
Joint Planning of Network Slicing and Mobile
Edge Computing: Models and Algorithms

Bin Xiang , Jocelyne Elias , Fabio Martignon , and Elisabetta Di Nitto

Abstract—Multi-access Edge Computing (MEC) facilitates the deployment of critical applications with stringent QoS requirements,

latency in particular. This article considers the problem of jointly planning the availability of computational resources at the edge, the

slicing of mobile network and edge computation resources, and the routing of heterogeneous traffic types to the various slices. These

aspects are intertwined and must be addressed together to provide the desired QoS to all mobile users and traffic types still keeping

costs under control. We formulate our problem as a mixed-integer nonlinear program (MINLP) and we define a heuristic, named

Neighbor Exploration and Sequential Fixing (NESF), to facilitate the solution of the problem. The approach allows network operators to

fine tune the network operation cost and the total latency experienced by users. We evaluate the performance of the proposed model

and heuristic against two natural greedy approaches. We show the impact of the variation of all the considered parameters (viz.,

different types of traffic, tolerable latency, network topology and bandwidth, computation and link capacity) on the defined model.

Numerical results demonstrate that NESF is very effective, achieving near-optimal planning and resource allocation solutions in a very

short computing time even for large-scale network scenarios.

Index Terms—Edge computing, network planning, node placement, network slicing, joint allocation

Ç

1 INTRODUCTION

NEXT generation mobile networks aim to meet different
users’ Quality of Service (QoS) requirements in several

demanding application scenarios and use cases. Among the
others, controlling latency is certainly one of the key QoS
requirements that mobile operators have to deal with. In
fact, the classification devised by the International Telecom-
munications Union-Radio communication Sector (ITU-R),
shows that mission-critical services depend on strong
latency constraints. For example, in some use cases (e.g.,
autonomous driving), the tolerable latency is expected to
reach less than 1 ms [1].

To address such constraints various ingredients are
emerging. First of all, through Network Slicing, the physical
network infrastructure can be split into several isolated logi-
cal networks, each dedicated to applications with specific
latency requirements, thus enabling an efficient and
dynamic use of network resources [2].

Second, Multi-access Edge Computing (MEC) provides an
IT service environment and cloud-computing capabilities at

the edge of the mobile network, within the Radio Access
Network and in close proximity to mobile subscribers [3].
Through this approach, the latency experienced by mobile
users can be consistently reduced. However, the computa-
tion power that can be offered by an edge cloud is quite lim-
ited in comparison with a remote cloud. Fortunately, this
problem can be addressed by enabling cooperation among
multiple edge clouds, scenario that can be realized in next-
generation mobile networks (5G and beyond) as they will
be likely built in an ultra-dense manner, where the edge
clouds attached to base stations will also be massively
deployed and connected to each other in a specific topology.

In this line, we study the case of a complex network orga-
nized inmultiple edge clouds, each of whichmay be connected
to the Radio Access Network of a certain location. All such
edge clouds are connected through an arbitrary topology.
This way, each edge cloud can serve end user traffic by rely-
ing not only on its own resources, but also offloading some
traffic to its neighbors when needed. We specifically consider
multiple classes of traffic and corresponding requirements,
including voice, video, web, among others. For every class of
traffic incoming from the corresponding Radio Access Net-
work, the edge cloud decides whether to serve it or offload it
to some other edge cloud. This decision depends on the QoS
requirements associated to the specific class of traffic and on
the current status of the edge cloud.

Our main objective is to ensure that the infrastructure is
able to serve all possible types of traffic within the bound-
aries of their QoS requirements and of the available
resources.

In this work, therefore, we propose a complete approach,
named Joint Planning and Slicing of mobile Network and edge
Computation resources (JPSNC), which solves the problem of
operating cost-efficient edge networks. The approach jointly
takes into account the overall budget that the operator uses

� Bin Xiang and Elisabetta Di Nitto are with the Dipartimento di Elettron-
ica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan,
Italy. E-mail: {bin.xiang, elisabetta.dinitto}@polimi.it.

� Jocelyne Elias is with the Department of Computer Science and Engineer-
ing (DISI), University of Bologna, 40126 Bologna, Italy. E-mail: jocelyne.
elias@unibo.it.

� Fabio Martignon is with the Department of Management, Information and
Production Engineering, University of Bergamo, 24044 Bergamo, Italy.
E-mail: fabio.martignon@unibg.it.

Manuscript received 22 November 2019; revised 16 August 2021; accepted 16
August 2021. Date of publication 24 August 2021; date of current version 8
March 2023.
(Corresponding author: Bin Xiang.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TCC.2021.3107022

620 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4065-5557
https://orcid.org/0000-0003-4065-5557
https://orcid.org/0000-0003-4065-5557
https://orcid.org/0000-0003-4065-5557
https://orcid.org/0000-0003-4065-5557
https://orcid.org/0000-0003-2176-3480
https://orcid.org/0000-0003-2176-3480
https://orcid.org/0000-0003-2176-3480
https://orcid.org/0000-0003-2176-3480
https://orcid.org/0000-0003-2176-3480
https://orcid.org/0000-0003-2691-9827
https://orcid.org/0000-0003-2691-9827
https://orcid.org/0000-0003-2691-9827
https://orcid.org/0000-0003-2691-9827
https://orcid.org/0000-0003-2691-9827
https://orcid.org/0000-0003-3422-5171
https://orcid.org/0000-0003-3422-5171
https://orcid.org/0000-0003-3422-5171
https://orcid.org/0000-0003-3422-5171
https://orcid.org/0000-0003-3422-5171
mailto:bin.xiang@polimi.it
mailto:elisabetta.dinitto@polimi.it
mailto:jocelyne.elias@unibo.it
mailto:jocelyne.elias@unibo.it
mailto:fabio.martignon@unibg.it

in order to allocate and operate computing capabilities in its
edge network, and allocates resources, aiming at minimizing
the network operation cost and the total traffic latency of
transmitting, outsourcing and processing user traffic, under
the constraint of user tolerable latency for each class of
traffic.

This turns out to be a mixed-integer nonlinear program-
ming (MINLP) optimization problem, which is an NP-hard
problem [4]. To tackle this challenge, we transform it into an
equivalent mixed-integer quadratically constrained pro-
gramming (MIQCP) problem, which can be solved more
efficiently through the Branch and Bound method. Based on
this reformulation, we further propose an effective heuris-
tic, named Neighbor Exploration and Sequential Fixing (NESF),
that permits to obtain near-optimal solutions in a very short
computing time, even for the large-scale scenarios we con-
sidered in our numerical analysis. Furthermore, we propose
two simple heuristics, based on a greedy approach. They
provide benchmarks for our algorithms, obtain (slightly)
sub-optimal solutions with respect to NESF, and are still
very fast. Finally, we systematically analyze and discuss
with a thorough numerical evaluation the impact of all con-
sidered parameters (viz. the overall planning budget of the
operator, different types of traffic, tolerable latency, net-
work topology and bandwidth, computation and link
capacity) on the optimal and approximate solutions
obtained from our proposed model and heuristics. Numeri-
cal results demonstrate that our proposed model and heu-
ristics can provide very efficient resource allocation and
network planning solution for multiple edge networks.

This work takes the root from a previous paper [5] where
we focused exclusively on minimizing the latency of traffic
in a hierarchical network, keeping the network and compu-
tation capacity fixed. In this paper, we have completely
revised our optimization model to cope with a joint network
planning, slicing and edge computing problem, aimed at
minimizing both the total latency and operation cost for
arbitrary network topologies.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the network system architecture we con-
sider. Section 3 provides an intuitive overview of the
proposed approach by using a simple example. Section 4
illustrates the proposed mathematical model and Section 5
the heuristics. Section 6 discusses numerical results in a set
of typical network topologies and scenarios. Section 7 dis-
cusses related work. Finally, Section 8 concludes the paper.

2 SYSTEM ARCHITECTURE

Fig. 1 illustrates our reference network architecture. We con-
sider an edge network composed of Edge Nodes. Each of
such nodes can be equipped with any of the following three
capabilities:

� the ability of acquiring traffic from mobile devices
through the Remote Radio Head (RRH), such nodes
are those we call Ingress Nodes;

� the ability of executing network or application level
services requiring computational power, this is done
thanks to the availability of an Edge Cloud on the
node;

� the ability to route traffic to other nodes.
Not all nodes must have all the three capabilities, so, in

this respect, the edge network can be constituted of hetero-
geneous nodes.

Each link ði; jÞ between any two edge nodes, i and j, has
a fixed bandwidth, denoted by Bij. Each Ingress Node k has a
specific ingress network capacity Ck, which is a measure of
its ability to accept traffic incoming from mobile devices.
Nodes able to perform some computation have a computa-
tion capacity Si. One of the objectives of the planning model
presented in this paper is to determine the optimal value of
the computation capacity that must be made available at
each node.

We assume that users’ incoming data in each Ingress
Node is aggregated according to the corresponding traffic
type n 2 N . Examples of traffic types can be video, game,
data from sensors, and the like. They group demands or
services having the same requirements. We assume that the
network has a set of slices of different types and that each
slice aggregates traffic of the same type. Therefore, all
demands or services in the same slice could be treated in
the same manner and could share network resources in a
soft way like the concept of soft slicing introduced in [6].
Our slicing model is also similar in part to the one intro-
duced in [7], where the authors assume that mobile sub-
scribers consume a variety of heterogeneous services and
the operator owning the infrastructure implements a set of
slices where each slice is dedicated to a different subset of
services.

In Fig. 1 traffic of different types is shown as arrows of
different colors. From each Ingress Node, traffic can be split
and processed on all edge clouds in the network; the dashed
arrows shown in the figure represent possible outsourcing
paths of the traffic pieces from different Ingress Nodes. Dif-
ferent slices of the ingress network capacity Ck and the edge
cloud computation capacity Si are allocated to serve the dif-
ferent types of traffic based on the corresponding Service
Level Agreements (SLAs), which, in this paper are focused
on keeping latency under control. Thus, another objective of
our model is to find the allocation of traffic to the edge
clouds that allows us to minimize the total latency, which is
expressed in terms of the latency at the ingress node, due to
the limitations of the wireless network, plus the latency due
to the traffic processing computation, plus the latency
occurring in the communication links internal to the net-
work system architecture.

Fig. 1. Network system architecture.

XIANG ETAL.: JOINT PLANNING OF NETWORK SLICING AND MOBILE EDGE COMPUTING: MODELS AND ALGORITHMS 621

We assume that the edge network is controlled by a man-
agement component which is in charge of achieving the opti-
mal utilization of its resources, in terms of network and
computation, still guaranteeing the SLA associated to each
traffic type accepted by the network. This component moni-
tors the network by periodically computing the network
capacity of each ingress node (through broadcast messages
exchanged in the network) and the bandwidth of each link
in the network topology. Moreover, it knows the maximum
available computation capacity of all computation nodes.
With these pieces of information as input, and knowing the
SLA associated to each traffic type, the management compo-
nent periodically solves an optimization problem that pro-
vides as output the identification of a proper network
configuration and traffic allocation. In particular, it will
identify: i) the amount of computational capacity to be
assigned to each node so that, with the foreseen traffic, the
node usage remains below a certain level of its capacity; ii)
which node is taking care of which traffic type; and iii) the
nodes through which each traffic type must be routed
toward its destination.

For simplicity, the optimization problem is based on the
assumption that the system is time-slotted, where time is
divided into equal-length short slots (short periods where
network parameters can be considered as fixed and traffic
shows only small variations). We observe that our proposed
heuristic (NESF) exhibits a short computing time so that it is
feasible to run the problem periodically and to adjust the
configuration of the system network based on the actual
evolution of the traffic.

In the next section, we give an intuition of the solution
applied by the management component in the case of a sim-
ple network, while in Section 4 we formalize the optimiza-
tion problem and in Section 5 we present some heuristics
that make the problem tractable in realistic cases.

3 OVERVIEW OF PLANNING AND ALLOCATION

In this section we refer to a simple but still meaningful edge
network and we show how the management component
behaves in the presence of two types of traffic. In Section 4
we present in detail the optimization model that computes
the allocation of computational and network resources as
well as the optimal routing paths and we show how all val-
ues are computed. Here the goal is to provide the intuition
beyond the proposed optimization approach.

The example we consider is shown in Fig. 2 and consists
of 10 nodes, two of which are ingress nodes (labeled as n3

and n5 in the figure and colored in orange), connected
together with an average degree of 4. For simplicity, we
assume that the bandwidth of all links is Bl ¼ 100Gb=s, and
the wireless network capacity of the two ingress nodes is,
respectively, Cn3 ¼ 50Gb=s and Cn5 ¼ 60Gb=s. Every node
in the network has a computation capacity that can take one
of the following values: D0 ¼ 0Gb=s (i.e., no computation
capacity is made available at the current time), D1 ¼
30Gb=s, D2 ¼ 40Gb=s, and D3 ¼ 50Gb=s.1 Given the above
edge network, let us assume the management component
estimates that node n3 will receive traffic of type t1 at rate
�n3;t1 ¼ 25Gb=s and type t2 at rate �n3;t2 ¼ 20Gb=s, while
node n5 will receive the two types of traffic with rates
�n5;t1 ¼ 15Gb=s and �n5;t2 ¼ 35Gb=s, respectively. Finally, let
us assume that the network operator has set an upper
bound on the power budget to be used (i.e., the total amount
of computational power) P ¼ 300Gb=s and has defined in
its SLA a tolerable latency for the two types of traffic,
respectively, to the following values: tt1 ¼ 1ms and
tt2 ¼ 2ms.

Under the above assumptions and constraints, the man-
agement component will solve the optimization problem,
and will decide to offload part of the traffic from the two
ingress nodes to an intermediate node as shown in Fig. 2a.
More specifically, the management component will assign
at ingress node n3 a wireless network capacity slice of
27Gb=s (out of the total 50Gb=s) to t1 and of 23Gb=s to t2,
while at ingress node n5 it will assign 22Gb=s (out of the
total 60Gb=s) to t1 and 38Gb=s to t2. Moreover, it will assign
a computation capacity D2 to nodes n3 and n5 andD3 to n7,
while it will switch off the computation capacity of the other
nodes. This will lead to a total computation capacity of
130Gb=s, which is well below the available computation
capacity budget P . Given that t1 is the traffic type with the
most demanding constraint in terms of latency, the manage-
ment component decides to use the full D2 capacity of n3 to
process traffic t1 from n3. Applying the same strategy
within node n5would result in a waste of resources because
the t1 traffic of n5 will take only 15Gb=s of the available
computation capacity, and the remaining one will not be
sufficient to handle the expected total amount of t2 traffic.
Since moving the t1 traffic of one hop would still allow the
system to fulfill the SLA, the decision will be then to config-
ure the network to route such traffic to n7. The reason for
choosing n7 is mainly because it is one of the nearest neigh-
bors of both n3 and n5 (with 2 hops to n3 and 1 hop to n5)
and, with its D3 capacity, will be able to handle both t2 traf-
fic from n3 and t1 traffic from n5. Specifically, the percent-
age of computation capacity of n7 allocated for n3; t2 and
n5; t1 is 64 and 36 percent, respectively. t2 traffic from n5 is,
instead, processed locally at n5 itself.

Let us now assume that the management component
observes a change in the �n5;t2 traffic rate, which increases to
�n5;t2 ¼ 40Gb=s. It will then run again the optimization algo-
rithm that will output the configuration illustrated in
Fig. 2b. The slicing of the wireless network capacity for
ingress node n3 will not vary, while the total wireless

Fig. 2. Toy example for a network with 10 nodes and 20 edges (average
degree: 4.0).

1. Note that computation capacity is often expressed in cycles/s. As
discussed in Section 6, for homogeneity with the other values, we have
transformed it into Gb=s.

622 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

capacity at ingress node n5 will be redistributed as follows:
a slice of 42Gb=s will be assigned to t2 and, as a conse-
quence, a slice of 18Gb=s, smaller than before, to t1. More-
over, the computation capacity to be allocated to each node
will be recomputed. Capacity D2 will be allocated to n3,
which will process t1 locally, and D1 will be allocated to the
neighbor node n4, which will handle the t2 traffic from n3.
Capacity D3 will be allocated to n5 to process t2 locally and,
finally, D1 will be allocated to n7 to process t1 incoming
from n5. Both ingress nodes will offload part of their traffic
to the nearest 1-hop neighbor and the total computation
capacity will be equal to 150Gb=s.

Notice that, by manually analyzing the initial configura-
tion of Fig. 2a, we may think that a better solution to the
increase of �n5;t2 would be to simply increase the computa-
tion capacity of n5 to D3 as in this way the network configu-
ration will remain almost the same as before and the total
computation capacity will be 140Gb=s, smaller than the one
of Fig. 2b. However, a more in-depth analysis shows that,
even if this solution is certainly feasible, it is less optimal
than the one of Fig. 2b in terms of t1 total latency, which, as
described in detail in Section 4, depends on both the wire-
less network latency and the outsourcing latency. The main
reason for this increase in the latency is that traffic t1 from
node n5 will suffer from a larger latency in the wireless
ingress network due to a smaller allocated slice, and also
from a relatively high latency due to the traffic computation
on n7. According to the model we formalize in the next sec-
tion, the total latency for t1 in this case is 0:72ms, while, as it
will be shown in Section 6.4, it is 0:47ms in the case of
Fig. 2b, thanks to the fact that node n5 has the computation
capacity of n7 entirely dedicated to the t1 traffic it introdu-
ces in the network.

4 PROBLEM FORMULATION

In this section we provide the mathematical formulation of
our Joint Planning and Slicing of mobile Network and edge Com-
putation resources (JPSNC) model. Table 1 summarizes the
notation used throughout this section. For brevity, we sim-
plify expression 8n 2 N as 8n, and apply the same rule to
other set symbols like E;K;L, etc. throughout the rest of this
paper unless otherwise specified.

The goal of our formulation is to minimize a weighted
sum of the total latency and network operation cost for serv-
ing several types of user traffic under the constraints of users’
maximum tolerable latency and network planning budget.
This allows the network operator to fine tune its needs in
terms of quality of service provided to its users and cost of
the planned network. Different types of traffic, with hetero-
geneous requirements, need to be accommodated, and may
enter the network fromdifferent ingress nodes.

In the following, we first focus on the network planning
issue and its related cost, as well as on the traffic routing
issue, and then detail all components that contribute to the
overall latency experienced by users, which we capture in
our model.

4.1 Network Planning and Routing

Network Planning. We assume that, in each edge node, some
processing capacity can be made available, thus enabling

MEC capabilities. This action will result in an operation cost
that will increase at the increase of the amount of processing
capacity. To model more closely real network scenarios, we
assume that only a discrete set of capacity values can be
chosen by the network operator and made available. There-
fore, we adopt a piecewise-constant function Si for the proc-
essing capacity of an edge node, in line with [8]. This is
defined as

Si ¼
X

a2A dai Da; 8i; (1)

where Da is a capacity level (a 2 A) and dai 2 f0; 1g is a
binary decision variable for capacity planning, satisfying
the following constraint (only one level of capacity can be
made available on a node, including zero, i.e., no processing
capability)

X
a2A dai ¼ 1� d0i ; 8i; (2)

where d0i is a binary variable that indicates whether node i
has currently available some computation power or not.
This constraint implies that Si can be set as either 0 (no com-
putation power) or exactly one capacity level,Da.

To save on operation costs, in the case an edge node is
not supposed to be exploited to process some traffic, then
no processing capacity is made available on it. We introduce
binary variable bkni to indicate whether traffic kn is proc-
essed on node i (we will use the expression “traffic kn” in
the following, for brevity, to indicate the user traffic of type
n from ingress point k). Then the following constraint

TABLE 1
Summary of Used Notations

Parameters Definition

N Set of traffic types
E Set of edge nodes in the edge networks
K Set of ingress nodes, where K � E
L Set of directed links in the networks
Bij Bandwidth of the link from node i to j, where

ði; jÞ 2 L
Ck Network capacity of ingress edge node k 2 K
Da Levels of computation capacities

(a 2 A ¼ f1; 2; 3 . . .g)
P Planning budget of computation capacity
�kn User traffic rate of type n in ingress node k
tn Tolerable delay for serving the total traffic of

type n
ki Cost of using one unit of computation capacity

on node i
w Weight to balance among total latency and

operation cost

Variables Definition

ckn Slice of the network capacity for traffic kn
bkni Whether traffic kn is processed on node i or

not
akn
i Percentage of traffic kn processed on node i

bkn
i Percentage of i’s computation capacity sliced

to traffic kn
dai Decision for planning computation capacity on

node i
Rkn

i Set of links for routing the traffic piece akn
i

from k to i

XIANG ETAL.: JOINT PLANNING OF NETWORK SLICING AND MOBILE EDGE COMPUTING: MODELS AND ALGORITHMS 623

should be satisfied

bkni 41� d0i4
X
k02K

X
n02N

bk
0n0

i ; 8k; 8n; 8i: (3)

We also consider a total planning budget, P , for the avail-
able computation capacity, introducing the following con-
straint: X

i2E Si4P: (4)

Then, the total operation cost can be expressed as

J ¼
X

i2E kiSi; (5)

where ki is the cost of using one unit of computation capac-
ity (in the example of Section 3 this will be 1Gb=s) on node i.

Network Routing. We assume that each type of traffic can
be split into multiple pieces only at its ingress node. Each
piece can then be offloaded to another edge computing
node independently of the other pieces, but it cannot be fur-
ther split (we say that each piece is unsplittable).

The reason for using unsplittable routing in our optimiza-
tion model is twofold: first of all, network slicing in the 5G
architecture should be performed in an isolated manner for
security and privacy reasons, especially for specific cus-
tomer services [6], [9], [10]. Hence, considering unsplittable
routing is, in practice, reasonable. Second, this choice is ben-
eficial to reduce the complexity of our optimization problem
since splitting the traffic across edge nodes could signifi-
cantly increase the complexity without a strong justification,
especially for the kind of user services mentioned above
(with security and privacy requirements). In general, we
consider that the user traffic or the virtual operator traffic
passes through a predefined set of nodes along a given
(unique) path, like a given chain of nodes providing services
to the user/virtual provider.

Each link l 2 L may carry different traffic pieces, akn
i (we

denote by akn
i the percentage of traffic kn processed at node

i, and with bkn
i the percentage of computation capacity Si

sliced for traffic kn). Then, the traffic flow kn on l, fkn
l , can

be expressed as the sum of all pieces of traffic that pass
through such link

fknl ¼
X

i2E: l2Rkn
i

akn
i ; 8k; 8n; 8l; (6)

where Rkn
i � L denotes a routing path (set of traversed

links) for the traffic piece akn
i �kn from ingress k to node i.

The following constraint ensures that the total traffic on
each link does not exceed its capacity

Bij >
X
k2K

X
n2N

fkn
ij �

kn; 8ði; jÞ 2 L: (7)

The traffic flow conservation constraint is enforced by the
following constraint:

X
j2I i

fkn
ji �

X
j2Oi

fkn
ij ¼ akn

i � 1; if i ¼ k;
akn
i ; otherwise;

�
8k; 8n; 8i;

(8)

where I i ¼ fj 2 E j ðj; iÞ 2 Lg and Oi ¼ fj 2 E j ði; jÞ 2 Lg
are the set of nodes connected by the incoming and outgo-
ing links of node i, respectively. The fulfillment of this con-
straint guarantees continuity of the routing path. Moreover,
the routing pathRkn

i should be acyclic.
To sumup,we consider at each ingress node aggregates of

traffic, each corresponding to a type of traffic/service; an
aggregate of type n at ingress node k has a total rate �kn. We
split such aggregate (only) at ingress node k into several
pieces fakn

i �kn; i 2 Eg, where akn
i represents the percentage

of traffic kn processed at node i. We then determine for each
piece akn

i �kn a single path Rkn
i between ingress node k and

edge node i. Note that akn
i may be null for some edge nodes i

and the selection of processing nodes depends, among other
factors, on latency constraints specified in the next section
since not all nodes are used to process a given traffic. In prac-
tice, since we deal with large aggregates, each single demand
inside the aggregate follows a single path, (since it largely
“fits” in the fraction of traffic that follows a single path).

4.2 Latency Components

The latency in each ingress edge node is modeled as the
sum of the wireless network latency and the outsourcing latency
which, in turn, is composed of the processing latency in some
edge cloud and then link latency between edge clouds.

Wireless Network Latency. We model the transmission of
traffic in each user ingress point as an MjMj1 processing
queue. The wireless network latency for transmitting the user
traffic of type n from ingress point k, denoted by tknW , can
therefore be expressed as

tknW ¼ 1

ckn � �kn
; 8k; 8n; (9)

where ckn is the capacity of the network slice allocated for
traffic kn in the ingress edge network (a decision variable in
our model) and �kn is the traffic rate. The following con-
straints ensure that the capacity of all slices does not exceed
the total capacity Ck of each ingress edge node, and ckn is
higher than the corresponding �kn valueX

n2N ckn4Ck; 8k; (10)

�kn < ckn; 8k; 8n: (11)

Processing Latency. We assume that each type of traffic
can be segmented and processed on different edge clouds,
and each edge cloud can slice its computation capacity to
serve different types of traffic from different ingress nodes.
As introduced before, we indicate with akn

i the percentage
of traffic kn processed at node i, and with bkn

i the percentage
of computation capacity Si sliced for traffic kn. The process-
ing of user traffic is described by an MjMj1 model. Let tkn;iP

denote the processing latency of edge cloud i for traffic kn.
Then, based on the computational capacity bkni Si sliced for
traffic kn, with an amount akn

i �kn to be served,
8k; 8n; 8i; tkn;iP is expressed as:

tkn;iP ¼
1

bkn
i

Si�akn
i

�kn
; if akn

i > 0;

0; otherwise:

(
(12)

624 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

In the above equation, when traffic kn is not processed on
edge cloud i, the corresponding value is 0; at the same time,
no computation resource of i should be sliced to traffic kn
(i.e., bkn

i ¼ 0). The corresponding constraint is written as

akn
i �kn < bkn

i Si; if akn
i > 0;

akn
i ¼ bkn

i ¼ 0; otherwise:

�
(13)

akn
i and bkn

i also have to fulfill the following consistency
constraints: X

i2E a
kn
i ¼ 1; 8k; 8n; (14)

X
k2K

X
n2N bkn

i 41; 8i: (15)

Link Latency. Let tkn;iL denote the link latency for routing
traffic kn to node i. In each ingress node, the incoming traf-
fic is routed in a multi-path way, i.e., different types or
pieces of the traffic may be dispatched to different nodes
via different paths. 8k; 8n; 8i, tkn;iL is defined as

tkn;iL ¼
P

l2Rkn
i

1

Bl�
P

k02K
P

n02N fk
0n0

l
�k

0n0 ; if akn
i > 0& i 6¼ k;

0; otherwise:

(

(16)

Recall that Rkn
i is a routing path for the traffic piece akn

i �kn

from ingress k to node i. The link latency is accounted for
only if a certain traffic piece is processed on node i (i.e.,
akn
i > 0) and i 6¼ k.
Total Latency. Now we can define the outsourcing latency

for traffic kn, which depends on the longest serving time
among edge clouds

tknPL ¼ max
i2E

ftkn;iP þ tkn;iL g; 8k; 8n: (17)

The latency experienced by each type of traffic coming from
the ingress nodes, can therefore be defined as tknW þ tknPL, and
also should respect the tolerable latency requirement

tknW þ tknPL4tn; 8k; 8n: (18)

For each traffic type n, we consider the maximum value
among different ingress nodes with respect to the wireless
network latency and outsourcing latency, i.e., maxk2KftknW þ
tknPLg. Then, we define the total latency as follows:

T ¼
X
n2N

max
k2K

ftknW þ tknPLg: (19)

The way we model latency and delay is aligned with
other approaches in the literature. The work of Ma et al. [11]
presents a system delay model which has the same compo-
nents adopted in our paper; the communication delay in the
wireless access is modeled as in our work (using an
MjMj1-like expression). Moreover, this work also assumes
that traffic is processed across a subset of computing nodes
and the service time of edge hosts and cloud instances are
exponentially distributed, hence the service processes of
mobile edge and cloud can be modeled as MjMj1 queues in
each time interval. The same assumption is made in [12]. In

[13], the authors assume that both the congestion delay and
the computation delay at each small-cell Base Station (by
considering a Poisson arrival of the computation tasks) can
be modeled as an MjMj1 queuing system; the work in [14]
assumes that the baseband processing of each Virtual
Machine (VM) on each User Equipment packets can be
described as an MjMj1 processing queue, where the service
time at the VM of each physical server follows an exponen-
tial distribution. Finally, the works [15], [16], [17], [18] also
adopt similar choices concerning the delay modeling.

4.3 Optimization Problem - JPSNC

Our goal in the Joint Planning and Slicing of mobile Network
and edge Computation resources (JPSNC) problem is to mini-
mize the total latency and the operation cost, under the con-
straints of maximum tolerable delay for each traffic type
coming from ingress nodes and the total planning budget
for making available processing-capable nodes

P0 : min
ckn;bkn

i
;akn
i

;

bkn
i

;da
i
;Rkn

i

T þ wJ;

s.t. ð1Þ � ð19Þ;

where w � 0 is a weight that permits to set the desired bal-
ance between the total latency and operation cost. Problem
P0 contains both nonlinear and indicator constraints, there-
fore, it is a mixed-integer nonlinear programming (MINLP)
problem, which is hard to be solved directly [4], as dis-
cussed in Section 4.4.

We observe that we can give priority to one component
of the objective function (latency T or operational cost J)
with respect to the other by setting the weight w. This is
obtained by setting w such that (if T is privileged) improv-
ing latency is preferred even if this increases the operational
cost of the planned network at its maximum (a similar rea-
soning is applied if the cost J is privileged over T).

To this aim, we first compute the bounds for the values of
T and J approximately as follows:

1) minðkiÞ �
P

�kn4J4maxðkiÞ � P ;
2) jN j � ð 1

maxðCkÞ þ
1

maxðDaÞÞ < T4
P

tn.

For the lower bound of J ¼ Pðki � SiÞ5minðkiÞ �
PðSiÞ,

we observe that the total computation power should cover
the total traffic rate, to avoid infeasibility, hence we have:
minðkiÞ �

P
�kn. For computing the bounds of T , we use its

definition and the tolerable latency to get the upper bound,
while for the lower bound, we use the definitions (wireless
latency and computation latency, for link latency, we get 0
due to the lower bound) and let the denominators reach the
maximum. The values of w that enforce the desired priority
in the optimization process can therefore be computed as
wL ¼ Tmin

Jmax
and wU ¼ Tmax

Jmin
.

4.4 JPSNC Reformulation

Problem P0 formulated in Section 4 cannot be solved
directly and efficiently due to the following reasons:

� We aim at identifying the optimal routing (the rout-
ing path Rkn

i is a variable in our model, since many
paths may exist from each ingress node k to a generic

XIANG ETAL.: JOINT PLANNING OF NETWORK SLICING AND MOBILE EDGE COMPUTING: MODELS AND ALGORITHMS 625

node i in the network); furthermore, we must ensure
that such routing is acyclic and ensures continuity
and unsplittability of traffic pieces.

� Variables Rkn
i and akn

i are reciprocally dependent: to
find the optimal routing, the percentage of traffic
processed at each node i should be known, and at
the same time, to solve the optimal traffic allocation,
the routing path should be known.

� The processing latency, defined in the previous sec-
tions, depends on three decision variables in our
model and the corresponding formula (12) is (highly)
nonlinear.

� P0 contains indicator functions and constraints, e.g.,
(12), (13), (16), which cannot be directly and easily
processed by most solvers.

To deal with the above issues, we propose an equivalent
reformulation of P0 (called Problem P1), which can be
solved very efficiently with the Branch and Bound method.
Moreover, the reformulated problem can be further relaxed
and, based on that, we propose in the next section an heuris-
tic algorithm which can get near-optimal solutions in a
shorter computing time. More specifically, in P1, we first
reformulate the processing latency and link latency con-
straints (viz., constraints (12) and (16)), and we deal, at the
same time, with the computation planning problem. Then,
we handle the difficulties related to variables Rkn

i and the
corresponding routing constraints. Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCC.2021.3107022,
contains all details about the problem reformulation. Since
some constraints are quadratic while the others are linear,
P1 is a mixed-integer quadratically constrained program-
ming (MIQCP) problem, for which commercial and freely
available solvers can be used, as we will illustrate in the
numerical evaluation section.

5 HEURISTICS

Hereafter, we illustrate our proposed heuristic, named
Neighbor Exploration and Sequential Fixing - NESF, which pro-
ceeds by exploring and utilizing the neighbors of each
ingress node for hosting (a part of) the traffic along an objec-
tive descent direction, that is, by trying to minimize the objec-
tive function (which, we recall, is a weighted sum of the
total latency and operation cost). During each step where
we explore potential candidates for computation offloading,
we partially fix the main binary decision variables in the
reformulated problem P1 and then solve the so-reduced
problem by using the Branch and Bound method. Our
exploring strategy provides excellent results, in practice,
achieving near-optimal solution in many network scenarios,
as we will illustrate in the Numerical Results Section.

The detailed exploring strategy is illustrated in Fig. 3,
which shows three typical variation paths of the objective
function value versus the number of computing nodes
made available in the network (note that these 3 trends are
independent from each other, in the sense that either of
them, or a combination of them, can be experienced in a
given network instance). Point A represents the stage where
a minimum required number of computing nodes (xA) is
opened to ensure the feasibility of the problem. For instance,

if the ingress nodes can host all the traffic under all the con-
straints, xA ¼ jKj. Point E indicates the maximum number
of computing nodes that can be made available in the net-
work; any point above xE will violate the computation bud-
get or tolerable latency constraints.

During the search phase of our heuristic, which is exe-
cuted in Algorithms 1 and 3, detailed hereafter, we first try
to obtain (or get as closer as possible to) point A and the cor-
responding objective value yA. If A can not be found within
the computation budget, the problem is infeasible. Other-
wise, we continue to explore computation candidates from
the h-hop neighbors of each ingress node, and allocate them
to serve different types of traffic. The objective value is
obtained by solving P1 with new configurations of the deci-
sion variables. The change of the objective value may hence
exhibit one of the three patterns (I, II and III) illustrated in
Fig. 3.

The objective value increases monotonically in path I. In
path II, it first decreases to point C then increases to
point E; finally, path III shows a more complex pattern
which has one local maximum point B and one minimum
point D. In case I, the network system has just enough com-
putation power to serve the traffic. Hence, adding more
computation capacity to the system does not guarantee to
decrease delay, while it will increase on the other hand com-
putation costs. In case II, few ingress nodes in the system
may support a relatively high traffic load. Equipping some
of their neighbors with more computation capabilities (with
total amount less than xC) can still decrease the total system
costs. After point C, the objective value shows a similar
trend to case I. In case III, several ingress nodes may serve
high traffic load. At the beginning, adding some computing
nodes (with total amount less than xB) may be not enough
to decrease the delay costs to a certain degree, and this will
also increase the total installation costs. After point B, the
objective value varies like in case II and has a minimum at
pointD.

To summarize, our heuristic aims at reaching the mini-
mum points A (I), C (II) and D (III) in Fig. 3, and its flow-
chart is shown in Fig. 4. The main idea behind Algorithm 1
is to check whether the ingress nodes can host all the traffic
without activating additional MEC units, thus saving some
computation cost. Algorithm 2 aims at searching the h-hop
neighbors of each ingress node for making them process
part of the traffic (the outsourced traffic), while Algorithm 3
aims at setting up the allocation plan for outsourced traffic
and try to solve P1 to obtain the best solution. The three

Fig. 3. Three typical variations of the objective function value versus the
number of computing nodes made available.

626 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

http://doi.ieeecomputersociety.org/10.1109/TCC.2021.3107022
http://doi.ieeecomputersociety.org/10.1109/TCC.2021.3107022

proposed algorithms are described into detail in the follow-
ing subsections. The definition of the new notation intro-
duced in these algorithms is summarized for clarity in
Table 2.

5.1 Attempt of Serving Traffic Without Additional
MEC Units

In Algorithm 1, the main idea is to check whether ingress
nodes can host all the traffic, without using other MEC units
in order to save both computation cost and latency. To this
end, we first individuate the subset of ingress nodes
(denoted as Ku) that cannot host all the traffic that enters the
network through them. This is done by checking if Se

k ð¼
Dm �P

n2N �knÞ40 (lines 1-2), that is, if some computing
capacity is still available or not at ingress nodes (recall that
Dm is the maximum computation capacity that can be made
available). Then, if Ku 6¼ ? , 8k 2 Ku, we try to find the set of
its neighbor ingress nodes k0 2 ½ðK � KuÞ \ ð S H

h Gh
kÞ� that

can cover Se
k (i.e., Se

k0 þ Se
k > 0), where Gh

k � E is the set of
node k’s h-hop neighbor nodes (h ¼ 1; . . . ; H). If found, they
are stored as candidates in a list,Qk, ordered with increasing
distance (hop count) from k (lines 3-7). IfKu ¼ ? or sufficient
nodes inQk have been found to process the extra traffic from
Ku (line 9), then 8k 2 Ku, the corresponding traffic is allo-
cated to nodes inQk starting from the top (choosing the clos-
est ones) and repeatedly (covering all the traffic types),
beginningwith less latency tomore latency-tolerant traffic.

This is implemented by setting the corresponding varia-
bles bkni , dai and g

kn;i
l in P1 to save the costs and also acceler-

ate the algorithm. Finally, P1 with the fixed variables is
solved by using Branch and Boundmethod to obtain the solu-
tion (lines 10-11). If P1 is feasible with these settings, the
objective value OP1 is stored to be used in the next searching
and resource allocation phases of Algorithm 3.

Algorithm 1. Attempt of Serving Traffic With Ingress
Nodes Only

1: Se
k ¼ Dm �P

n2N �kn; 8k 2 K;
2: Ku ¼ fk 2 K jSe

k40g;
3: Compute k’s h-hop neighbors Gh

k ; h4H; 8k 2 K;
4: Qk ¼ fkg; 8k 2 K, Ot ¼ �1;
5: for k 2 Ku do
6: X ¼ fk0 2 ½ðK�KuÞ \ ð S H

h Gh
kÞ� jSe

k0 þ Se
k > 0g;

7: Qk ¼ Qk [X , rank Qk by increasing hop count to k;
8: RankN asN k by descending ð�kn; tnÞ; 8k 2 K;
9: if Ku ¼ ? or

V
k2KuðjQkj > 1Þ then

10: Allocate Qk toN k in order and repeatedly, 8k 2 K;
11: Solve P1 by B&B to obtain obj. fct. value OP1;
12: if OP1 > 0 thenOt ¼ OP1;

5.2 Neighbor Search for Computation Candidates

This section describes Algorithm 2, upon which Algorithm
3 is based to provide the final solution. Algorithm 2 pro-
ceeds as follows. We first assign a rank (or a priority value)
to each ingress node taking into account the amount of
incoming traffic and the computation capacity. Then, we
handle the outsourced traffic offloading task (i.e., choose
the best subset of computational nodes) starting from the
ingress node with the highest priority.

Algorithm 2. Priority Searching of Computation
Candidates

1: Rank ingress nodes as Ks by ascending ðSe
k;��knÞ;

2: k̂ ¼ Ksð0Þ; hk ¼ 1; So
k ¼ Se

k ð8k 2 KÞ;Kb
i ¼ ? ð8i 2 EÞ;

3: while j S k2KQkj < b P
minðDaÞc and Ks 6¼ ? do

4: B ¼ ? ;
5: for i 2 ðGh

k̂

k̂
� ½K [Qk̂�Þ do

6: Sl
i ¼ Dm þP

k2Kb
i
Se
k

7: if Sl
i þ Se

k̂
> 0 thenB ¼ B [fig;

8: if B ¼ ? then
9: hk̂þþ, update Ks; k̂when hk̂ > H and continue;
10: Rank B by descending ðSl

i;�dik :k 2 KsÞ, {̂ ¼ Bð0Þ;
11: Qk̂ ¼ Qk̂ [f{̂g; Kb

{̂ ¼ Kb
{̂ [fk̂g; Sb ¼ Dm;

12: for k2Ksnfk̂g, if ð{̂2 S H
h Gh

kÞ& ðSb > �kÞ do
13: Qk ¼ Qk [f{̂g; Kb

{̂ ¼ Kb
{̂ [fkg; Sb ¼ Sb � �k;

14: So
k ¼ So

k þ ðDm þP
k02Kb

{̂
\Ku�fkg S

e
k0 Þ; 8k2Kb

{̂ ;
15: k̂ ¼ argmink2Ks So

k;
16: if So

k̂
40 then continue; else skip :¼ ðSo

k̂
4rDmÞ;

17: Run (Algorithm 3) to obtain Ot;
18: Return Ot;

In more detail, set Ks is set K sorted by the ascending
value of the tuple ðSe

k;��knÞ, i.e., the ingress node with the
lowest estimated available (left) computation Se

k and the
higher amount of traffic of type n has the highest rank/pri-
ority in our Algorithm 2, where n represents the traffic type

Fig. 4. Flowchart of our NESF heuristic.

TABLE 2
Notations Used in the Algorithms

Notation Definition

Se
k Estimated available computation of ingress node

k 2 K
Ku Ingress nodes that cannot host all traffic (Se

k40)
H Maximum searching depth of our heuristic
Gh
k h-hop neighbors (h4H) of ingress node k 2 K

Qk Candidates for computing traffic from ingress
node k 2 K

So
k Overall computation of ingress node k 2 K

Sl
i Maximum left computation of node i 2 E

Kb
i Ingress nodes who booked computation from node

i 2 E
dik Count of hops from node i to ingress node k 2 K
OP Objective function value of problem P

XIANG ETAL.: JOINT PLANNING OF NETWORK SLICING AND MOBILE EDGE COMPUTING: MODELS AND ALGORITHMS 627

having the maximum tolerable latency (lines 1-2). The pro-
cess of determining the best subset of computation nodes
for processing the outsourced traffic of each ingress node is
executed hop-by-hop, starting with ingress node k̂ ¼ Ksð0Þ,
until any one of the following three conditions is satisfied:

1) the number of computation nodes opened for proc-
essing traffic exceeds the maximum budget b P

minðDaÞc,
or

2) all ingress nodes are completely scanned (line 3), or
3) the algorithm could not improve further the solution

(Algorithm 3, lines 8, 10).
In the searching phase, we first try to identify the set of

temporary candidate computation nodes B for ingress k̂
(B � ðGh

k̂

k̂
� ½K [Qk̂�Þ Þ, by checking if the maximum avail-

able computation capacity of i 2 B, Sl
i could help k̂ to

cover Se
k̂

(lines 4-7). Sl
i is computed as the difference

between i’s maximum installable computation capacity
Dm and the total computation booked from i by ingress
nodes in Kb

i � K, i.e.,
P

k2Kb
i
Se
k, where Kb

i is the set of
ingress nodes that booked computation from node i. If
B ¼ ? , we increase the number of hops hk̂ for ingress k̂. If
not (we are done with k̂), we move to the next ingress
node in the set Ks (lines 8-9).

At this point we rank B by descending values of tuple
ðSl

i;�dik :k 2 KsÞ, where dik is the count of hops from node i
to ingress node k 2 Ks. The first computation node {̂ is
selected as the one to compute the traffic of k̂, and k̂ is added
into the corresponding set Kb

{̂ . To make full use of computa-
tion node {̂, we further spread it to help other ingress nodes
Ksnfk̂g, if {̂ is their neighbor within H hops and has suffi-
cient computation budget (lines 10-13). Then, given such
computation node {̂ and for each ingress node k, we update
the value of the overall computation, So

k, due to the full use
of computation nodes {̂ (line 14). Hence, ingress k with the
minimum support So

k will be chosen as the next searching
target and Algorithm 2 continues as follows.

The next searching target k̂ is set to k 2 Ks with the mini-
mum So

k value (lines 15-16). If S
o
k̂
40, this means that the cur-

rent computation configuration could not host all the traffic;
hence, the algorithm will go back to the while loop and con-
tinue to the next searching. Otherwise, we set a flag skip :¼
ðSo

k̂
4 rDmÞwhere r is set to a small value (i.e., 0.1). If skip is

true, it indicates that k̂ has a high traffic load, and this may
cause the processing latency to increase. This flag is used in
Algorithm 3. In fact, this step implements the strategy of
skipping point B to avoid the local minimum (point A) in
path III shown in Fig. 3. Finally, based on Qk, we run Algo-
rithm 3 to obtain the objective value Ot and the correspond-
ing solution.

5.3 Resource Allocation and Final Solution

In Algorithm 3, we first relax problem P1 to ~P1, replacing
binary variables bkni , dai and g

kn;i
l with continuous ones.

Given the set Qk (by Algorithm 2) of candidate computation
nodes for processing the outsourced traffic of ingress
node k, the goal is to allocate node k’s different traffic types
to the computation nodes in Qk starting with the traffic with
the most stringent constraint in terms of latency. Unused
computation nodes are turned off. These two steps (lines 1-
2) provide a partial guiding information and also an

acceleration for solving the relaxed problem, thus obtaining
quite fast the relaxed optimal values of ~bkni .

If ~P1 is infeasible (O~P1 < 0), we check whether both the
previous best solution exists (Ot > 0) and the algorithm
does not skip. If yes, the searching process breaks and
returns Ot (line 10). Otherwise, the algorithm will continue
searching to avoid getting stuck in a local optimum point in
path III (see Fig. 3), according to the following.

Hence, if ~P1 is feasible (line 3), the obtained ~bkni value can
be regarded as the probability of processing traffic kn at
node i. Based on this, for each ingress k, we rank the candi-
dates in descending order of the probabilities

P
n2N ~bkni .

Then we revert to the original problem P1, set the upper
bound for P1 if possible, allocate the candidates to host all
types of traffic in order and repeatedly for each ingress
node, and also turn off the unused nodes (lines 5-7). By
solving P1, we obtain the current solution and compare it
with the previous best one (Ot). If the solution gets worse,
the whole searching process breaks out and returns the
recorded best result (line 8). Otherwise (if the solution is
improving), the current solution is updated as the best one
and the searching process continues.

Algorithm 3. Allocating Resources and Obtaining the
Solution

1: Relax bkni ; dai ; g
kn;i
l to continuous ones (P1 ! ~P1);

2: Allocate Qk toN k partially and solve ~P1 to obtain ~bkni ;
3: if O~P1 > 0 then
4: Rank candidates as Qs

k by descending
P

n2N ~bkni ;
5: Revert to the original problem P1;
6: if Ot > 0 then set Ot as P1’s upper bound;
7: Allocate Qs

k toN k and solve P1;
8: if 0 < Ot&ðOt < OP1jjOP1 < 0Þ&skip then break;
9: if 0 < OP1&ðOP1 < OtjjOt < 0Þ then Ot¼OP1;
10: else if Ot > 0 & skip then break;

5.4 Summary and Acceleration Technique

Essentially, the proposed heuristic described in the above
subsections exploits the P1 formulation limiting the search
space only to the nodes that are within a limited number of
hops h < H from the ingress nodes. We expect this is a real-
istic assumption based on the consideration that the main
purpose of edge networks is to keep the traffic as close as
possible to the ingress nodes and, therefore, to the users.
Thanks to this approach, we are able to make the P1 prob-
lem more tractable and solvable in a short time even in the
case of complex edge networks (see Section 6).

We can further improve the solution time by eliminating
from the problem formulation all unneeded variables. In par-
ticular, we modify P1 by adding a scope k (where k is the
ingress node) to E and L. Ek � E represents the set of h-hop
neighbor nodes (h4H) of k and Lk � L the set of links inside
this neighborhood. This way, the solver will be able to skip
all variables outside the considered k scope, thus reducing
the time needed to load, store, analyze and prune the prob-
lem. Such modification does not change the result produced
by the heuristic but it results in a consistent improvement
(up to 1 order of magnitude) in the computing time needed
to obtain the solution in our numerical analysis.

628 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

6 EVALUATION

The goal of this evaluation is to show that: i) our P1 model
offers an appropriate solution to the edge network optimi-
zation problem we have discussed in this paper, ii) our
NESF heuristic computes a solution which is aligned with
the optimal one, and iii) when compared with two bench-
mark heuristics, Greedy and Greedy-Fair, NESF offers better
results within similar ranges of computing time.

Consistently, the rest of this section is organized as fol-
lows: Section 6.1 describes the heuristics we have com-
pared with; Section 6.2 presents the network topologies
we have considered in the experiments; Section 6.3
describes the setup for our experiments; Section 6.4 dis-
cusses about optimal solution and the results obtained by
the heuristics in the small network scenario presented in
Section 3; Section 6.5 analyzes the results achieved by the
heuristics when the network parameters vary; Finally,
Section 6.6 discusses about the computing time needed to
find a solution.

6.1 Benchmark Heuristics

We propose two benchmark heuristics, based on a greedy
approach, which can be naturally devised in our context:

Greedy. With this approach, each ingress node uses its
neighbor nodes computation facilities to guarantee a low
overall latency for its incoming traffic. Hence, each ingress
node first tries to locally process all incoming traffic. If its
computation capacity is sufficient, a feasible solution is
obtained; otherwise, the extra traffic is split and outsourced
to its 1-hop neighbors, and so on, until it is completely proc-
essed (if possible).

Greedy-Fair. It is a variant of Greedywhich performs a sort
of “fair” traffic offloading on neighbor nodes. More specifi-
cally, it proceeds as follows: 1) compute the maximum num-
ber of available computing nodes, based on the power
budget and the average computation capacity of a node; 2)

divide such maximum number (budget) into jKj parts
according to the ratio of the total traffic rate among ingress
nodes, and choose for each ingress node the corresponding
number of computing nodes from its nearest h-hop neigh-
bors. Each ingress node spreads its load on its neighbors
proportionally to the corresponding distance (1

hopþ1), for
example, if the load is outsourced to two 1-hop neighbors,
the ratio is ð1 : 12 :

1
2Þ = ð0:5 : 0:25 : 0:25Þ.

6.2 Network Topologies

We experimented with our optimization approach using
multiple network topologies.

6.2.1 Random Graphs

We exploited Erd€os-R�enyi random graphs [19] by specify-
ing the number of nodes and edges. As the original Erd€os-
R�enyi algorithm may produce disconnected random graphs
with isolated nodes and components, to generate a con-
nected network graph, we patched it with a simple strategy
that connects isolated nodes to randomly sampled nodes
(up to 10 nodes) in the graph. We generated several kinds of
topologies with different numbers of nodes and edges,
shown in Fig. 5, that span from a quasi-tree shape topology
(Fig. 5c) to a more general, highly connected one with 100
nodes and 150 edges (Fig. 5f). blackThe structural informa-
tion for all topologies is shown in Table 3. All topology data-
sets are publicly available in our repository.2 These
topologies can be considered representative of various edge
network configurations where multiple edge nodes are dis-
tributed in various ways over the territory. Due to space
constraints, in the following we present and discuss the
results obtained for a representative topology, i.e., the one
in Fig. 5e, as well as those for the small topology of Fig. 2,

Fig. 5. Network topologies. Ingress nodes for each graph are colored in red.

2. https://github.com/bnxng/Topo4EdgePlanning

XIANG ETAL.: JOINT PLANNING OF NETWORK SLICING AND MOBILE EDGE COMPUTING: MODELS AND ALGORITHMS 629

used to compare our proposed heuristics to the optimal
solution. The full set of results is available online.3

6.2.2 A Real Network Scenario

We further considered a real network scenario, with the
actual deployment of Base Stations (BSs) collected from the
open database OpenCellID.4 Specifically, we considered the
“Citt�a Studi” area around Politecnico di Milano and
selected one mobile operator (Vodafone) with 133 LTE cells
falling in such area (see Fig. 6a). The BSs deployment shows
where the BSs are located but it does not show their inter-
connection topology nor where the edge clouds are
deployed. The reader should note that it is not easy to have
access to such piece of information as it is both sensitive for
the mobile operator and in continuous evolution. To the
best of our knowledge, there is no publicly available true
BSs interconnection topology, and for this reason, we
decided to infer one as described below. We performed a
clustering on the LTE cells, as illustrated in Fig. 6b, obtain-
ing 30 clusters. Finally, we generated the network topology
which, as in real mobile scenarios, has a fat tree-like shape
with nodes connecting to other nodes. More specifically,
starting from the cluster centroids, we connected any two
nodes if the distance is lower than a given threshold (800
meters). By doing so, note that some “leaf” nodes become
connected to more than one aggregation node – i.e., a node
that is reached by multiple other nodes – to increase redun-
dancy and hence reliability of the final topology, as it hap-
pens in real networks; finally, we generated the Minimum
Spanning Tree of the geometric graph weighted by the dis-
tance and cluster size, while preserving redundant links.
The resulting topology is illustrated in Fig. 6c; the average
node degree resulting from the above procedure is 2.33 and
edge clouds can be installed in all nodes (as suggested by
5G specifications). The structural information for this topol-
ogy is shown in the last row of Table 3.

6.3 Experimental Setup

We implement our model and heuristics using Solving Con-
straint Integer Programs (SCIP),5 an open-source framework
that solves constraint integer programming problems. All
numerical results presented in this section have been

obtained on a server equipped with an Intel(R) Xeon(R) E5-
2640 v4 CPU @ 2.40GHz and 126 Gbytes of RAM. The
parameters of SCIP in our experiments are set to their
default values.

The illustrated results are obtained by averaging over 50
instances with random traffic rates �kn following a Gaussian
distribution Nðm; s2Þ, where m is the value of �kn shown in
Table 4 and s ¼ 0:1 (we recall that the optimization problem
is solved under the assumption that the traffic shows only
little random variations during the time slot under observa-
tion. For this reason, the choice of a Gaussian distribution is
appropriate). We computed 95percent narrow confidence
intervals, as shown in the following figures.

In Table 4 we provide a summary of the reference values
we define for each parameter for the experiments with the
random topologies. Such values are representative of a sce-
nario with a high traffic load and low tolerable latency rela-
tive to the limited communication and computation
resources. Referring to the computation capacity levels and
budget in Table 4, it is worth noticing that unit “cycles/s” is
often used for these metrics; for simplicity we transform it
into “Gb/s” by using the factor “8bit/1900cycles”, which
assumes that processing 1 byte of data needs 1900 CPU
cycles in a BBU pool [17].

The number of traffic types is set to five. Each traffic type
can be dedicated to a specific application case (e.g., video
transmission for entertainment, real-time signaling, virtual
reality games, audio). Our traffic rates result from the aggre-
gation of traffic generated by multiple users connected at a
certain ingress nodes. We select rate values that can be typi-
cal in a 5G usage scenario and that almost saturate the wire-
less network capacity at the ingress nodes that we assume
to vary from 40 to 60 Gb/s. The tolerable latency for each
traffic type aims at challenging the approach with quite
demanding requirements ranging from 1 to 3.5 ms. More
specifically, the values of traffic rate �kn and tolerable
latency tn are designed to cover several different scenarios,
i.e., mice, normal and elephant traffic load under strict, normal
and loose latency requirements. For simplicity, in this paper
we fix the number of ingress nodes to three. An in-depth
analysis of the impact of the number of ingress nodes on the
performance of the optimization algorithm is the subject of
our future research. To make the problem solution manage-
able, we assume to adopt links of the same bandwidth
(100 Gb/s) that are representative of current fiber connec-
tions. As in the example of Section 3, we assume three possi-
ble levels for the computation capacity (30, 40 and 50 Gb/s),
under the assumption that, as it happens in typical cloud
IaaS, users see a predefined computation service offer. The
maximum computation budget is set to 300 Gb/s, which is
a relatively low value considering the traffic rates we use in
the experiments and the number of available nodes in the
considered topologies. Finally, by assigning the same values
to weights ki; w, we make sure that the two components of
the optimization problem, the total latency and the opera-
tion cost, have the same importance in the identification of
the solution.

In the network scenario of Section 6.2.2, we set the net-
work capacity of each edge ði; jÞ proportionally to the size
of nodes/clusters to make it scale by a factor K (set accord-
ing to the specific parameters of our network scenario

TABLE 3
Structural Information of the Topologies Used in the

Experiments

Topology #Node #Edge #Ingress Degree (Min, Max, Avg) Diameter

10N20E 10 20 2 ð3:0; 5:0; 4:0Þ 3

20N30E 20 30 3 ð1:0; 5:0; 3:0Þ 6

40N60E 40 60 3 ð1:0; 7:0; 3:0Þ 8
50N50E 50 50 3 ð1:0; 4:0; 2:0Þ 15
60N90E 60 90 3 ð1:0; 6:0; 3:0Þ 7

80N120E 80 120 3 ð1:0; 6:0; 3:0Þ 9

100N150E 100 150 3 ð1:0; 7:0; 3:0Þ 9
Citt�a Studi 30 35 6 ð1:0; 6:0; 2:3Þ 10

3. http://xiang.faculty.polimi.it/files/SupplementaryResults.pdf
4. https://www.opencellid.org
5. http://scip.zib.de

630 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

https://www.opencellid.org

to 12.5, more precisely using expression 12:5�
maxn2fi;jgf#fNodegng) so that, as in real mobile access net-
works, it can accommodate aggregate traffic coming from
edge/leaf nodes to aggregation nodes. Finally, we select 6
ingress nodes (marked by gray shadow in Fig. 6c), and the
traffic rates in Table 4 are correspondingly duplicated from
3 to 6, while the planning budget is increased to P ¼
600Gb=s for this scenario.

On such topology, we run the numerical experiments,
and the results show very similar trends as those illustrated
in Fig. 10. In Fig. 7 we chose a subset of the results (the
objective function value of our optimization model)
obtained by scaling the link bandwidth Bl and the computa-
tion capacity D3 (those for the network capacity Ck are
shown in Fig. 12c).

6.4 Analysis of the Optimization Results for a Small
Network

We first compare the results obtained by our proposed heu-
ristic, NESF, against the optimum obtained solving model
P1 in the simple topology illustrated in Fig. 2, Section 3.
Note that the original model could be solved only in such a
small network scenarios due to a very high computing time.
In Fig. 8 we show the variation of the objective function (the
sum of total latency and operation cost) with respect to two
parameters, the network capacity Ck and the weight w in
the objective function. In these cases, it can be observed that
NESF obtains near-optimal solutions, practically overlap-
ping with the optimum curve, for the whole range of the
parameters, while both Greedy and Greedy Fair perform
worse. The results achieved when the other parameters
vary show the same trend. For the sake of space, we do not

show them, but they are reported in the supplementary
results available here.3

Fig. 9 shows the configuration of nodes and routing
paths for the network (10N20E) with the parameter values
defined in Section 3. Each sub-figure refers to one of the
four considered solutions. Here we highlight the ingress
nodes (i.e., 3 and 5) and the other nodes which offer compu-
tation capacity or support traffic routing. The remaining
nodes are not shown for the sake of clarity. The black
arrows represent the enabled routing paths. The traffic flow
allocation of each solution is marked in red for traffic type 1
and blue for type 2, respectively. The values of all relevant
decision variables (see Section 4) are shown as well.

Comparing Figs. 9a and 9c, we notice that both Optimal
and NESF enable the computation capacity on the ingress
nodes and an intermediate node, with one type of traffic
kept in the ingress nodes and the other offloaded to the
intermediate. The obvious differences between Optimal and
NESF include: i) planning of the computation capacity on
ingress node 3 (i.e., D1 by Optimal while D2 by NESF), and
ii) the intermediate node selected and the consequent rout-
ing paths. However, the obtained objective function values
(trade-off between the total latency and operation cost) by

Fig. 7. Selected numerical results for citt�a studi topology.

Fig. 8. Comparison with the optimum varying two selected parameters
(Ck and w) in the example network scenario 10N20E of Fig. 2.

Fig. 6. Citt�a Studi topology with 30 nodes, 35 edges and 6 ingress nodes (marked with gray shadow).

TABLE 4
Parameters Setting - Initial (Reference) Values (for the Case of

High Traffic Load With Low Tolerable Latency)

Parameter Initial value

Link bandwidth Bl (Gb/s) 100 (l 2 L)
Network capacity Ck (Gb/s) 60; 50; 40 (k 2 K)
Computation levelDa (Gb/s) 30; 40; 50 (a 2 A)
Computation budget P (Gb/s) 300

Traffic rate �kn (Gb/s)
5 20 7 9 15
16 4 12 8 6
7 9 3 12 5

2
4

3
5 (K	N)

Tolerable latency tn (ms) 1; 1:5; 2; 3; 3:5 (n 2 N)
Weights ki; w 0:1; 0:1 (i 2 E)

XIANG ETAL.: JOINT PLANNING OF NETWORK SLICING AND MOBILE EDGE COMPUTING: MODELS AND ALGORITHMS 631

Optimal and NESF are respectively 2.25 and 2.28, and very
close to each other. To further check the reasons behind, we
found that the latencies for the traffic of type 1 and 2 are,
respectively, 0:49ms and 0:55ms for Optimal, while 0:50ms
and 0:47ms for NESF. Since in this case NESF can acquire
less total latency at the expense of a little bit higher compu-
tation cost, compared with Optimal, their corresponding
objective function values are close. Note that the computing
time needed to obtain the optimal solution is around 10
hours (35724 seconds) while NESF is able to compute the
approximate solution in only about 1 second.

The Greedy and Greedy-Fair approaches tend to enable
computation capacity on more nodes. Greedy-Fair also splits
each type of traffic following multiple paths. Both aspects
result in a higher objective function value.

When increasing the network capacity Ck by the scale
factor 1.2, the resulting solutions remain almost the same,
except for the allocation of the wireless network capacity
and computation capacity.

6.5 Analysis of the Heuristic Results for Larger
Networks

We investigate the effect of several parameters on the objec-
tive function value, with respect to link bandwidth Bl, net-
work capacity Ck, computation capacity Da and
corresponding total budget P , traffic rate �kn, tolerable
latency tn and trade-off weight w. We conduct our simula-
tions by scaling one parameter value at a time, starting from
the initial values in Table 4. Since the goal is to minimize the
weighted sum of total latency and operation cost, lower val-
ues for the objective function are preferable.

In Fig. 10 we report all results referring to the topology
with 80 Nodes and 120 links (Fig. 5e). All results obtained
considering the other topologies in Fig. 5 are available here3

and show similar trends.

6.5.1 Effect of the Link Bandwidth Bl

Fig. 10a illustrates the variation of the objective function
value (costs w.r.t. latency and computation) versus the link
bandwidth Bl; 8l 2 L, the values of which are scaled with
respect to its initial ones in Table 4 from 0 to 1.0 with a step
of 0.05. In all cases, the problem instance is unfeasible below
a certain threshold bandwidth value. As Bl increases above
the threshold, the cost value achieved by each approach

decreases and converges to a smaller value, i.e., around 9.7
for NESF (achieved at 0.9), 10.84 for Greedy at 0.3 and 11.48
for Greedy-Fair at 0.4. In all cases, NESF performs the best
among all the approaches, with the following gains: around
11 percent to Greedy and 16 percent to Greedy-Fair. Greedy
and Greedy-Fair show little flexibility to the variation of link
bandwidth.

6.5.2 Effect of the Wireless Network Capacity Ck

Fig. 10b demonstrates the variation of the objective function
value with respect to the wireless network capacity Ck; 8k 2
K, scaledwith respect to the initial values reported in Table 4
from 1.0 to 2.0, which corresponds to the case in which the
wireless network shows a capacity comparable to the one of
the internal network links. When Ck increases, the objective
function value obtained by each approach decreases quite
fast (more than 2 times) and converges to a specific value.
ForNESF, the cost decreases from 9.70 and converges to 3.73;
Greedy and Greedy-Fair exhibit close performance, i.e., Greedy
from 10.84 to 4.45, Greedy-Fair from 11.48 to 4.76. NESF still
has the best performance among all the approaches, with
consistent gaps: around 16 percent to Greedy and up to 22
percent for Greedy-Fair. This trend reflects the strong effect of
the wireless network capacity increase on the minimization
of the overall system cost and performance.

6.5.3 Effect of the Computation Capacity Budget P

Fig. 10c shows the trend of the objective function value at
the variation of the computation capacity budget P , whose
value is scaled with respect to the initial one in Table 4 from
0.5 to 1.0 with a step of 0.0125. Clearly, a low power budget
challenges the optimization approach that must ensure the
available computation capacity is always within this bud-
get. The figure shows that each heuristic has a limit budget
value below which it is unable to find a feasible solution
(0.738 for Greedy-Fair, 0.675 for Greedy and 0.60 for NESF).
Thus, NESF is the most resilient in this case. As P increases,
the cost values obtained by NESF and Greedy monotonically
decrease like staircases, and finally fast converge to specific
points, i.e., 9.70 for NESF and 10.84 for Greedy. The staircase
pattern is due to the fact that the optimal solution remains
constant when P varies in a small range, and the decreasing
trend is also consistent with the real world case. However,
the cost value for Greedy-Fair exhibits an opposite trend.

Fig. 9. Comparison of the solutions achieved by the heuristics and the optimum for the 10N20E topology.

632 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

This is due to its strategy that tries to use the maximum
number of nodes that the budget P can cover, and distribute
the traffic load on all of them. This scheme, thus, results in a
waste of computation capacity and cost increase in some sit-
uations. Finally, NESF still achieves the best performance,
with the following gaps: around 11 percent to Greedy and 16
percent to Greedy-Fair.

6.5.4 Effect of the Computation CapacityDa

Figs. 10d, 10e, and 10f illustrate the variations of the objec-
tive function value with respect to the three levels of com-
putation capacity Da, which are scaled from 0.8 to 1.2 w.r.t.
the initial values in Table 4 with a step of 0.01, still keeping
the relation D1 < D2 < D3. In Figs. 10d and 10e, the objec-
tive function values obtained by the three approaches show
very small variation when the computation capacity is
scaled. In Fig. 10f, there is a clear decreasing trend for the
objective function values achieved by both Greedy and
Greedy-Fair. The reason is that many edge nodes are enabled
with the D3 computation level, and the increased D3 capac-
ity reduces much of the total latency while not adding
much operation cost. The objective function value achieved
by NESF, on the other hand, almost does not change. To
summarize, NESF could provide better and more stable sol-
utions, compared with the other approaches.

6.5.5 Effect of the Traffic Rate �kn

Fig. 10g shows the objective function value variation versus
the traffic rate. Values �kn; kn 2 K 	N are scaled from 0.5 to
1.0 with respect to the initial value in Table 4, with a step
of 0.025. As traffic �kn increases, the objective function values
for all the approaches increase.Weobserve thatNESF is char-
acterized by a smooth curve, which indicates stability in the
solving processing, while both Greedy and Greedy-Fair exhibit
larger fluctuations. When the scale is 40:55, i.e., the traffic
rate is relatively low, the cost values for all the approaches are
the same since the best configuration, i.e., locally computing
of the traffic, is easily identified by all of them.After that point,
NESF exhibits a better performance with a clear gap (around
14 percent) with respect to the other approaches.

6.5.6 Effect of the Tolerable Latency tn
Fig. 10h illustrates the objective function value with respect
to the tolerable latency tn; n 2 N scaled from 1.0 to 1.5 on
the initial value in Table 4. When tn increases, the objective
function values obtained by all the approaches decrease
and converge to specific points, i.e., around 9.48 for NESF,
10.15 for Greedy, and finally 10.64 for Greedy-Fair. Parameter
tn serves in our model as an upper bound (see constraint
(18)), and limits the solution space. In fact, with a low tn
value, the feasible solution set is smaller and the total cost

Fig. 10. Numerical results for the large-scale network topology Fig. 5e, 80N120E (averaged over 50 instances).

XIANG ETAL.: JOINT PLANNING OF NETWORK SLICING AND MOBILE EDGE COMPUTING: MODELS AND ALGORITHMS 633

increases, and vice versa. Finally, NESF performs the best,
with the following gaps: around 7 percent with respect to
Greedy, and 11 percent to Greedy-Fair.

We further considered more stringent scenarios where
we extended the scaling range of the tolerable latency, tn,
from 0.75 to 1.5. The results are shown in Fig. 11, and are
related to the Citt�a Studi topology (see Fig. 6c) and show
that, when latency requirements are very stringent (the left
part in these figures) the total cost of the network planned
to accommodate such stringent requirements sharply
increases (see Fig. 11c). Please also note that, for some of
these extreme values of the scaling parameter, the Greedy
and Greedy-Fair benchmark algorithms were unable to find
a feasible solution, while our proposed heuristics (NESF) is
always able to find a solution.

6.5.7 Effect of the Trade-Off Weight w

This parameter permits to express, in the objective function
computation, the relevance of the overall operation cost
with respect to the total latency experienced by users.
Lower values of w correspond to a lower relevance of the
operation cost w.r.t. latency. In Fig. 10i w is changed from 0
to 1.0 with a step of 0.05. When w ¼ 0, the optimization
focuses almost exclusively on the total latency. As w
increases, the objective function values increase almost line-
arly for all the approaches. The NESF algorithm still
achieves the best performance, with gaps around 7 percent
with respect to Greedy and 16 percent w.r.t. Greedy-Fair.

Hereafter we present (Table 5) numerical results
obtained in the “Citt�a Studi” topology, to illustrate the
impact of the trade-off weight w. Following the setting of
the weight parameter w discussed in Section 4.3, which per-
mits to privilege the optimization of the network cost J or
the delay T , we obtain in this scenario (based on the

parameters values), wL
 0:003 and wU
 0:4. For simplic-
ity, we select three values for w (viz., 0.003, 0.1, 0.4) to give
different priorities to the overall latency and planning cost.

Let us analyze the results for scaling network capacity Ck

as an example. If we set w ¼ 0:003, thus giving priority in
the optimization to the minimization of the experienced
overall latency T , we see that such value is, in average, 2.07,
while the cost of the planned network J is 47.08. In this
case, we tend to plan costlier networks but we can satisfy
more stringent latency requirements of users. If on the other
hand we set w ¼ 0:4, thus privileging cost minimization and
then reducing latency as second step, we observe that, in
average, the latency T is 2.92 while the average cost of the
planned network J is 37.00. By comparing these two
extreme situations we observe that the latency increases of
41 percent, passing from the first scenario to the second,
while in parallel the cost reduces of about 21 percent.
Finally, Fig. 12 shows for completeness the whole set of
results, that is, the objective function value for the three w
settings considered in the previous Table, and for all Ck

scaling factors.

6.5.8 Robustness Analysis

In the same scenario illustrated in Section 3, we further
quantify the robustness of our proposed model and algo-
rithms. To this aim, we increase the traffic from one ingress
node (�n5;t2) first from 35 to 36Gb=s and then from 35 to
40Gb=s. In both cases, the original scenario, with �n5;t2 ¼
35Gb=s, is denoted by the symbol “�” in Tables 6 and 7,
while the changed one is denoted by “�”.

We compare the solutions computed by three
approaches, where Optimal solves the problem optimally,
NESF is the solution provided by our heuristic, �NESF rep-
resents the solution computed for the original instance (�)
by directly applying it to the changed one (�). The Margin
row is computed as �NESF - NESF. We observe that �NESF
can directly provide a feasible solution also for the modified
scenario with �n5;t2 ¼ 36Gb=s, very close to the original one
in terms of objective function value.

In the second scenario, since traffic increases more con-
sistently (from 35 to 40 Gb/s), we consider a further
approach (named M�NESF) to avoid the infeasibility that
can be experienced when applying directly, as �NESF does,
the solution computed for the original instance (�) to the
changed one (�). Indeed, all allocation and routing solutions
taken for the original problem are still valid (including deci-
sions ckn; bkni ; akn

i ; bkn
i and also routing path Rkn

i), and we

Fig. 11. Scaling tolerable latency tn from 0.75 to 1.5, citt�a Studi topology.

TABLE 5
Impact of the Weight w (Solution Computed by the NESF

Heuristic)

w T þ wJ T J

Scaling link bandwidth
Bl (factor 0.6)

0.003 8.15 8.01 47.76
0.1 12.58 8.43 41.57
0.4 24.35 9.18 37.94

Scaling network capacity
Ck (factor 1.5)

0.003 2.21 2.07 47.08
0.1 6.60 2.86 37.47
0.4 17.72 2.92 37.00

634 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

just need to re-optimize planning decisions of computation
capacity levels dai . This permits to avoid infeasibility and to
obtain very good solutions: in this scenario the objective
function of Optimal is 2.415, NESF 2.479 and M�NESF 2.524,
just 1.8 percent higher than NESF.

6.6 Computing Time

Fig. 13 compares the average computing time of the pro-
posed approaches under all considered network topologies.
The computing time for P1 is shown only for the smallest
topology and it is already significantly larger than the
others. For the tree-shaped network topology (Fig. 5c), all
approaches are able to obtain the solution very fast, in less
than 10s. This is due to the fact that routing optimization is
indeed trivial in such topology. The computing time is
ordered as: Greedy<NESF<Greedy-Fair. When considering
standard deviation, the order is: NESF<Greedy<Greedy-
Fair, and this shows the stability of our proposed approach
in the solving process. As for the network topology with 100
nodes and 150 edges (a general large scale network), NESF
is able to obtain a good solution in around 100s, and
remains below this value in the other considered cases. This
gives us an indication that the network management

component can periodically run NESF as a response to
changes in the network or in the incoming traffic, and opti-
mize nodes computation capacities and routing paths
accordingly. This is a key feature for providing the neces-
sary QoS levels in next-generation mobile network architec-
tures and for updating it dynamically.

7 RELATED WORK

Several works have been recently published on the resource
management problem in a MEC environment; most of them
consider a single mobile edge cloud at the ingress node and
do not account for its connection to a larger edge cloud net-
work [20], [21], [22]. The following of this section provides a
short overview on the various areas that are relevant to the
problem we consider. As discussed in the Summary part,
ours is the first approach that considers at the same time
multiple aspects related to the configuration of an edge
cloud network.

Network Planning. The network planning problem in a
MEC/Fog/Cloud context tackles the problems concerning
nodes placement, traffic routing and computation capacity
configuration. The authors in [23] propose a mixed integer
linear programming (MILP) model to study cloudlet place-
ment, assignment of access points (APs) to cloudlets and
traffic routing problems, by minimizing installation costs of
network facilities. The work in [8] proposes a MILP model
for the problem of fog nodes placement under capacity and
latency constraints. [11] presents a model to configure the
computation capacity of edge hosts and adjust the cloud
tenancy strategy for dynamic requests in cloud-assisted
MEC to minimize the overall system cost.

Service/Content Placement. The service and content place-
ment problems are considered in several contexts including,

Fig. 12. Scaling network capacity Ck under different weight w settings.

TABLE 6
Robustness Analysis for Instance 10N20E (�: Original, �n5;t2 ¼

35Gb=s; �: Changed Scenario With �n5;t2 ¼ 36Gb=s)

TABLE 7
Robustness Analysis for Instance 10N20E (�: Original, �n5;t2 ¼

35Gb=s; �: Changed Scenario With �n5;t2 ¼ 40Gb=s)

Fig. 13. Computing time.

XIANG ETAL.: JOINT PLANNING OF NETWORK SLICING AND MOBILE EDGE COMPUTING: MODELS AND ALGORITHMS 635

among others, micro-clouds, multi-cell MEC etc. The work
in [24] studies the dynamic service placement problem in
mobile micro-clouds to minimize the average cost over
time. The authors first propose an offline algorithm to place
services using predicted costs within a specific look-ahead
time-window, and then improve it to an online approxima-
tion one with polynomial time-complexity. An integer lin-
ear programming (ILP) model is formulated in [25] for
serving the maximum number of user requests in edge
clouds by jointly considering service placement and request
scheduling. The edge clouds are considered as a pool of
servers without any topology, which have shareable (stor-
age) and non-shareable (communications, computation)
resources. Each user is also limited to use one edge server.
In [26], the authors extend the work in [25] by separating
the time scales of the two decisions: service placement (per
frame) and request scheduling (per slot) to reduce the oper-
ation cost and system instability. In [27], the authors study
the joint service placement and request routing problem in
multi-cell MEC networks to minimize the load of the cen-
tralized cloud. No topology is considered for the MEC net-
works. A randomized rounding (RR) based approach is
proposed to solve the problem with a provable approxima-
tion guarantee for the solution, i.e., the solution returned by
RR is at most a factor (more than 3) times worse than the
optimum with high probability. However, although it offers
an important theoretical result, the guarantee provided by
the RR approach is only specific to the formulated optimiza-
tion problem. [28] studies the problem of service entities
placement for social virtual reality (VR) applications in the
edge computing environment. [29] analyzes the mixed-cast
packet processing and routing policies for service chains in
distributed computing networks to maximize network
throughput.

The work in [30] studies the edge caching problem in a
Cloud RAN (C-RAN) scenario, by jointly considering the
resource allocation, content placement and request routing
problems, aiming at minimizing the system costs over time.
[31] formulates a joint caching, computing and bandwidth
resources allocation model to minimize the energy con-
sumption and network usage cost. The authors consider
three different network topologies (ring, grid and a hypo-
thetical US backbone network, US64), and abstract the fixed
routing paths from them using the OSPF routing algorithm.

Cloud Activation/Selection. The cloud activation and selec-
tion problems are studied as a way to handle the configura-
tion of computation capacity in a MEC environment. The
authors in [32] design an online optimization model for task
offloading with a sleep control scheme to minimize the long
term energy consumption of mobile edge networks. The
authors use a Lyapunov-based approach to convert the long
term optimization problem to a per-slot one. No topology is
considered for the MEC networks. [33] proposes a model to
dynamically switch on/off edge servers and cooperatively
cache services and associate users in mobile edge networks
to minimize energy consumption. [34] jointly optimizes the
active base station set, uplink and downlink beamforming
vector selection, and computation capacity allocation to
minimize power consumption in mobile edge networks.
[35] proposes a model to minimize a weighted sum of
energy consumption and average response time in MEC

networks, which jointly considers the cloud selection and
routing problems. A population game-based approach is
designed to solve the optimization problem.

Network Slicing. The authors in [36] study the resource
allocation problem in network slicing where multiple
resources have to be shared and allocated to verticals (5G
end-to-end services). [37] formulates a resource allocation
problem for network slicing in a cloud-native network
architecture, which is based on a utility function under the
constraints of network bandwidth and cloud power capaci-
ties. For the slice model, the authors consider a simplified
scenario where each slice serves network traffic from a sin-
gle source to a single destination. For the network topology,
they consider a 6x6 square grid and a 39-nodes fat-tree.

Other Perspectives. Inter-connected datacenters also share
some common research problems with the multi-MEC sys-
tem. The work in [38] studies the joint resource provisioning
for Internet datacenters to minimize the total cost, which
includes server provisioning, load dispatching for delay
sensitive jobs, load shifting for delay-tolerant jobs, and
capacity allocation. [39] presents a bandwidth allocation
model for inter-datacenter traffic to enforce bandwidth
guarantees, minimize the network cost, and avoid potential
traffic overload on low cost links.

The work in [40] studies the problem of task offloading
from a single device to multiple edge servers to minimize
the total execution latency and energy consumption by
jointly optimizing task allocation and computational fre-
quency scaling. In [41], the authors study task offloading
and wireless resource allocation in an environment with
multiple MEC servers. [42] formulates an optimization
model to maximize the profit of a mobile service provider
by jointly scheduling network resources in C-RAN and
computation resources in MEC.

Summary. To the best of our knowledge, our paper is the
first to propose a complete approach that encompasses both
the problem of planning cost-efficient edge networks and
allocating resources, performing optimal routing and mini-
mizing the total traffic latency of transmitting, outsourcing
and processing user traffic, under a constraint of user tolera-
ble latency for each class of traffic. We model accurately
both link and processing latency, using non-linear func-
tions, and propose both exact models and heuristics that are
able to obtain near-optimal solutions also in large-scale net-
work scenarios, that include hundreds of nodes and edges,
as well as several traffic flows and classes.

8 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the problem of jointly planning
and optimizing the resource management of a mobile edge
network infrastructure. We formulated an exact optimiza-
tion model, which takes into accurate account all the ele-
ments that contribute to the overall latency experienced by
users, a key performance indicator for these networks, and
further provided an effective heuristics that computes near-
optimal solutions in a short computing time, as we demon-
strated in the detailed numerical evaluation we conducted
in a set of representative, large-scale topologies, that include
both mesh and tree-like networks, spanning wide and
meaningful variations of the parameters’ set.

636 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

We measured and quantified how each parameter has a
distinct impact on the network performance (which we
express as a weighted sum of the experienced latency and
the total network cost) both in terms of strength and form.
Traffic rate and network capacity have the stronger effects,
and this is consistent with real network cases. Tolerable
latency shows an interesting effect: the lower requirements
on latency (or equivalently: the higher value of tolerable
latency) the system sets, the lower latency and costs the sys-
tem will have. This information can be useful for network
operators to design the network indicators of services. The
computation capacity has relatively smaller effect on the
network performance, compared with the other parameters.
Another key observation that we draw from our numerical
analysis is that as the system capacities (including link
bandwidth, network capacity and computation capacity
budget) increase, the system performance converges to a
plateau, which means that increasing the system capacity
over a certain level (which we quantify for each network
scenario) will have small effectiveness, and on the contrary,
it will increase the total system cost.

Finally, we observe that our models can be extended
within the theoretical framework of stochastic optimization,
which can be used to guarantee robustness of the solution
with respect to the uncertainty in the probabilistic descrip-
tion of traffic demands. Possible extensions of our model
could further include explicit modeling of resource scaling
across clusters, of VM state and storage synchronization as
well as IaaS internal traffic across edge facilities.

ACKNOWLEDGMENTS

This work was supported in part by the H2020-MSCA-ITN-
2016 SPOTLIGHT under Grant 722788 and in part by the
H2020-ICT-2020-1 PIACERE under Grant 101000162.

REFERENCES

[1] W. Xiang, K. Zheng, and X. S. Shen, 5G Mobile Communications.
Cham, Switzerland: Springer, 2017.

[2] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C.
Leung, “Network slicing based 5G and future mobile networks:
Mobility, resource management, and challenges,” IEEE Commun.
Mag., vol. 55, no. 8, pp. 138–145, Aug. 2017.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing–A key technology towards 5G,” Sophia Antipolis
CEDEX, France, ETSI White Paper, 2015, [Online]. Available:
https://www.etsi.org/images/files/etsiwhitepapers/
etsi_wp11_mec_a_key_technology_towards_5g.pdf

[4] R. Kannan and C. L. Monma, “On the computational complexity
of integer programming problems,” in Proc. Optim. Operations
Res., 1978, pp. 161–172.

[5] B. Xiang, J. Elias, F. Martignon, and E. Di Nitto , “Joint network
slicing and mobile edge computing in 5G networks,” in Proc. IEEE
Int. Conf. Commun., 2019, pp. 1–7.

[6] L. Geng et al., “Network slicing architecture,” Internet Eng. Task
Force, Fremont, CA, USA, Internet-Draft, 2017.

[7] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-
Perez , “How should I slice my network? A multi-service empiri-
cal evaluation of resource sharing efficiency,” in Proc. 24th Annu.
Int. Conf. Mobile Comput. Netw., 2018, pp. 191–206.

[8] A. Santoyo-Gonz�alez and C. Cervell�o-Pastor, “Latency-aware cost
optimization of the service infrastructure placement in 5G
networks,” J. Netw. Comput. Appl., vol. 114, pp. 29–37, 2018.

[9] R. Rokui et al., “IETF network slice for 5G and its characteristics,”
Internet Eng. Task Force, Fremont, CA, USA, Internet-Draft,
2020.

[10] K. Sparks et al., “5G network slicing whitepaper,” Shenzhen,
China, Huawei, White Paper, 2018. [Online]. Available: https://
transition.fcc.gov/bureaus/oet/tac/tacdocs/reports/2018/5G-
Network-Slicing-Whitepaper-Finalv80.pdf

[11] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. S. Shen, “Cost-
efficient resource provisioning for dynamic requests in cloud
assisted mobile edge computing,” IEEE Trans. Cloud Comput., to
be published, doi: 10.1109/TCC.2019.2903240.

[12] Y. Niu, B. Luo, F. Liu, J. Liu, and B. Li, “When hybrid cloud meets
flash crowd: Towards cost-effective service provisioning,” in Proc.
IEEE Conf. Comput. Commun., 2015, pp. 1044–1052.

[13] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrained mobile edge computing in small-cell
networks,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1619–1632,
Aug. 2018.

[14] P. Luong, F. Gagnon, C. Despins, and L.-N. Tran, “Joint virtual
computing and radio resource allocation in limited fronthaul
green C-RANs,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp.
2602–2617, Apr. 2018.

[15] C.-P. Li, J. Jiang, W. Chen, T. Ji, and J. Smee, “5G ultra-reliable and
low-latency systems design,” in Proc. Eur. Conf. Netw. Commun.,
2017, pp. 1–5.

[16] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi,
“Multiobjective optimization for computation offloading in fog
computing,” IEEE Internet Things J., vol. 5, no. 1, pp. 283–294, Feb.
2018.

[17] J. Tang, W. P. Tay, T. Q. Quek, and B. Liang, “System cost minimi-
zation in cloud RANwith limited fronthaul capacity,” IEEE Trans.
Wireless Commun., vol. 16, no. 5, pp. 3371–3384, May 2017.

[18] B. Zhuang, D. Guo, and M. L. Honig, “Energy-efficient cell activa-
tion, user association, and spectrum allocation in heterogeneous
networks,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 823–831,
Apr. 2016.

[19] P. Erdo��s and A. R�enyi, “On random graphs I,” Publicationes Math-
ematicae Debrecen, vol. 6, pp. 290–297, 1959.

[20] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Trans. Wirel. Commun., vol.
16, no. 8, pp. 4924–4938, Aug. 2017.

[21] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-
edge computing systems,” IEEE Trans. Wirel. Commun., vol. 16,
no. 9, pp. 5994–6009, Sep. 2017.

[22] X. Ma, S. Zhang, W. Li, P. Zhang, C. Lin, and X. Shen, “Cost-effi-
cient workload scheduling in cloud assisted mobile edge
computing,” in Proc. IEEE/ACM 25th Int. Symp. Qual. Serv., 2017,
pp. 1–10.

[23] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network
design optimization,” IEEE/ACM Trans. Netw., vol. 25, no. 3, pp.
1818–1831, Jun. 2017.

[24] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with pre-
dicted future costs,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4,
pp. 1002–1016, Apr. 2017.

[25] T. He, H. Khamfroush, S. Wang, T. La Porta , and S. Stein,
“It’s hard to share: Joint service placement and request sched-
uling in edge clouds with sharable and non-sharable
resources,” in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst.,
2018, pp. 365–375.

[26] V. Farhadi et al., “Service placement and request scheduling for
data-intensive applications in edge clouds,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 1279–1287.

[27] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile
edge computing networks,” in Proc. IEEE Conf. Comput. Commun.,
2019, pp. 10–18.

[28] L. Wang, L. Jiao, T. He, J. Li, and M. M€uhlh€auser, “Service entity
placement for social virtual reality applications in edge computing,”
in Proc. IEEEConf. Comput. Commun., 2018, pp. 468–476.

[29] J. Zhang, A. Sinha, J. Llorca, A. Tulino, and E. Modiano, “Optimal
control of distributed computing networks with mixed-cast traffic
flows,” in Proc. IEEE Conf. Comput. Commun., 2018, pp. 1880–1888.

[30] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online
resource allocation, content placement and request routing for
cost-efficient edge caching in cloud radio access networks,” IEEE
J. Sel. Areas Commun., vol. 36, no. 8, pp. 1751–1767, Aug. 2018.

XIANG ETAL.: JOINT PLANNING OF NETWORK SLICING AND MOBILE EDGE COMPUTING: MODELS AND ALGORITHMS 637

https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://transition.fcc.gov/bureaus/oet/tac/tacdocs/reports/2018/5G-Network-Slicing-Whitepaper-Finalv80.pdf
https://transition.fcc.gov/bureaus/oet/tac/tacdocs/reports/2018/5G-Network-Slicing-Whitepaper-Finalv80.pdf
https://transition.fcc.gov/bureaus/oet/tac/tacdocs/reports/2018/5G-Network-Slicing-Whitepaper-Finalv80.pdf
http://dx.doi.org/10.1109/TCC.2019.2903240

[31] Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “Joint
resource allocation for software-defined networking, caching, and
computing,” IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 274–287,
Feb. 2018.

[32] S. Wang, X. Zhang, Z. Yan, andW. Wang, “Cooperative edge com-
putingwith sleep control under non-uniform traffic in mobile edge
networks,” IEEE Internet Things J., vol. 6, no. 3, pp. 4295–4306, Jun.
2019.

[33] Q. Wang, Q. Xie, N. Yu, H. Huang, and X. Jia, “Dynamic server
switching for energy efficient mobile edge networks,” in Proc.
IEEE Int. Conf. Commun., 2019, pp. 1–6.

[34] J. Opadere, Q. Liu, N. Zhang, and T. Han, “Joint computation and
communication resource allocation for energy-efficient mobile
edge networks,” in Proc. IEEE Int. Conf. Commun., 2019, pp. 1–6.

[35] B. Wu, J. Zeng, L. Ge, Y. Tang, and X. Su, “A game-theoretical
approach for energy-efficient resource allocation in MEC
network,” in Proc. IEEE Int. Conf. Commun., 2019, pp. 1–6.

[36] F. Fossati, S. Moretti, P. Perny, and S. Secci, “Multi-resource allo-
cation for network slicing,” IEEE/ACM Trans. Netw., vol. 28, no. 3,
pp. 1311–1324, Jun. 2020.

[37] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, “A
resource allocation framework for network slicing,” in Proc. IEEE
Conf. Comput. Commun., 2018, pp. 2177–2185.

[38] D. Xu, X. Liu, and Z. Niu, “Joint resource provisioning for internet
datacenters with diverse and dynamic traffic,” IEEE Trans. Cloud
Comput., vol. 5, no. 1, pp. 71–84, Jan.–Mar. 2017.

[39] W. Li, K. Li, D. Guo, G. Min, H. Qi, and J. Zhang, “Cost-minimiz-
ing bandwidth guarantee for inter-datacenter traffic,” IEEE Trans.
Cloud Comput., vol. 7, no. 2, pp. 483–494, Apr.–Jun. 2019.

[40] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading inmobile
edge computing: Task allocation and computational frequency
scaling,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug.
2017.

[41] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, “Energy-efficient
joint offloading and wireless resource allocation strategy in multi-
MEC server systems,” inProc. IEEE Int. Conf. Commun., 2018, pp. 1–6.

[42] X. Wang et al., “Dynamic resource scheduling in mobile edge
cloud with cloud radio access network,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 29, no. 11, pp. 2429–2445, Nov. 2018.

Bin Xiang received the BS degree in electronic
engineering from Southwest Jiaotong University,
Chengdu, China, in 2013. He is currently working
toward the PhD degree with the Dipartimento di
Elettronica Informazione e Bioingegneria, Politec-
nico di Milano, Italy. His research interests include
mobile edge computing, network planning, and
resource allocation.

Jocelyne Elias has been an associate professor
with Paris Descartes University since 2010. Since
2019, she has been with the Department of Com-
puter Science and Engineering, University of
Bologna. Her research interests include network
optimization, modeling and performance evalua-
tion of networks, which are cognitive radio, wire-
less, virtual and wired networks, and the
application of game theory to resource allocation,
spectrum access, and pricing problems.

Fabio Martignon received the PhD degree in
telecommunication engineering from the Politec-
nico di Milano in 2005. He has been a full profes-
sor with Laboratory for Computer Science (LRI),
Paris Sud University. He is currently a full profes-
sor with the University of Bergamo, Italy, and a
member of Institut Universitaire de France. His
research interests include network planning and
game theory applications to mobile networking
problems, content distribution, and adaptive radio
networks.

Elisabetta Di Nitto received the PhD degree in
computer science from Politecnico di Milano. She
is currently a professor with the Dipartimento di
Elettronica Informazione and Bioingegneria, Poli-
tecnico di Milano. Her research focuses on soft-
ware engineering, especially the process support
systems, service-centric applications, dynamic
software architectures, self-adaptive systems,
and cloud-based systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

638 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

