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Data Placement for Multi-Tenant Data
Federation on the Cloud

Ji Liu†‡‡∗, Lei Mo†‡, Sijia Yang§, Jingbo Zhou¶, Shilei Ji‖, Haoyi Xiong‡‡, and Dejing Dou‡‡

Abstract—Due to privacy concerns of users and law enforcement in data security and privacy, it becomes more and more difficult to
share data among organizations. Data federation brings new opportunities to the data-related cooperation among organizations by
providing abstract data interfaces. With the development of cloud computing, organizations store data on the cloud to achieve elasticity
and scalability for data processing. The existing data placement approaches generally only consider one aspect, which is either
execution time or monetary cost, and do not consider data partitioning for hard constraints. In this paper, we propose an approach to
enable data processing on the cloud with the data from different organizations. The approach consists of a data federation platform
named FedCube and a Lyapunov-based data placement algorithm. FedCube enables data processing on the cloud. We use the data
placement algorithm to create a plan in order to partition and store data on the cloud so as to achieve multiple objectives while
satisfying the constraints based on a multi-objective cost model. The cost model is composed of two objectives, i.e., reducing monetary
cost and execution time. We present an experimental evaluation to show our proposed algorithm significantly reduces the total cost (up
to 69.8%) compared with existing approaches.

Index Terms—Data federation; Cloud computing; Data sharing; Data placement; Multi-objective

F

1 INTRODUCTION

DAta sharing is the first step for the data-related collabo-
rations among different organizations [1], for example,

joint modeling with data from multi-party. Meanwhile, di-
rect sharing of raw data with collaborators is difficult due
to big volume and/or ownership [2], [3]. Data federation [4]
virtually aggregates the data from different organizations,
which is an appropriate solution to enable data-related
collaborations without direct raw data sharing. Based on
cloud service, data federation works as an intermediate
layer to establish an abstract data interface. It provides a
virtual data view, on which the involved organizations can
collaboratively store, share and process data.

As high efficiency and low cost make it possible to lease
resources, e.g., computing, storage, and network, at a large
scale, a growing number of organizations tend to outsource
their data onto the cloud. With the pay-as-you-go model,
cloud computing (cloud) brings convenience to the organi-
zations to store and process a large amount of data. Cloud
services bring a large number of resources at different layers.
A Virtual Machine (VM) is an emulator of a computer,
which can be viewed as a computing node in a network [5].
Through the data storage services, unlimited data can be
stored on the cloud. Cloud providers promise to provide
three features, i.e., infinite computing resources available
on-demand, dynamic hardware resource provisioning in
need, machines and storage paid and released as needed [6].
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Dynamic provisioning enables cloud tenants/users to con-
struct scalable systems with reasonable cost on the cloud [7].
With these features, the scientific collaboration on the cloud
among different organizations becomes a practical solution.

Despite the advantages of cloud computing, data secu-
rity issue on the cloud tends to be serious. When the data
is stored on the cloud, it is crucial to keep confidentiality.
Only the authorized tenants/users should have access to
the data [8]. Encryption is a conventional way to keep
the data confidential, such as identity-based encryption [9].
In addition, the isolation techniques [10], which provide
secure execution spaces for different jobs with specific access
controls, are also used to control the accessibility to the
data on the cloud. A job is composed of a data processing
program or a set of data processing programs to be executed
on the cloud in order to generate new knowledge from the
input data. During the scientific collaboration based on the
data stored on the cloud, the combination of encryption
algorithms and isolation techniques can be utilized to keep
the confidentiality and security of the data on cloud.

When using the cloud services, tenants/users have to
pay for them. For instance, when tenants/users directly
store their data on the cloud, they would be charged for the
cloud storage service. Widely used cloud service providers,
such as Amazon Web Services (AWS) cloud1, Microsoft
Azure cloud2 and Baidu cloud3, provide different data
storage types, e.g., hot data storage, data storage with low
frequency, cold data storage, and archive data storage, as
data storage services. The cost of data storage on the cloud
varies from type to type. In order to reduce the monetary
cost to store and to process the data on the cloud, it is

1. https://aws.amazon.com/
2. https://azure.microsoft.com/en-us/
3. https://cloud.baidu.com/
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necessary to choose a proper data storage type based on
a data placement algorithm. However, the job execution
frequency is not well exploited while constructing the data
placement algorithms for the data storage on the cloud. In
addition, existing approaches cannot exploit data partition-
ing techniques to satisfy multiple constraints.

There are multiple constraints for the data processing
on the cloud. For instance, when a user requires that the
execution of a job should be within a time period, there is
a hard time deadline. When a user has a budget limit for
the data processing, there is a hard monetary budget for the
execution of jobs. In addition, when the system is stable, the
jobs can be continuously executed. Otherwise, there may be
storage errors during the execution when the accumulated
stored data exceed the storage capacity. Thus, the system
stability is critical as well.

In this paper, we propose a solution to enable data
processing on the cloud for scientific collaboration among
different organizations. The solution consists of a secure
data processing platform named FedCube, a multi-objective
cost model, and a Lyapunov-based data placement algo-
rithm. The main contributions of this paper are:

• The FedCube platform. We propose a cloud plat-
form, i.e., FedCube. FedCube enables secure data
processing with the encrypted data stored on the
cloud for collaboration among different organiza-
tions.

• A data placement problem formulation. We formu-
late the data placement problem based on a multi-
objective cost model and constraints. The multi-
objective cost model consists of monetary cost and
execution time. The constraints include hard exe-
cution time deadline, hard monetary budget, and
system stability constraint.

• A Lyapunov-based data placement algorithm. We
use the algorithm to create a data storage plan based
on the cost model in order to reduce both mone-
tary cost and the execution time of jobs with the
consideration of constraints while exploiting data
partitioning techniques.

• An extensive experimental evaluation based on a
simulation and a widely used benchmark, i.e., Word-
count, and a real-life data processing application for
COVID-19 [11]. The simulation and the experiments
are carried out based on a widely used cloud, i.e.,
Baidu cloud.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 presents the system design
of the secure data processing platform. Section 4 presents the
data placement system model, proposes a cost model, shows
the hard constraints, and defines the problem. Section 5
proposes the Lyapunove-based data placement algorithm
based on the cost model. Section 6 shows the experimental
results. Finally, we conclude the paper in Section 7.

2 RELATED WORK

Lyapunov optimization is widely used to optimize the sys-
tem while ensuring system stability. For instance, Lyapunov
optimization is exploited to gain profit [12], to ensure the

Quality of Service [13] and the time average sensing util-
ity [14]. However, the aforementioned work focuses on a
single objective besides the system stability and does not
consider the task or data partitioning for satisfying multiple
constraints. In this paper, we combine the Lyapunov opti-
mization with multiple objectives for data placement.

Data placement is critical to both the monetary cost and
the execution time of jobs. In order to reduce the execution
time, data transfer can be reduced based on graph parti-
tioning algorithm [15]. In addition, the data dependency
among different jobs can be exploited to reduce the time
and monetary cost to transfer data [16]. However, these
methods only consider one objective, i.e., reducing execu-
tion time. They cannot be applied to place the data in
different storage types on the cloud. A weighted function
of multiple costs can be used to achieve multiple objectives,
which can generate a Pareto optimal solution [17], while
the authors do not consider the cost to store data on the
cloud or hard constraints. Load balancing algorithms [18]
or dynamic provisioning algorithms [19] are proposed to
generate an optimal provisioning plan in order to mini-
mize the monetary cost while they do not consider the
data storage types on the cloud. The storage type of the
best performance can be selected to store data [20] while
the economic storage type can be selected [21]. However,
these two methods cannot address multiple objectives. In
this paper, we propose an algorithm to achieve multiple
objectives by placing data into various data storage types
while satisfying hard constraints.

In order to handle a multi-objective problem, there are
basically two types of solutions, i.e., a priori and a poste-
riori [17], [22]. In this paper, we use an a priori method,
where the preference information is provided by the users,
and then the best solution is produced. Our approach is
based on a multi-objective scheduling algorithm focusing
on minimizing a weighted sum of objectives. The advantage
of such approach is that the scheduling is automatically
guided by predetermined weights. In contrast, a posteri-
ori methods produce a Pareto front of solutions without
predetermined preference information [22]. Each produced
solution is better than the others with respect to at least one
objective, and users need to choose one from the produced
solutions, which corresponds to user interference. In this
paper, we assume that users can determine the value for
the weight of each objective. a priori methods can enable
us to produce optimal or near-optimal solutions without
user interference at run-time. Finally, when the weight of
each objective is positive, the minimum of the weighted cost
function is already a Pareto optimal solution [23], [24] and
our proposed approach can generate a Pareto optimal or
near-optimal solution with the predefined weights. Thus,
we do not consider a posteriori methods in this paper.

Data security is of much importance to the cloud users.
In order to protect data security, data accessibility is con-
trolled by attributing different levels of permission to avoid
unauthorized or malicious access to data on the cloud [25].
In addition, encryption techniques [26], [27] and distributed
data storage plan based on data partitioning [28], [29], [30]
can be exploited. Federated learning is proposed to train
a model while ensuring data privacy [31], yet it is not
applicable to the general data processing among different
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Fig. 1. The functionality architecture of the FedCube platform.

organizations on the cloud. In addition, secure separated
data processing spaces [10] are proposed to ensure the
access control and privacy of data. The separated data
processing spaces are disconnected from the public network,
which ensures that the confidentiality and the security of
data within the local network. Out proposed platform, i.e.,
FedCube, not only provides different data access controls
for different tenants/users but also exploits the secure sep-
arated data processing spaces to ensure the security and the
confidentiality of the data.

3 SYSTEM DESIGN

In this section, we propose a secure data processing platform
named FedCube. First, we explain the architecture of the
platform. Then, we present the life cycle of users’ accounts
and jobs to be executed.

3.1 Architecture

The FedCube platform is a data federation platform that
provides tenants/users with secure data processing service
on the cloud. Tenants/users can upload their data onto the
platform and execute the self-written programs on Baidu
cloud. In addition, tenants/users can leverage the data from
other organizations for their own data processing jobs, as
long as they get permission from the data owners. We
illustrate the architecture of the platform and explain the
functionalities of each module in this section. As shown in
Fig. 1, the functional architecture of the platform consists of
four modules:

3.1.1 Environment Initializer
The environment initializer creates the user account and its
execution space on the coordinator node. The created user
account is used for the user’s security configuration, e.g.,
the access permission to certain data from another user. The
user account is also associated with secure execution spaces
for the execution of submitted jobs in the cluster. The secure
execution space is a working space without a connection
to any public network, which can ensure the confidentiality
and the security of the data within the local network.

As shown in Fig. 2, multiple clusters can be dynamically
created by the environment initializer module when the
execution of jobs is triggered. Each cluster consists of several
computing nodes, i.e., VMs on the cloud. The coordinator
node coordinates the execution among different clusters for
all users. The user has access to the platform through the
coordinator node, which is connected to the public Internet.

Fig. 2. Infrastructure architecture of the FedCube platform.

The computing nodes in each cluster are only intercon-
nected with the coordinator node through the local network
on the cloud. Each computing node is created based on the
image [32] indicated by the user, which contains necessary
tools for the execution of her jobs. An image is a serialized
copy of the entire state of a VM stored on the cloud [32].

3.1.2 Data Storage Manager
The data storage manager creates a data storage account and
storage buckets on the cloud for a user. A storage bucket is
a separated storage space to store the data with its own
permission strategy. The data storage account is used to
transfer data between the platform and the user’s devices,
e.g., computer. Each account is associated with five buckets,
i.e., user data bucket, user program bucket, output data
bucket, download data bucket, and execution space bucket.
Each account has an independent Authorization Key (AK)
and Secret Key (SK), with which the tenants/users can send
or retrieve the data stored in the buckets. In addition, the
access permission strategy varies from bucket to bucket. For
instance, the user has read and write permission on the
user data bucket and the user program bucket while she
only has the read permission on the download data bucket.
A user can store data in the user data bucket while she
can submit self-written codes to the user program bucket.
The tenants/users do not have read or write permission
on the output data bucket and the execution space bucket.
After the execution of the program generated based on the
submitted codes, the output data is stored in the output data
bucket. After the confidentiality review of the output data,
the output data is transferred to the download data bucket.
The review is carried out by the owner of the input data
of the job in order to avoid the risk that the raw data or
sensitive information appears in the output data of the job.
The execution space bucket is used to cache intermediate
data of a job, which can be useful for the following execution
in order to reduce useless repetitive execution [33].

3.1.3 Job Execution Trigger
The job execution trigger starts the execution of the job in
a cluster. A user can upload the user-written codes onto
the platform through a web portal. Then, she can start the
execution of the program using the job execution trigger.
Once the execution of the program is triggered, a cluster
is created, deployed, and configured (see details in Sec-
tion 3.1.1). Afterward, the execution of the job is performed
in the computing nodes of the cluster. When several jobs
start simultaneously in the same cluster, the job execution
trigger creates the same number of execution spaces as that
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Fig. 3. Job Execution Workflow.

of jobs in order to enable parallel execution without conflict.
When the input data of a program consists of the data from
other data owners, the corresponding data interfaces are
used in order to avoid direct raw data sharing. Let us take
two tenants/users as example: User U1 and User U2. A data
interface (I1) is defined by the data owner (User U1), which
is associated with the data (D1) on the platform. When User
U2 gets the permission to use D1, the program generated
based on the submitted codes of User U2 can process the
data D1 using the Interface I1. The intermediate data stored
in the execution bucket can also be used when the job needs
the results of the previous execution.

3.1.4 Security Module
In the platform, we use four mechanisms to ensure the
security of the data. The first mechanism is to encrypt
the data before storing it on the cloud. The encryption is
based on the Rijndael encryption algorithm [34]. The second
mechanism is to separate the computing nodes from the
public network, e.g., Internet, which ensures that no data
communication is allowed between the clusters and outside
devices, e.g., servers, on the cloud. The third mechanism is
a uniformed data access control. When a user applies for the
permission of the data owned by another user, a data access
interface is provided by the data owner instead of direct raw
data sharing. The last mechanism is the audition of the codes
and output data by data owners, which ensures that no
data is leaked from output data. Through these mechanisms,
data confidentiality and security are ensured by the data
interface defined by the data owner while ensuring efficient
cooperation among different organizations.

3.2 Life Cycle
In order to present the interactions among users, the plat-
form, and the job execution on the platform, we present the
account life cycle and job life cycle. The life cycle describes
the state transition of a user account or a job on the platform.
We assume that there are n scientific collaborators. Each
collaborator has private data, which requires keeping con-
fidentiality and security. Through the life cycle, we present
how n collaborators process the data on the platform.

3.2.1 Account Life Cycle
The account life cycle consists of three phases, i.e., account
creation, data processing, and account cleanup. First, the

account related to the user of the platform is created. Then,
the user can process the data on the platform. Finally, when
the user no longer needs the platform, the data related to
the account is removed.

Account Creation Phase. When a new user needs to use the
platform, we create an account and configure the platform
using the environment initializer module as shown in Fig. 1.
For the n collaborators in the above scenario, we create n
accounts (Ut with t representing the number of the collabo-
rator) for each scientific collaborator on the platform. First,
the job execution trigger is deployed for each user in the
coordinator node. Then, the data storage manager creates
a storage account and five storage buckets (see details in
Section 3.1.2) for each user. Afterward, the environment
initializer deploys the security module for each user. The
security module contains the encryption and decryption
information for each user. Please note that the encryption
and decryption information is different for different users.

Data Processing Phase. After the account creation, data
processing jobs can be carried out on the platform. Before
processing the data, each user uploads her own data and the
data interface file to the user data bucket. As shown in Fig. 3,
if User Ui needs to exploit the data from another Users Uj ,
User Ui can apply for the permission. Once User Ui gets the
permission from User Uj , the user also gets the necessary
information, e.g., the mock data, to access the data using the
corresponding data interface. The mock data contains the
data schema of the raw data and some randomly generated
examples, while the raw data is never shared with the users.
User Ui may use the data from several other tenants/users
at the same time. Then, User Ui can submit the codes to
process data. In order to process data, User Ui triggers the
execution of a job related to the submitted codes (see details
in Section 3.2.2), which corresponds to the execution of the
job (ji with i representing the number of the execution) on
the platform. During the execution of a job, the intermediate
data generated from different execution of the job can be
directly used. After the execution and the review of the
output data, user Ui can download the output data of Job ji
from the user download bucket.

Account Cleanup Phase. When the user no longer needs
the platform, the corresponding data, storage buckets, and
accounts are removed from the platform by the environment
initializer module.

Initialization Phase.
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Fig. 4. System model for data placement.

3.2.2 Job Life Cycle
The job life cycle consists of four phases, i.e., initialization,
data synchronization, job execution, and finalization.

The initialization phase [35] is to prepare the environ-
ment to execute a job on the platform. The preparation
contains three steps: provisioning, deployment, and config-
uration. First, VMs are provisioned to the job as computing
nodes. There are two cases where existing VMs can be
provisioned to the job. The first case is that there are enough
live computing nodes on the platform corresponding to the
execution of the same or the other jobs of the same user. The
second case is that there are enough live computing nodes
for the programs of other tenants/users, and all the related
tenants/users allow sharing computing nodes. Otherwise,
the environment initializer module dynamically creates new
VMs as computing nodes, which contain necessary tools
for the execution of the job. Then, in order to execute the
job, a proper execution space is deployed on the allocated
VMs. In order to enable data access, the execution space is
configured in each node. For instance, the AK and SK files
are transferred into the computing nodes in order to enable
data synchronization.

Data Synchronization Phase. During the data synchroniza-
tion phase [36], the data storage module synchronizes the
data or data interfaces stored on the cloud. In addition, the
scripts or the files corresponding to the submitted codes
are also transferred to the execution space created in the
initialization phase.

Job Execution Phase. The execution phase [35] is the period
to execute jobs in the execution space of corresponding VMs.
The execution frequency of each job can be dynamically
monitored by the platform to compute the cost of data
storage. The data, including newly generated intermediate
data, is dynamically placed with appropriate storage types
with small cost according to the method presented in Sec-
tion 5. As shown in Fig. 3, after synchronizing the data from
buckets, the program corresponding to the submitted codes
processes the input data. The execution can be performed
in a single computing node or multiple computing nodes
in order to reduce the overall execution time. After the ex-
ecution, the output data is transferred to the output bucket
of the user. Once the data is reviewed and approved by
the data owners of the input data, it is encrypted by the
security module and is transferred to the download bucket
to be accessed by the user.

Finalization Phase. In the finalization phase [37], the data
storage manager uploads the encrypted intermediate of the

job. Afterward, the environment initializer module removes
the corresponding execution space(s). If a node does not
contain any execution space, the node is released, i.e., re-
moved, by the environment initializer, in order to reduce
the monetary cost to rent the corresponding VMs.

4 MULTI-OBJECTIVE COST MODEL AND PROB-
LEM FORMULATION

In this section, we first present the system model for data
placement. Then, we propose a cost model based on two
costs, i.e., monetary cost and execution time. Afterward, we
present the data placement constraints, i.e., hard execution
time constraints and the hard monetary budget constraints.
Finally, we define the problem to address in the paper.

4.1 Data Placement System Model
The system model for data placement is shown in Fig. 4.
In the FedCube platform, we assume that the execution of
jobs generates intermediate data at time slot t, which may be
used as input data in the following time slots, e.g., t+x with
x > 0. Then, the intermediate data should be placed with
other input data. Each job has a queue to store the generated
intermediate data, and we consider N data storage spaces,
which correspond to N storage types with diverse data
access speeds and diverse prices to store data. Each data set
can be placed to one or multiple data storage types. In order
to place a data set to multiple storage types, a data set can
be partitioned into several chunks, and each chunk is placed
to a data storage type. We assume that the valid time of data
set di placed at storage type sj is Tmax(i,j). If data set di is
not accessed by any job within Tmax(i,j), the data set will be
removed from the storage space of the platform. When there
is a data set generated during the execution of a job or when
a job is executed, all the input data is placed again. When
the input data is being replaced, its original corresponding
storage type is kept until a newly placed storage type is
associated.

4.2 Cost Model
Inspired by [17], we propose a multi-objective cost model.
The cost model is composed of monetary cost and time
cost (i.e., the execution time of a job). In order to find a
storage plan, we need a cost model to estimate the cost of
storing the input data for the execution of jobs. The cost
model is generally implemented in the data storage module
and under a specific execution environment. In the case
of this paper, the execution environment is the FedCube
platform. The origin of parameters mentioned in this section
is summarized in Table 1. We assume that there are K jobs
on the platform.

The total cost to execute a set of jobs with a data
placement plan at time slot t is defined as the sum of the
total cost of all the jobs:

TotalCost(Plan[t]) =
K∑
k=1

Cost(jobk, P lan[t]), (1)

where Plan[t] represents a data placement plan of the
data sets related to the set of jobs at time slot t, and jk
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TABLE 1
Description of parameters. “Abbreviation” represents the abbreviation of the parameters. “Origin” represents where the value of the parameter

comes from. UD: that the parameter value is defined by users; Measure: that the parameter value is estimated by the user with the job in a cloud
environment; Execution: measured during the execution of job in cloud; cloud: the parameter value is obtained from the cloud provider

Abbreviation Parameter Meaning Origin
DT DesiredTime The estimated execution time to execute a job UD
DM DesiredMoney The estimated monetary cost to execute a job UD
TDL TimeDeadline The hard execution time deadline to execute a job UD
MB MoneyBudget The hard monetary budget to execute a job UD
AIT averageInitializationTime The average time to initialize a computing node Measure
CSP ComputingSpeedPerCPU The average computing performance of each computing node Measure
WL workload The workload of a job Measure
αk αk The percentage of the workload of Job k that can be executed in parallel Measure
speed speed The data transfer speed for a type of data storage cloud
SP StoragePrice The monetary cost to store data with a storage type cloud
RP ReadPrice The monetary cost to read data from a cloud storage service cloud
VMP VMPrice The monetary cost to use a VM cloud

represents the kth job. In the rest of this paper, the total cost
represents the normalized cost to execute a set of jobs with
a data placement plan per time unit. Plan[t] is a matrix of
data placement variables, which can be expressed by the
following formula:

Plan[t] =


p0,0[t] p0,1[t] ... p0,n[t]
p1,0[t] p1,1[t] ... p1,n[t]

... ...
. . . ...

pm,0[t] pm,1[t] ... pm,n[t]

 , (2)

where pi,j [t] represents that data set di is placed to storage
type sj , m represents the number of input and intermediate
data sets, and n represents the number of storage types.
When pi,j [t] = 0, data set di is not placed to storage type
sj ; when pi,j [t] = 1, data set di is directly placed to storage
type sj ; When 0 ≤ pi,j [t] ≤ 1, data set di is partitioned and
the part corresponding to pi,j [t] is placed to storage type sj .

The total cost to execute a job is defined by:

Cost(jobk, P lan[t]) = wm ·Mn(jobk, P lan[t])) · f(jobk)

+ wt · Tn(jobk, P lan[t]), (3)

where Tn(jobk, P lan[t]) and Mn(jobk, P lan[t]) are the nor-
malized time cost and monetary cost, respectively, and they
can be defined by Formulas (4) and (9); jobk represents
the kth job and Plan[t] represents the data placement plan
at time slot t; wt and wm represents the importance of
the execution time and the monetary cost of the job. De-
fined by the user, wt and wm should be positive values
that meet the constraints: 0 ≤ wt ≤ 1, 0 ≤ wm ≤ 1,
wt + wm = 1. f(jobk) represents the average frequency
of the job execution, which can be dynamically measured
according to the history execution before the job execution,
e.g., daily, monthly, quarterly and yearly. Since the time cost
and monetary cost are normalized, neither of them has a
unit. Please note that the time cost refers to the execution
time of Jobs once while the hard monetary budget is related
to the budget per time period, e.g., a day or a month.

4.2.1 Time Cost

The normalized time cost is defined by the following for-
mula:

Tn(jobk, P lan[t]) =
T(jobk, P lan[t])

DTk
, (4)

where T(j, P lan[t]) represents the total execution time of
the job and DTk represents the expected execution time
(set by the user) of Job jobk. Please note that the execution
time T(j, P lan[t]) represents the time to execute jobk once.
The desired execution time could be larger or smaller than
the real execution time Time(j, P lan[t]) while it should be
larger than a limit defined by the FedCube platform, e.g.,
1/20 ∗ SETk with SETk representing the sequential execu-
tion time of Job jobk with one computing node, in order to
avoid the unfairness among users. The total execution time
consists of three parts, which are defined by:

T(jobk, P lan[t]) = InitT(jobk) + DTT(jobk, P lan[t])

+ ET(jobk), (5)

where InitT(jobk) represents the Time to Initialize the com-
puting nodes for Job jobk; DTT(jobk, P lan[t]) represents
the Time to Transfer the Data from the cloud storage service
to computing nodes; ET(jobk) represents the Execution
Time of Job jobk. The initialization of the computing nodes
for Job jobk can be specified by the user or realized by the
platform, which is out of the scope of this paper while the
time can be calculated based on Job jobk, e.g., nk · AIT
with nk representing the number of computing nodes and
AIT representing the average time to initialize a computing
node. The data transfer time can be calculated based on the
size of the input data of Job jobk and the data placement
plan as follows:

DTT(jobk, P lan[t]) =
N∑
j=1

∑
i∈datak

size(di)

speedj
· pi,j [t], (6)

where speedj represents the speed to transfer data from data
storage type j to computing nodes. As explained in Section
4.1, N represents the total number of storage types on the
FedCube platform. According to the Amdahl’s law [38], the
execution time of Job j can be estimated by the following
formula [17] when the impact of data communication can
be ignored with n computing nodes:

ET(jobk) =
[αk/n+ (1−αk)] ·WL(jobk)

CSP
, (7)
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where αk1 represents the percentage of the workload that
can be executed in parallel; n is the number of computing
nodes, which is configured by users while it should be less
than a limit, e.g., 20, defined by the FedCube platform;
WL(j) represents the workload of a job which can be mea-
sured by the number of FLOP (FLoat-point Operations) [39].
CSP is the average computing performance of each com-
puting node, which can be measured by the number of
FLOPS (FLoating-point Operations Per Second).

4.2.2 Monetary Cost
Normalized monetary cost is defined by the following for-
mula:

Mn(jobk, P lan[t]) =
M(jobk, P lan[t])

DMk
, (9)

where Money(jobk, P lan[t]) is the financial cost to rent
VMs as computing nodes on the cloud. Please note that
the monetary cost Money(jobk, P lan[t]) represents the total
monetary cost to execute jobk within a time period, e.g., a
month. DMk represents the expected execution monetary
cost of Job Jobk, which can be configured by the user while
it should be larger than or equal to a limit defined by the
FedCube platform, i.e., SMCk with SMCk representing the
monetary cost of Job jobk with one computing node, in
order to avoid the unfairness among users. DMk can be big-
ger or smaller than the real monetary cost Money(jobk, t).
Money(jobk, P lan[t]) can be estimated based on the follow-
ing formula:

M(jobk, P lan[t]) = EM(jobk, P lan[t])

+ DSMk(jobk, P lan[t])

+ DAMk(jobk, P lan[t]), (10)

where EM(jobk, P lan[t]) represents the Monetary cost
to use the computing nodes to Execute the job;
DSM(jobk, P lan[t]) represents the Monetary cost to Store
the Data on the cloud storage service; DAM(jobk, P lan[t])
represents the Monetary cost to Access to the Data.
EM(jobk, P lan[t]) can be estimated by the following for-
mula:

EM(jobk, P lan[t]) = VMP(jobk) · nk
· [T(jobk, P lan[t])− InitT(jobk)], (11)

where VMP(jobk) represents the average monetary cost of
a VM for the execution of Job j; nk represents the number
of computing nodes to execute the job; T(jobk, P lan[t]) and
InitT(jobk) are defined in Formula (5).

We allocate the storage monetary cost of a data set to the
jobs based on the workload. DSM(j, P lan[t]) is defined by
the following formula:

DSM(jobk, P lan[t]) =
WL(jobk)∑K

l=1(WL(jobl) · f(jobl))
·

1. αk can be obtained by measuring the execution time of executing
the job k twice with different numbers of computing nodes [17]. For
instance, assume that we have t1 for m1 computing nodes and t2 for
m2 computing nodes,

αk =
m2 ∗m1 ∗ (t2 − t1)

m2 ∗m1 ∗ (t2 − t1) +m1 ∗ t1 −m2 ∗ t2
(8)

N∑
j=1

∑
i∈datak

(SPj · size(di) · pi,j [t]), (12)

where WL(jobk) represents the workload of job jobk;
dataset(j) represents the data sets that job j uses; job(i)
represents the jobs that takes data i as input data; SP(si)
represents the monetary cost to store the data with the
storage type si, which is defined in the data placement plan
plan[t], on the cloud; size(di) represents the size of the input
data di.

DAM(jobk, P lan[t]) is defined by the following formula:

DataAccessMoney(jobk, P lan[t]) =∑
j=1

∑
i∈datak

(RPj · size(di) · pi,j [t]), (13)

where RPj represents the monetary cost to read data di
from the cloud storage service; size(di) represents the size
of the input data di of Job jobk.

4.3 Data Placement Constraints
In this section, we present the constraints of data placement.
First, we present the hard execution time and monetary
budget constraints for each job. Then, we present the system
stability constraint based on Lyapunov optimization.

We assume that there are hard time deadline and hard
monetary budget for each job, which can be formulated as
follows:

T(jobk, P lan[t]) ≤ TDLk, ∀k ∈ [0,K], (14)

M(jobk, P lan[t]) ≤ MBk, ∀k ∈ [0,K], (15)

where T(jobk, P lan[t]) and M(jobk, P lan[t]) are defined in
Formulas 5 and 10 respectively, TDLk represents the hard
execution time deadline,MBk represents the hard monetary
cost Budget, and Jobs represents the set of jobs in the
system.

For storage spaces, as shown in the right part of Fig. 4,
we use Sj(t) to denote the set of data sets placed in the
data storage space of Type j. Therefore, the dynamic set is
defined as follows:

Sj(t+ 1) = max[Sj(t)− rj(t), 0] +
M∑
i=1

pi,j [t], (16)

where rj(t) represents the data to be removed because of
time limit and

∑m
i=1 pi,j [t] represents the newly placed data

sets to data storage type sj .
For jobs shown in the middle part of Fig. 4, we use Ji to

denote the set of data sets generated from the execution of
Job i. We have the following job data storage set defined as
follows:

Jk(t+1) = max

Jk(t)−
N∑
j=1

∑
i∈datak

pi,j [t], 0

+Gk[t], (17)

where datak represents the set of input data sets of Job k,
and Gk[t] represents the newly generated intermediate data
of Job k.

We exploit the Lyapunov optimization technique [40] by
considering both the set of data sets placed in the data
storage spaces and the job data storage sets. Let D(t) =
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(Sj(t), Ji(t), j ∈ {1, . . . , n}, i ∈ {1, . . . , k}, t ∈ {1, 2, . . . , })
denote all the data sets in time slot t. We have the following
constraint in order to ensure the stability of the system:

D̄ , lim
T→∞

1

T

T−1∑
t=0

 N∑
j=1

E{Sj(t)}+
K∑
k=1

E{Jk(t)}

 <∞.

(18)

4.4 Problem Definition

The problem we address in the paper is a data placement
problem, i.e., how to choose a storage type to store the data
in order to reduce the expected total cost, which consists
of the monetary cost and the execution time of jobs, while
satisfying constraints, on the cloud. A job can be executed
multiple times because the user-defined codes are updated,
or the parameters are updated [41]. As shown in Table 2,
different data storage types of storage services on the cloud
correspond to different prices. The storage type with higher
expected data access frequency, e.g., Standard, has a higher
price and higher data access speed. The total cost to execute
a job once differs with different data placement plans. Thus,
the problem we address in this paper is how to find an
optimal data placement plan of all the data sets in order
to reduce the expected total cost to execute the jobs with
different execution frequencies based on a cost model. We
define the expected total cost as:

Cost(Jobs, P lan[t]) = lim
T→∞

1

T

T−1∑
t=0

E{Cost(Jobs, P lan[t])}.

(19)
Then, the problem addressed in this paper can be formu-
lated as follows:

min Cost(Jobs, P lan[t]) (20)

s.t.


pi,j [t] ∈ [0, 1]
N∑
j=1

pi,j [t] = 1,

Formulas (14), (15), and (18).

where Jobs represents the set of jobs in the system.
The data placement problem is a typical NP-hard prob-

lem [42]. Let us separate the data placement variables into
two parts, i.e., p′i,j and p′′i,j . p

′
i,j is a continuous variable

between 0 and 1, which represents the partitioning of a data
set. p′′i,j is a 0-1 integer, which is the scheduling decision.
Then, we have pi,j = p′i,j ∗p′′i,j . Then, the problem defined in
Formula 19 is a Mixed Integer Linear Programming (MILP)
problem, which is a proven NP-hard problem [43], [44], [45].
In this case, the exhaustive search for an optimal solution for
p′′i,j increases exponentially and the complexity is O(NM ),
which cannot be solved within a polynomial time, with N
representing the number of storage types and M represents
the number of data sets.

5 NEAR-OPTIMAL DATA PLACEMENT

In this section, we present a near-optimal data placement
approach based on Lyapunov optimization. Lyapunov opti-
mization is widely used to achieve optimization objectives

while ensuring the system stability [40], [46]. In order to ex-
ploit Lyapunov optimization techniques, we first construct
a Lyapunov function and propose a Lyapunov-based algo-
rithm (LNODP) to perform the data placement while ensur-
ing system stability. Then, we propose a greedy approach to
perform the near-optimal data placement while satisfying
hard deadlines. The greedy approach consists of three al-
gorithms, i.e., near-optimal data planning (NOD Planning),
near-optimal data placement, and data placement (NOD
Placement) with partitioning (NOD Partitioning). LNODP
exploits NOD Planning to generate a near-optimal data
placement plan; NOD Planning takes advantage of NOD
Placement to choose optimal data storage type when the
hard constraints can be satisfied, and NOD Placement uses
NOD partitioning to generate a plan to partition the data in
order to satisfy hard constraints when one data storage type
does not work.

5.1 Lyapunov Optimization based Data Placement
We define a Lyapunov function L(t) as follows:

L(t)
∆
=

1

2

 N∑
j=1

[Sj(t)]
2 +

K∑
k=1

[Jk(t)]2

 . (21)

This function represents the data sets to be placed. Then,
we can define the derivative of the Lyapunov function as
follows:

4L(t)

4t
∆
= E{L(t+4t)− L(t)|D(t)}. (22)

We use the expectation to address the randomness of the
intermediate data generated by the execution of jobs and
the data placement actions. As to solve the problem de-
fined in Formula (20) requires the global information the
FedCube system, which is hard to predict or gather, we
transform the problem defined in Formula (20) to the follow-
ing objective function, which is a greedy conversion with
limited local information:

min

(4L(t)

4t
+ ω · E{Cost|D(t)}

)
(23)

s.t.


T(jobk, P lan[t]) < TDLk,∀k ∈ [1,K]

M(jobk, P lan[t]) < MBk,∀k ∈ [1,K]

pi,j [t] ∈ [0, 1],

where T(jobk, P lan[t]) and M(jobk, P lan[t]) are defined
in Formulas 5 and 10 respectively, TDLk represents the
hard execution time deadline, MBk represents the hard
monetary cost Budget, and the parameter ω ≥ 0 represents
the importance of the expected total cost compared with the
stability of the system.

Theorem 1. The objective function has the following upper
bound when 4t = 1:

4L(t) + ω E{Cost(Jobs, P lan[t])|D(t)}

≤ L+ ω
K∑
k=1

Ck

+ E


N∑
j=1

Sj(t)rj(t))|D(t)

− E

{
K∑
k=1

Jk(t)Gk[t])|D(t)

}
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TABLE 2
The monetary cost to store data on the cloud with different storage types, i.e., Standard, Low frequency, Cold and Achieve.

Standard Low frequency Cold Achieve
Expected data access frequency frequently < once per month < once per year ≥ three years
Cost to store data (Dollar/GB/month) 0.0155 0.0113 0.0045 0.015
Cost to read data (Dollar/GB) N/A 0.0042 0.0085 0.12

+ E


N∑
j=1

K∑
k=1

∑
i∈datak

(Jk(t)− Sj(t) + ωC ′i,j)pi,j [t]|D(t)

 ,

(24)

with L defined in Formula (28), C defined in Formula (30), and
C ′ defined in Formula (31).

Proof. First, we focus on the data stored in the job data
queue with the assumption that

∑M
i=1 pi,j [t] ≤ dmax and

rj(t) ≤ rmax:

S2
j (t+ 1)− S2

j (t)

=

(
max[Sj(t)− rj(t), 0] +

M∑
i=1

pi,j [t]

)2

− S2
j (t)

≤
(
M∑
i=1

pi,j [t]

)2

+ (rj(t))
2 − 2Sj(t)

(
rj(t)−

M∑
i=1

pi,j [t]

)

≤ (dmax)2 + (rmax)2 − 2Sj(t)

(
rj(t)−

M∑
i=1

pi,j [t]

)
. (25)

Then, we have the similar results for the data stor-
age spaces with the assumption that

∑N
i∈datak,j=1 pi,j [t] ≤

datamax, where datamax represents the maximum number
of data sets for any job, and Gk[t] ≤ Gmax

k :

J2
k(t+ 1)− J2

k(t)

=

max[Jk(t)−
N∑

i∈datak,j=1

pi,j [t], 0] +Gk[t]

2

− J2
k(t)

≤ (Gk[t])2 +

 N∑
i∈datak,j=1

pi,j [t]

2

− 2 · Jk(t)

 N∑
i∈datak,j=1

pi,j [t]−Gk[t]


≤ (Gmax

k )2 + (datamax)2

− 2 · Jk(t)

 N∑
i∈datak,j=1

pi,j [t]−Gk[t]

 (26)

With Formulas (25) and (26), we have:

4{L(t)|D(t)}

≤ L+ E


N∑
j=1

Sj(t)(rj(t)−
M∑
i=1

pi,j [t])|D(t)


+ E


K∑
k=1

Jk(t)

 N∑
i∈datak,j=1

pi,j [t]−Gk[t]

 |D(t)

 , (27)

L =
N

2
· [(dmax)2 + (rmax)2] +

K

2
· [(Gmax

k )2 + (datamax)2].

(28)

Algorithm 1 Lyapunov-based Near-Optimal Data Place-
ment
Input: D: A set of data sets;

T : Maximum number of iterations;
T ′: Maximum number of iterations for generating data
placement plans;
Plan[t]: data placement plan in Time slot t.

Output: Plan[t+ 1]: data placement plan in Time slot t+ 1.
1: D← sort(D)
2: for t ∈ T do
3: while not all data sets ∈ D are placed and iter < T ′

do
4: Plan∗[t]← NearOptimalDataPlanning(Plan[t])
5: for each Data set di in D do
6: for j ∈ N do
7: p∗i,j [t]← getPlan(Plan∗[t], i, j)
8: if C ′i,j ≤ 0 and p∗i,j [t] 6= 0 then
9: Set pi,j [t+ 1] = p∗i,j [t]

10: else
11: Set pi,j [t+ 1] = 0
12: end if
13: end for
14: end for
15: end while
16: iter ← iter + 1
17: end for
18: Update Jk(t) and Sj(t)

The cost model presented in Section 4.2 can be rewritten
as:

E{cost(Jobs, P lan[t])|D(t)} =

K∑
k=1

Ck + E


N∑
j=1

K∑
k=1

∑
i∈datak

C ′i,j,k · pi,j [t]|D(t)

 , (29)

Ck =

(
ωt · nk ·AIT

DTk
+

(
ωt

DTk
+
ωm ·VMP(jobk) · nk

DMk

)

·
(αk

n + (1 + αk)) ∗WL(jobk)

CSP

)
· f(jobk), (30)

C ′i,j,k =

(
ωt

speedj ·DTk
+
ωm ·VMP(jobk) · nk

speedj ·DMk
+
ωm · RPj

DMk

+
ωm ·WL(jobk) · SPj∑K

l=1(WL(jobk) · f(jobk)) ·DMk

)
· size(di) · f(jobk) (31)
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Algorithm 2 Near-Optimal Data Planning
Input: D: A set of data sets;

Plan: data placement plan in Time slot t.
Output: Plan∗: The near-optimal data placement plan of

each data d in data set D with the minimum cost.
1: for each Data d in D do
2: costbefore ← calculateCost(Plan) . According to

Formula (1)
3: Plan′ ← getNearOptimalPlacement(d, Plan)
4: if Cost(Plan′) < Cost(Plan) then
5: Plan∗ ← Plan′

6: end if
7: end for

Finally, we can take the expectation and add the total
cost, i.e., cost(Plan[t]) to both sides of Formula (27) and
hence Theorem 1 is proven.

In order to solve the problem defined in Formula (20),
we minimize the upper bound of Theorem 24. As the status
of Time slot t can be observed in the system, we only need
to minimize the following element:

E


N∑
j=1

K∑
k=1

∑
i∈datak

(Jk(t)− Sj(t) + ωC ′i,j,k)pi,j [t]|D(t)


= E


N∑
j=1

M∑
i=1

C ′i,jpi,j [t]|D(t)

 , (32)

with C ′i,j defined as:

C ′i,j =
∑

k∈Jobsi

(Jk(t) + ωC ′i,j,k)− Sj(t), (33)

where Jobsi represents the set of jobs that process Data set
di.

We design a Lyapunov-based approach to minimize
Formula (32), as shown in Algorithm 1. First, we sort the
data sets based on C ′i,j in descent order in order to minimize
the cost of the data set corresponding to high costs first
(Line 1). Then, for each data set, we use Algorithm 2 to
find an optimal data placement plan (Line 4). For each
combination of {i, j} (Line 5), if C ′i,j ≤ 0 (Line 8), we will
update pi,j [t + 1] = p∗i,j (Line 9), otherwise, we will set
pi,j [t + 1] = 0 (Line 11). Please note that the data set is
placed with a data placement plan that meets reasonable
constraints based on Algorithm 2 when C ′i,j ≤ 0. Otherwise,
the placement plan remains idle and will be set with a
proper data placement plan in later time intervals. When
the data placement plan of a data set is idle, the execution
of related jobs is postponed until the placement plan is set
in order to meet the constraints. Please note that when the
data in the system exceed the capacity of the system or the
given constraints are not reasonable, the algorithm may not
generate a proper data placement plan that meets all the
constraints.

5.2 Near-Optimal Data Placement Algorithm

Based on the multi-objective cost model, we propose a
greedy algorithm to generate a near-optimal data placement

Algorithm 3 Near-Optimal Data Placement
Input: d: A data set;

Jobs: A set of jobs that process Data set d;
StorageTypeList: The list of storage types;
Plan: a data placement plan.

Output: Plan∗: The near-optimal data placement plan of
Data set d.

1: Plan∗ ← Plan
2: j∗ = getOptimalType(Plan, d, StorageTypeList)
3: TypesForT imeConstraints ←

getTypesForTimeConstraint(Plan, d, Jobs)
4: TypesForMonetaryConstraints ←

getTypesForMonetaryConstraint(Plan, d, jobs)
5: AvailableTypes ← TypesForT imeConstraints ∩
TypesForMonetaryConstraints

6: if j∗ ∈ AvailableTypes then
7: For j ∈ [1, N ] and pi,j ∈ Plan∗, set pi,j ={

1, j = j∗

0, j 6= j∗

8: else
9: Plan∗ ← dataPlacementWithPartitioning(d, Plan,
Jobs, TypesForT imeConstraints,

10: TypesForMonetaryConstraints)
11: end if

plan while reducing the expected total cost to execute a set
of jobs on the FedCube platform as shown in Algorithm 2.
In the algorithm, for each Data set d, we first calculate the to-
tal cost based on the cost model (Line 2). Then, we generate
a near-optimal data placement plan by replacing Data set
d while keeping the other data sets based on Algorithm 3
(Line 3). Afterward, if the new data placement plan can
reduce the total cost according to the cost model, we update
the data placement plan if the new data placement plan
corresponds to a smaller total cost (Lines 4 - 5).

Algorithm 3 replaces Data set d in order to reduce the
total cost. First, we choose an optimal data storage type
j∗ based on the data placement plan by trying each data
storage type in storageTypeList (Line 2). Then, we choose
a set of possible storage type candidates that meet both the
hard time deadline constraint and hard monetary budget
constraint (Lines 3 - 4). If the chosen data storage type j∗ is
within the set of storage type candidates, we will update the
data storage placement. If not, we will exploit Algorithm 4
to place the data set with data partitioning.

Algorithm 4 generates a near-optimal data placement
plan with the consideration of data partitioning while
meeting the two constraints, i.e., the hard time deadline
constraint and the hard monetary budget constraint. First,
if any of the set of available data storage type candidates
for the hard time deadline constraint or hard monetary
budget constraint is an empty set, we consider that the two
constraints cannot be met (Lines 2 and 3). If not, first, we
choose an optimal type (j1 for the time constraint and j2
for the monetary constraint) within the set of candidates
for each constraint by trying each storage type (Lines 5
and 6). We define a possible area as the range of parts of
the data set to be placed at Type j1 while meeting both
the two constraints. We can calculate the possible area for
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Algorithm 4 Data Placement With Partitioning
Input: d: A set of data;

Jobs: A set of job that process Data set d;
StorageTypeList: The list of storage types;
TypesForT imeConstraints: A set of storage types that
only meet the hard execution time constraint;
TypesForMonetaryConstraints: A set of storage
types that only meet the hard monetary budget con-
straint;
Plan: a data placement plan.

Output: Plan∗: The near-optimal data placement plan of
each data d;
Feasibility: If there is a data placement plan that meets
the two constraints

1: Plan∗ ← Plan[t]
2: if TypesForT imeConstraints = ∅ or
TypesForMonetaryConstraints = ∅ then

3: Feasibility = False
4: else
5: j1 ← getOptimalTypeForTimeConstraint(Plan, d,
Jobs, TypesForT imeConstraints)

6: j2 ← getOptimalTypeForMonetaryConstraint(Plan,
d, Jobs, TypesForMonetaryConstraints)

7: possibleArea← [0, 1]
8: for j ∈ [1, N] do
9: possibleArea← possibleArea ∩ getArea(Plan, d,
j1, j2, Jobs)

10: end for
11: if possibleArea = ∅ then
12: Feasibility = False
13: else
14: p← getOptimalPart(d, plan, Jobs, possibleArea)

15: For j ∈ [1, N ] and pi,j ∈ Plan∗, set

16: pi,j =


p, j = j1,

1− p, j = j2,

0, else
17: end if
18: end if

each job and the intersection of the area for all the related
jobs (Lines 7 - 10). Given a related job jobk of a data set
and two data storage types (j1, j2), we can calculate the
possible area based on Formulas (1) - (13), (14) and (15), and
the calculated area is: max{0, a} ≤ pi,j1 ≤ min{b, 1} when
c > 0, or max{a, b} ≤ pi,j1 ≤ 1 when c < 0, with:

a =
TDLk − ET (jobk)− nk ·AIT

size(d)

· speedj1 · speedj2
speedj2 − speedj1

− speedj1
speedj2 − speedj1

,

b =
MBk

c · size(d)
− VMP (jobk) · nk · ET (jobk)

c · size(d)

− VMP (jobk) · nk
c · speedj2

− SPj2
c · size(d)

− RPj2
c · size(d)

,

c = VMP (jobk) · nk ·
(

1

speedj1
− 1

speedj2

)

+ d · (SPj1 − SPj2) + (RPj1 −RPj2),

d =
WL(job)∑K

l=1(WL(jl) · f(jl))
,

where AIT represents the average initialization time, ET
represents the execution time, which can be calculated based
on Formula 7, SP represents the storage price, RP rep-
resents the read price. Finally, if the final possible area is
an empty set, we consider that the two constraints cannot
be met (Lines 11 and 12). If not, we calculate the optimal
data partitioning by choosing a boundary of the area that
corresponds to a smaller total cost and update the data
placement plan (Lines 14 and 16).

5.3 Algorithm Analysis
Let us assume that we have M input data, N data stor-
age types, and each input data is related to K jobs on
average. Then, the search space for the problem we ad-
dress is O(NM ), which is the complexity of the brute-
force method. The complexity of ActGreedy algorithm [17]
is O(M ∗ K ∗ N). Then, the complexity of LNODP is
O(T ∗ M ∗ K ∗ N) (when there is no need to execute
Algorithm 4) or O(T ∗M ∗K2 ∗ N) (when Algorithm 4 is
executed for each job), which is much smaller than O(NM )
when NM−1 > M ∗ K2 ∗ T (this is a general case). Please
note that we do not reduce the complexity of the problem
but reduce the complexity of the solution. The complexity
of Economic and Performance (see details in Section 6) is
O(M ∗M). Although the complexity of LNODP is slightly
bigger than that of ActGreedy, Economic, or Performance,
it can generate near-optimal data placement plans while
satisfying hard constraints.

LNODP can generate a near-optimal result while satis-
fying the hard constraints in most cases. However, there are
two cases where LNODP cannot generate a data placement
plan to satisfy hard constraints for a job. First, when there
is no data storage type to store all the input data of a job
while satisfying both the hard time deadline and the hard
monetary budget. Second, when there is no combination
of two storage types that can satisfy both the hard time
deadline and the hard monetary budget. In these two cases,
the user should reset the hard constraints of the job in order
to use LNODP to generate data placement plans.

In order to analyze the worst case guarantee of the
LNODP algorithm, we focus on the case when the data
is scheduled according to the near-optimal data plan as
explained in Line 9 of Algorithm 1. The case explained
in Line 11 of Algorithm 1 is ignored as the data is not
scheduled in this case. The problem addressed in Algorithm
2 is a scheduling problem when there is an optimal solution
according to Algorithms 3 and 4. When the data can be
scheduled without being partitioned, the solution is equal
to the solution generated by a greedy algorithm. As the
cost function of the combination problem is monotone,
Algorithm 4 can generate an optimal combination of the
chosen storage types by Algorithm 3. Thus, when the data
needs to be partitioned while scheduling, the solution is also
equal to the solution generated by a greedy algorithm. As
the scheduling problem while minimizing a cost function is
a typical submodular problem as explained in [47], the worst
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case guarantee of the LNODP algorithm becomes the worst
case guarantee of a greedy algorithm for a submodular,
which is e−1

e ∗f
∗, where e is the base of the natural logarithm

and f∗ represents the optimal solution [48].

Fig. 5. Execution time of Greedy and Brute-force

6 EXPERIMENTATION

In this section, we first present the simulation to compare
the execution time of our proposed Lyapunov-based Near-
Optimal Data Placement (LNODP) algorithm and the brute-
force method. We consider four storage types, i.e., Standard,
Low frequency, Cold, and Archive, in our proposed algo-
rithm. These four storage types are provided by the storage
service on the Baidu cloud. Then, we compare the total
cost of four storage methods: LNODP, brute-force, Perfor-
mance [20], and Economic [21]. The brute-force method is
to search the minimum cost in the entire searching space,
which means that the result of brute-force is the optimal
solution. The Performance method [20] uses the storage
type that corresponds to the highest data transfer speed.
Economic [21] uses the storage type that corresponds to
the smallest price to store data. In addition, we compare
our algorithm with a simple adapted greedy algorithm, i.e.,
ActGreedy [17], to show that our algorithm can address
multiple hard constraints while ActGreedy only reduces the
total cost without considering the hard constraints. Then,
we present the comparison of the total cost among the
four storage methods using a widely used data processing
benchmark, i.e., Wordcount on Hadoop [49], and a real-
life data processing program for the correlation analysis of
COVID-19 [11] (COVID-19-Correlation), which is selected
from recent work related to COVID-19 [11], [50], [51]. In
the experimentation, we consider five execution frequencies
(daily, semimonthly, monthly, quarterly, and yearly) for
Wordcount and COVID-19-Correlation.

6.1 Simulation

In this section, we compare our proposed algorithm with the
brute-force method in terms of the execution time and the
total cost. We take 15 data sets with the average size being
5.5 GB as the input data of jobs. We execute fifteen jobs to
process the input data. Each job is associated with different
data sets, including Wordcount, Grep, etc. Each job is with
different frequencies and different settings such as DT , wt.
The data sets include DBLP XML files [52] and some data

sets from Baidu. The DBLP XML file contains the metadata,
e.g., the name of authors, publishers, of computer-based En-
glish articles. The comparison experiment results are shown
in Fig. 5.

Fig. 6. Comparison among four methods
Fig. 5 shows the result of the execution time of different

methods. In order to generate a data placement plan for six
data sets with fifteen jobs, the execution time of the greedy
algorithm is shorter than 0.0001s, while that of LNODP is
0.08s. When the number of the data sets augments, the
execution time of the brute-force method increases expo-
nentially. When the number of data sets becomes 15, the
execution time of the brute-force method is 67839s, while
that of LNODP remains within 0.0001s.

Fig. 6 presents the comparison among four methods:
LNODP, brute-force, Performance, and Economic. LNODP
corresponds to the same total cost as that of the brute-force
method, which is up to 8.2% and 30.6% smaller than that
of Performance and Economic, respectively. The simulation
experiment shows that the result of our proposed algorithm
is as same as the brute-force method, which means the result
of our proposed algorithm is the optimal solution in these
situations.

6.2 Wordcount
Hadoop [53] is a framework for parallel big data processing
on a cluster of commodity servers. Hadoop contains two
components, i.e., HDFS [54] and MapReduce. HDFS is a
distributed file system with a master-slave architecture.
MapReduce is a programming model and implementation
for parallel data processing in a distributed environment.
MapReduce contains two phases, i.e., Map and Reduce. In
the Map phase, the input data is processed, and key-value
pairs are generated. In the reduce phase, the key-value pairs
of the same Key are processed.

Wordcount is a widely used benchmark, which counts
the frequency of each word in the input files. Wordcount
contains two steps, i.e., Map and Reduce. In the Map step,
< word, 1 > is generated for each work in the input data.
Then, the number of < word, 1 > is counted for each work
in the Reduce step. Finally, the frequency of each word is
calculated and stored in HDFS.

We deploy Hadoop on three computing nodes based on
the platform. Each node is a VM with one CPU core and 4
GB RAM. We use DBLP 2019 XML files of 6.04 GB as the
input data. We set DT as 1200 seconds and DM as 1 dollar.
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(a) Daily (b) Quarterly (c) Yearly

Fig. 7. Total cost of Wordcount

(a) Daily (b) Quarterly (c) Yearly

Fig. 8. Total cost of COVID-19-Correlation.

TABLE 3
Results for hard execution time constraint and hard monetary budget

constraint. Frequency: yearly. Hard time deadline: 1420; hard monetary
budget: 6.5. The time unit is second and the monetary unit is yuan.

Constraints Cost ωtTime Monetary
LNODP Satisfied (1420.0) Satisfied (6.5) 0.018

0ActGreedy Broken (1465.8) Satisfied (2.9) 0.0081
Performance Satisfied (1405.4) Broken (9.7) 0.027

Economic Broken (1465.8) Satisfied (2.9) 0.0081
LNODP Satisfied (1420.0) Satisfied (6.5) 0.0053

0.9ActGreedy Broken (1465.8) Satisfied (2.9) 0.0045
Performance Satisfied (1405.4) Broken (9.7) 0.0062

Economic Broken (1465.8) Satisfied (2.9) 0.0045

First, we set the hard time deadline as 2000 seconds and
10 dollars. Fig. 7 shows that our proposed algorithm, i.e.,
LNODP, significantly outperforms the baseline approach.
When the frequency is daily, the total cost corresponding
to different approaches is shown in Fig. 7(a). Compared
with Economic, LNODP can reduce the total cost by 42.2%,
25.2%, and 8.7% when ωt is 0, 0.5, and 0.9 respectively.
When the frequency is quarterly, LNODP can reduce the
total cost by 44.3% compared with Performance when the
ωt is 0 as Fig. 7(b) shows. LNODP can generate an optimal
storage plan, which significantly outperforms (the total cost
is 31.7% and 7.2% smaller) Economic when ωt is 0.5 and 0.9,
respectively. Fig. 7(c) presents the efficiency of our proposed
algorithm when the frequency is yearly. Compared with Per-
formance, our algorithm can reduce the total cost by 69.8%,
60.4% and 27.4% when ωt is 0, 0.5 and 0.9, respectively.

Fig. 7 presents that our algorithm can reduce the total
cost by up to 69.8% compared with Performance and up to
42.2% compared with Economic. As the execution frequency

TABLE 4
Results for hard execution time constraint and hard monetary budget

constraint. Frequency: yearly. Hard time deadline: 722; hard monetary
budget: 1.9. The time unit is second and the monetary unit is yuan.

Constraints Cost ωtTime Monetary
LNODP Satisfied (722.0) Satisfied (1.8) 0.0050

0ActGreedy Broken (732.1) Satisfied (0.7) 0.0019
Performance Satisfied (720.8) Broken (1.95) 0.00054

Economic Broken (732.1) Satisfied (0.7) 0.0019
LNODP Satisfied (722.0) Satisfied (1.8) 0.0038

0.7ActGreedy Broken (732.1) Satisfied (0.7) 0.0029
Performance Satisfied (720.8) Broken (2.0) 0.0040

Economic Broken (732.1) Satisfied (0.7) 0.0029

of the job decreases, the advantage of our algorithm be-
comes significant. The comparison of Fig. 7(a), 7(b) and 7(c)
indicates that as the importance of time cost becomes bigger,
i.e., ωt, increases, the advantage of our proposed algorithm
becomes significant as well. This experiment also shows that
the result of our algorithm can generate the optimal solution
as the brute-force method.

Table 3 presents the execution with a strict hard execu-
tion time constraint and a hard monetary budget constraint,
i.e., 1420 seconds and 6.5 dollars. The existing methods,
e.g., ActGreedy, Performance, Economic, cannot meet both
the two constraints, while LNODP can place the data with
data partitioning while satisfying the two hard constraints
with small total cost. In addition, we find that the weight of
objectives only impacts the total cost, which has no impact
on the satisfaction of the constraints.

In addition, the average execution time of LNODP,
Performance, Economic, and Brute-force are 2.79∗10−4,
4.26∗10−5, 4.14∗10−5, 2.98∗10−4, respectively. While LN-
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ODP corresponds can generate good data placement plans,
the execution time remains quite acceptable.

6.3 COVID-19

Since the coronavirus disease (COVID-19) has become a
global emergency, we reproduced the data processing pro-
gram for the correlation among COVID-19-related search
activities, human mobility, and the number of confirmed
cases in Mainland China presented in [11]. The data in-
volved in [11] includes the number of confirmed cases
in each city (datasetc), the volume of COVID-19-related
search activities in each city (datasets), inflows and out-
flows for each city (datasetm) and the population in each
city (datasetp). datasetm is the inflow and outflow data of
inter-city population with the transitions of the inter-city
mobility categorized by the origin and destination pairs.
datasets includes the keywords and phrases related to the
epidemic from January to March. The total amount of these
data sets is 1.134 GB.

The data processing for the COVID-19-related correla-
tion analysis consists of the following three steps. First,
the data is selected using a filter operation. Then, a join
operator is used to generate the features for each city, i.e., the
number of confirmed cases, the inflows, the outflows, the
search volumes, the population. Afterward, the correlation
between any two features is calculated for each city. The
experimental results are shown in Fig. 8. We set DT as 600
seconds and DM as 0.5 dollars.

First, we set the hard execution time constraint as 800
seconds and the hard monetary budget constraint as 2 dol-
lars. Fig. 8 shows that our proposed algorithm, i.e., LNODP,
significantly outperforms Performance (up to 65.1%) when
the size of the input data of the job is smaller than that of
Wordcount. When the frequency is daily, the total costs of
different approaches are shown in Fig. 8(a). When ωt is 0 and
ωm is 1, our algorithm can reduce the total cost by 30.5%
compared with Economic. When ωt increases to 0.5, our
algorithm can reduce the total cost by 3.6% compared with
Economic. When the importance of time, i.e., ωt, increases to
0.7, our algorithm can outperform Economic, and the total
cost can be reduced by 2.5%. Fig. 8(b) presents the total cost
of different approaches when the frequency is quarterly.
When the user only considers the importance of money,
our algorithm can reduce the total cost by 35.7% compared
with Performance. With the increase of ωt, our algorithm
can reduce the total cost by 3.5% and 1.9% compared with
Economic when ωt is 0.5 and 0.7 respectively. When the fre-
quency is yearly, the execution results are shown in Fig. 8(c).
The most significant result is that our algorithm can reduce
the total cost by 65.1% compared with Performance when
ωt is 0 and ωm is 1. When ωt is 0.5 and 0.7, our algorithm
can reduce the total cost by 14.9% and 6.5% compared with
Performance and Economic, respectively.

From Fig. 8, we find that our proposed algorithm, i.e.,
LNODP, significantly outperforms the Performance method
(up to 65.1%) and the Economic method (up to 30.5%), when
the frequency of the job execution is high and when the size
of the input data of the job is big.

Table 4 presents the execution with a strict hard execu-
tion time constraint and a hard monetary budget constraint,

i.e., 722 seconds and 1.9 dollars. The existing methods, e.g.,
ActGreedy, Performance, Economic, cannot meet both the
two constraints. However, LNODP can place the data with
data partitioning while satisfying the two hard constraints
with a small total cost. We find that the weight of objectives
only impacts the total cost while having no impact on the
satisfaction of the constraints.

In addition, the average execution time of LNODP,
Performance, Economic, and Brute-force are 2.01∗10−4,
2.01∗10−5, 2.01∗10−5, 2.04∗10−4, respectively. The execu-
tion time of LNODP is quite acceptable.

7 CONCLUSION

When organizations outsource their data onto the cloud, it is
critical to choose a proper data placement strategy to reduce
its expected total cost. In this paper, we proposed a solution
to enable data processing on the cloud with the data from
different organizations. The approach consists of three parts:
a data federation platform with secure data sharing and
secure data computing, a multi-objective cost model, and
a Lyapunov-based near-optimal data placement algorithm.
The cost model consists of monetary cost and execution
time. The Lyapunov-based near-optimal algorithm delivers
a solution to the problem. We carried out extensive experi-
ments to validate our proposed approach. The experimental
results indicate that our proposed algorithm outperforms
the baseline approaches up to 69.8% and that our algorithm
can generate the same optimal solution as the brute-force
method within a short execution time.
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