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Abstract

The ability to accurately estimate job runtime properties
allows a scheduler to e�ectively schedule jobs. State-of-the-
art online cluster job schedulers use history-based learning,
which uses past job execution information to estimate the
runtime properties of newly arrived jobs. However, with
fast-paced development in cluster technology (in both hard-
ware and software) and changing user inputs, job runtime
properties can change over time, which lead to inaccurate
predictions.

In this paper, we explore the potential and limitation of
real-time learning of job runtime properties, by proactively
sampling and scheduling a small fraction of the tasks of each
job. Such a task-sampling-based approach exploits the simi-
larity among runtime properties of the tasks of the same job
and is inherently immune to changing job behavior. Our ana-
lytical and experimental analysis of 3 production traces with
di�erent skew and job distribution shows that learning in
space can be substantially more accurate. Our simulation and
testbed evaluation on Azure of the two learning approaches
anchored in a generic job scheduler using 3 production clus-
ter job traces shows that despite its online overhead, learning
in space reduces the average Job Completion Time (JCT) by
1.28×, 1.56×, and 1.32× compared to the prior-art history-
based predictor. Finally, we show how the sampling-based
learning can be extended to schedule DAG jobs and achieve
similar speedups over the prior-art history-based predictor.

1 Introduction

In big-data compute clusters, jobs arrive online and compete
to share the cluster resources. In order to best utilize the
cluster and to ensure that jobs also meet their service level
objectives, e�cient scheduling is essential. However, as jobs
arrive online, their runtime characteristics are not known a
priori. Due to this lack of information, it is challenging for
the cluster scheduler to determine the right job execution
order that optimizes scheduling metrics such as maximal
resource utilization or application service level objectives.

An e�ective way to tackle the challenges of cluster schedul-
ing is to learn the runtime characteristics of pending jobs,
which allows the scheduler to exploit o�ine scheduling algo-
rithms that are known to be optimal, e.g., Shortest Job First
(SJF) for minimizing the average completion time. Indeed,
∗The work was done while the author was pursuing his Ph.D. at Purdue

University.

there has been a large amount of work [27, 36, 44, 45, 48, 50,
53, 56] on learning job runtime characteristics to facilitate
cluster job scheduling.

In essence, all of the previous learning algorithms learn job
runtime characteristics from observing historical executions
of the same jobs, which execute the same code but process
di�erent sets of data, or of similar jobs, which have matching
features such as the same application name, the same job
name, or the same user who submitted the job.

The e�ectiveness of the above history-based learning
schemes critically rely on two conditions to hold true: (1)
The jobs are recurring; (2) The performance of the same or
similar jobs will remain consistent over time.

In practice, however, the two conditions often do not hold
true. First, many previous work have acknowledged that not
all jobs are recurrent. For example, in the traces used in Corral
[44] and Jockey [30], only 40% of the jobs are recurrent, and
Morpheus [45] shows that only 60% of the jobs are recurrent.
Second, even the authors of history-based prediction schemes
such as 3Sigma [48] and Morpheus [45] strongly argued why
runtime properties of jobs, even with the same input, will
not remain consistent and will keep evolving. The primary
reason is due to updates in cluster hardware, application
software, and user scripts to execute the cluster jobs. Third,
our own analysis of three production cluster traces (§4) have
also shown that historical job runtime characteristics have
considerable variations.

In this paper, we explore an alternative approach to learn-
ing runtime properties of distributed jobs online to facilitate
cluster job scheduling. The approach is motivated by the
following key observations about distributed jobs running
on shared clusters: (1) a job typically has a spatial dimension,
i.e., it typically consists of many tasks; and (2) the tasks (in
the same phase) of a job typically execute the same code and
process di�erent chunks of similarly sized data [9,16]. These
observations suggest that if the scheduler �rst schedules a
few sampled tasks of a job, known as pilot tasks, to run till �n-
ish, it can use the observed runtime properties of those tasks
to accurately estimate those of the whole job. E�ectively,
such a task-sampling-based approach learns job properties in
the spatial dimension. We denote the new learning scheme
as SLearn, for “learning in space”.

Intuitively, by using the execution of pilot tasks to predict
the properties of other tasks, SLearn avoids the primary
drawback of history-based learning techniques, i.e., relying
on jobs to be recurring and job properties to remain station-
ary over time. However, learning in space introduces two
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new challenges: (1) its estimation accuracy can be a�ected
by the variations of task runtime properties, i.e., task skew;
(2) delaying scheduling the remaining tasks of a job till the
completion of sampled tasks may potentially hurt the job’s
completion time.

In this paper, we perform a comprehensive compara-
tive study of history-based learning (learning in time) and
sampling-based learning (learning in space), to systemati-
cally answer the following questions: (1) Can learning in
space be more accurate than learning in time? (2) If so, can
delaying scheduling the remaining tasks of a job till the com-
pletion of sampled tasks be more than compensated by the
improved accuracy and result in improved job performance,
e.g., completion time?

We answer the �rst question via quantitative analysis, and
trace and experimental analysis based on three production
job traces, including two public cluster traces from Google
released in 2011 and 2019 [8, 11] and a private trace from
2Sigma [1]. We answer the second question by designing
a generic scheduler that schedules jobs based on job run-
time estimates to optimize a given performance metric, e.g.,
average job completion time (JCT), and then plug into the
scheduler di�erent prediction schemes, in particular, learning
in time and learning in space, to compare their e�ectiveness.

We summarize the major �ndings and contributions of
this paper as follows:

• Based on literature survey and analysis using three pro-
duction cluster traces, we show that history is not a
stable and accurate predictor for runtime characteris-
tics of distributed jobs.

• We propose SLearn, a novel learning approach that
uses sampling in the spatial dimension of jobs to learn
job runtime properties online. We also provide solutions
to practical issues such as dealing with thin jobs (jobs
with a few tasks only) and work conservation.

• Via quantitative, trace and experimental analysis, we
demonstrate that SLearn can predict job runtime prop-
erties with much higher accuracy than history-based
schemes. For the 2Sigma, Google 2011, and Google 2019
cluster traces, the median prediction error are 18.98%,
13.68%, and 51.84% for SLearn but 36.57%, 21.39%, and
71.56% for the state-of-the-art history-based 3Sigma,
respectively.

• We show that learning job runtime properties by sam-
pling job tasks, although delays scheduling the remain-
ing tasks of a job, can be more than compensated by the
improved accuracy, and as a result reduces the average
JCT. In particular, our extensive simulations and testbed
experiments using a prototype on a 150-node cluster in
Microsoft Azure show that compared to the prior-art
history-based predictor, SLearn reduces the average

JCT by 1.28×, 1.56×, and 1.32× for the extracted 2Sigma,
Google 2011 and Google 2019 traces, respectively.

• We show how the sampling-based learning can be ex-
tended to schedule DAG jobs. Using a DAG trace gen-
erated from the Google 2019 trace, we show a hybrid
sampling-based and history-based scheme reduces the
average JCT by 1.25× over a pure history-based scheme.

2 Background and Related Work

In this section, we provide a brief background on the cluster
scheduling problem, review existing learning-based sched-
ulers, and discuss their weaknesses.

2.1 Cluster Scheduling Problem
In both public and private clouds, clusters are typically shared
among multiple users to execute diverse jobs. Such jobs typi-
cally arrive online and compete for shared resources. In order
to best utilize the cluster and to ensure that jobs also meet
their service level objectives (SLOs), e�cient job scheduling
is essential. Since jobs arrive online, their runtime character-
istics are not known a priori. This lack of information makes
it challenging for the scheduler to determine the right or-
der for running the jobs that maximizes resource utilization
and/or meets application SLOs. Additionally, jobs have di�er-
ent SLOs. For some meeting deadlines is important while for
others faster completion or minimizing the use of networks is
more important. Such a diverse set of objectives pose further
challenges to e�ective job scheduling [19,30,31,44,45,56,57].

2.2 Job Model
We consider big-data compute clusters running data-parallel
frameworks such as Hadoop [4], Hive [6], Dryad [37],
Scope [22], and Spark [7] that run simple MapReduce
jobs [28] or more complex DAG-structured jobs, where each
job processes a large amount of data. Each job consists of
one or multiple stages, such as map or reduce, and each stage
partitions the data into manageable chunks and runs many
parallel tasks, each for processing one data chunk.

2.3 Existing Learning-based Schedulers
An e�ective way to tackle the challenges of cluster schedul-
ing is to learn runtime characteristics of pending jobs. As
such cluster schedulers using various learning methods have
been proposed [19, 21, 25, 36, 44–46, 48, 50, 51, 53]. In essence,
all previous learning schemes are history-based, i.e., they
learn job characteristics by observations made from the past
job executions.1 In particular, existing learning approaches

1Some recent work use the characteristics of completed mini-batches
as a proxy for the remaining mini-batches, to improve the scheduling of
ML jobs [55]. However, such jobs are di�erent in that the mini-batches in
general experience signi�cantly less (task-level) variations than what we
studied in this paper.



Table 1: Summary of selected previous work that use history-
based learning techniques.

Name Property Estimation Learning
estimated technique frequency

Corral Job runtime O�ine model On arrival
[44] (not updated)

DCOSR Memory elasti- O�ine model Scheduler
[36] city pro�le (not updated) dependent

Jockey Job runtime O�ine Periodic
[30] simulator

3Sigma Job runtime O�ine On arrival
[48] history dist. model

can be broadly categorized into the following groups, as
summarized in Table 1.
Learning o�line models. Corral’s prediction model is de-
signed with the primary assumptions that most jobs are
recurring in nature, and the latency of each stage of a multi-
stage job is proportional to the amount of data processed by
it, which do not always hold true [44].

DCOSR [36] predicts the memory usage for data parallel
compute jobs using an o�ine model built from a �xed num-
ber of pro�le runs that are speci�c to the framework and
depend on the framework’s properties. Any software update
in the existing frameworks, addition of new framework or
hardware update will require an update in pro�le.

For analytics jobs that perform the same computation
periodically on di�erent sets of data, Tetris [32] takes mea-
surements from past executions of a job to estimate the re-
quirements for the current execution.
Learning o�line models with periodic updates. Jockey
[30] periodically characterizes job progress at runtime, which
along with a job’s current resource allocation is used by an
o�ine simulator to estimate the job’s completion time and
update the job’s resource allocation. Jockey relies on job
recurrences and cannot work with new jobs.
Learning from similar jobs. Instead of using execution
history from the exact same jobs, JVuPredict [52] matches
jobs on the basis of some common features such as appli-
cation name, job name, the user who owns the job, and the
resource requested by the job. 3Sigma [48] extends JVuPre-
dict [52] by introducing a new idea on prediction: instead
of using point metrics to predict runtimes, it uses full dis-
tributions of relevant runtime histories. However, since it
is impractical to maintain precise distributions for each fea-
ture value, it resorts to approximating distributions, which
compromises the bene�ts of having full distributions.

2.4 Learning fromHistory: Assumptions andReality
Predicting job runtime characteristics from history informa-
tion relies on the following two conditions to hold, which
we argue may not be applicable to modern day clusters.
Condition 1: The jobs are recurring. Many previous
works have acknowledged that not all jobs are recurrent. For

example, the traces used in Corral [44] and Jockey [30] show
that only 40% of the jobs are recurrent and Morpheus [45]
shows that 60% of the jobs are recurrent.
Condition 2: The performance of the same or sim-
ilar jobs will remain consistent over time. Previous
works [30, 44, 45, 48] that exploited history-based prediction
have considered jobs in one of the following two categories.
(1) Recurring jobs: A job is re-scheduled to run on newly
arriving data; (2) Similar jobs: A job has not been seen before
but has some attributes in common with some jobs executed
in the past [48, 52]. Many of the history-based approaches
only predict for recurring jobs [30, 44, 45], while some oth-
ers [25, 46, 48, 52] work for both categories of jobs.

However, even the authors of history-based prediction
schemes such as 3Sigma [48] and Morpheus [45] strongly
argued why runtime properties of jobs, even with the same
input, will keep evolving. The primary reason is that updates
in cluster hardware, application software, and user scripts
to execute the cluster jobs a�ect the job runtime charac-
teristics. They found that in a large Microsoft production
cluster, within a one-month period, applications correspond-
ing to more than 50% of the recurring jobs were updated.
The source code changed by at least 10% for applications
corresponding to 15-20% of the jobs. Additionally, over a
one-year period, the proportion of two di�erent types of ma-
chines in the cluster changed from 80/20 to 55/45. For a same
production Spark job, there is a 40% di�erence between the
running time observed on the two types of machines [45].

For these reasons, although the state-of-the-art history-
based system 3Sigma [48] uses sophisticated prediction tech-
niques, the predicted running time for more than 23% of the
jobs have at least 100% error, and for many the prediction is
o� by an order of magnitude.

3 SLearn – Learning in Space

In this paper, we explore an alternative approach to learning
job runtime properties online in order to facilitate cluster
job scheduling. The approach is motivated by the following
key observations about distributed jobs running in shared
clusters: (1) a distributed job has a spatial dimension, i.e., it
typically consists of many tasks; (2) all the tasks in the same
phase of a job typically execute the same code with the same
settings [9, 12, 16], and di�er in that they process di�erent
chunks of similarly sized data. Hence, it is likely that their
runtime behavior will be statistically similar.

The above observations suggest that if the scheduler �rst
schedules a few sampled tasks of a job to run till �nish, it
can use the observed runtime properties of those tasks to
accurately estimate those of the whole job. In a modular
design, such an online learning scheme can be decoupled
from the cluster scheduler. In particular, upon a job arrival,
the predictor �rst schedules sampled tasks of the job, called
pilot tasks, till their completion, to learn the job runtime



Table 2: Comparison of learning in time and learning in space
of job runtime properties.

Applicability Adapti- Accuracy Runtime
veness overhead

Time Recurring jobs No/Yes Depends No
Space New/Recurring jobs Yes Depends Yes

properties. The learned job properties are then fed into the
cluster job scheduler, which can employ di�erent scheduling
polices to meet respective SLOs. E�ectively, the new scheme
learns job properties in the spatial dimension, i.e.,learning in
space. We denote the new learning scheme as SLearn.

Table 2 summarizes the pros and cons of the two learning
approaches along four dimensions: (1) Applicability: As
discussed in §2.3, most history-based predictors cannot be
used for the jobs of a new category or for categories for which
the jobs are rarely executed. In contrast, learning in space
has no such limitation; it can be applied to any new job. (2)
Adaptiveness to change: Further, history-based predictors
assume job runtime properties persist over time, which often
does not hold, as discussed in §2.4. (3) Accuracy: The accu-
racy of the two approaches are directly a�ected by how they
learn, i.e., in space versus in time. The accuracy of history-
based approaches is a�ected by how stable the job runtime
properties persist over time, while that of sampling-based
approach is a�ected by the variation of the task runtime prop-
erties, i.e., the extent of task skew. (4) Runtime overhead:
The history-based approach has an inherent advantage of
having very low to zero runtime overhead. It performs o�ine
analysis of historical data to generate a prediction model. In
contrast, sampling-based predictors do not have o�ine cost,
but need to �rst run a few pilot tasks till completion before
scheduling the remaining tasks. This may potentially delay
the execution of non-sampled tasks.

The above qualitative comparison of the two learning ap-
proaches raises the following two questions: (1) Can learning
in space be more accurate than learning in time? (2) If so, can
delaying scheduling the remaining tasks of a job till the com-
pletion of sampled tasks be more than compensated by the
improved accuracy, so that the overall job performance, e.g.,
completion time, is improved? We answer the �rst question
via analytical, trace and experimental analysis in §4 and the
second question via a case study of cluster job scheduling
using the two types of predictors in §5.

4 Accuracy Analysis

In this section, we perform an in-depth study of the predic-
tion accuracy of the two learning approaches: learning in time
(history-based learning) and learning in space (task-sampling-
based learning). Both approaches can potentially be used
to learn di�erent job properties for di�erent optimization
objectives. In this paper, we focus on job completion time
because it is an important metric that has been intensively

studied in recent work [23, 24, 29, 33, 35, 36, 44, 48].
4.1 Analytical Comparison
We �rst present a theoretical analysis of the prediction accu-
racies of the two approaches. We caution that here we use a
highly-stylized model (e.g., two jobs and normal task-length
distributions), which does not capture the possible complex-
ity in real clusters, such as heavy parallelism across servers
and highly-skewed task-length distributions. Nonetheless, it
reveals important insights that help us understand in which
regimes history-based schemes or sampling-based schemes
will perform better. Consider a simple case of two jobs j1
and j2, where each job has n tasks. The size of each task of
j1 is known. Without loss of generality, let us assume that
the task size of j1 is 1. Thus, the total size of j1 is n. The size
of a task of j2 is however unknown. Let x denote the average
task size of j2, and this its total size is nx. Clearly, if we knew
x precisely, then we should have scheduled j1 �rst if x > 1
and j2 �rst if x ≤ 1. However, suppose that we only know
the following: (1) (Prior distribution:) x follows a normal
distribution with mean µ and variance σ2

o; (2) Given x, the
size of a random task of the job follows a normal distribution
with mean x and variance σ2

1. Intuitively, σ2
o captures the

variation of mean task-lengths across many i.i.d. copies of
job j2, i.e., job-wise variation, while σ2

1 captures the variation
of task-lengths within a single run of job j2, i.e., task-wise
variation. We note that the parameters σ2

o and σ2
1 are not

used by the predictors below.
Now, consider two options for estimating the mean task-

length x:1) A history-based approach (§4.1.1) and (2) a
sampling-based approach where we sample m tasks from
j2 (§4.1.2).
4.1.1 History-based Schemes
Since no samples of job j2 are used, the best predictor for
its mean task length is µ. In other words, the scheduling
decision will be based on µ only. The di�erence between the
true mean task length, x, and µ is simply captured by the
job-wise variance σ2

o.
4.1.2 Sampling-based Schemes
Suppose that we sample m tasks from j2. Collect the sampled
task lengths into a vector:

~y = (y1,y2, ...,ym).

Then, based on our probabilistic model, we have

P(yi|x) = 1√
2πσ1

e
− (yi−x)2

2σ2
1 , P(~y|x) = ∏

m
i=1

1√
2πσ1

e
− (yi−x)2

2σ2
1

We are interested in an estimator of x given~y. We have

P(x|~y) = P(~y|x)·P(x)
P(~y) = P(~y|x)·P(x)∫

x P(~y|x)·P(x)dx

= 1√
2π

[
m
σ2

1
+ 1

σ2
o

] 1
2 · e
−
(

m
2σ2

1
+ 1

2σ2o

)x−
∑

m
i=1

1
σ2

1
yi+

1
σ2o

µ

m
σ2

1
+ 1

σ2o


,



Table 3: Summary of trace properties.
Trace Arrival Resource Resource Indiv. task

time requested usage duration
2Sigma Yes Yes No Yes

Google 2011 Yes Yes Yes Yes
Google 2019 Yes Yes Yes Yes

where the last step follows from standard results on the poste-
rior distribution with Gaussian priors (see, e.g., [18]). In other
words, conditioned on~y, x also follows a normal distribution

with mean =
∑

m
i=1

1
σ2

1
yi+

1
σ2o

µ

m
σ2

1
+ 1

σ2o

and variance = 1
m
σ2

1
+ 1

σ2o

.

Note that this represents the estimator quality using the
information of both job-wise variations and task-wise varia-
tions. If the estimator is not informed of the job-wise varia-
tions, we can take σ2

o→+∞, and the conditional distribution
of x given~y becomes normal with mean 1

m ∑
m
i=1 yi and vari-

ance σ2
1

m .
From here we can draw the following conclusions. First,

whether history-based schemes or sampling-based schemes
have better prediction accuracy for an unknown job depends
on the relationship between job-wise variations σ2

o and the
task-wise variation σ2

1. If the job-wise variation is large but
the task-wise variation is small, i.e.,σ2

o >>
σ2

1
m , then sampling-

based schemes will have better prediction accuracy. Con-
versely, if the job-wise variation is small but the task-wise
variation is large, i.e., σ2

o <<
σ2

1
m , then history-based schemes

will have better prediction accuracy. Second, while the ac-
curacy of history-based schemes is �xed at σ2

o, the accu-
racy of sampling-based schemes improves as m increases.
Thus, when we can a�ord the overhead of more samples,
the sampling-based schemes become favorable. Our results
from experimental data below will further con�rm these
intuitions.

4.2 Trace-based Variability Analysis
Our theoretical analysis in §4.1 provides insights on how the
prediction accuracies of the two approaches depend on the
variation of job run times across time and space. To under-
stand how such variations fare against each other in practice,
we next measure the actual variations in three production
cluster traces. Table 3 summarizes the information available
in the traces that are used in our analysis.
Traces. Our �rst trace is provided by 2Sigma [1]. The cluster
uses an internal proprietary job scheduler running on top of
a Mesos cluster manager [2]. This trace was collected over a
period of 7 months, from January to July 2016, and from 441
machines and contains approximately 0.4 million jobs [17].

We also include two publicly available traces from Google
released in May 2011 and May 2019 [8, 11], collected from 1
and 8 Borg [54] cells over periods of 29 and 31 days, respec-
tively. The machines in the clusters are highly heterogeneous,

belonging to at least three di�erent platforms that use di�er-
ent micro-architectures and/or memory technologies [20].
Further, according to [9], the machines in the same platform
can have substantially di�erent clock rates, memory speed,
and core counts. Since the original Google 2019 trace has
data from 8 di�erent cells located in 8 di�erent locations,
and given that we already have two other traces from the
US, we chose the batch tier of Cluster G in the Google 2019
trace, which is located in Singapore [12], as our third trace
to diversify our trace collection.

We calculate the variations in task runtimes for each job
across time and across space as follows.
Variation across time. To measure the variation in mean
task runtime for a job across the history, we follow the fol-
lowing prediction mechanism de�ned in 3Sigma [48] to �nd
similar jobs.

As discussed in §2.3, 3Sigma [48] uses multiple features to
identify a job and predicts its runtime using the feature that
gives the least prediction error in the past. We include all six
features used in 3Sigma: application name, job name, user
name (the owner of the job), job submission time (day and
hour), and resources requested (cpu and memory) by the job.

For each feature, we de�ne the set of similar jobs as all
the jobs executed in the history window (de�ned below) that
had the same feature value. Next, we calculate the average
task runtime of each job in the set. Then, we calculate the
Coe�cient of Variation (CoV) of the average task runtimes
across all the jobs in the set. We repeat the above process
for all the features. We then compare the CoV values thus
calculated and pick the minimum CoV. E�ectively, the above
procedure selects the least possible variation across history.
Varying the history length in prediction across time.
3Sigma used the entire history for prediction. Intuitively, the
length of the history a�ects the trade-o� between the number
of similar jobs and the staleness of the history information.
For this reason, we optimized 3Sigma by �nding and using
the history length that gives the least variation. Speci�cally,
we de�ne the length of history based on a window size w, i.e.,
the number of past consecutive days. In our analysis below,
we vary w among 3, 7, and 14 for the three traces.
Variation across space. To measure the extent of variation
across space, we look at the CoV (CoV = σ

µ ) in the task run-
times within a job. As shown in §4.1, the variance in the
task runtime predicted from sampling is σ2

1
m , where σ2

1 is
the variance in the runtimes across all the tasks within the
job and m is the number of tasks sampled. Thus, we �rst
estimate σ2

1 from all tasks within the job. We then report
the CoV of our task runtime prediction after sampling m
tasks as σ1/

√
m

µ . Our complete scheduler design in §5.1 uses
an adaptive sampling algorithm which mostly uses 3% for
the three traces. Thus, for measuring the extent of variation
across space here, we assume a 3% sampling ratio and plot

σ1
(
√

0.03×numberO f TasksInJob )×µ .
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Figure 1: CDF of CoV of runtime properties across space and across time with varying history windows, using the 2Sigma,
Google 2011 and Google 2019 traces. Single-task jobs are excluded from the analysis across space.
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Figure 2: CoVs across time and space for 70 jobs selected
randomly from the 2Sigma trace. The x-axis represents job
ids in the order of their arrival.

Variability comparison. For consistency, all analysis re-
sults here are for the same, shortest trace period that can
be used for sliding-window-history based analysis, e.g., the
last 15 days under the 14-day window for the 29-day Google
2011 trace. (The analysis then varies the length of the sliding
window in history-based learning.) Figure 2 visualizes the
two CoVs for each of 70 randomly selected jobs from the
2Sigma trace in the order of their arrival, also using the best
window size of 14 days.

Fig. 1(a)–Fig. 1(c) show the CDFs of CoVs in task dura-
tion measured across space and across history for multiple
history window sizes for the three traces. We see that in gen-
eral using a shorter sliding window reduces the prediction
error of 3Sigma, and the CoVs across tasks are moderately
lower than the CoVs across history for the Google 2011 trace
but signi�cantly lower for 2Sigma and Google 2019 traces.
For example, for the 2Sigma trace, the CoV across history is
higher than the CoV across tasks for 85.40% of the jobs (not
seen in Fig. 1(a) as jobs are ordered di�erently in di�erent
CDFs) and for more than 30% of the jobs, the CoV across
history is at least 12.10× higher than the CoV across tasks.

Table 4 summarizes the results, where the CoVs across
time correspond to the best history window size, i.e., 3 days
for both Google traces and 14 days for the 2Sigma trace. As
shown in the table, the P50 (P90) CoV across history are 1.00
(3.10) for the 2Sigma trace, 0.20 (0.73) for the Google 2011
trace, and 1.35 (1.67) for the Google 2019 trace. In contrast,
the P50 (P90) CoV value across the task duration of the same
set of jobs is much lower, 0.18 (0.55) for the 2Sigma trace,
0.04 (0.58) for the Google 2011 trace, and 0.70 (1.33) for the
Google 2019 trace.

Fig. 1(d) and Fig. 1(e) further show the CDF of CoVs for

Table 4: CoV in task runtime across time and across space
for the the 2Sigma, Google 2011, and Google 2019 traces.

Trace CoV over Time CoV over Space
P50 P90 P50 P90

2Sigma 1.00 3.10 0.18 0.55
Google 2011 0.20 0.73 0.04 0.58
Google 2019 1.35 1.67 0.70 1.33

CPU usage and Disk IO time for the Google 2011 trace (such
resource usage is not available in the 2Sigma trace). The
�gures show that the variation in the values of these proper-
ties when sampled across space is also considerably lower
compared to the variation observed over time.

4.3 Experimental Prediction Error Analysis
Recall from our analysis in §4.1 that lower task-wise varia-
tion than job-wise variation (§4.2) will translate into better
prediction accuracy of sampling-based schemes over history-
based schemes. While our analysis in §4.1 assumes normal
distribution, we believe that a similar conclusion will hold
in more general settings. To validate this, we next imple-
ment a sampling-based predictor SLearn, and experimentally
compare it against a state-of-the-art history-based predic-
tor 3Sigma [48] in estimating the job runtimes directly on
production job traces.
Workload characteristics. Since the three production
traces described in §4.2 are too large, as in 3Sigma [48], we
extracted smaller traces for experiments using the procedure
described below.

Since the history-based predictor 3Sigma needs a history
trace, we followed the same process as in [48] to extract
the training trace for 3Sigma and the execution trace for all
predictors, in three steps. (1) We divided each original trace in
chronological order in two halves. (2) We compressed 2Sigma
jobs to 150 tasks or fewer, by applying a compression ratio
of original cluster size/150. Since the Google traces do not
have many wide jobs yet the original clusters are very wide,
with 12.5K machines, we dropped jobs with more than 150
tasks 2. (3) We next selected the execution trace following the
process below from the second half; these became 2STrace,

2This is to avoid potential bias towards SLearn. A job with more than
150 tasks will have to be scheduled in more than one phase, which will be
in favor of SLearn by diminishing the sampling overhead.



Table 5: Statistics for system load per 1000s sliding window.
Trace Average P50 P90

2STrace 1.05 0.13 2.47
GTrace11 1.01 0.29 1.49
GTrace19 1.04 0.09 0.91

GTrace11 and GTrace19, respectively. (4) We then selected
jobs from the �rst half of each original trace that are feature-
clustered with those jobs in the execution trace to form the
"history" trace for 3Sigma.

We extracted the execution trace from each of the above-
mentioned second halves by randomly selecting 1250 jobs
with equal probability. Then, for each extracted trace, we
adjust the arrival time of the jobs so that the average cluster
load matches that in the original trace [8, 11, 17]. Table 5
summarizes the workload per window of the extracted traces,
where a window is de�ned as a 1000-second interval sliding
by 100 seconds at a time, and the load per window is the total
runtime of all the jobs arrived in that window, normalized
by the total number of CPUs in the cluster times the window
length, i.e., 1000s. We see that for all three traces, the average
system load is close to 1, though the load �uctuates over time,
which is preserved by the random uniform job extraction.
Prediction mechanisms and experimental setups. We
implement the 3Sigma predictor following its description
in [48]. After learning the job runtime distribution (§4.2),
it uses a utility function of the estimated job runtime asso-
ciated with every job to derive its estimated runtime from
the distribution, by integrating the utility function over the
entire runtime distribution. Since our goal is to minimize
the average JCT, we used a utility function that is inversely
proportional to the square of runtime. We kept all the default
settings we learned from the authors of 3Sigma [48].

As in §4.2, SLearn samples max(1,0.03 ·S) tasks per job,
where S is the number of tasks in the job. We only show
the results for wide jobs (with 3 or more tasks) as in the
complete SLearn design (§5.1.1), only wide jobs go through
the sampling phase.
Results. Fig. 3 shows the CDF of percentage error in the
predicted job runtimes for the three traces. We see that
SLearn has much better prediction accuracy than 3Sigma.
For 2STrace, GTrace11, and GTrace19, the P50 prediction er-
ror are 18.30%, 9.15%, 21.39% for SLearn but 36.57%, 21.39%,
71.56% for 3Sigma, respectively, and the P90 prediction error
are 58.66%, 49.95%, 92.25% for SLearn but 475.78%, 294.52%,
1927.51% for 3Sigma, respectively.

5 Integrating Sampling-based Learning
with Job Scheduling: A Case Study

In this section, we answer the second key question about
the sampling-based learning: Can delaying scheduling the
remaining tasks till completing the sampled tasks be com-

pensated by the improved prediction accuracy? We answer
it through extensive simulation and testbed experiments.

Our approach is to design a generic scheduler, denoted as
GS, that schedules jobs based on job runtime estimates to
optimize a given performance metric, average job comple-
tion time (JCT). We then plug into GS di�erent prediction
schemes to compare their end-to-end performance.

5.1 Scheduler and Predictor Design

5.1.1 Generic Scheduler GS

GS replaces the scheduling component of a cluster manager
like YARN [5]. The key scheduling objective of GS is to
minimize the average JCT. Additionally, GS aims to avoid
starvation.

The scheduling task in GS is divided into two phases, (1)
job runtime estimation, and (2) e�cient and starvation-free
scheduling of jobs whose runtimes have been estimated. We
focus here on the scheduling mechanism and discuss the
di�erent job runtime estimators in the following sections.

Inter-job scheduling. Shortest job �rst (SJF) is known to be
optimal in minimizing the average JCT when job execution
depends on a single resource. Previous work has shown that
scheduling distributed jobs even with prior knowledge is NP-
hard (e.g., [24]), and an e�ective online heuristic is to order
the distributed jobs based on each job’s total size [23, 40–42]
[38]. In GS we use a similar heuristic; the jobs are ordered
based on their total estimated runtime, i.e.,mean task runtime
× number o f tasks.

Starvation avoidance. SJF is known to cause starvation to
long jobs. Hence, in GS we adopt a well-known multi-level
priority queue structure to avoid job starvation [23,26,39,47,
49]. OnceGS receives the runtime estimates of a job, it assigns
the job to a priority queue based on its runtime. Within a
queue, we use FIFO to schedule jobs. Across the queues, we
use weighted sharing of resources, where a priority queue
receives a resource share according to its priority.

In particular, GS uses N queues, Q0 to QN−1, with each
queue having a lower queue threshold Qlo

q and a higher
threshold Qhi

q for job runtimes. We set Qlo
0 = 0, Qhi

N−1 = ∞,
Qlo

q+1 = Qhi
q . A queue with a lower index has a higher priority.

GS uses exponentially growing queue thresholds, i.e., Qhi
q+1 =

E · Qhi
q . To avoid any bias, we use the multiple priority queue

structure with the same con�guration when comparing dif-
ferent job runtime estimators.

Basic scheduling operation. GS keeps track of resources
being used by each priority queue. It o�ers the next avail-
able resource to a queue such that the weighted sharing
of resources among the queues for starvation avoidance is
maintained. Resources o�ered to a queue are always o�ered
to the job at the head of the queue.
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Figure 3: Job runtime prediction accuracy.

5.1.2 SLearn
To seamlessly integrate SLearn with GS, we need to use
one of the priority queues for scheduling sampled tasks. We
denote it as the sampling queue.
Fast sampling. One design challenge is how to determine
the priority for the sampling queue w.r.t. the other priority
queues. On one hand, sampled tasks should be given high
priority so that the job runtime estimation can �nish quickly.
On the other hand, the jobs whose runtimes have already
been estimated should not be further delayed by learning
new jobs. To balance the two factors, we use the second
highest priority in GS as the sampling queue.
Handling thin jobs. Recall that in SLearn, when a new
job arrives, SLearn only schedules its pilot tasks, and delays
other tasks until the pilot tasks �nish and the job runtime
is estimated. Such a design choice can inadvertently lead to
higher JCTs for thin jobs, e.g., a two-task job would experi-
ence serialization of its two tasks. To avoid JCT degradations
for thin jobs, we place a job directly in the highest priority
queue if its width is under a threshold thinLimit.
Basic operations. Upon the arrival of a new job, the cluster
manager asynchronously communicates the job’s informa-
tion to GS, which relays the information to SLearn. If the
number of tasks in the job is under thinLimit, SLearn as-
signs it to the highest priority queue; otherwise, the job is
assigned to the sampling queue, where a subset of its tasks
(pilot tasks) will be scheduled to run. Once a job’s runtime is
estimated from sampling, it is placed in the priority queue
corresponding to its runtime estimate where the rest of its
tasks will be scheduled.
How many and which pilot tasks to schedule? When a
new job arrives, SLearn �rst needs to determine the number
of pilot tasks. Sampling more tasks can give higher estimation
accuracy, but also consumes more resources early on, which
can potentially delay other jobs, if the job turns out to be a
long job and should have been scheduled to run later under
SJF. Further, we found the best sampling ratio appears to
vary across di�erence traces. To balance the trade-o�, we
use an adaptive algorithm to dynamically determine the
sampling ratio, as shown in Figure 4. The basic idea of the
algorithm is to suggest a sampling ratio that has resulted in
the lowest job completion time normalized by the job runtime

based on the recent past. To achieve this, for every value in
a de�ned range of possible sampling ratios (between 1% and
5%), it maintains a running score (srScoreMap), which is the
average normalized JCT of T recently �nished jobs that used
the corresponding sampling ratio. In practice we found a T
value of 100 works reasonably well. During system start-up,
it tries sampling ratios of 2%, 3%, and 4% for the �rst 3T jobs
(Line 2–7). It further tries sampling ratios of 1% and 5% if
going down from 3% to 2% or going up from 3% to 4% reduces
the normalized JCT. Afterwards, for each new job, it uses
the sampling ratio that has the lowest running score. Finally,
upon each job completion, the score map is updated (Line
16–24).

Once the sampling ratio is chosen, SLearn selects pilot
tasks for a job randomly.
How to estimate from sampled tasks? Several methods
such as bootstrapping, statistical mean or median can be
used to predict job properties from sampled tasks. In GS, we
use empirical mean to predict the mean task runtime.
Work conservation. When the system load is low, some
machines may be idle while the non-sampling tasks are wait-
ing for the sampling tasks to �nish. In such cases, SLearn
schedules non-sampling tasks of jobs to run on otherwise
idle machines. In work conservation, the jobs are scheduled
in the FIFO order of their arrival.

5.1.3 Baseline Predictors and Policies
We compare SLearn’s e�ectiveness against four di�erent
baseline predictors and two policies: (1) 3Sigma: as dis-
cussed in §4.3. (2) 3SigmaTL: same as 3Sigma but handles
thin jobs in the same way as SLearn; they are directly placed
in the highest priority queue. This is to isolate the e�ect of
thin job handling. (3) Point-Est: same as 3Sigma, with the
only di�erence being that, instead of integrating a utility
function over the entire runtime history, it predicts a point
estimate (median in our case) from the history. (4) LAS: The
Least Attained Service [49] policy approximates SJF online
without explicitly learning job sizes, and is most recently
implemented in the Kairos [29] scheduler. LAS uses multiple
priority queues and the priority is inversely proportional
to the service attained so far, i.e., the total execution time
so far. We use the sum of all the task execution time to be



1: procedure GetCurrentSamplingPercentage(Job j)
2: if j in First T jobs then
3: return 3
4: else if j in Second T jobs then
5: return 2
6: else if j in Third T jobs then
7: return 4
8: minScore = getMinValue(srScoreMap)
9: if minScore.SR == 2 then

10: if 1.1*minScore.value < srScoreMap[3].value then
11: return 1
12: if minScore.SR == 4 then
13: if srScoreMap[3].value > 1.1*minScore.value then
14: return 5
15: return minScore.SR
16: procedure UpdateScoreOnJobCompletion(Job j)
17: sr = j.sr . Get j’s sampling ratio.
18: normalizedJCT = j.jct . Get j’s normalized JCT.
19: UpdateScoresMap(sr, normalizedJCT)
20: procedure UpdateScoreMaps(sr, normalizedJCT)
21: if Len(jobWiseSrScoresMap[sr])>T then
22: Drop �rst element of jobWiseSrScoresMap[sr]
23: jobWiseSrScoresMap[sr].append(normalizedJCT)
24: srScoreMap[sr].value = mean(jobWiseSrScoresMap[sr])

Figure 4: Adaptive sampling algorithm in SLearn.

consistent with all the other schemes. (5) FIFO: The FIFO
policy in YARN simply prioritizes jobs in the order of their
arrival. Since FIFO is a starvation free policy, there is no need
for multiple priority queues. (6) Oracle: Oracle is an ideal
predictor that always predicts with 100% accuracy.

5.2 Experimental Results
We evaluated SLearn’s performance against the six baseline
schemes discussed above by plugging them inGS and execute
the 3 traces (2STrace, GTrace11, and GTrace19) using large
scale simulations and on a 150-node testbed cluster in Azure
(§5.2.6).

5.2.1 Experimental Setup

Cluster setup. We implemented GS, SLearn and baseline
estimators with 11 KLOC of Java and python2. We used an
open source java patch for Gridmix [15] and open source
java implementation of NumericHistogram [13] for Hadoop.
We used some parts from DSS, an open source job scheduling
simulator [10], in simulation experiments.

We implemented a proxy scheduler wrapper that plugs
into the resource manager of YARN [5] and conducted real
cluster experiments on a 150-node cluster in MS Azure [14].

Following the methodology in recent work on cluster job
scheduling [25,48,52], we implemented a synthetic generator
based on the Gridmix implementation to replay jobs that
follow the arrival time and task runtime from the input trace.
The Yarn master runs on a standard DS15 v2 server with

Table 6: Performance improvement of SLearn over 3Sigma
under adaptive sampling and �xed-ratio sampling.

Fraction of tasks chosen as pilot tasks
1% 2% 3% 4% 5% 10% Adap.

2STrace
P50 pred. error (%) 19.4 19.0 19.0 18.7 18.4 16.9 19.0

Avg. JCT speedup (×) 1.24 1.23 1.27 1.26 1.27 1.28 1.28
P50 speedup (×) 0.93 0.92 0.93 0.92 0.93 0.91 0.92

GTrace11
P50 pred. error (%) 14.4 14.0 13.6 13.1 12.7 9.09 13.7

Avg. JCT speedup (×) 1.52 1.55 1.54 1.56 1.58 1.51 1.56
P50 speedup (×) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GTrace19
P50 pred. error (%) 55.7 53.8 47.1 46.5 42.1 36.1 51.8

Avg. JCT speedup (×) 1.31 1.31 1.31 1.32 1.28 1.24 1.32
P50 speedup (×) 1.07 1.07 1.05 1.05 1.01 1.00 1.07

20-core 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor
and 140GB memory, andthe slaves run on D2v2 with the
same processor with 2-core and 7GB memory.
Parameters. The default parameters for priority queues in
GS in the experiments are: starting queue threshold (Qhi

0 ) is
106 ms, exponential threshold growth factor (E) is 10, number
of queues (N) is set to 10, and the weights for time sharing
assigned to individual priority queues decrease exponentially
by a factor of 10. Previous work (e.g., [23]) and our own
evaluation have shown that the scheduling results are fairly
insensitive to these con�guration parameters. We omit their
sensitivity study here due to page limit. SLearn chooses
the number of pilot tasks for wide jobs using the adaptive
algorithm described in §5.1.2 and the threshold for thin jobs
is set to 3. We evaluate the e�ectiveness of adaptive sampling
in §5.2.2 and the sensitivity to thinLimit in §5.2.8.
Performancemetrics.We measure three performance met-
rics in the evaluation: JCT speedup, de�ned as the ratio of
a JCT under a baseline scheme over under SLearn, the job
runtime estimation accuracy, and job waiting time.
Workload. We used the same training data for history-
based estimators and the test traces (2STrace, GTrace11 and
GTrace19) as described in §4.3.

5.2.2 E�ectiveness of Adaptive Sampling
In this experiment, we evaluate the e�ectiveness of our adap-
tive algorithm for task sampling. Fig. 5 shows how the sam-
pling ratio selected by the adaptive algorithm for each job
varies between 1% and 5% over the duration of the three
traces. We further compare average JCT speedup and P50
speedup under the adaptive algorithm with those under a
�xed sampling ratio, ranging between 1% and 10%. Table 6
shows that the adaptive sampling algorithm leads to the best
speedups for 2STrace and GTrace19 and is about only 1%
worse than the best for GTrace11. Interestingly, we observe
that no single sampling ratio works the best for all traces.
Nonetheless, the adaptive algorithm always chooses one
that is the best or closest to the best in terms of JCT speedup.
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Figure 5: Sampling ratios selected by the adaptive sampling algorithm. The duration of initial 3T jobs appear varying due to
uneven arrival times.
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Figure 6: JCT speedup using SLearn as compared to other baseline schemes for the three traces.

More importantly, we see that the adaptive algorithm does
not always use the sampling ratio with the best prediction ac-
curacy, which shows that it e�ectively balances the tradeo�
between prediction accuracy and sampling overhead.

5.2.3 Prediction Accuracy
SLearn achieves more accurate estimation of job runtime
over 3Sigma – the details were already discussed in §4.3.

5.2.4 Average JCT Improvement
We now compare the JCT speedups achieved using SLearn
over using the �ve baseline schemes de�ned in §5.1.3.

Fig. 6(a) shows the results for 2STrace. We make the follow-
ing observations. (1) Compared to Oracle, SLearn achieves
an average and P50 speedups of 0.79× and 0.73×, respec-
tively. This is because SLearn has some estimation error;
it places 10.91% of wide jobs in the wrong queues, 3.54%
in lower queues and 7.37% in higher queues. (2) SLearn
improves the average JCT over 3Sigma by 1.28×. This sig-
ni�cant improvement of SLearn comes from much higher
prediction accuracy compared to 3Sigma (Fig. 3). (3) The
improvement of SLearn over 3SigmaTL, 1.26×, is similar to
that over 3Sigma, con�rming thin job handling only played a
small role in the performance di�erence of the two schemes.
To illustrate SLearn’s high prediction accuracy, we show in
Table 7 the fraction of wide jobs that were placed in correct
queues by SLearn and 3Sigma. We observe that SLearn
consistently assigns more wide jobs to correct queues than
3Sigma for all three traces. (4) Compared to Point-Est,
SLearn improves the average JCT by 1.42×. Again, this is
because SLearn estimates runtimes with higher accuracy. (5)
Compared to LAS, SLearn achieves an average JCT speedup
of 1.91× and P50 speedup of 1.29×. This is because LAS
pays a heavy penalty in identifying the correct queues of

Table 7: Percentage of the wide jobs that had correct queue
assignment.

Prediction SLearn 3Sigma
Technique

2STrace 89.09% 73.84%
GTrace11 86.45% 76.20%
GTrace19 73.96% 58.07%

jobs by moving them across the queues incrementally. (6)
Lastly, compared with FIFO, SLearn achieves an average
JCT speedup of 3.29× and P50 speedup of 8.45×.

Fig. 6(b) shows the results for GTrace11. Scheduling under
SLearn again outperforms all other schemes. In particular,
using SLearn improves the average JCT by 1.56× compared
to using 3Sigma, 1.55× compared to using 3SigmaTL, 2.17×
compared to using Point-Est, and 1.65× compared to us-
ing the LAS policy. Fig. 6(c) shows that scheduling under
SLearn outperforms all other schemes for GTrace19 too.
In particular, using SLearn improves the average JCT by
1.32×, 1.32×, 1.54×, and 1.72× compared to using 3Sigma,
3SigmaTL, Point-Est and the LAS policy, respectively.

In summary, our results above show that SLearn’s higher
estimation accuracy outweighs its runtime overhead from
sampling, and as a result achieves much lower average job
completion time than history-based predictors and the LAS
policy for the three production workloads.

5.2.5 Impact of Sampling on Job Waiting Time
To gain insight into why sampling pilot tasks �rst under
SLearn does not hurt the overall average JCT, we next com-
pare the normalized waiting time of jobs, calculated as the
average waiting time of its tasks under the respective scheme,
divided by the mean task length of the job.

Fig. 7 shows the CDF of the normalized job waiting time



10−4 10−3 10−2 10−1 100 101 102

Normalized job waiting time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLearn
3Sigma
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10−1 100 101 102 103

JCT speedup over 3Sigma

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GTrace11
2STrace
GTrace19

Figure 8: [Testbed] CDF of
speedup: SLearn vs 3Sigma.

Bin-1 Bin-2 Bin-3 Bin-4
Bins

100

101

JC
T 

Sp
ee

du
p 

ov
er

 3
Si

gm
a

10.54

1.86 0.80
1.38

P10-P90
P50
Average

Figure 9: Performance break-
down into the bins in Table 8.
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Figure 10: JCT speedup using
SLearn-DAG over baselines
for GTrace19-DAG.

under SLearn and 3Sigma. We see that the CDF curves
can be divided into three segments. (1) The �rst segment,
where both SLearn and 3Sigma have normalized waiting time
(NWT) less than 0.04, covers 36.58% of the jobs, and 35.57%
of the jobs are common. The jobs have almost identical NWT,
much lower than 1 under both schemes. This happens be-
cause during low system load periods, e.g., lower than 1,
the scheduler will schedule all the tasks to run under both
scheme; under SLearn it schedules non-sampled tasks of
jobs to run before their sampled tasks complete due to work
conservation. (2) The second segment, where both schemes
have NWT between 0.04 and 1.90, covers 30.51% of the jobs,
and 20.38% of the jobs are common. Out of these 20.38%,
29.81% have lower NWT under SLearn and 70.19% have
lower NWT under 3Sigma. This happens because when the
system load is moderate, the jobs experience longer waiting
time under SLearn than under 3Sigma because of sampling
delay. (3) The third segment, where both schemes have NWT
above 1.90, cover 32.91% of the jobs, and 24.68% of jobs are
common. Out of these 24.68%, 83.08% have lower waiting
time under SLearn and 16.92% under 3Sigma. This happens
because when the system load is relatively high, although
jobs incur the sampling delay under SLearn, they also expe-
rience queuing delay under 3Sigma, and the more accurate
prediction of SLearn allows them to be scheduled following
Shortest Job First more closely than under 3Sigma.

A detailed analysis of how the system load of the trace
a�ects the relative job performance under the two predictors
can be found in the Appendix.

5.2.6 Testbed Experiments

We next perform end-to-end evaluation of SLearn and
3Sigma on our 150-node Azure cluster. Fig. 8 shows the
CDF of JCT speedups using SLearn over 3Sigma using
2STrace, GTrace11 and GTrace19. SLearn’s performance on
the testbed is similar to that observed in the simulation. In
particular, SLearn achieves average JCT speedups of 1.33×,
1.46×, and 1.25× over 3Sigma for the 2STrace, GTrace11, and
GTrace19 traces, respectively.

5.2.7 Binning Analysis

To gain insight into how di�erent jobs are a�ected by SLearn
over 3Sigma, we divide the jobs into four bins in Table 8 for
2STrace and show the JCT speedups for each bin in Fig. 9. The

Table 8: Breakdown of jobs based on total duration and width
(number of tasks) for 2STrace. Shown in brackets are a bin’s
share in term of job count and total job runtime.

width < 3 (thin) width ≥ 3 (wide)
size < 103s (sm) bin-1 (4.55%, 0.01%) bin-2 (28.73%, 0.06%)
size ≥ 103s (lg) bin-3 (14.29%, 5.41%) bin-4 (52.43%, 94.52%)

results for the other two traces are similar and are omitted
due to page limit.

We make the following observations. (1) SLearn improves
the JCT for 82.46% of the jobs in Bin-1 and the average JCT
speedup for the bin is 10.54×. This happens because the jobs
in this bin are thin and hence SLearn assigns them high
priorities, which is also the right thing to do since these jobs
are also small. (2) For bin-2, SLearn achieves an average
JCT speedup of 1.86× from better prediction accuracy of
SLearn. The speedups are lower than for Bin-1 as the jobs
have to undergo sampling. However, Bin-1 and Bin-2 make
up only 0.01% and 0.06% of the total job runtime and thus
have little impact on the overall JCT. (3) Bin-3, which has
14.29% of the jobs and accounts for 5.41% of the total job size,
has a slowdown of 20.00%. The main reason is that SLearn
treats thin jobs in the FIFO order, whereas 3Sigma schedules
them based on predicted sizes. (4) Bin-4, which accounts
for a majority of the job and total job size, has an average
speedup of 1.38×, which contributes to the overall speedup
of 1.28×. The job speedups come from more accurate job
runtime estimation of SLearn over 3Sigma. Finally, we note
that while for the 2Sigma trace, the majority of thin jobs are
large, for the Google 2011 (Google 2019) trace, only 1.90%
(1.60%) of the total number of jobs are thin and large and
they make up only 0.5% (0.5%) of the total job runtime..

5.2.8 Sensitivity to Thin Job Bypass

Finally, we evaluate SLearn’s sensitivity to thinLimt. Table 9
shows that for GTrace11 and GTrace19, the average JCT
speedup barely varies with thinLimit, but for 2STrace, there
is a big dip when increasing thinLimit to 4 or 5. This is
because a signi�cant number of jobs in 2STrace have width
4, which causes the number of thin jobs to increase from
18.84% to 58.50% when increasing thinLimit from 4 to 5.



Table 9: Sensitivity analysis for thinLimit. Table shows aver-
age JCT speedup over 3Sigma.

thinLimit 2 3 4 5 6
2STrace 1.23x 1.28x 1.14x 0.97x 0.84x

GTrace11 1.54x 1.56x 1.55x 1.54x 1.53x
GTrace19 1.33x 1.32x 1.32x 1.30x 1.29x

6 Scheduling for DAG Jobs

In earlier sections, we have focused on the bene�ts of
sampling-based prediction. On the other hand, we envision
that there are situations where it would be bene�cial to com-
bine sampling-based and history-based predictions. Below,
we present our preliminary work applying such a hybrid
strategy for scheduling DAG jobs. We will discuss several
other use cases of a hybrid strategy in §7. Note that for multi-
phase DAG jobs, simply applying sampling-based prediction
to each phase in turn cannot estimate the whole DAG run-
time ahead of time. Instead, our hybrid design below aims to
learn the runtime properties and optimize the performance
of a multi-phase DAG job as a whole (e.g., [30, 33]).
Hybrid learning for DAGs (SLearn-DAG). The key idea
of SLearn-DAG is to adjust history-based prediction of the
runtime of DAG jobs using sampling-based learning of its
�rst stage. Upon arrival of a new DAG job, we estimate the
runtime of its �rst stage using sampling-based prediction
as described in §5.1.2, denoted as ds. We also estimate the
duration of this stage using history-base 3Sigma, denoted
as dh, and compute the adjustment ratio of ds

dh
. For each of

the remaining stages of the DAG, we predict their runtime
using 3Sigma and then multiply it with the adjustment ratio.
In a nutshell, this hybrid design reduces the error of history-
based prediction due to staleness of the learning data, while
avoiding the delay of sampling across all other stages.
History-based learning for DAGs (3Sigma-DAG). This is
a straight-forward extension of 3Sigma. Upon arrival of a
DAG job, it predicts independently the runtime for each stage
using the 3Sigma and sums up the estimated runtime of all
stages as the estimated runtime of the entire DAG.

We similarly extended other baselines described in §5.1.3
for DAG job.
Experimental setup. We evaluated SLearn-DAG against
3Sigma-DAG by replaying cluster trace in simulation exper-
iments based on GS (§5.1.1). We kept the simulation setup
and parameters the same as used in the other experiments.
In particular, a DAG is placed in the corresponding priority
queue based on its estimated total runtime.
DAG Traces. The only publically available DAG trace we
could �nd is a trace from Alibaba [3], which could not be
used as it does not contain features required for history-based
prediction using 3Sigma. Instead, we followed the ideas in
previous work, e.g., Branch Scheduling [34], to generate a
synthetic DAG trace of about 900 jobs using the Google 2019

trace [11], denoted as GTrace19-DAG. The number of stages
in DAGs in the GTrace19-DAG was randomly choosen to
be between 2-5 and each stage is a complete job from the
Google 2019 trace. The jobs that are part of the same DAG
have the same jobname and the same username.

Results. The results in Fig. 10 show that SLearn-DAG
achieves signi�cant speedup over other designs. The speedup
is 1.26× over 3Sigma-DAG, 2.15× over LAS-DAG, and 1.74×
over Point-Est-DAG. Looking deeper, we �nd that our
sampling-based prediction still yields higher prediction ac-
curacy: the P50 prediction error is 33.90% for SLearn-DAG,
compared to 47.21% for 3Sigma-DAG. On the other hand, for
DAG jobs the relative overhead of sampling (e.g, the delay)
is lower since only the �rst stage is sampled. Together, they
produce speedup comparable to earlier sections.

7 Discussions and Future Work

Combining history and sampling. In addition to improv-
ing the scheduling of DAG jobs (§6), we discuss several ad-
ditional motivations for combining history- and sampling-
based learning. (1) For workloads with both recurring and
�rst-time jobs, sampling-based learning can be used to esti-
mate properties for �rst-time jobs, while history-based learn-
ing can be used for recurring jobs. (2) When the workload
has both thin and wide jobs, history-based learning can be
used for estimating the runtime for thin jobs, while sampling-
based learning is used for wide jobs. (3) History-based learn-
ing can be used to establish a prior distribution, and sampling-
based approach can be used to re�ne the posterior distribu-
tion. Such a combination is potentially more accurate than
using either approach alone. For example, knowing the prior
distribution of task lengths can help to develop better max
task-length predictors, which can be useful for jobs with
deadlines. (4) Though not seen in the production traces used
in our study, in cases when task-wise variation and job-wise
variation �uctuate, adaptively switching between the two
prediction schemes may also help. (5) When the cluster is
heterogeneous, an error adjustment using history, similar to
what we did in §6, can be applied.

Dynamic adjustment of ThinLimit. ThinLimit is a sub-
jective threshold. It helps in segregating jobs for which wait-
ing time due to sampling overshadows the improvement in
prediction accuracy. The optimal choice of this limit will
depend on the cluster load at the moment and hence can be
adaptively chosen like the sampling percentage (Fig. 4 on
page ).

Heterogeneous clusters. Extending sampling-based learn-
ing to heterogeneous clusters requires adjusting the task
sampling process. One idea is to schedule pilot tasks on ho-
mogeneous servers and then scale their runtime to di�erent
types of servers using the ratio of machine speeds.



8 Conclusions
In this paper, we performed a comparative study of task-
sampling-based prediction and history-based prediction com-
monly used in the current cluster job schedulers. Our study
answers two key questions: (1) Via quantitative, trace and
experimental analysis, we showed that the task-sampling-
based approach can predict job runtime properties with much
higher accuracy than history-based schemes. (2) Via exten-
sive simulations and testbed experiments of a generic clus-
ter job scheduler, we showed that although sampling-based
learning delays non-sampled tasks till completion of sam-
pled tasks, such delay can be more than compensated by the
improved accuracy over the prior-art history-based predic-
tor, and as a result reduces the average JCT by 1.28×, 1.56×,
and 1.32× for three production cluster traces. These results
suggest task-sampling-based prediction o�ers a promising
alternative to the history-based prediction in facilitating clus-
ter job scheduling.
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Appendix: How does the system load a�ect
the speedups of SLearn over 3Sigma?

In this section, we provide an intuitive explanation for
SLearn’s JCT speedup over 3Sigma in Section 5.2.4 for
2STrace in Figure 5(a). Figure 11 shows seven timeline values
comparing SLearn and 3Sigma for the 2STrace as follows:

• The top curve shows the total workload arrived in the
past 1000 seconds, in terms of execution duration. The
values are plotted in steps of 1000 seconds along the
x-axis. A unit along the y-axis corresponds to the work-
load that needs 1000 seconds of the entire cluster’s com-
pute capacity. Thus a workload of 1 in steady state im-
plies no queue build-up under 100% utilization of the
whole cluster.

• The next three curves show the resistance faced by
newly arrived jobs under Oracle, 3Sigma and SLearn,
respectively, where resistance for a job is de�ned as the
amount of higher priority workload existing at the time
of its arrival, including the remaining duration of the al-
ready scheduled tasks. A unit along the y-axis for these
curves also corresponds to the workload that needs 1000
seconds of the entire cluster’s compute capacity. For
wide jobs (i.e., with 3 or more tasks), under SLearn we
show the resistance value corresponding to the moment
when the job’s size estimation is over and it has been
placed in its estimated priority queue. The resistance
values are plotted along the x-axis corresponding to
each job’s arrival time.

• The next two curves correspond to the percentage pre-
diction error in 3Sigma and SLearn, respectively. They
show signed error which are capped at 1000, e.g., a value
of -20 on error curves means the job was estimated to
be 20% smaller and a value of 1000 means job was esti-
mated at least 1000% larger. The values are plotted along
the x-axis corresponding to each job’s arrival time.

• The bottom curve shows the job speedup (positive val-
ues) or slowdown (negative values) of SLearn compared
to 3Sigma, plotted along the x-axis corresponding to
each job’s arrival time. Thus all values are either above
1, showing the speedups of jobs under SLearn over un-
der 3Sigma, or below -1, showing the speedups of jobs
under 3Sigma over under SLearn.

With the above de�nitions of the curves, we next discuss
how these curves in Fig. 11 demonstrate provides insights to
when and why SLearn outperforms 3Sigma.

• The speedup curve (bottom) shows the speedup under
SLearn over under 3Sigma happens when the workload
is high, e.g., between 600s and 620s, and 800s to 840s.
Conversely, when the workload is below 1, e.g., between
400 and 600s, the two scheme perform similarly and
there is no speedup of either scheme. In such cases,
task sampling SLearn did not hurt jobs because non-
sampled tasks did not have to wait for completion of
sampled tasks due to work conservation (§5.1.2).

• Intuitively, under any scheme, a job’s completion time is
roughly proportional to its own total runtime (which is
independent of the scheduling) plus the resistance it sees
upon arrival, because the resistance value indicates the
amount of workload that needs to be scheduled before
the arriving job gets to run.

• The resistance value, in turn, depends on the recently
arrived workload and the prediction error and hence
the scheduling decision for them.

• First, if more workload has arrived in the recent past, it is
likely that a newly arrived job will face higher resistance.
This is shown by the strong correlation between the
load curve and the Oracle resistance curve.

• Second, high runtime prediction error can lead to high
resistance. When the job runtime is estimated by the
predictor to be larger than its actual size, it may be mis-
placed in a lower priority queue. If the error is more
than 1000% then the job will de�nitely be placed in a
lower priority queue. In such cases, the job will likely
face higher resistance than it would have with accu-
rate estimation. Conversely, when the job runtime is
underestimated, it may be placed in a higher priority
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Figure 11: Correlation between load, resistance, estimation error and speedup for 2STrace.

Table 10: Fraction of overestimated jobs and incorrect queue placement for 2STrace. Job performance in the third and seventh
column is relative to the Oracle.

Overestim- Misplaced Slowed Average (P50) Underesti- Misplaced Speedup Average (P50)
ated jobs overestimated misplaced Positive error mated jobs underestimated misplaced Negative error

jobs jobs jobs jobs
3Sigma 59.78% 17.50% 12.19% 898.5% (48.00)% 40.22% 8.65% 6.88% -37.0% (-28.57)%
SLearn 43.75% 3.54 % 2.85% 30.65% (18.19)% 55.45% 7.37% 3.64% -26.79% (-20.69)%

queue. Though such a job will �nish faster than other-
wise, it will create more resistance for other jobs that
are actually smaller than it and thus slow them down.

• The above impact of prediction error on resistance can
be seen in Fig. 11. Since the prediction accuracy of
SLearn is high, it has less impact on the resistance and
as a result its resistance (fourth curve) is very similar to
that of Oracle (second curve) 3. In contrast, the resis-

3We note that there can be some exceptions where jobs face lower
resistance under SLearn compared to under Oracle, e.g., between time 200
- 400 KSec in Fig. 11. This happens because of mis-prediction in SLearn,

tance curve for 3Sigma (third curve) has many spikes,
e.g., between 800s and 1050s, which happen when the
workload (top curve) is high and it has high positive
prediction error (�fth curve).

• Finally, we can see that where ever there is higher re-
sistance under 3Sigma (third curve) compared to under
SLearn (fourth curve), e.g., between 800s and 1000s, jobs
experience speedups under SLearn over under 3Sigma.

e.g., when it underestimates the runtime of some jobs and places them in
lower priority queues than otherwise, the subsequently arriving job will
experience lower resistance.



While the above explanation using Fig. 11 is based on the
performance of SLearn and 3Sigma relative to that of Or-
acle, Table 10 gives a direct comparison of the scheduling
behavior of the jobs under the two schemes in terms of run-
time overestimation/underestimation, prediction error, and
the resulting misplacement to the priority queues. We see
that a larger number jobs are misplaced under 3Sigma com-
pared to SLearn which led to the overall lower performance
under 3Sigma.

In summary, whether a job �nishes faster under SLearn
compared to 3Sigma depends on two factors: the recent work-
load and the runtime prediction error. Due to higher pre-
diction error of 3Sigma compared to SLearn, during high
workload, jobs are more likely to be misplaced to the priorty
queues and hence face higher resistance, which results in
longer average completion time under 3Sigma.
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