU Project Deliverable, 2015.

[34] F. Glover, “Tabu search: part i,” ORSA Journal on computing, vol. 1,
no. 3, pp. 190–206, 1989.

[35] T. A. Feo and M. G. C. Resende, “Greedy randomized adaptive search
procedures,” Journal of Global Optimization, vol. 6, no. 2, pp. 109–133,
1995.

[36] N. Ferry, F. Chauvel, H. Song, A. Rossini, M. Lushpenko, and A. Solberg,
“Cloudmf: Model-driven management of multi-cloud applications,” ACM
Trans. Internet Technol., vol. 18, no. 2, pp. 16:1–16:24, Jan. 2018.

[37] C. Canali and R. Lancellotti, “Exploiting ensemble techniques for auto-
matic virtual machine clustering in cloud systems,” Automated Software
Engineering, vol. 21, no. 3, pp. 319–344, 2013.

[38] D. Ardagna, M. Ciavotta, and R. Lancellotti, “A Receding Horizon
Approach for the Runtime Management of IaaS Cloud Systems,” in Proc.
of SYNASC 2014, 2014, pp. 445–452.

[39] W. Wang and G. Casale, “Evaluating weighted round robin load bal-
ancing for cloud web services,” in Proc. of SYNASC 2014, 2014, pp.
393–400.

[40] D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Transactions on Software Engineering, vol. 33, no. 6,
pp. 369–384, 2007.

[41] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
& Co., 1979.

[42] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley
& Sons, 2009, vol. 74.

[43] G. P. Gibilisco, “A methodology and a tool for qos-oriented design
of multi-cloud applications,” Ph.D. dissertation, Politecnico di Milano,
2015.

[44] A. Wolke and G. Meixner, “Twospot: A cloud platform for scaling out
web applications dynamically,” in Towards a Service-Based Internet.
Springer, 2010, pp. 13–24.

[45] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. Mckee,
C. Hyser, D. Gmach, R. Gardner, T. Christian, and L. Cherkasova, “1000
islands: An integrated approach to resource management for virtualized
data centers,” Cluster Computing, vol. 12, no. 1, pp. 45–57, 2009.

[46] J. Almeida, V. Almeida, D. Ardagna, Í. Cunha, C. Francalanci, and
M. Trubian, “Joint admission control and resource allocation in virtu-
alized servers,” Journal of Parallel and Distributed Computing, vol. 70,
no. 4, pp. 344 – 362, 2010.

[47] D. Ardagna, M. Ciavotta, R. Lancellotti, and M. Guerriero, “A hierar-
chical receding horizon algorithm for qos-driven control of multi-iaas
applications,” IEEE Transactions on Cloud Computing, 2018.

[48] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang, “Energy-aware
autonomic resource allocation in multitier virtualized environments,”
IEEE Transactions on Services Computing, vol. 5, no. 1, pp. 2–19, 2012.

[49] B. Addis, D. Ardagna, B. Panicucci, M. S. Squillante, and L. Zhang, “A
hierarchical approach for the resource management of very large cloud
platforms,” IEEE Transactions on Dependable and Secure Computing,
vol. 10, no. 5, pp. 253–272, 2013.

[50] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and R. Reussner,
“A hybrid approach for multi-attribute qos optimisation in component
based software systems,” in 6th International Conference on the Quality
of Software Architectures, QoSA 2010, vol. 6093. Springer, 2010, pp.
84–101.

[51] G. Casale and M. Tribastone, “Fluid analysis of queueing in two-stage
random environments,” in Proc. of QEST 2011, 2011, pp. 21–30.

[52] M. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr, and J. Merseguer,
“Performance by unified model analysis (puma),” in Proc. of WOSP
2005, 2005, pp. 1–12.

[53] N. Huber, F. Brosig, S. Spinner, S. Kounev, and M. Bähr, “Model-based
self-aware performance and resource management using the descartes
modeling language,” IEEE Trans. Software Eng., vol. 43, no. 5, pp. 432–
452, 2017.

[54] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-
based performance prediction in software development: A survey,” IEEE
Transactions on Software Engineering, vol. 30, no. 5, pp. 295–310, 2004.

[55] H. Koziolek, “Performance evaluation of component-based software
systems: A survey,” Performance Evaluation, vol. 67, no. 8, pp. 634–
658, 2010.

[56] C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and H. Knoche, “Ex-
ploiting load testing and profiling for performance antipattern detection,”
Information & Software Technology, vol. 95, pp. 329–345, 2018.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX XXXX 16

[57] M. L. Drago, C. Ghezzi, and R. Mirandola, “A quality driven extension
to the qvt-relations transformation language,” Computer Science - R&D,
vol. 27, no. 2, 2012.

[58] J. Xu, “Rule-based automatic software performance diagnosis and im-
provement,” Performance Evaluation, vol. 69, no. 11, pp. 525–550, 2012.

[59] T. Parsons and J. Murphy, “Detecting performance antipatterns in com-
ponent based enterprise systems,” Journal of Object Technology, vol. 7,
no. 3, pp. 55–91, 2008.

[60] V. Cortellessa, A. D. Marco, R. Eramo, A. Pierantonio, and C. Trubiani,
“Approaching the model-driven generation of feedback to remove soft-
ware performance flaws,” in Proc. of SEAA 2009, 2009, pp. 162–169.

[61] R. Li, R. Etemaadi, M. T. M. Emmerich, and M. R. V. Chaudron, “An
evolutionary multiobjective optimization approach to component-based
software architecture design,” in Proc. of CEC 2011, 2011, pp. 432–439.

[62] F. Willnecker and H. Krcmar, “Multi-objective optimization of de-
ployment topologies for distributed applications,” ACM Trans. Internet
Technol., vol. 18, no. 2, pp. 21:1–21:21, Jan. 2018.

[63] M. Ciavotta, D. Ardagna, and G. P. Gibilisco, “A mixed integer linear
programming optimization approach for multi-cloud capacity allocation,”
Journal of Systems and Software, vol. 123, pp. 64 – 78, 2017.

Michele Ciavotta received the Ph.D. degree in
automation and computer science from Roma
Tre, Italy in 2008. He is researcher at the Uni-
versity of Milano-Bicocca since 2017. His re-
search work focuses on modeling and optimiza-
tion of highly constrained combinatorial prob-
lems mainly arising in the fields scheduling and
resource management of distributed systems.

Giovanni Paolo Gibilisco received the Ph.D.
degree in computer engineering in 2016 from
Politecnico di Milano, from which he also grad-
uated in December 2012. His research interests
lay in the area of model driven design of cloud
based applications and software architecture op-
timization.

Danilo Ardagna is Associate Professor at the
Dipartimento di Elettronica Informazione and
Bioingegneria at Politecnico di Milano. He re-
ceived a Ph.D. degree in computer engineering
in 2004 from Politecnico di Milano, from which
he also graduated in December 2000.His work
focuses on the design, prototype and evaluation
of optimization algorithms for resource manage-
ment and planning of cloud computing and big
data systems.

Elisabetta Di Nitto is Full Professor at the
Dipartimento di Elettronica, Informazione and
Bioingegneria at Politecnico di Milano, where
she also earned her Ph.D. in Computer Science.
Her current research interests are mainly on
software engineering, and in particular, on pro-
cess support systems, service-centric applica-
tions, dynamic software architectures, and self-
adaptive systems.

Marcos Aurélio Almeida da Silva holds a Ph.
D. degree in Computer Science of the Paris 6th
University. At the time of the paper preparation
Dr. Almeida worked in SOFTEAM as research
engineer in projects related to modeling Cloud
and big data applications.

	Introduction
	The Modelio Case Study
	The SPACE4Cloud Design and Analysis Approach
	Modeling the application
	Modeling the expected load
	Optimizing the Application Deployment
	Reiteration

	SPACE4Cloud: The Optimization Tool
	Design-Time Architecture Optimization
	Problem definition
	Problem Formulation
	Optimization Algorithm

	Experimental Analysis
	Case Study Analysis
	Initial analysis
	Reiteration
	Comparison with best practices

	Scalability and Cost Analyses
	Experimental set-up
	Results

	Related Work
	Conclusions
	References
	Biographies
	Michele Ciavotta
	Giovanni Paolo Gibilisco
	Danilo Ardagna
	Elisabetta Di Nitto
	Marcos Aurélio Almeida da Silva

