
IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Real-Time FaaS: Towards a Latency Bounded
Serverless Cloud

Márk Szalay∗‡ ID , Péter Mátray†, László Toka∗‡ ID ,
∗Budapest University of Technology and Economics, Hungary,

†Ericsson Research, Hungary ‡MTA-BME Network Softwarization Research Group, Hungary

Abstract—Today, Function-as-a-Service is the most promising concept of serverless cloud computing. It makes possible for developers
to focus on application development without any system management effort: FaaS ensures resource allocation, fast response time,
schedulability, scalability, resiliency, and upgradability. Applications of 5G, IoT, and Industry 4.0 raise the idea to open cloud-edge
computing infrastructures for time-critical applications too, i.e., there is a strong desire to pose real-time requirements for computing
systems like FaaS. However, multi-node systems make real-time scheduling significantly complex since guaranteeing real-time task
execution and communication is challenging even on one computing node with multi-core processors. In this paper, we present an
analytical model and a heuristic partitioning scheduling algorithm suitable for real-time FaaS platforms of multi-node clusters. We show
that our task scheduling heuristics could outperform existing algorithms by 55%. Furthermore, we propose three conceptual designs to
enable the necessary real-time communications. We present the architecture of the envisioned real-time FaaS platform, emphasize its
benefits and the requirements for the underlying network and nodes, and survey the related work that could meet these demands.

Index Terms—real-time scheduling, real-time cloud, real-time FaaS, partitioned scheduling, partitioned-EDF, heterogeneous
multiprocessor, multi-node and multiprocessor system.

✦

1 INTRODUCTION

W ITH the advent of 5G, IoT, and Industry 4.0, the idea
of running delay-sensitive applications in the cloud

instead of special-purpose hardware is gradually gaining
ground. As [1] argues, cyber-physical systems, IoT, and
cloud computing together create Industry 4.0, i.e., makes
the concept of ”smart factory” alive. This paves the way for
use-cases that were considered impossible before, such as
remote-controlled factories. Novel applications of Industry
4.0 require reliable wireless connections, ultra-low end-to-
end (E2E) latency, high data rates, and supporting a massive
number of devices. Fortunately, these characteristics are
enabled by 5G [2], [3]. E.g., the authors of [4] present how
5G can facilitate a distributed robotics control system. They
allow time-critical and computationally exhaustive opera-
tions to be offloaded to the cloud using 5G URLLC (Ultra-
reliable low-latency communication) between the cloud and
the robot. These technologies lead to the idea of opening up
cloud and edge computing infrastructures for time-critical
applications, such as cloud-assisted safety systems, tactile
internet, virtual and augmented reality applications.

Thanks to its flexibility benefits, serverless computing
has become one of the most popular paradigms in the
field of cloud computing. It allows developers to focus only
on application development and not care about the server
management and auxiliary functions by providing resource
allocation, fast response time, schedulability, scalability, re-
siliency, and upgradability of the deployed applications.
Function-as-a-Service (FaaS) – the best-known implemen-
tation of serverless computing – makes it possible for users
to run their microservice applications without any manage-
ment effort. Most of the FaaS platforms rely on container
technologies, like LXC or Docker, and container orchestra-
tion systems such as Kubernetes. Typically, the users’ source

code is wrapped into containers that are scheduled and de-
ployed by Kubernetes. Containerization provides isolation
of processes and libraries with low-performance overhead.

Several research initiatives have tackled the idea of run-
ning real-time (RT) applications in containers [5], [6], [7], but
it still seems to be an undiscovered research field today. This
is especially true if both RT and traditional containers are
scheduled on the same hardware. Mixed-Criticality Systems
(MCS) are able to handle such apps with various levels
of criticality. They ensure the correct execution of critical
tasks while sharing the underlying hardware resources. To
our knowledge, currently, there is no solution that would
be capable of scheduling RT tasks on a server cluster. No
wonder, since such a system has many demands which are
still actively researched: 1) underlying networks need to be
deterministic, 2) the operating systems (OS) of the servers
must operate in real-time, 3) it need to support spatial and
temporal real-time scheduling of tasks, 4) it has to take into
account the heterogeneity of the computing infrastructure.

In this paper, we introduce – to the best of our knowl-
edge the first and only – real-time FaaS (RT-FaaS) system,
which extends the current RT platforms by bringing in the
distributed aspect. We collect the related technical require-
ments and research challenges essential for such system. In
addition, we propose possible methods for both the RT com-
munication and the real-time scheduling of the functions to
ensure the RT execution. Besides, by summarizing the real-
time results published in different computer science fields,
we aim to start a new research direction, called real-time
FaaS, and encourage the research community to contribute.

The structure of the paper is the following. In Sec. 2 we
define the RT-FaaS, its the two major challenges and the
feature requirements. Sec. 3 summarizes the related works.

https://orcid.org/0000-0003-2971-3736
https://orcid.org/0000-0003-1045-9205

IEEE TRANSACTIONS ON CLOUD COMPUTING 2

Sec. 4 proposes three conceptual designs to enable the RT
communication of the deployed functions of an RT-FaaS.
Sec. 5 elaborates on the problem of RT function scheduling
and introduces the assumed environment models. We argue
for partitioning scheduling in systems like RT-FaaS; Sec. 6
presents our proposed partition algorithm. We evaluate the
algorithm in Sec. 7. Finally, Sec. 8 concludes the paper.

A preliminary version of this paper appears as a con-
ference paper [8]. As novel content, (1) we define the
RT-FaaS system, identify its two major challenges, and de-
termine the requirements that such a system should meet,
(2) we propose three conceptual designs to ensure RT com-
munications in an RT-FaaS platform, (3) we add corner
cases when the proposed partitioning algorithm – related
to RT partitioned scheduling approach – returns optimal
partitioning, (4) we present, in the worst-case, how much the
result of proposed algorithm deviates from the optimum,
and finally (5) we have extended the related work with
additional relevant research works from this topic.

2 THE CONCEPT OF REAL-TIME FAAS
In the following, we argue why the FaaS serverless systems
are suitable to run users’ RT applications in the cloud.
We define what the RT-FaaS cloud system is, what the
major challenges are to tackle, and the feature requirements
posed against the FaaS infrastructure to handle critical and
non-critical functions jointly.
FaaS as a target platform for RT applications. The authors
of [9] mention in their paper, many students at UC Berkeley
complain why there is not a ”cloud button” that could be
theoretically pushed to run users’ simple program code
in an optimized way within the cloud. They are not the
only ones who still find the existing cloud approaches too
complex and challenging to use: nowadays, many cloud
platforms exist offering different types of virtualized in-
stances to run user applications with totally different pricing
methods. This means that it is difficult to i) choose among
the available cloud providers, ii) configure the used virtu-
alized system, and iii) optimize it to get efficient application
performance for a minimized cost. Plus, these tasks become
more challenging if users want to run RT applications, i.e.,
apps which are guaranteed to return before a predefined
deadline.

We argue that a FaaS serverless computing system is the
most suitable solution to run RT and non-RT applications both
from the cloud providers’ and the users’ point of view. On
the one hand, it is not easy to build cloud-ready applica-
tions due to the available wide range of cloud providers,
services, and technologies. Furthermore, the developers or
cloud users, have to deal with the kernel, scheduler, virtual
machine (VM) or network configuration, and the parallel
execution of the application tasks to get the required per-
formance of their applications. Fortunately, FaaS provides
the highest level of abstraction to run our application in the
cloud: users should define only a single-threaded source
code, install it into the FaaS system, and pay only for the
execution.

On the other hand, FaaS should also be preferred by the
cloud providers, since this way they have the greatest pos-
sible control and service configuration over their infrastructure.

Moreover, offering only a high-level interface to deploy user
functions prevents their physical infrastructure from being
misconfigured by users and thus being unable to provide
the required QoS. E.g., in the case of RT functions, the cloud
provider would uselessly provide a VM that would be able
to run the RT application if the user uses a wrong operating
system scheduler with an incorrect configuration. In such
a case, even though the cloud provider ensures the neces-
sary infrastructure environment, the user’s RT applications
would still not be able to meet their deadlines.
RT-FaaS serverless computing system.

We define the RT-FaaS cloud system in Def. 1. Multiple
nodes, including numerous CPUs, form a server cluster
on which the specified RT-FaaS platform runs. The users
can demand their functions to deploy, and depending on
whether it is an RT function or not, they provide maximum
tolerated response time and the function’s period. The former
determines the maximum time for the function’s response
to arrive back to the user. The latter defines the trigger
frequency of the function. A practical example for such an
RT function might be a video frame processing tool [10] that
receives each snapshot image of a video stream, analyzes it,
and returns the detections to the user. E.g., in the case of an
80 fps video stream, a new frame arrives every 12 ms, which
is the period of the video processing function.

Definition 1. RT-FaaS cloud system: RT-FaaS is the infras-
tructure, including computing servers and the network connect-
ing them, on which the complete FaaS software stack runs to
offer cloud computing resources for users’ time critical (RT) or
non-critical (non-RT) functions such that the worst-case response
times of the deployed RT functions are guaranteed to be below the
predefined value.

FaaS systems, by definition, exist to run event-driven
and stateless functions. Users install their functions in ad-
vance, and they are invoked repeatedly whenever a new in-
put or event arrives. For an event, the FaaS creates a worker
which executes the user function within a container. The
number of worker containers is scaled elastically according
to the incoming events. One major limitation of current
FaaS systems is that the timing of the worker invocations
is unpredictable.

In the case of RT functions, we must rethink the way
how functions are executed. When users install their RT
functions, they also provide the invocation period (i.e., how
frequently the incoming input data to process arrives) and
the response time within which it must return. We assume
periodic functions as RT tasks that process the periodi-
cally incoming data. The scheduler of the RT-FaaS system
determines the CPU of a server within the server cluster,
which will run the worker (i.e., the container) that executes
the RT functions. Due to the real-time requirements, we
must avoid cold executions. This results in that they should
be running on predetermined CPUs and processing the
incoming data in each invocation period. Thus, it can be
provided that the output data returns before the required
deadline, and the function remains warm. Since we assume
periodic functions, they run as long as the incoming input
data arrives according to the predefined period.

One might ask how the dynamic scaling of RT FaaS
applications is supported. In this work, we assume periodic

IEEE TRANSACTIONS ON CLOUD COMPUTING 3

RT functions to run on the proposed RT-FaaS platform.
This means, they all have their invocation period and, by
definition, they cannot be triggered more frequently than
this period. Consequently, only one function invocation per
period is allowed. If the workload to process increases, more
than one RT function should be run to process the input.
In that case, the RT-FaaS users should deploy new RT
instances of the already deployed RT application with the
same invocation period. Considering aperiodic or sporadic
RT functions where the one function invocation per period
restriction is insufficient, is out of the scope of this paper.
RT-FaaS challenges. The goal of the RT-FaaS is to make it
possible for users to externalize their applications into the
RT-FaaS cloud even if it requires deterministic execution. To
accomplish this, the two major challenges below need to be
tackled.

Definition 2. Two major challenges of the RT-FaaS:

1) Real-time execution of user demanded functions
2) Real-time communication within the RT-FaaS system

The RT execution of functions ensures, if the input data
to process is available, the RT-functions are going to be
executed and their output will be generated before the
function’s deadline, thus providing the response to the user
in time. To this end, the RT-FaaS must guarantee both spatial
and temporal scheduling of the incoming user demanded
functions, i.e., it determines where – on which node’s CPU
– and when – in which time interval – to run functions to
meet their deadline requirements if they have any.

The real-time communication of the deployed functions
is also essential. Although real-time execution ensures the
function generates its return value before the deadline,
it does not mean it will also be transmitted back to the
user consistently in time. The underlying network, both the
physical one among nodes and the virtual one within the
nodes, need to be deterministic to provide the worst-case
transmission time between two components of the managed
RT-FaaS cloud computing system. All in all, both real-time
execution and communication of the functions are required for an
RT-FaaS. They jointly provide the i) function invocation and input
data transmission, ii) the function execution – thus generating
the required output – the iii) cloud service invocation (e.g., DB
writing) if it is necessary and iv) the return value transmission
back to the user in time before the user-defined deadline.
RT-FaaS requirements. We argue the RT-FaaS must meet
several feature requirements to be able to run RT and
non-RT functions together such that deadline requirements
are met, while many of the well-known benefits of cloud
systems are still ensured. We defined these requirements in
Def. 3.

Definition 3. Requirements for RT-FaaS:

1) Ensuring the isolation of functions (multitenancy)
2) Allowing critical and non-critical functions to be de-

ployed (mixed criticality system)
3) Offering RT and non-RT cloud services to the tenants

(third party cloud services)
4) Running on a multi-node system
5) Supporting heterogeneous hardware devices
6) Ensuring end-to-end (E2E) bounded latency between the

user and the worker where RT-functions run.

7) Ensuring function to RT cloud service bounded latency

The tenants’ functions must be isolated from each other
and from the underlying host operating system (OS) to
protect the shared infrastructure and ensure the tenants’
privacy (Req. 1). E.g., containers in different namespaces
in which user functions run could fulfill this requirement.
We argue that RT-FaaS must support both RT and non-RT
functions (Req. 2), prioritizing the execution of the former
above the latter. This ensures the necessary RT finishing
time for the critical functions. Furthermore, the RT-FaaS
could offer RT and non-RT services to the users, which can
be used during the deployed function’s operation (Req. 3).
Such a service could be a low-latency RT cloud database
(DB), event streaming and messaging tool, or an artificial
intelligence model. Examining, how RT services could be
enabled in computation systems is out of the scope of this
paper, however, it is an actively researched topic [11], [12],
[13]. The RT-FaaS should manage not a single, but multiple
nodes, i.e., it could operate on a server cluster (Req. 4).
Furthermore, these servers might be heterogeneous nodes
containing different types and amounts of CPUs, memory
modules, Network Interface Controllers (NIC), etc. (Req.
5). The RT-FaaS system includes single or multiple ingress
points, through which the users could communicate their
deployed RT or non-RT functions. We argue the network
between the ingress points and the functions needs to be
deterministic (Req. 6), thus the worst-case response time of
the functions could be guaranteed.
RT-FaaS goal.

Several optimization goals can be defined for such an
RT-FaaS system. In this paper, we address the question of
how to run RT functions in the most cost-effective way to max-
imize the economic advantage of cloud shared resources for non-
RT ones? In Sec. 3, we list the prior arts which are essential
for an RT-FaaS system to provide the determinism of the
data transmission time and function execution. However,
these are complementary building blocks, not complete
solutions. We are not aware of any system which combines
the flexibility of a FaaS system with real-time guarantees.

3 RELATED WORK

We summarize the current state of the art of meeting the
challenges and requirements of RT-FaaS in this section.

Deterministic Physical Networks: The underlying net-
work of the RT-FaaS system should be deterministic. Such
networks are highly reliable, providing bounded latency
and low jitter. IEEE 802.1 TSN (Time-Sensitive Networking)
[14] and IETF DetNet [15] are two known approaches which
aim to provide deterministic and reliable packet forward-
ing for network services. [16] analyzes the similarities and
differences and give a survey of the published standards
and possible future areas. [17] surveys the studies of TSN
and DetNet that specifically target the support of Ultra-Low
Latency in 5G networks.

Deterministic Virtual Networks: However, not only the
network must be latency bounded, but other communica-
tions within the servers as well. Gutiérrez et al. present
a study [18] about the Linux communication stack meant
for real-time robotic applications. They proved, under ap-
propriate configuration, the Linux kernel greatly enhances

IEEE TRANSACTIONS ON CLOUD COMPUTING 4

the deterministic nature of communications if there is no
significant non-critical concurrent traffic. On the other hand,
there exists network stacks with the specific purpose of
providing deterministic networking. Such an approach is
RTnet [19], an open-source hard real-time network protocol
stack for Linux equipped with real-time extension RTAI or
Xenomai. RTnet implements UDP/IP, TCP/IP, ICMP, and
ARP in a deterministic way, and it is able to handle jointly
RT and non-RT traffic.

Unfortunately, the Linux network stack nowadays is still
unsuitable for time-critical network applications [20]. How-
ever, instead of applying determinism, another approach is
to bypass the kernel and retrieve data from the NIC directly
to the app. Several solutions exist for this [21], e.g. DPDK.

Jesus Sanchez-Palencia from Intel, at Embedded Linux
Conference [22] presented how they enable TSN in the
upstream direction within a Linux node by using TSN
supported NIC, assigning traffic priorities to its hardware
queues, and steering the traffic from the application into the
correct Tx queue. In the presentation he did not touch on
how to deal with the dynamic memory allocation, which
causes unpredictable delays in Linux kernel. It was men-
tioned, socket AF XDP (Address Family eXpress Data Path)
could mitigate this. One year later, also at the Embedded
Linux Conference, Björn Töpel and Magnus Karlsson [23]
presented the AF XDP sockets that have been designed
from the ground up to be able to deterministically deliver
sub-microsecond packet latencies and process millions of
packets per second. AF XDP allows zero-copy i.e., network
packets are not copied between kernel and user space mem-
ories, instead accessed directly by applications.

Li et al. in [24] realized the Xen hypervisor handles RT
and non-RT traffic through its common interface and identi-
fied limitations that could result in long or unpredictable
network traffic latencies between virtual machines. They
propose a Virtualization-Aware Traffic Control framework
to improve predictability and to reduce the delay for critical
applications.

Real-time containers: Struhár et al. provide a survey [5]
summarizes the research community’s effort on real-time
properties in container-based virtualization. [6] provides a
reference architecture for implementing the RT container
concept on top of a Linux kernel patched with a hard
real-time co-kernel. Abeni et al. [7] propose to use a real-
time deadline-based scheduling policy built into the kernel
to provide temporal scheduling guarantees to different co-
located containers.

Real-time CPU scheduling:
Suppose physical and virtual networks, and containers

themselves all provide real-time services. In that case, the
remaining essential criteria is to make the hosts’ operating
system (OS) real-time too, i.e., apply RT CPU scheduling.
When only a single CPU exists, the basic scheduling solution
is Earliest Deadline First (EDF) [25]. If multiple CPU exist,
the multiprocessor scheduling approaches can be divided
into two categories: partitioned and global techniques. The
former uses a partitioning method to spread the tasks onto
CPUs and run a mono-processor scheduling algorithm (e.g.,
EDF) on each core. This is a static scheduling approach, i.e.,
the task migration between the cores is not allowed. On the
other hand, global scheduling is a dynamic approach that

has a single scheduler that determines when and on which
CPU to run the task. Here task migration is allowed, i.e.,
each task could run on each processor at any time.

Several results have been published for partitioned
scheduling on multicore systems. However, these are gen-
erally tailored for a single node environment, including
multiple CPUs. In contrast, we believe for RT-FaaS, multiple
CPUs of multiple nodes are to be managed to execute both
RT and non-RT tasks. The heterogeneity of available CPUs
also must be taken into account, which can greatly affect
the quality of scheduling. The processors of CPU pools
are typically divided into three categories: identical, uniform
heterogeneous, and unrelated heterogeneous CPUs. In identical
multiprocessor platforms, all CPU processing speeds are
the same. The uniform heterogeneous multiprocessor plat-
forms contain CPUs with various processing speeds. Finally,
in unrelated heterogeneous multiprocessor platforms, the
processing speed depends on both the CPU speed and
the function being executed. E.g., a GPU would execute
graphics jobs faster than CPUs.

Existing papers which study the partitioned scheduling
problem of RT tasks typically consider either identical cores
or CPUs as [26], [27], [28] or only a limited heterogeneity
among of them (e.g., dual-core types of the ARM big.LITTLE
architecture) [29], [30], [31]. [32], [33] propose methods
running in non-polynomial time to solve the partitioning
problem. Baruah in [34] presents the Heterogeneous Multi-
processor Partitioning Problem and his approximation algo-
rithm that aims to minimize the maximum fraction of the
capacity of any CPU that is utilized to process RT tasks.

Global scheduling is also a highly investigated topic.
E.g., [35] proposes a new, more realistic model with a hi-
erarchical platform view for global scheduling on unrelated
processors and present several new workload assignment
methods. We argue the global scheduling on multiple hosts
is not feasible with the algorithms known today. A single
ready task queue would exist in the cluster in such a
case, and the ready state processors would select the tasks.
Suppose the queue and processors are located on separate
nodes. In that case, the added network delay between them
will slow down the cluster’s computing performance to a
level that makes the system unusable. Hence, in this paper,
we focus our efforts on partitioned scheduling.

Prior art on FaaS performance guarantees There e-
xists research works like PyWren [36] ExCamera [37] and
Sprocket [9] where the authors examine the low-latency
serverless processing from the software developer’s point
of view. They assume that the serverless system such as
Amazon AWS [38] is given, and the question is how to
execute and scale the user demanded function to process
the incoming data (e.g., video frames) as soon as possible
by exploiting fine-grained parallel computations and elas-
ticity. The proposed cloud-based frameworks control the
fleet of workers, use the same generic Lambda function to
avoid cold starts, and exploit the parallelization of functions
to ensure real-time processing, e.g., in the case of video
streams. We argue that these works can provide only soft
real-time performance since they do not guarantee in the
infrastructure level to process the data before the deadline.
By parallelizing the user functions, the frameworks acceler-
ate the data processing; however, if the used serverless FaaS

IEEE TRANSACTIONS ON CLOUD COMPUTING 5

system is overloaded, either the parallelization is impossible
[39], or a large number of functions do not finish fast enough
[40], [41]. To sum up, the proposed frameworks use the
FaaS service and thus the cloud infrastructure, but they
cannot control it. In contrast to these low-latency solutions,
in this paper, we examine the RT processing challenge from
the FaaS provider’s point of view. We argue about the
necessity of an RT-FaaS system, which is able to control the
underlying infrastructure, thus ensuring the hard real-time
execution of user demanded functions.

Some works like [39], [40], [41], [42] propose modifica-
tions in FaaS platforms (e.g., OpenFaaS or OpenWhisk) to
enable performance guarantees in FaaS systems. Authors of
[39] examine how to guarantee the invocation rate of FaaS
functions even in overloaded cases. However, they do not
address the guarantees on the function executions. In [40],
the authors concentrate on enabling execution SLAs, i.e.,
ensuring customer-provider function execution agreements.
They introduce Function as a Service SLA Framework
(FaaS2F), a modular framework to define execution-SLAs,
and detect violations of them in serverless functions. It can
detect the scenarios when a function execution is slower
than in the case of normal FaaS load, but the users cannot
define the required deadline for their functions. The authors
of [41] propose a platform for running latency-sensitive
serverless computations on edge resources. They provide an
approach for allocating edge resources for latency-sensitive
serverless functions and an algorithm to scale the resources
dynamically. They aim for soft real-time executions and do
not consider the latency of the network among the edge
servers.

Our paper envisions a FaaS system where both RT ex-
ecution and networking are ensured for RT functions, thus
enabling hard RT performance. Furthermore, we propose a
scheduling method for this system, where users can define
the required deadline to finish their tasks and get back the
computed output.

4 RT COMMUNICATION WITHIN THE RT-FAAS
We propose three conceptual designs to realize the RT
communication of functions in the server cluster. The pos-
sible communication paths in the RT-FaaS are depicted in
Fig. 1. As Def. 1 argues, the RT-FaaS operates on a cluster,
consequently, the functions can run on multiple servers.
In order to adapt to available FaaS systems and to meet
Requirement 1 of RT-FaaS, we assume that functions run
in containers. In Fig. 1, two applications exist (RT app 1
and non-RT app 2) to which one-one function is deployed
in the RT Container 1 and the Container 2 of the RT-FaaS.
The application sends input data to the function, where the
processing happens, and it sends the response back to the
application. It might happen that two functions in different
containers also communicate with each other. E.g., a third-
party cloud service – for instance, a low-latency RT cloud
database – could also run inside a container that the user-
demanded functions call.

Within the nodes, a virtual network ensures the con-
nectivity of the containers, like any Container Network
Interface (CNI) plugin for Kubernetes pods. The nodes con-
tain a single or multiple NICs, which connect the physical

Node 1 Node x

...

NIC NIC

Network

Virtual Network

vNIC

RT
Container 1

vNIC

Container 2

Virtual Network

vNIC

RT
Container 3

Ingress point

Path A: RT communication between Ingress point device (RT app 1)
and RT Container 1
Path B: non-RT communication between Ingress point device (non-RT app 2)
and RT Container 1

Path C: RT communication between RT Container 1 and RT Container 2

RT
app 1

non-
RT

app 2

Managed Network

CPU pool

Function - CPU assignment & scheduling

CPU pool

Function - CPU
assignment & scheduling

Figure 1: The architecture of the RT-FaaS

network devices to the virtual network of the servers. An-
other essential element is the ingress point through which
the RT or non-RT applications can communicate with their
deployed functions. This component is considered as the
edge of the RT-FaaS managed network. Beyond this point,
it is the user’s responsibility to ensure the RT connection to
its application.

The network between the RT application and its corre-
sponding RT function needs to be deterministic to guarantee
the RT communication. Since the network resources are
shared, the bounded latency for RT traffic must be ensured
even to the detriment of the concurrent non-RT traffic. The
802.1Q standard Tagging could be used to prioritize the
RT traffic since the VLAN header contains priority bits.
Consequently, tagging the Ethernet frames of the RT traffic
results in RT packets being forwarded ahead of the others,
but it cannot provide the E2E latency of the flow. If multiple
devices use different system clocks, the packet buffering
effect can result in unpredictable latency in the E2E traffic
flow. TSN [14] tackles this issue. The three key components
are i) Time synchronization of devices in the TSN domain, ii)
Traffic shaping within the TSN devices, and iii) the selection
of the communication paths and the reservation of them. If
all TSN devices run synchronously and use the same traffic
shapers, packet bursts will be prevented. However, TSN has
initially been suitable for robot-controller communication
on Ethernet networks, while in the RT-FaaS case, the TSN
network endpoints are computing servers. Therefore, the
servers’ virtual network must be also deterministic, thus
forming a common TSN domain with the physical network.

We propose (in Def. 4) the three conceptual design
approaches how to make real-time, i.e., worst-case latency
bounded, communications of the RT-functions within the
nodes and connect them to the physical TSN network.

Definition 4. The conceptual design approaches to implement
the RT communications in RT-FaaS are:

1) Hardware-based real-time networking;
2) Software-based real-time networking;
3) Hybrid real-time networking.

IEEE TRANSACTIONS ON CLOUD COMPUTING 6

4.1 Hardware-based real-time networking
This design attaches TSN-enabled hardware devices to the
servers. Accordingly, the server NICs form a common TSN
domain with the hardware devices outside the servers, e.g.,
TSN switches. In this case, the TSN switches and NICs are
synchronized by a “universal clock”, and all of them use the
same traffic shaper to schedule the traffic of the applications
within the TSN domain to enable the required determinism.

Yi Wang, in presentation Time-Sensitive Networking En-
abling on StarlingX [43], at the Open Infrastructure Summit
2020, elaborated on how they enable TSN in a StarlingX
cluster for workloads running in Kata containers. StarlingX
[44] is a complete cloud infrastructure software stack for
the edge designed for ultra-low latency use cases. Kata
containers [45] have their own kernel independently from
the host’s. For this reason, the user-demanded TSN func-
tions must be in Kata containers to provide independence
and isolation. They used four servers as a cluster, each
containing TSN-supported Intel I210 series NICs, which
connect to a TSN switch PCIe-0400-TSN. Tools ptp4l and
phc2sys were used for time synchronization of the TSN
devices. Data sender and data receiver TSN applications
run in Kata containers on different nodes. The I210 NICs
were linked into the Kata containers by PCI passthrough.
They managed to achieve deterministic E2E latency (ranged
from 1253.188µs to 1253.343µs), using a 2 ms packet sending
period, while a large amount of concurrent non-RT traffic
was sent over the TSN network, too. Their work is a great
example of how to enable RT communication of RT-function
containers in the RT-FaaS. However, the major drawback
of this approach is that the NICs are not shared between
the containers. Thus, the number of TSN-enabled NICs
determines the upper bound for the number of deployable
RT-functions within the RT-FaaS server.

Single Root I/O Virtualization (SR-IOV) could be an
effective solution to share a single NIC to the containers
within the same node. It allows a single PCIe hardware
interface to be shown as multiple physical PCIe devices,
i.e., containers can share a single physical NIC, which
appears as separate physical devices. With the adequately
configured BIOS and OS, SR-IOV supported NICs perform
networking tasks from hardware, i.e., there is no need for
an additional virtual bridge to connect NIC and containers.
Utilizing SR-IOV could alleviate the upper bound limitation
on the number of RT-functions; however, to the best of our
knowledge, there is no available NIC device that supports
both TSN and SR-IOV.

Another way is the utilization of smartNICs [46] within
the RT-FaaS nodes. They offload the CPU by enabling
network traffic processing on the NIC. SmartNICs allow
outsourcing the virtual network within the nodes to the HW
of the NIC.

4.2 Software-based real-time networking
Not only the physical devices need to operate in real-time,
but the virtual networks within the RT-FaaS nodes as well.
The Software-based RT design is about making virtual
network software which is operated by the node’s CPUs.
No special purpose HW is required; the virtual network
software connects the containers to the physical NIC and

aims to guarantee the bounded latency of the packet trans-
missions. Research products already exist aiming at ac-
celerating the performance of the virtualized networking.
[47] introduces an software switch called ESwitch that can
scale over 100 Gbps. The authors compared ESwitch to OVS
(Open vSwitch) [48], the most commonly used software-
based switch, and proved that ESwitch significantly outper-
formed OVS.

However, ESwitch still does not provide upper-bounded
latency. Currently, it is an actively researched field to make
virtual switches support TSN. The open research problem is
to which extent a software switch and kernel network stack
can keep the hard guarantees of deterministic bounds. The
authors of [49] and [50] propose virtual switches that are
capable of TSN with the IEEE 802.1Qbv traffic shaper.

4.3 Hybrid real-time networking

The third design that we propose to enable RT communi-
cations for RT functions is the Hybrid method. This de-
sign aims to i) simplify the virtual network component
of the RT-FaaS nodes to a level that is already capable of
guaranteeing the bounded latency of transmissions, and ii)
delegate the remaining complex networking tasks to the
TSN-enabled network devices. Recall that the architecture
presented by Wang [43], detailed in Sec. 4.1, could be suit-
able for the RT-FaaS system. However, it has a significant
constraint: the number of NICs of a node is the upper
bound for the number of deployable RT functions. To solve
this issue, the common NIC could be shared among the
containers if it is ensured that the RT traffic belonging to
the RT-functions is prioritized over the non-critical traffic of
the non-RT functions.

[22] presents a solution where servers contain
TSN-enabled NICs and use their HW Tx/Rx queues for
different traffic priorities. Their approach exposes the HW
queues as traffic classes, thus allowing for Linux qdiscs
to be attached. The qdiscs are kernel packet buffers for
the network packets which control when and how they
are transmitted. The authors developed cbs qdisc for
credit-based shaping (standard 802.1Qav) and tbs qdisc
for time-based scheduling. They use regular sockets for
transmitting data and steer the traffic from these sockets
to the right HW transmission queues of the TSN supported
NIC. They managed to achieve 468 ns average and 506 ns
max latency using 1 ms packet sending period. They have
found that the worst-case latency can be further improved
if they avoid the dynamic memory allocation for packet
buffers just like Björn Töpel and Magnus Karlsson presented
in [23]. The AF XDP new socket family allows zero-copy of
the packets by the XDP.

The major issue of this approach is the RT functions run
as processes within the RT-FaaS server and use sockets to
steer their traffic into the proper priority HW queue of the
NIC. This does not meet with the RT-FaaS Requirement 1 in
Def. 3. To this end, the RT-function processes should run in
containers which results in unpredictable and unnecessary
delay due to the virtual NIC and the additional network
stack inside the container. Fortunately, Nakamura et al. [51]
propose a novel approach for fast container networking that
enables container applications to utilize the host network

IEEE TRANSACTIONS ON CLOUD COMPUTING 7

stack directly with proper access control, bypassing the
container’s network stack and virtual interface.

Node xNode 1

...

eth0 eth0

eth0.14

RT
Container 1

eth0.15

Container 2

eth0.16

RT
Container 3

Ingress point

RT
app 1

non-
RT

app 2

Managed
Network

Path A: RT communication between Ingress point device (RT app 1)
and RT Container 1

Path C: RT communication between RT Container 2 and RT
Container 2

Node 1 related switch Node x related switch
Normal L2 switch

vlan 14 vlan 15 vlan 16

NAPALM

Figure 2: Hybrid RT networking design: VLAN ID forwarding

We further propose another realization of the Hybrid
real-time networking which forwards packets inside the
servers based on their VLAN ID, depicted in Fig. 2. In this
architecture, the virtual network component is simplified to
forwarding by VLAN ID only. Each container is located in
a separate VLAN, so their outcoming packets are extended
with the VLAN header. Each RT-FaaS node is paired with a
physical switch, where the same VLANs are configured that
the containers use inside the server. The VLAN trunk port
connects the node-related switch and the node. This way,
the virtual interfaces of the containers appear at the physical
ports of the switch, which need to be connected – e.g., by an
L2-switch – to enable the communication between the nodes
and the ingress point. In this architecture, all the complex
network tasks could run in the learning switch device.
To support the dynamism of the containers’ lifecycles, the
VLAN configurations must be handled automatically. To
this end, a CNI network plugin should be implemented to
configure the VLAN within the nodes and in the switch
devices by NAPALM [52]. The limitation of this design is on
the number of deployable RT functions within the RT-FaaS
server. As many RT functions could run in a node as many
physical Ethernet ports exist in the node-related switch (due
to the containers being routed out there).

5 REAL-TIME EXECUTION OF THE FUNCTIONS

Unfortunately, RT communication on its own is not enough
for response data to arrive back consistently in time, since
it is not sure the function can utilize any of the node CPUs
immediately when it is triggered. The RT function execution
must be ensured too (implemented by the Function-CPU
assignment & scheduling components of Fig. 2). The question
is how to schedule RT and non-RT functions simultaneously
such that deadlines are met, and non-RT tasks are not
starved. We assume the RT-FaaS has the goal of scheduling
the user demanded functions according to Def. 5.

Definition 5. The objective of the proposed RT-FaaS scheduler
is to assign RT functions to a minimum number of CPUs of the
server cluster, such that the deadline requirements are met.

Although a processor may run both RT and non-RT func-
tions, as Brosky argues in [53]: a shielded CPU makes it possible

to guarantee rapid response to external interrupts and to provide
a more deterministic environment for executing real-time tasks.
The objective function in Def. 5 leaves as many processors
as possible to process the remaining non-RT functions, thus,
ensures they will not starve for CPU cycle. In this paper,
we consider a partitioned-EDF scheduling system for RT-
FaaS and propose a partitioning algorithm that considers the
heterogeneity of the processors and attempts to minimize
the number of utilized CPUs for the RT functions. Further-
more, we assume that RT-FaaS operates on a deterministic
network (the proposed concepts are presented in Sec. 4)
both among the hosts and within them between the NIC
and the RT function. Although deterministic networking is
an actively researched topic, we believe that multiple RT
network implementations will soon be available.

5.1 Deployment and Function model

We model the deployment that RT-FaaS users may request
to deploy. The deployment process includes i) selecting the
host and its CPU to deploy the container which runs the
function, ii) configuring the network between the ingress
point and container, and iii) scheduling the function in an
RT manner.

Definition 6. A deployment is modeled by three parameters
(τ,R, T), where τ is the function – i.e., the source code to run –
R is the response time(s) of the function, defined in Def. 7, and T
is the trigger period of the function.

Definition 7. Response time of a function: The necessary time
for i) the input data reaching the target host, ii) function being
executed, iii) performing its cloud service calls, and iv) sending
its response back to the ingress point.

In this paper, we consider implicit deadlines, which means
each function’s deadline equals its period. Assuming that
hosts in the infrastructure contain heterogeneous multipro-
cessors, R includes multiple response times, one for each
processor. If n deployment requests arrive simultaneously,
the RT-FaaS needs to schedule n functions on the managed
cluster and configure the network routes forth and back to
the target server where functions are running. Please note
we use terms function and task interchangeably because, in
FaaS terminology, the former is used while RT scheduling
terminology prefers the latter. Each deployment contains
a function τ for which we have used the function model
defined in Def. 8. The RT functions are assumed to be
periodic tasks, i.e., all of them are invoked at regular intervals
and repeat themselves after a fixed time interval. Each RT
function is defined by three parameters.

Definition 8. A function is determined by τ = (C, T,D), where
C is the worst-case execution time (WCET), T is the release
period, and D is the deadline for the execution.

The tasks’ CPU utilization can be calculated by u = C
D .

Similarly to the deployment model, if hosts in the infrastruc-
ture contain heterogeneous multiprocessors, the parameter
C and D are also a set of possible elements depending on
the processor on which the task is processed.

IEEE TRANSACTIONS ON CLOUD COMPUTING 8

5.2 Relations between deployment and function model

Naturally, the users cannot define all parameters related
both to the deployment and function models. E.g., let us
assume a deployment request which includes an object
detection algorithm as a function. It detects objects on the
input video frames, writes the number of detected elements
to a DB – through a real-time cloud DB service – and also
returns this value to the user. Most likely, the user can define
only i) the source code of the function, ii) the WCET c of this
algorithm without any cloud service call, iii) the frame rate
of the input video stream, and iv) the RT cloud service used
by the uploaded function.

In this example, the frame rate of the input video is
equivalent to the trigger period T of the deployment, while
the RT cloud service is the DB writing. The response time
R of the deployment depends on the location and the
performance of the CPU which executes the deployment’s
task τ . Moreover, the example function takes advantage of
the DB writing RT cloud service, so the worst-case execution
time of the task becomes C = ω(tRT service) + c, where
tRT service is the time of calling the applied RT cloud
service, ω is the number of the calls, and c is the time
needed to run the function code. So far, the worst-case
execution time of the demanded function is known, but
we also must count with the network effect of the RT-FaaS
to determine its response time. The response time of the
deployment shall be R = ti→f + C + tf→i, where ti→f

and tf→i are the transmission times between the ingress
point and the function. While c and ω are defined by the
user, in a distributed system, both the transmission times
and the real-time cloud service execution times may depend
on the CPU where the deployment’s functions are running.
Consequently, these transmission and execution times rely
on the partitioning of the requested functions.

Time0

Dep
loy

men
t's

1s
t tr

igg
er

ti→f c1 tRT_service c2 tf→i

R
T

C

T

D = T - ti→f - tf→i
Dep

loy
men

t's

2n
d t

rig
ge

r

ti→f c1

Figure 3: Deployment and function model relations.

For an illustration of these parameter relations, let us
examine Fig. 3. The axis shows the timeline of the previously
mentioned periodically triggered object detection function.
We depict the function and the deployment-related param-
eters in red and green colors. This example assumes that
ω = 1. T tells us how frequently a video frame arrives
at the RT-FaaS ingress point, which triggers the function
to process it. R is the response time for the trigger, which
is obtained by summing the network-related transmission
times (ti→f , tf→i) and the worst-case execution time C
of the task. We have divided C into c1 (before the RT
service call) and c2 (after that). Needless to say, though
in this example, we have assumed only one service call,
the function could use multiple services and access them
more than once. We assume that the task reserves the

processor during the external real-time DB access, i.e., the
C = c1 + c2 + tRT service. The deadline for the task is
the deadline for the deployment trigger’s response time
without the transmission times, i.e., D = T − ti→f − tf→i.
This way, it is guaranteed the processed task’s return value
has enough time to get back to the ingress point. Since we
assume deterministic underlying network, tf→i, tRT service

are all constants, and the RT-FaaS platform is aware of their
values.

5.3 Infrastructure model

We assume the RT-FaaS infrastructure is a data center topol-
ogy containing multiple hosts, which altogether include m
CPUs: π1, π2, . . . , πm. The ingress point location – through
which the deployed functions are available from outside – is
known beforehand. Assuming that i) the RT-FaaS platform
is aware of network bandwidths and latencies within the
cluster, and ii) knows the necessary execution time of real-
time cloud service calls, we can form the response time matrix:

π1 π2 . . . πm

r1,1 r1,2 . . . r1,m
r2,1 r2,2 . . . r2,m
.
rn,1 rn,2 . . . rn,m

The columns represent the CPUs of the managed cluster,

while the rows correspond to the deployments that the users
want to deploy. One cell means the response time of the
deployment if its task is assigned to the regarding processor.
E.g., if the second deployment’s function τ2 is executed by
processor π1, then its response time for a trigger is R2 =
r2,1.

One might notice, we have not considered the multiple
CPUs in the model parameter calculations, so far. More than
one CPU results in the function parameters C and D are
vectors, i.e., the RT-FaaS calculates i) the execution time of τ1
task for all processors C = {Cπ1 , Cπ2 . . . , Cπm} and ii) the
task’s deadline requirements D = {Dπ1 , Dπ2 . . . , Dπm}.
Parameters Cπj = ω(t

πj

RT service)+c and Dπj = T−ti→πj
−

tπj→i for each 1 ≤ j ≤ m. Thus, we obtained the model
of the function τ1 = (C, T,D). Then the RT-FaaS also can
determine the elements of the response time matrix related
to the τ1: r1,j = ti→πj

+ Cπj + tπj→i for each 1 ≤ j ≤ m.
Thereby the response time of the user’s deployment request
relies on the CPU set: R = {r1,1, r1,2, . . . , r1,m}. Thus, the
model of the deployment is known as well: (τ1, R, T). By
now, one might notice it is great challenge of how to assign
the requested tasks to the managed CPUs of the RT-FaaS in
order to meet their deadlines. We formalize this in Sec. 5.4.

5.4 ILP formalization of task partitioning

The input of the task partitioning problem on RT-FaaS is the
I = (n,m,M) triplet, i.e., the number of tasks n and CPUs
m, and the utilization matrix M . The utilization matrix is
similar to the response time matrix: the columns represent
the CPUs, while rows correspond to the user’s tasks. On
cell of the utilization matrix (e.g., u1,2) represents the CPU
utilization Cπ2

1 /Dπ2
1 of task τ1 if it is assigned to π2. Our

objective – see Def. 5 – is to find a feasible partitioning –

IEEE TRANSACTIONS ON CLOUD COMPUTING 9

using the least number of processors – of the given task set
such that their deadline requirements are met.

The ILP formalization of the problem contains two vari-
able types, xτi

πj
and yπj for 1 ≤ i ≤ n and 1 ≤ j ≤ m. xτi

πj

denotes whether τi is assigned to πj , while yπj indicates if
any of the tasks were assigned to πj .

minimize
∑

j=0...m

yπj (1)

subject to
∀τi ∈ τ :

∑
j=1...m

xτi
πj

= 1 (2)

∀πj , j = 1...m :
∑

i=1...n

C
πj

i

D
πj

i

× xτi
πj
≤ 1× yπj

(3)

∀ j = 1 . . .m, i = 1 . . . n : xτi
πj
, yπj

= {0, 1} (4)

Variables are xτi
πj

and yπj
where i = 1, ..., n and j =

1, ...,m. xτi
πj

= 1 if τi is assigned to πj otherwise it is zero.
Furthermore, yπj

= 1 if πj is used, otherwise it is zero.
The constraints are the following. Each task must be

assigned to exactly one host (2). The cumulative utilization
of tasks assigned to the same CPU must be less or equal than
one due to EDF’s schedulability requirement (3). Partitioned
scheduling on heterogeneous multiprocessors is intractable
in polynomial time, and it is an NP-hard problem, even
if processors are identical [54]. In fact, Lenstra et al. [55]
have proved that no algorithm is able to find a solution in
polynomial time with a smaller approximation ratio than
3/2.

5.5 Scheduling model

Once we know the deployment, function, and infrastructure
models, the only remaining question is how to schedule
the requested functions, i.e., define a scheduling model
that determines where and when to execute the tasks. We
argue that one possible solution could be the partitioned
EDF model, which guarantees that the tasks assigned to
a particular CPU will finish before their deadline if the
sum utilization is less than one. E.g., if three tasks τ1, τ2
and τ3 are assigned to π1 then it is guaranteed to meet
their deadlines if

∑
i=τ1...τ3

C
π1
i

D
π1
i

≤ 1. This is taken care of

by constraint (3) of the ILP problem. Consequently, the
scheduling problem is the following. The input includes
the set of deployment requests, i.e., the deployment and
function models and the infrastructure model. Applying
the partitioned EDF scheduling method, we first need to
partition the tasks among the CPUs, which is the spatial
optimization part of the scheduling problem. Second, for
each CPU, the well-known EDF algorithm fulfills the tasks’
temporal scheduling, i.e., it decides when to start them.

The question may arise as to whether using a real-time
scheduler instead of a CFS scheduler affects performance.
Even though, our proposed partitioned-EDF scheduling
scheme uses RT schedulers (EDF) for each CPU that ex-
ecutes RT functions, we believe that for running the OS,
the FaaS platform, and the non-RT functions, the default
Linux CFS scheduler could be responsible. Within the FaaS

servers, some CPU resources must be allocated to the CFS
to avoid server failures. To strike a balance between RT
FaaS applications and other non-RT applications, we adjust
our proposed partitioning algorithm’s objective function to
use the minimum number of CPUs to run RT tasks. This
maximizes the utilization of RT CPUs and prevents non-RT
functions from starving for available CPUs or workers.

6 TASK PARTITIONING ALGORITHM

We propose an approximation algorithm – denoted by
ALG – that distributes the given task set among the CPUs
of cluster nodes. The input is the same as for the ILP, i.e., the
I = (n,m,M) triplet. Its steps are the following:

1) Convert M to a boolean matrix M ′ according to the
transformation rule defined in Def. 9.

2) Iterate through the columns of M ′ and calculate
their weights w(πi), i.e., the number of ones in the
column.

3) Consider the best processors in M ′ (see Def. 10).
4) Sort the columns of M ′ according to their weights

in decreasing order.
5) If exclusive task exists (defined in Def. 11):

a) Pick its processor in M ′, regardless its
weight, and assign all the one elements
(tasks) of the processor’s column to the pro-
cessor

b) Delete the assigned tasks and processor, i.e.,
remove the proper rows and column from M
and start again with Step 1 if still row exists.

6) If an unassigned task exists:

a) Pick the processor in M ′ with the maximal
weight – if multiple exist choose randomly –
and assign the one elements (tasks) to it in
the partitioning.

b) Delete the assigned tasks’ rows and the pro-
cessor’s column from M and start again with
Step 1.

c) Return the task-processor assignments

The return value of ALG is an assignment of functions
to processors such that the EDF schedulers of the processors
can guarantee the real-time completion of them.

Definition 9. Converting M to boolean matrix M ′: 1) Sort
the elements with their original indices in increasing order in each
column πi. 2) Iterate through the cells j = 1, ..., n in each column
πi, and set the element to 1 if

∑j
k=1 sk,i ≤ 1, otherwise set it to 0.

3) Finally reorganize the cells according to their original indices.
For an example see Fig. 4.

Definition 10. Picking the best processors: Given two proces-
sors π1 and π2 of the examined boolean matrix M ′. It is said that
π2 is a better processor than π1 if and only if all 1 items in π1

are also 1 in π2 and w(π2) > w(π1). As π2 is a better processor
than π1, the latter is removed from the columns of M ′. We make
this comparison for all column pairs.

Definition 11. Exclusive task: Such a task that could be run
by only one specific processor.

IEEE TRANSACTIONS ON CLOUD COMPUTING 10

Step 1

Step 2

Step 3

Figure 4: Example for generating M ′ boolean matrix

The proposed partitioning algorithm ALG is not tailored
uniquely to FaaS. It can be also used in more general
distributed systems (e.g., in a distributed video processing
framework) without assuming the underlying FaaS plat-
form. However, this paper aims to present how to enable
RT execution in cloud computation systems. As we argue
in Sec. 2, for that purpose, FaaS is the best choice since
the cloud providers have the greatest possible control over
their infrastructure with FaaS. Furthermore, the high-level
FaaS user interface prevents the physical cloud infrastruc-
ture from being misconfigured by the customers. That is
why we targeted FaaS systems and designed our proposed
partitioning algorithm to be compatible with such a system.

6.1 Time complexity analysis

We produce the time complexity analysis of the proposed
ALG to get a picture about the number of steps required
in the worst-case scenario. Step 1 sorts the elements of each
column of M , that takes O(mn log(n)) as any comparison
sorting algorithm cannot perform better than O(n log(n))
[56]. Then, iterating through m columns and deciding for
each element whether it is 1 or 0 takes O(mn) time. All
in all, step 1 has O

(
mn log(n)

)
complexity. Step 2 and 3

requiresO(mn) iterations. Sorting the columns according to
their weights takesO

(
m log(m)

)
. Finding the exclusive task

in step 5 and iterating through its processor’s column both
require O(n). Choosing the maximum weighted column
and checking its tasks to be 1 or 0 takes again O(n) in step
6. Finally, the six steps are need to be repeated in the worst
case O(m) times.

Theorem 1. The time complexity of ALG is O
(
m2

(
n log(n)+

log(m)
))

.

6.2 Optimal corner cases

We examined the scenarios when the proposed algorithm
returned optimal partitioning. In the following, OPT (I) in-
dicates the number of used CPUs in the optimal partitioning
for input I given by the ILP solver of the problem defined
in Sec. 5.4. Similarly, let ALG(I) depict the number of used
processors given by the proposed heuristic algorithm ALG.

Lemma 1. OPT (I) = 1 ⇐⇒ ALG(I) = 1

Proof. If there exists a CPU πi that is able to execute all tasks,
guaranteeing their deadline requirements, then the corre-
sponding column in M ′ contains only ones, i.e., w(πi) = n.
Since the weight of a column is 0 ≤ w(πj) ≤ n, no column

exists with higher weight than n. ALG in the step 4 sorts this
optimal column to the first place, i.e., in the next step this
CPU will be visited. Thus ALG also finds the optimal πi.

Lemma 2. In the worst-case scenario ALG visits all CPUs (from
0 to m) during the execution.

Theorem 2. If M size is n× 2 then OPT (I) = ALG(I).

Proof. If OPT (I) = 1, then ALG(I) = 1 (Lemma 1). If
OPT (I) = 2, then due to Lemma 2, ALG(I) = m and
in this case m = 2.

Assumption 1. Suppose the CPUs used in the optimal partition-
ing can be read from matrix M ′: using the Boolean algebra’s OR
binary operation between the optimal CPU columns in M ′ results
in an all-ones column vector.

Figure 5: Two input cases: when optimal CPUs cannot (M ′
1)

and can (M ′
2) be read from M ′

In Fig. 5, two different utilization matrices M1,M2 are
illustrated. The optimal assignments are the same for the
two cases: π1 ← {τ1, τ2} and π2 ← {τ3, τ4}. In case of
M2, Assumption 1 is true, since all cells of the optimal
assignments contain ones. In contrast, from the boolean
version of M1, we could not tell that π1 and π2 are used in
the optimal assignment, since the cells (τ3, π2) and (τ4, π2)
are zeros.

Theorem 3. If Assumption 1 is true for the input M , the problem
of task partitioning (Sec. 5.4) is still NP-hard.

Proof. The task partitioning problem with Assumption 1
relaxation is equivalent with the Set Cover Problem: given
a universe U = {τ1, τ2, . . . , τn} including all tasks, and
a family S of subsets of U . A subset is a column of M ′

containing the tasks with one elements, e.g., using M ′
2 of

Fig. 5 the subsets are S = {{τ1, τ2}π1 , {τ3, τ4}π2 , {τ2, τ3}π3}.
A cover is a subfamily C ⊆ S of sets whose union is U . The
minimum set cover optimization problem is looking for the
minimum number of sets whose union is U , i.e., it returns
the minimum number of CPUs that guarantee the real-
time execution of all tasks. Since the optimization version
of set cover problem is NP-hard [57] the task partitioning
problem with Assumption 1 relaxation is NP-hard too.

Theorem 4. If OPT (I) = m and Assumption 1 is true ⇒
OPT (I) = ALG(I) = m.

Proof. OPT (I) = m, i.e., there is no partitioning that uses
less than m CPUs and due to Lemma 2, ALG(I) = m in the
worst-case⇒ OPT (I) = m = ALG(I).

IEEE TRANSACTIONS ON CLOUD COMPUTING 11

Lemma 3. OPT (I) = 2, Assumption 1 is true and ALG starts
visiting with an optimal CPU ⇒ ALG in the next iteration will
find the other optimal CPU, i.e., OPT (I) = ALG(I) = 2.

Lemma 4. If I = (n,m,Mn×m) task partitioning problem is
given, OPT (I) = x where (1 < x < m), Assumption 1
is true and ALG starts visiting with an optimal CPU ⇒ the
original problem is reduced to an I ′ = (n1,m − 1,Mn1×m−1)
partitioning problem where n1 < n and OPT = x− 1.

Lemma 5. If Assumption 1 is true and there is no exclusive task
in M ′ ⇒ OPT (I) ≤

⌈
m
2

⌉
.

Proof. There is no exclusive task means that at least two
ones are in each row of M ′. Consequently, the number of
ones in M ′ ≥ 2n. Either way ALG picks a CPU column
of M ′ to visit, due to Assumption 1, the remaining tasks
can be assigned to the remaining CPUs of the next iterated
M ′ (obtained by Step 5b or Step 6b of ALG). Since the
initial boolean matrix M ′ does not contain exclusive task,
the reduced M ′ matrices does not include them either. In
the worst case, only 2n ones are included in M ′ and ALG
reduces the matrix m

2 times.

Lemma 6. If Assumption 1 is true and there is no exclusive task
in M ′ and OPT (I) =

⌈
m
2

⌉
⇒ ALG(I) = OPT (I).

Proof. According to Lemma 5, if in the worst-case OPT =⌈
m
2

⌉
. If in each iteration, the optimal CPU column has the

the highest weight, ALG also choose them resulting in
ALG(I) = OPT (I). If would exist a column with a higher
weight then the max optimal’s, then in the next iteration M ′

would contain less rows resulting in finding a partitioning
solution less then m

2 steps, which contradicts Lemma 5.

Theorem 5. If the size of M is n× 3 and Assumption 1 is true,
then OPT (I) = ALG(I).

Proof. If OPT (I) = 1, then ALG(I) = 1 (Lemma 1). If
OPT (I) = 3, then ALG(I) = m = 3 (Theorem 4). If
OPT (I) = 2, two scenarios could happen: exclusive item(s)
exist(s) and do(es) not. In both cases ALG(I) = OPT (I),
due to Lemma 3 and Lemma 6.

Theorem 6. If the size of M is n× 4 and Assumption 1 is true,
then OPT (I) = ALG(I).

Proof. In case of OPT (I) = 1 and OPT (I) = 4, due
to Lemma 1 and Theorem 4, ALG(I) = OPT (I). If
OPT (I) = 2 and there exist some exclusive tasks, ALG will
definitely start visiting with an optimal CPU, consequently,
due to Lemma 3, ALG(I) = OPT (I). If OPT (I) = 2 and
exclusive tasks do not exist, due to Lemma 6, ALG(I) =
OPT (I). If OPT (I) = 3 and exclusive tasks exist, ALG will
definitely start visiting with an optimal CPU, consequently,
due to Lemma 4, the reduced problem in the next iteration
will be I ′ = (n1, 3,Mn1×3) and OPT = 2 in which
ALG(I) = OPT (I), due to Theorem 5. If OPT (I) = 3
and exclusive tasks would not exist, such a scenario could
not happen, since it would contradict Lemma 5.

We believe that in small edge FaaS infrastructures (e.g.,
physical computation servers in a mobile base station), a

four-core system can be a realistic serverless environment. In
these cases, Assumption 1 is true, the proposed ALG always
performs optimal partitioning.

6.3 Approximation rate of ALG

Algorithm 1 Get Worst-Case result of ALG

1: procedure WC ALG(w⃗opt = {w1, . . . , wi})
2: used cpu count = 0
3: next iter weights = w⃗opt

4: while next iter weights ̸= {0, 0, ..., 0} do
5: next iter weights = WC STEP(w⃗opt)
6: used cpu count + = 1

7: return used cpu count
8: procedure WC STEP(w⃗opt)
9: max value = max{w⃗opt}

10: for i in{1, ...,max value} do
11: index of max = get index max(w⃗opt)
12: w⃗opt[index of max] -= 1

13: return w⃗opt

Given n,m and OPT (I), our goal is to determine how
much ALG deviates from the optimum in the worst case.
Suppose the optimal partitioning is a priori known, i.e., the
weights of the optimal CPU columns in M ′ are available in
vector w⃗opt. ALG, in the worst-case, visits these columns for
the last time, i.e., in each iteration, it visits a CPU πi column
which has weight w(πi) ≥ max{w⃗opt}. In the worst case,
this πi column’s weight w(πi) = max{w⃗opt} and contains
ones from the optimal CPU columns so that in the next
iteration i) most of the optimal CPU columns remain in M ′

ii) and they contain as many one elements as possible. Let
WC ALG mean the number of used CPUs by ALG in the
worst-case, calculated by Algorithm 1.

Figure 6: Approximation rate of ALG

We have calculated the largest differences between ALG
and OPT using Algorithm 1 in case of m = 100 and n =
10, . . . , 500, which are depicted in Fig. 6.

7 EVALUATION

To the best of our knowledge, there is no publicly available
RT-FaaS system that would enable hard real-time execu-
tions. Therefore, it is not possible to directly compare our
proposed RT-FaaS design to another approach. Instead, we
focus on the evaluation of the proposed partitioning algo-
rithm. As we have elaborated in Sec. 5, we aim to utilize

IEEE TRANSACTIONS ON CLOUD COMPUTING 12

(a) Ratio of BR simulations without result (b) Ratio of EBR simulations without re-
sult

(c) Ratio of FFD simulations without re-
sult

Figure 7: Percentage of the simulations when the examined (a) BR, (b) EBR and (c) FFD algorithms have no solution. Our
proposed algorithm ALG always returns a feasible partitioning result.

the minimum number of CPUs for RT tasks to provide the
remaining ones for non-RT functions. Due to the dynamic
nature of the cloud, we argue that it is essential for RT
scheduler i) to consider a wide variety of heterogeneous
processors in a multi-node cloud system, ii) to run fast
(in polynomial time) to minimize scheduling overhead,
and iii) not to migrate tasks among nodes. As far as we
know, the most recent real-time scheduler studies assume
a single node environment, meaning that they either con-
sider identical CPUs/cores [26], [27] or a limited degree of
heterogeneity for the processing entities [29], [30]. These
schedulers are not comparable with our partitioned-EDF
design since the various task runtimes on multiple different
cores/processors cannot be modeled. That is why, we use
Barauh’s algorithm (BR) [34] and the well-known First Fit
Decreasing (FFD) [58] bin-packing offline heuristic algo-
rithm as a comparison basis to our proposed approach. BR is
based on LP-relaxation of the original ILP problem and aims
to minimize the maximum fraction of the capacity of any
CPU that is utilized to process RT tasks. One might notice,
this objective is quite the opposite of what we aim for: BR
returns a feasible partitioning that uses as many CPUs as
possible to minimize the maximum cumulative utilization.
To direct BR to find the minimum number of CPUs, we
wrapped it into a for cycle. Hereinafter we refer to this
extended version as EBR. In each iteration (i = 0, . . . ,m),
EBR selects the first i CPUs with the greatest weights and
calls the BR that considers only them as possible targets for
the tasks. The weights are calculated as they were in step 2
of ALG. If BR algorithm yields a feasible solution, then EBR
breaks the cycle and returns.

7.1 Simulation inputs

The simulator we have used is available at https://github.
com/hsnlab/partitioned scheduling on RT-FaaS. The in-
put for a simulation is the previously known I = (n,m,M)
triplet. We have used n = 10, 50, 100, 500 tasks and m =
100 CPUs. To generate a utilization matrix for the simula-
tions, we have used the transformation, specified in Def.
9, inversely that works as follows. Let us assume a given
a ≥ n as the number of the ones of the boolean matrix.
We start with an n × m zero matrix and place a one into
a randomly chosen cell of each row. Then we place the

remaining a − n ones to the matrix randomly. Next, we
iterafte through the columns. Let us assume the column
contains b ones, we set each cell to 1

b where originally a
one was placed. Then, we replace the remaining zero values
with a random number between 1

b + 0.05 and 1. Such an
obtained utilization matrix guarantees each task can be run
by at least one CPU. Hereinafter instead of a we use the
density feature of the boolean matrix (Def. 12).

Definition 12. Density feature of the boolean matrix: a
density function that returns the percentage of non-zero cells of
the boolean matrix. If the density is 0% then it is a null matrix,
while 100% density means an all-ones matrix.

0% density means there is no CPU on which any of
the input tasks could run in RT. The 100% density denotes
all tasks could be scheduled on all CPUs. Our simulations
answer questions such as i) how many times the algorithms
do not return, ii) if solutions exist, what percentage of the
available CPUs are used, iii) what is the runtime complexity
of the algorithms, and finally, iv) what are the answers to i
and ii assuming identical multiprocessors.

7.2 Number of feasible solutions
In Fig. 7 we depict the algorithms BR, EBR and FFD to
show how many times they have not returned any feasible
partitioning solutions. ALG is not displayed since it always
returned a partitioning in our simulations. The x-axes show
the density of the boolean matrix from which the utilization
matrix was generated for the simulation. We have executed
one hundred simulations for a given density, each of them
with different utilization matrices. The y-axes depict the
percentage of simulations when the algorithms have no
feasible results. In the case of BR we conclude that the more
tasks are waiting for partitioning, the better the possibility
to find a valid partitioning. Similarly, this finding is true for
EBR, furthermore, in its case, we are getting more results at
a lower feasibility value. In contrast, the FFD bin-packing
heuristic algorithm provided results for a large number of
tasks starting only from 7.5% density value.

7.3 Number of provisioned processors for RT tasks
In Fig. 8 we present how the algorithms perform in task par-
titioning to minimize the number of CPUs for RT functions.

https://github.com/hsnlab/partitioned_scheduling_on_RT-FaaS
https://github.com/hsnlab/partitioned_scheduling_on_RT-FaaS

IEEE TRANSACTIONS ON CLOUD COMPUTING 13

40

60

80

100

#tasks = 10

25

50

75

100

#tasks = 50

25

50

75

#tasks = 100

1 2 3 4 5 6 7 8 9 10
density [%]

25

50

75

100

#tasks = 500
ALG
EBR
FFD
BR

Av
er

ag
e

nu
m

be
r o

f u
se

d
pr

oc
es

so
rs

Figure 8: Average number of used processors for RT tasks
in the partitioning depending on density and the number of
tasks.

For a given boolean matrix density, we have executed
one hundred simulations with different utilization matrices.
Consequently, one point in the figure represents the average
number of the used CPUs of the partitioning depending on
the density value. In general, the BR algorithm performs
the weakest, regardless of the task count. This is expected,
as BR’s objective is the exact opposite of ours: it attempts
to spread RT functions over the cluster using as many
CPUs as possible. On the other hand, the EBR – that we
have created to transform the original objective to find
partitioning on the minimum number of CPUs – performs
significantly better. In the best-case ALG outperforms EBR
by 55 % (#tasks = 50, density 2%), however as the task
count increases, EBR provides almost the same performance
as our proposed ALG. Finally, the bin-packing algorithm
FFD performs between the efficient solutions (ALG,EBR)
and the inefficient one (BR). Inferred from our simulations,
the performance of FFD linearly decreases as the density
increases. However, its success largely depends on the num-
ber of input tasks. E.g., with ten tasks, a solution is provided
even for 1% density value. On the other hand, for 500 tasks,
a valid solution is obtained only for > 7% density.

7.4 Runtime complexity

Here we examine the worst-case time complexity. As seen in
Theorem 1, the time complexity of ALG is O(m2(n log(n) +
log(m))) ≈ Õ(m2n) (we use Õ from [59] to hide polylog(n)
and polylog(1/δ) terms from O form). The algorithm BR
[34] includes three main steps: 1) solving the LP-relaxation
of the heterogeneous multiprocessor partitioning problem,
2) determining which tasks have exactly one CPU mapping
in the LP solution, and 3) for the remaining tasks con-

structing a bipartite graph to find exact mappings for them.
Step 2 and 3 can be done in O(nm) and O(n + m) time.
Finding solution for a Linear Programming can be done by
Interior point algorithm for which the best theoretical result
isO(Nω log2(N) log(N/δ)) ≈ Õ(Nω) [60], where δ is the rela-
tive accuracy, ω is the matrix exponent, and N is the number
of variables in the LP problem. In our case N = nm. This
result was derandomized by Brand [59] thus providing a de-
terministic algorithm matches one of the fastest randomized
bounds of Õ(Nω). This stated bound holds for the current
bound on ω with ω ≈ 2.38 [61]. So the time complexity of
BR is Õ((nm)2.38) +O(nm) +O(n+m) ≈ Õ

(
(nm)2.38

)
.

Time complexity
ALG Õ(nm2)

BR Õ(n2.38m2.38)

EBR Õ(n2.38m3.38)

FFD Õ(n)

Table 1: Time complexities of the partitioning algorithms

For what concerns EBR, it calculates the weights of each
column in the matrix –O(nm) –, sort them –O

(
m log(m)

)
–,

and choose the first i columns –O(m) – to get the matrix Mi.
Then the BR algorithm is run Õ

(
(nm)2.38

)
. In the worst case

scenario, these are repeated m times, accordingly, the overall
time complexity of EBR is O(m)

(
O(nm) +O

(
m log(m)

)
+

O(m) + Õ(n2.38m2.38)
)
≈ Õ(n2.38m3.38). The worst-case

time complexities are summarized in Table 1.

7.5 The homogeneous multiprocessor scenario

We have investigated the scenario in which the partitioning
algorithms work on a set of identical CPUs. Here, the
response time of deployment is independent of the CPU to
which it is mapped, consequently, in such a homogeneous
utilization matrix, the row values are the same. We have
used n = 10, 50, 100 tasks, m = 100 CPUs and generated
the homogeneous utilization matrix as follows. We ran-
domly select a utilization value from a uniform distribution
between 0.1 and 1 for all the elements of the first row of the
matrix. Then, we summarize the selected values so far in a
variable sum and select the next random value of a uniform
distribution between 0 and min(m − sum, 1) for the next
row. Finally, we repeated the second step for all n tasks.

ALG FFD BR EBR

0

50

100

#f
ea

sib
le

 so
lu

tio
ns

#tasks
10.0
50.0
100.0

ALG FFD BR EBR
algorithms

0.4

0.6

0.8

1.0

us
ed

 C
PU

s /
 #

ta
sk

s

Figure 9: Algorithms in homogeneous multiprocessor sce-
nario

IEEE TRANSACTIONS ON CLOUD COMPUTING 14

The outcome is illustrated in Fig. 9. The upper part,
shows how many times the algorithms return a feasible
partitioning of the functions. For 10 tasks, all algorithms
are able to find a solution in each simulation. Nevertheless,
for 50 and 100 tasks, BR and EBR are not able to reach
100%. The bottom part of the figure shows the goodness
of the algorithms: the number of used CPUs in the output
partitioning normalized by the task count. Inferring from
the results, the task count has no significant effect on the
algorithms’ performance. Furthermore, as expected, since
this problem is equivalent to the Bin Packing Problem, the
traditional offline heuristic algorithm FFD performs the best,
followed by ALG, EBR and BR.

7.6 Evaluation Summary
The simulations suggest the proposed task partitioning al-
gorithm has several advantages over the competition. ALG
is the only algorithm that always found a feasible partition-
ing in our evaluations. It resulted in the lowest number of
processors for partitioning. Although EBR was also effective
for a large number of tasks, in terms of runtime complexity,
it lagged behind significantly. We also studied the case
of homogeneous utilization matrices where partitioning is
equivalent to the classical bin-packing problem. Since FFD
is designed for this problem, it gave the best outcome, but
ALG came in second.

8 CONCLUSION

There has been a growing desire to expose time-critical
and computational exhaustive applications to the cloud in
recent years. Use-cases like remotely controlled robots or
game streaming services require extremely low latency and
real-time operation from the cloud platform to guarantee
failure-free operation and high QoS. Our contributions are
three-fold. First, we described a future RT-FaaS system that
could be the next step of today’s cloud approaches. Second,
we proposed three design approaches to provide real-time
communications in such a system and summarized the
related work that could be the possible implementations of
them. Finally, we proposed a real-time scheduling method,
the partitioned-EDF with our partitioning algorithm, which
can execute the RT functions. Assuming heterogeneous,
multi-node multiprocessor scheduling, we presented that
our algorithm outperforms the related prior approaches in
the number of feasible solutions, number of provisioned
CPUs, and the runtime complexity.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Innovation and
Technology of Hungary from the National Research, Devel-
opment and Innovation Fund through projects i) no. 135074
under the FK 20 funding scheme, and ii) 2019-2.1.13-
TÉT IN-2020-00021 under the 2019-2.1.13-TÉT-IN funding
scheme. L. Toka was supported by the János Bolyai Re-
search Scholarship of the Hungarian Academy of Sciences.
Supported by the ÚNKP-21-5 New National Excellence
Program of the Ministry for Innovation and Technology
from the source of the National Research, Development and
Innovation Fund.

REFERENCES

[1] S. K. Rao and R. Prasad, “Impact of 5g technologies on industry
4.0,” Wireless personal communications, vol. 100, no. 1, pp. 145–159,
2018.

[2] J. G. Andrews et al., “What will 5G be?” IEEE j. sel. areas commun.,
vol. 32, no. 6, pp. 1065–1082, 2014.

[3] P. Varga et al., “5g support for industrial iot applications -
challenges, solutions, and research gaps,” Sensors, vol. 20, no. 3,
2020. [Online]. Available: https://www.mdpi.com/1424-8220/
20/3/828

[4] M. Karrenbauer et al., “Future industrial networking: from use
cases to wireless technologies to a flexible system architecture,”
at-Automatisierungstechnik, vol. 67, no. 7, pp. 526–544, 2019.

[5] V. Struhár et al., “Real-Time containers: A survey,” in 2nd Workshop
on Fog Computing and the IoT (Fog-IoT 2020). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, p. 9.

[6] M. Cinque et al., “Rt-cases: Container-based virtualization for
temporally separated mixed-criticality task sets,” in 31st Euromicro
Conference on Real-Time Systems (ECRTS 2019), vol. 133. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019, pp. 5:1–5:22.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/
2019/10742

[7] L. Abeni et al., “Container-based real-time scheduling in the linux
kernel,” ACM SIGBED Review, vol. 16, no. 3, pp. 33–38, 2019.

[8] M. Szalay, P. Mátray, and L. Toka, “Real-time task scheduling in
a faas cloud,” in 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD). IEEE, 2021.

[9] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Proceedings of
the 2017 Symposium on Cloud Computing, 2017, pp. 445–451.

[10] Daniel Bristot de Oliveira, “Deadline scheduling Part 1 -
overview and theory,” https://lwn.net/Articles/743740/, [On-
line; Accessed: 2021-2-16].

[11] K. Ramamritham, S. H. Son, and L. C. DiPippo, “Real-time
databases and data services,” Real-time systems, vol. 28, no. 2, pp.
179–215, 2004.

[12] A. Poniszewska-Maranda, R. Matusiak, N. Kryvinska, and A.-U.-
H. Yasar, “A real-time service system in the cloud,” Journal of
Ambient Intelligence and Humanized Computing, vol. 11, no. 3, pp.
961–977, 2020.

[13] M.-R. Giovanny, T.-T. Alonso, M. Castillo-Cara, C. Blanca, and
C. Carrión, “An experimental study of fog and cloud computing in
cep-based real-time iot applications,” Journal of Cloud Computing,
vol. 10, no. 1, 2021.

[14] N. Finn, “Introduction to time-sensitive networking,” IEEE Com-
munications Standards Magazine, vol. 2, no. 2, pp. 22–28, 2018.

[15] N. Finn and P. Thubert, “Deterministic networking problem
statement,” draft-finn-detnet-problem-statement-05 (work in progress),
2016.

[16] X. Yang, D. Scholz, and M. Helm, “Deterministic networking
(detnet) vs time sensitive networking (tsn),” Network, vol. 79, 2019.

[17] A. Nasrallah et al., “Ultra-low latency (ull) networks: The ieee
tsn and ietf detnet standards and related 5g ull research,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 88–145, 2018.

[18] C. S. V. Gutiérrez et al., “Real-time linux communications: an
evaluation of the linux communication stack for real-time robotic
applications,” arXiv preprint arXiv:1808.10821, 2018.

[19] J. Kiszka and B. Wagner, “Rtnet - a flexible hard real-time network-
ing framework,” in 2005 IEEE Conference on Emerging Technologies
and Factory Automation, vol. 1. IEEE, 2005, pp. 8–pp.

[20] Høiland-Jørgensen et al., “The express data path: Fast pro-
grammable packet processing in the operating system kernel,” in
Proceedings of the 14th international conference on emerging networking
experiments and technologies, 2018, pp. 54–66.

[21] Gallenmüller et al., “Comparison of frameworks for high-
performance packet io,” in 2015 ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS). IEEE,
2015, pp. 29–38.

[22] J. Sanchez-Palenci, “The Road Towards a Linux TSN
Infrastructure,” https://events19.linuxfoundation.org/events/
elc-openiot-north-america-2018/program/schedule/, 2018,
[Online; Accessed: 2021-6-13].

[23] M. Karlsson and B. Töpel, “Low-Latency, Determin-
istic Networking with Standard Linux using XDP
Sockets,” https://events19.linuxfoundation.org/events/
embedded-linux-conference-europe-2019/program/schedule/,
2019, [Online; Accessed: 2021-6-13].

https://www.mdpi.com/1424-8220/20/3/828
https://www.mdpi.com/1424-8220/20/3/828
http://drops.dagstuhl.de/opus/volltexte/2019/10742
http://drops.dagstuhl.de/opus/volltexte/2019/10742
https://lwn.net/Articles/743740/
https://events19.linuxfoundation.org/events/elc-openiot-north-america-2018/program/schedule/
https://events19.linuxfoundation.org/events/elc-openiot-north-america-2018/program/schedule/
https://events19.linuxfoundation.org/events/embedded-linux-conference-europe-2019/program/schedule/
https://events19.linuxfoundation.org/events/embedded-linux-conference-europe-2019/program/schedule/

IEEE TRANSACTIONS ON CLOUD COMPUTING 15

[24] C. Li et al., “Prioritizing soft real-time network traffic in virtual-
ized hosts based on xen,” in 21st IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, 2015, pp. 145–156.

[25] C. L. Liu et al., “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” J. ACM, vol. 20, no. 1, p. 46–61, Jan.
1973.

[26] M. A. El Sayed, E. S. M. Saad, R. F. Aly, and S. M. Habashy,
“Energy-efficient task partitioning for real-time scheduling on
multi-core platforms,” Computers, vol. 10, no. 1, p. 10, 2021.

[27] A. Mascitti et al., “Heuristic partitioning of real-time tasks on
multi-processors,” in 2020 IEEE 23rd International Symposium on
Real-Time Distributed Computing (ISORC). IEEE, 2020, pp. 36–42.

[28] S. Baruah, “Partitioned edf scheduling: a closer look,” Real-Time
Systems, vol. 49, no. 6, pp. 715–729, 2013.

[29] A. Mascitti, T. Cucinotta, M. Marinoni, and L. Abeni, “Dynamic
partitioned scheduling of real-time tasks on arm big. little archi-
tectures,” Journal of Systems and Software, vol. 173, p. 110886, 2021.

[30] A. Roy et al., “Energy-aware primary/backup scheduling of pe-
riodic real-time tasks on heterogeneous multicore systems,” Sus-
tainable Computing: Informatics and Systems, vol. 29, p. 100474, 2021.

[31] A. Wiese et al., “Partitioned edf scheduling on a few types of
unrelated multiprocessors,” Real-Time Systems, vol. 49, no. 2, pp.
219–238, 2013.

[32] S. K. Baruah et al., “Ilp models for the allocation of recurrent work-
loads upon heterogeneous multiprocessors,” Journal of Scheduling,
vol. 22, no. 2, pp. 195–209, 2019.

[33] S. K. Baruah, “Task partitioning upon heterogeneous multipro-
cessor platforms.” in IEEE real-time and embedded technology and
applications symposium. Citeseer, 2004, pp. 536–543.

[34] ——, “Partitioning real-time tasks among heterogeneous multi-
processors,” in International Conference on Parallel Processing, 2004.
ICPP 2004. IEEE, 2004, pp. 467–474.

[35] A. Bertout et al., “Workload assignment for global real-time
scheduling on unrelated multicore platforms,” in Proceedings of
the 28th International Conference on Real-Time Networks and Systems,
2020.

[36] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam,
W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein,
“Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017,
pp. 363–376.

[37] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
serverless video processing framework,” in Proceedings of the ACM
Symposium on Cloud Computing, 2018, pp. 263–274.

[38] “Cloud Computing Services - Amazon Web Services (AWS),”
https://aws.amazon.com/, [Online; Accessed: 2021-8-03].

[39] H. D. Nguyen, C. Zhang, Z. Xiao, and A. A. Chien, “Real-time
serverless: Enabling application performance guarantees,” in Pro-
ceedings of the 5th International Workshop on Serverless Computing,
2019, pp. 1–6.

[40] M. Elsakhawy and M. Bauer, “Faas2f: A framework for defining
execution-sla in serverless computing,” in 2020 IEEE Cloud Sum-
mit. IEEE, 2020, pp. 58–65.

[41] B. Wang, A. Ali-Eldin, and P. Shenoy, “Lass: Running latency
sensitive serverless computations at the edge,” in Proceedings of
the 30th International Symposium on High-Performance Parallel and
Distributed Computing, 2020, pp. 239–251.

[42] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka,
“Sequoia: Enabling quality-of-service in serverless computing,” in
Proceedings of the 11th ACM Symposium on Cloud Computing, 2020,
pp. 311–327.

[43] Y. Wang, “Time-Sensitive Networking (TSN) Enabling on Star-
lingX,” https://www.youtube.com/watch?v=DgYA5m0d87U,
2020, [Online; Accessed: 2021-6-15].

[44] “Starlingx: Open Source Edge Cloud Computing Architecture,”
https://www.starlingx.io/, [Online; Accessed: 2021-6-15].

[45] “Kata Containers - Open Source Container Runtime Software,”
https://katacontainers.io/, [Online; Accessed: 2021-6-16].

[46] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The pro-
grammable data plane: Abstractions, architectures, algorithms,
and applications,” ACM Computing Surveys (CSUR), vol. 54, no. 4,
pp. 1–36, 2021.

[47] L. Molnár et al., “Dataplane specialization for high-performance
openflow software switching,” in Proceedings of the 2016 ACM
SIGCOMM Conference, 2016, pp. 539–552.

[48] “Open vSwitch,” https://www.openvswitch.org/, [Online; Ac-
cessed: 2021-7-06].

[49] H. Fang and R. Obermaisser, “Virtual switch for integrated real-
time systems based on sdn,” in 2019 Sixth International Conference
on Internet of Things: Systems, Management and Security (IOTSMS).
IEEE, 2019, pp. 344–351.

[50] F. Dürr, “Software TSN-Switch with Linux,” https://www.
frank-durr.de/?p=376, [Online; Accessed: 2021-6-16].

[51] R. Nakamura et al., “Grafting sockets for fast container network-
ing,” in Proceedings of the 2018 Symposium on Architectures for
Networking and Communications Systems, 2018, pp. 15–27.

[52] “napalm-automation/napalm: Network Automation and Pro-
grammability Abstraction Layer with Multivendor support,”
https://github.com/napalm-automation/napalm, [Online; Ac-
cessed: 2021-6-16].

[53] S. Brosky, “Shielded cpus: real-time performance in standard
linux,” Linux Journal, vol. 2004, no. 121, p. 9, 2004.

[54] J. M. López et al., “Utilization bounds for edf scheduling on real-
time multiprocessor systems,” Real-Time Systems, vol. 28, no. 1, pp.
39–68, 2004.

[55] J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation algo-
rithms for scheduling unrelated parallel machines,” Mathematical
programming, vol. 46, no. 1, pp. 259–271, 1990.

[56] T. H. Cormen, Introduction to Algorithms, Second Edition. The MIT
Press, sep 2001. [Online]. Available: https://www.xarg.org/ref/
a/0262032937/

[57] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to algorithms. MIT press, 2009.

[58] G. Dósa, “The tight bound of first fit decreasing bin-packing
algorithm is ffd (i)≤ 11/9opt (i)+ 6/9,” in International Symposium
on Combinatorics, Algorithms, Probabilistic and Experimental Method-
ologies. Springer, 2007, pp. 1–11.

[59] J. van den Brand, “A deterministic linear program solver in current
matrix multiplication time,” in Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2020, pp.
259–278.

[60] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs
in the current matrix multiplication time,” Journal of the ACM
(JACM), vol. 68, no. 1, pp. 1–39, 2021.

[61] F. Le Gall, “Powers of tensors and fast matrix multiplication,”
in Proceedings of the 39th international symposium on symbolic and
algebraic computation, 2014, pp. 296–303.

Márk Szalay is a Ph.D. student at Budapest
University of Technology and Economics. He
is a member of the High Speed Network Lab-
oratory (http://hsnlab.hu/) in the Department
of Telecommunications and Media Informatics.
His main research interests include Hardware
(Router/switch/NIC) design, Network program-
ming, Software-Defined Networking (SDN) and
Network Function Virtualization (NFV).

Péter Mátray is a researcher at Ericsson Re-
search. He received his Ph.D. in 2014 from
Eötvös Loránd University (ELTE). During his
work at the university he was focusing on topics
of large-scale active Internet measurements and
the efficient management and analysis of mas-
sive measurement data sets. He joined Ericsson
Research in 2012, where he has been involved
in various projects related to analytics, the trou-
bleshooting of complex cloud applications, and
low-latency data sharing in the cloud.

László Toka is assistant professor at Budapest
University of Technology and Economics, vice-
head of HSNLab (http://hsnlab.hu/), and mem-
ber of both the MTA-BME Network Softwariza-
tion and the MTA-BME Information Systems Re-
search Groups. He obtained his Ph.D. degree
from Telecom ParisTech in 2011, he worked at
Ericsson Research between 2011 and 2014,
then he joined the academia with research focus
on software-defined networking, cloud comput-
ing and artificial intelligence.

https://aws.amazon.com/
https://www.youtube.com/watch?v=DgYA5m0d87U
https://www.starlingx.io/
https://katacontainers.io/
https://www.openvswitch.org/
https://www.frank-durr.de/?p=376
https://www.frank-durr.de/?p=376
https://github.com/napalm-automation/napalm
https://www.xarg.org/ref/a/0262032937/
https://www.xarg.org/ref/a/0262032937/
http://hsnlab.hu/

	Introduction
	The concept of real-time FaaS
	Related Work
	RT communication within the RT-FaaS
	Hardware-based real-time networking
	Software-based real-time networking
	Hybrid real-time networking

	Real-time execution of the functions
	Deployment and Function model
	Relations between deployment and function model
	Infrastructure model
	ILP formalization of task partitioning
	Scheduling model

	Task partitioning algorithm
	Time complexity analysis
	Optimal corner cases
	Approximation rate of ALG

	Evaluation
	Simulation inputs
	Number of feasible solutions
	Number of provisioned processors for RT tasks
	Runtime complexity
	The homogeneous multiprocessor scenario
	Evaluation Summary

	Conclusion
	References
	Biographies
	Márk Szalay
	Péter Mátray
	László Toka

