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Abstract—Advances in cognitive radio networks have primarily
focused on the design of spectrally agile radios and novel
spectrum sharing techniques that are founded on Expected Utility
Theory (EUT). In this paper, we consider the development of
novel spectrum sharing algorithms in such networks taking into
account human psychological behavior of the end-users, which
often deviates from EUT. Specifically, we consider the impact of
end-user decision making on pricing and management of radio
resources in a cognitive radio enabled network when there is
uncertainty in the Quality of Service (QoS) guarantees offered
by the Service Provider (SP). Using Prospect Theory (a Nobel-
Prize-winning behavioral economic theory that captures human
decision making and its deviation from EUT), we design data
pricing and channel allocation algorithms for use in cognitive
radio networks by formulating a game theoretic analysis of the
interplay between the price offerings, bandwidth allocation by
the SP and the service choices made by end-users. We show
that, when the end-users under-weight the service guarantee,
they tend to reject the offer which results in under-utilization of
radio resources and revenue loss. We propose prospect pricing, a
pricing mechanism that can make the system robust to decision
making and improve radio resource management. We present
analytical results as well as preliminary human subject studies
with video QoS.

Index Terms—Game Theory, Prospect Theory, Probability
Weighting, Prospect Pricing

I. I NTRODUCTION

COGNITIVE Radio Networks (CRNs) [1] and advanced
spectrum sharing techniques have been studied exten-

sively over the past decade [2]. In general, game theory plays
a major role in studying the economical effects that CRNs
could bring to the Service Providers (SPs), as well as the
optimal radio resource management for the SPs when design-
ing spectrum sharing rules and algorithms. Some examples
of the applications of game theory in CRNs include auction-
based spectrum sharing [3], data pricing [4], power control
and allocation [5][6], Quality of Service (QoS) management
[7][8], and security [9].

Among the aspects mentioned above, QoS guarantee and
data pricing are particularly interesting to us. One reasonis
that QoS is often hard to guarantee in CRNs, mainly due
to spectrum uncertainty under a CRN setting [10][11][12].
For example, the uncertainty in available spectrum due to
interfering users (or even primary users) can result in situations
where the service cannot be guaranteed for the time period
required by the user. When the SP opportunistically acquires

available spectrum by performing spectrum sensing herself
[11], a mis-detection will cause the user to experience large
noise and low service guarantee when accessing the channel.
In fact, the result of a Federal Communications Commission
(FCC) survey, which aims to provide the users information on
the service qualities of offerings by different SPs when making
their decisions to purchase, has shown that the advertised
transmission rate (which affects the QoS) was not 100%
guaranteed even in the broadband internet [13][14]. The above
issues naturally lead to the problem of data pricing, since
the guarantee of the service quality contributes to the users’
decision making process. Furthermore, research has shown that
a user’s subjective perceptions of the service quality often
deviates from the actual service quality [15][16][17]. This
indicates that pricing should not be entirely based on the QoS
without taking the users’ subjective perceptions of the service
into consideration.

An even more important reason that motivates this work
is that we believe that end-user behavior plays an important
role under a CRN setting, and many algorithms designed
for CRN can be potentially impacted by those behaviors.
Examples include situations where a secondary user needs
to decide whether or not to access spectrum based on the
uncertainty in the spectrum sensing performed. Alternately,
when a primary user chooses to lease her unoccupied spectrum
to secondary users by algorithms based on non-cooperative
games or auction mechanisms, the secondary users have to
decide on whether or not to lease the spectrum, and how
much to pay for it given the uncertainty surrounding the QoS.
The above scenarios demand an understanding and accurate
modeling of an end-user’s decision making process, so that
the primary users, when leasing their spectrum resources, can
more accurately evaluate their expected outcomes.

This leads to the basic structure of our work. We investigate
a secondary system, where an SP acquires bandwidth from
primary users, and sells broadband internet service to end-
users. In particular, we assume that the service cannot be fully
guaranteed, and we model the uncertainty involved in the guar-
antee of the service with the probability that the service quality
actually meets the advertised service quality and assume that
this piece of information is available to the end-users when
they make decisions, an idea inspired by [13][14]. Next, we
model the impact of end-user’s decision making process using
Prospect Theory (PT) [18], a Nobel-Prize-winning theory that
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is particularly successful in modeling and explaining how
people’s decisions under risks and uncertainty deviate from
the framework of Expected Utility Theory (EUT) [19]. We
study the impact of the end-users’ decision making process
on the profit and radio resource management of the SP, when
they have a skewed view on the service guarantee. To combat
this impact, we propose prospect pricing, which focuses on
possible strategies for the SP including bandwidth reallocation,
rate control, bandwidth expansion/reduction, and admission
control, all of which can be achieved under a CRN setting,
and study their capabilities of recovering the revenue for the
SP. Our results relate the SP’s bandwidth resources with her
ability to dynamically manage her radio resources so as to
obtain the same amount of revenue as originally anticipated
without considering the end-users’ skewed perceptions. We
show that under some conditions, the impact of the end-users’
perception is large enough so that the SP simply cannot obtain
the amount of revenue originally anticipated.

The rest of the paper is organized as follows. In Section II,
we introduce the related work on data pricing, the background
on PT, as well as the works that applies PT to wireless commu-
nications scenarios. In Section III, we model the interactions
between the end-users and the SP as a Stackelberg game, while
the conditions under which the existence of a pure strategy
NE can be guaranteed are discussed in Section IV. In section
V, we discuss the impact of the Probability Weighting Effect
(PWE) on the end-user’s decision making process, the revenue
of the SP. Section VI discusses the prospect of recovering
the revenue of the EUT game via prospect pricing. Numerical
results are shown in Section VII while in section VIII, we
discuss psychophysics experiments with human subjects of
video QoS over wireless channels so as to model the parameter
used to characterize the probability weighting effect.

II. RELATED WORK

A. Prospect Theory: a brief introduction

The rationality assumption in game theory [20], which states
that a player’s decision making process is often assumed to
be completely following the axioms and theorems established
in Expected Utility Theorey [19], has long been questioned
by behavioral science [21]. Although EUT explains most of
the people’s decision making successfully, paradoxes have
been observed in real life that contradict the predictions of
EUT. Alternative theories explaining human’s decision making
processes were raised in the 1970s, with the most successful
one being Prospect Theory [18], whose main differences with
EUT are

1) Probability Weighting Effect (PWE): the weight of the
payoff of each possible outcome is different from the
probability of the occurrence of that outcome.

2) Framing Effect (FE): the payoff of each outcome is
framed into either gain or loss relative to a reference
point.

These two features can be illustrated with a variation of the
famous Allais’s Paradox [22], which is also used in [18].

In the experiment, two problems were sequentially pre-
sented to a group of 100 participants. Each problem contains2

alternatives. For the first problem, the participants were asked
to choose between

• A: $2500 with probability 0.33; $2400 with probability
0.66; $0 with probability 0.01;

• B: $2400 with certainty,
while in the second problem between

• C: $2500 with probability 0.33; $0 with probability 0.67;
• D: $2400 with probability 0.34; $0 with probability 0.66.
According to EUT, the expected utility of each alterna-

tive can be calculated by taking the expectation of payoff
amount for different outcomes, which, for an alternative with
M outcomeso1 to oM and their corresponding occurring
probabilitieso1 to oM , can be computed with

UEUT =
M
∑

i=1

vEUT (oi)pi. (1)

It can be easily verified that

UEUT (A) = 2500× 0.33 + 2400× 0.66 + 0× 0.01

= 2409 > 2400 = UEUT (B), (2)

while

UEUT (C) = 2500× 0.33 = 825 < 850

= 2500× 0.34 = UEUT (D). (3)

Thus, if the participants make their decisions following the
prediction of EUT, i.e., choosing the alternative that maximizes
the expected utility, then the participants should prefer Ato
B in problem 1 and D to C in problem 2. However, the result
shows that the majority (82%) of the participants chose B in
problem 1 and the majority (83%) of the participants chose C
in problem 2.

The results violate the predictions of EUT, but under the
framework of PT, they can be well explained. Under PT,
people are assumed to choose the alternative that maximizes
the prospect, which can be computed with

UPT =
M
∑

i=1

vPT (oi)w(pi). (4)

The definition of prospect is very similar to the definition of
the expected utility, except thatpi is weighted by an inverse-
S-shaped Probability Weighting Function (PWF)w(·), which
characterizes the PWE analytically. In addition,vEUT (oi) is
replaced byvPT (oi), which depicts the FE. Figure 1 illustrates
the idea of PWE by Prelec’s PWF. The PWF captures the fea-
ture that people often over-weight low probabilities and under-
weight moderate and high probabilities. The value function
captures the effect of loss aversion on people, i.e., the same
amount of loss usually looms larger than the same amount of
gain to a person.

The result of the experiment can be explained immediately
with the above setup. In problem 1, since alternative B pro-
vides a guaranteed payoff, that payoff becomes the reference
point when framing the payoff of each outcome under the
other alternative. Thus, $2500 becomes a gain of $100, while
$0 becomes a loss of $2400. It can then be readily seen that
if the probability 0.01 is over-weighted as depicted in Figure
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Fig. 1: Prelec’s probability weighting function with three
different valuesα indicating different levels of skewness.

1, then most people would have indeed preferred B to A. The
same argument applies to problem 2. In our work, we adopt
Prelec’s PWF, which is first proposed in [23], and parametrized
by α ∈ (0, 1]:

w(p) = exp {−(− ln p)α)} . (5)

However, most of the conclusions in this work can be easily
generalized to other inverse-S-shaped PWFs. We also reporton
psychophysics studies with human subjects to experimentally
determine the value ofα in section VIII. Note that we do not
consider the role of FE in this paper and that is a topic for
future study.

B. Data pricing

Pricing of wireless data has been widely studied for over a
decade. Most of the work focuses on proposing mechanisms
that offer control over the network’s traffic while maximizing
the revenue of the service provider. A comprehensive survey
of the most typical strategies adopted by the SPs over the past
years, offering either wired or wireless services, can be found
in [24]. Traditionally, the SPs use flat-rate pricing strategies
as well as usage-based pricing strategies, which offer limited
ability on managing network traffic. More complicated pricing
strategies are adopted later on, for example Paris Metro pricing
[25], time-of-day pricing [26][27], and congestion level based
pricing [28]. Those strategies are harder to implement, but
offer better performances in managing the congestion levelof
the network, as well as higher service guarantee as they make
some users back off when purchasing the service by making
them aware of the actual cost of accessing the network when
the congestion level is high by setting a higher price.

However, even with advanced pricing strategies, the un-
certainty involved in the guarantee of the service cannot be
avoided. In particular, in wireless communication, the uplink
and downlink rates cannot be guaranteed due to noise and in-
terference, which cannot be accurately predicted at the time the
service is purchased. Thus, the end-users often have to make
difficult choices between several alternatives of accessing the
network, in which the service quality she gets is stochastic.

Recently, there has been a category of work that study this
particular type of decision making problem of the end-users

Fig. 2: System model

with Prospect Theory, spanning a number of areas including
communication networks [29], [30], [31], [32], [33], [34],[35],
and smart energy management [36][37]. The subject of pricing
is addressed in [29][30], and in our previous work [38][39].
In [38], we studied the same problem of this work under a
more specific setting, i.e., assuming there exists only one end-
user. We studied the conditions under which an NE exists,
and found the NE that gives the SP maximum revenue. We
then studied the case when the end-user follows the decision
making process of PT, and showed that the SP cannot avoid
revenue loss if she wants to retain the same NE or the same
revenue under the PT game. In [39], we generalized the
framework to the multiuser setting.

III. A S TACKELBERG GAME MODEL

We study the scenario under a CRN shown in Figure 2,
where the secondary system has a service manager, or SP, who
actively manages and allocates available radio resources and
sells service toN end-users. The scenario whereN = 1 is a
special case and is studied in [38]. The bandwidth is assumed
to be obtained from primary users by means of trading, an
assumption that’s frequently considered to maximize the band-
width utilization [40][41]. Meanwhile, the data is assumedto
be obtained from the service offerings of higher tier ISPs. The
interaction between the SP and the end-users is modeled into
a Stackelberg game. The SP is aware of the number of users
within its service range, and moves first by investing necessary
resources, and making offers to the users. The end-users then
decide whether or not to accept the service. The decisions are
assumed to be made at the same time.

We define an offer made by the SP under the EUT game
as a triple {b, rEUT (b), ~BWEUT }, which corresponds to
the rateb, the price of the service at that rate determined
by a predefined pricing functionrEUT (b), and a specific
allocation of the SP’s bandwidth denoted by~BWEUT =
{BW1,EUT , ..., BWN,EUT }, which satisfies the total band-
width constraint| ~BWEUT | = BWmax,EUT . On the user side,
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Parameter Meaning Location
{b, rEUT (b), ~BWEUT } service offering page 3
BWmax,EUT total bandwidth page 4
Bi actual rate (a random variable) ofi-th user page 4
F̄Bi

(b;BWi,EUT ) service guarantee for thei-th user equation (6)
hi(b) i-th user’s benefit function page 4
pi i-th user’s probability of accepting the offer page 4
b∗
1,EUT

rate offered under Nash Equilibrium equation (11)
p̄ average acceptance probability Remark 1
λi, λi,AD , λi,RC dummy variables Theorem 2, Propositions 1,3
SEUT , SPT The set of users to which the service is offered equation (15)
BWmax,PT total bandwidth constrained under PT and EUT

games
equation (15)

rPT (b) price at rateb under PT game page 6
b∗
1,PT

rate under Nash Equilibrium in PT game equation (15)
~BWPT bandwidth allocation under PT game equation (15)

Simulation parameters TABLE II, page 9

TABLE I: Parameters involved and the locations of their definitions and introductions

we assume that the actual service rate for thei-th user is a
random variableBi, and the service guarantee at rateb is a
function that only depends on the channel between the user
and the SP, the rate offered and the amount of bandwidth
allocated to that user, and has the following form

F̄Bi
(b;BWi,EUT ) := P(Bi > b|BWi,EUT ). (6)

For a fixed rateb, increasingBWi,EUT raises the service
guarantee.

Denote thei-th user’s benefit upon receiving guaranteed
service at rateb with hi(b). Since the SP offers constant rate,
we can see that if the user accepts the offer, she pays a price
rEUT (b), and with probabilityF̄Bi

(b;BWi,EUT ) she receives
successful service, and with probabilityFBi

(b;BWi,EUT ) :=
1− F̄Bi

(b;BWi,EUT ) the channel cannot successfully deliver
the service at rateb and the user experiences an outage. Hence,
denoting the acceptance probability of thei-th user aspi, the
expected utility of thei-th user can then be represented as

Uuser,i(pi, b, BWi,EUT ) = pi[−rEUT (b)+

+hi(b)F̄Bi
(b;BWi,EUT ) + hi(0)FBi

(b;BWi,EUT )]

+(1− pi)hi(0). (7)

As a natural assumption, we assume thathi(0) = 0 for
all users. Thus,Uuser,i(pi, b, BWi,EUT ) = pi[−rEUT (b) +
hi(b)F̄Bi

(b;BWi,EUT )]. Note that the above model of the
user’s utility function is a special case of a more general
scenario where the SP constantly adapts her transmission rate
according to the channel’s capacity. Under this general setting,
Uuser,i(pi, b, BWi,EUT ) = pi[E[hi(Bi)] − rEUT (b)] + (1 −
pi)hi(0). This general form of the user’s expected utility
reduces to (7) when the user’s benefit function is a step
function, i.e.,hi(Bi) = hi(b) > 0 for Bi > b andhi(0) for
Bi < b with b being the advertised rate by the SP, which is
equivalent to assuming that the user is insensitive to the actual
service rate higher than advertised, and is extremely sensitive
when the service delivered is below rateb. More general cases
involving more complicated form ofhi(Bi) can be studied, but
involves tedious work on analyzing the properties ofE[hi(Bi)]

under the EUT game and PT game1.
As for the SP, a costci(b, BWi,EUT ) is incurred upon her

when she makes an offer at rateb to thei-th user. Specifically,
we assume an affine cost function for each individual user

ci(b, BWi,EUT ) = c1b + c3BWi,EUT , (8)

since the SP invests in resources based on the number of users
in its service range.c1 and c3 are the cost for unit data rate
and bandwidth. The fixed cost for the SP is ignored. Hence,
the expected utility of the SP can be expressed as

USP (~p, b, ~BWEUT ) =

N
∑

i=1

[pi[rEUT (b)− ci(b, BWi,EUT )]

+(1 − pi)(−ci(b, BWi,EUT ))]. (9)

We place a few more natural assumptions on our model.
Firstly, rEUT (b) andhi(b) are assumed to be monotonically
increasing and concave. The service guarantee for each user
is assumed to converge to 0 as the offered rate tends to∞
under fixed bandwidth. Meanwhile, the service guarantee for
a user is a monotonically increasing function with respect to
the bandwidth allocated to that user.

Lastly, we summarize the parameters we use in Table I.

IV. EXISTENCE OF MULTIPLENASH EQUILIBRIA OF THE

EUT GAME

With the above settings, the conditions for the existence
of an NE can be characterized. Consider two cases, with
one involving only a single user, and the other involving
multiple users. For simplicity, we dub the first case as a Single-
User-Single-Provider (SUSP) game, and the second case as a
Multiple-User-Single-Provider (MUSP) game.

Theorem 1 (The existence of multiple Nash Equilibria (NE)).
Assuming that∀i,

rEUT (b
∗
1,EUT ) > ci(b

∗
1,EUT , BWmax,EUT ), (10)

1The computation of expectation of a continuous random variable under
the probability weighting effect can be dealt with the help from [42][43].
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where

b∗1,EUT = argmax
b

(rEUT (b)− ci(b, BWmax,EUT )), (11)

then there exists a pure strategy NE for the MUSP game2 if
and only if there exists a pure strategy NE for at least one of
the SUSP game consisting of one of theN users and the SP,
under which the SP allocates the entire bandwidth she has to
that user.

The detailed proof can be found in [39].

Remark 1. It is worth pointing out that we do not consider
mixed strategy NE in the MUSP game. This is because,
assuming that under an NE the acceptance probability of
the users is represented by~p, the offered rate isb, and
the allocation of the bandwidth is represented by~BWEUT ,
we haveUSP (~p, b, ~BWEUT ) =

∑

i∈SEUT
pi(rEUT (b) −

ci(b, BWi,EUT )) = p̄ |SEUT | rEUT (b) − |SEUT | c1b −
c3BWmax,EUT , wherep̄ is the average acceptance probability
of all the users within setSEUT . In order to reach a mixed
strategy NE, the SP must find a rateb and a corresponding
bandwidth allocation ~BWEUT such that all the users are in-
different between accepting and denying the offer. However, the
expression also shows that the users’ acceptance probabilities
represented by~p only affect the SP’s decisions through their
averagep̄. Hence, for any combinations of offered rate and
bandwidth allocation that induce a mixed strategy NE, the
acceptance probabilities of the users can be arbitrary as long
as the average acceptance probability remains fixed and the SP
cannot obtain a higher revenue through offering the serviceto
a subset ofSEUT . Hence, the SP does not have control over
the individual user’s acceptance probability under a mixed
strategy NE.

We next specifies a procedure with which the SP finds
the strategy that leads to the revenue-maximizing NE. This
strategy includes a service offering, and the corresponding
bandwidth allocation. We define the minimum amount of
bandwidth that can be allocated to useri at rateb to be

BWi(b) = F̄−1
Bi

(

rEUT (b)

hi(b)
, b

)

,

which is equivalent to the amount of bandwidth that satisfies

F̄Bi
(b;BWi(b)) =

rEUT (b)

hi(b)
,

and we assume that the SP knows this piece of information
for all users. The procedure is specified in algorithm 1.

In algorithm 1, the SP first categorizes all pure strategy
NE according to the number of users that accepts the offer.
For an NE wheren users accept the offer, the SP goes on
to find the rate such that whenn users accept the offer, the
revenue is maximized while the minimum bandwidth needed
to support the service to the selected users satisfies the total
bandwidth constraint. However, if there exists anS with a
larger size, then the strategy will not lead to an NE. Hence

2We use the phrase “pure strategy NE” to refer the NE where the users
accept the service with probability 1. The case where the users decline the
service offer is excluded from our context.

we set the revenue to 0 so that it will not be selected. The
revenues under different choices ofn are then compared, and
the revenue maximizing NE is located for a specificn∗. Lastly,
the SP selects a possible choice ofS with sizen∗, and allocate
slightly more than the minimum bandwidth needed for each
user so that they accept the offer with probability 1. Finally,
note that under the revenue-maximizingn∗, the choice ofS is
unique, which consists of then∗ users with the lowest values
of BWi(b

∗
1,EUT ).

Algorithm 1 Locating the revenue-maximizing NE

1: Input:SEUT , rEUT (b), BWmax,EUT , and for alli’s hi(b)
andBWi(b).

2: Output: The revenue maximizing strategy
(b∗1,EUT , rEUT (b

∗
1,EUT ),

~BWEUT ).
3: for n = |SEUT | to 1 do
4: b∗1,EUT [n] ← argmaxb nrEUT (b) − nc1b, s.t.,

minS⊆SEUT ,|S|=n

∑

j∈S BWj(b) < BWmax,EUT .
5: USP,EUT [n] ← nrEUT (b

∗
1,EUT [n]) − nc1b

∗
1,EUT [n] −

c3BWmax,EUT

6: if ∃S ⊆ SEUT , |S| > n, such that
∑

j∈S BWj(b
∗
1,EUT ) < BWmax,EUT then

7: USP,EUT [n]← 0
8: end if
9: end for

10: n∗ ← argmaxn USP,EUT [n]
11: b∗1,EUT ← b∗1,EUT [n

∗]
12: S∗ ← argS,|S|=n

∑

j∈S BWj(b
∗
1,EUT ) < BWmax,EUT

13: BWi ← BWi(b
∗
1,EUT ) + ǫ if i ∈ S, and BWi ← 0

otherwise

V. THE IMPACT OF PROSPECTTHEORY ON END-USER

DECISIONS

In the remainder of this paper, we consider the impact of
Prospect Theory on end-users’ decisions of whether or not to
accept a service offer, its impact on the radio resources andthe
revenue of the SP. In particular, we focus on the effect of end-
user’s weighting of the service guarantee, i.e., the PWE aspect
of PT. We shall see that, when the end-users under-weight the
service guarantee, they tend to reject the offer, which leads to
an under-utilization of the SP’s radio resources and a loss in
revenue.

For the MUSP game, we study the condition under which
the system is robust to the PWE in the sense of retaining all
the users without having to change the service offer. The result
is summarized as follows.

Theorem 2. If all the users under-weight the service guaran-
tee, and the same offer inducing the pure strategy NE under
the EUT game is offered to the same set of users, then the NE
is preserved under PWE if and only if∀i ∈ SEUT ,

BWi,EUT > F̄−1
Bi

(

λi, b
∗
1,EUT

)

, (12)

where

λi = w−1
(

F̄Bi

(

b∗1,EUT ;BWi(b
∗
1,EUT )

))

. (13)
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Proof: For the i-th user, the necessary and
sufficient condition for him to accept an offer at rate
b∗1,EUT and price rEUT (b

∗
1,EUT under the impact

of PWE is hi(b
∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,EUT )) >
rEUT (b

∗
1,EUT ), i.e., w(F̄Bi

(b∗1,EUT ;BWi,EUT )) >
F̄Bi

(b∗1,EUT ;BWi(b
∗
1,EUT )). Since the probability

weighting function is monotonically increasing,
and thus have an inverse, we haveBWi,EUT >
F̄−1
Bi

(

w−1
(

F̄Bi

(

b∗1,EUT ;BWi(b
∗
1,EUT )

))

, b∗1,EUT

)

.
The above result indicates that, in order to retain all the

users without changing the service offer, the total amount of
bandwidth of the SP must be “sufficient”:

BWmax,EUT =
∑

i∈SEUT

BWi,EUT

>
∑

i∈SEUT

F̄−1
Bi

(

λi, b
∗
1,EUT

)

. (14)

Whenα = 1, w(p) = p, and the PT game reduces to EUT
game. Asα decreases,w−1(p) increases for every fixedp that
satisfiesw(p) < p, and hence the right hand side of the above
inequality increases, indicating that when PWE is introduced
and the users under-weight the service guarantee, the SP must
invest in more bandwidth than the amount required under the
EUT game in order to retain all the users with the same offer.

VI. PROSPECTPRICING

In this section, we introduce the idea of prospect pricing
to make the system robust against the PWE experienced by
the users. For the MUSP game, the SP needs to perform
prospect pricing by setting a new pricerPT (b) at the offered
rate b when the bandwidth of the system does not satisfy
the condition specified in equation (14). The goal of prospect
pricing consists the following two aspects.

• Retain the Radio Resource Management (RRM) con-
straints when PWE is introduced. The RRM constraints
for the MUSP game are defined as follows















SEUT = SPT ,
b∗1,EUT = b∗1,PT ,

BWmax,EUT = BWmax,PT ,
~BWEUT = ~BWPT

. (15)

The constraints restrict the SP to offer service of the same
rate to the same set of users when PWE is introduced.
They also restrict the SP to allocate the same amount of
bandwidth to each user within the set.

• Retain the revenue of the EUT game when the end-users
under-weight the service guarantee.

We first show that, in the MUSP game the SP cannot retain
her revenue and the RRM constraints simultaneously, provided
that all the users under-weight the service guarantee, i.e., the
SP cannot strictly retain all RRM constraints without suffering
a revenue loss. We then show that by partially relaxing the
RRM constraints, it is possible for the SP to retain her revenue
under the EUT game.

Theorem 3. When (14) is not satisfied, and when all the users
under-weight the service guarantee, Prospect Pricing can be

used to retain strict RRM constraints, at the cost of the SP
losing revenue of at least

LRRM = max
i∈SEUT

{rEUT (b
∗
1,EUT )−

− hi(b
∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,EUT ))}.

The detailed proof can be found in [39].
Next, we discuss four other strategies that can be used by

the SP along with prospect pricing. These include

• Bandwidth reallocation: the SP reallocates the available
unoccupied bandwidth among the users. In a CRN, the
SP is capable of performing this since she needs to
reallocate her bandwidth whenever a channel allocated
to a secondary user is occupied by a primary user.

• Admission control: the SP offers the service to a set of
usersSPT which is a subset ofSEUT .

• Bandwidth expansion/reduction: the SP invests in a
different amount of bandwidthBWmax,PT . This can be
achieved when the spectrum of the SP is leased from
primary users, which has been a commonly adopted
assumption [11].

• Rate control: the SP offers a different rateb∗1,PT to
the users, similar to rate adaptation often used in CRN
algorithms.

Note that, except for bandwidth expansion/reduction, the other
strategies requires maintaining the total bandwidth constraint,
i.e.,BWmax,EUT = BWmax,PT . The allocation of the band-
width among the end-users, however, can be arbitrary. When
(14) is not satisfied, we want to find out whether the above
four strategies, when applied together with prospect pricing,
could help the SP retain the revenue she would get if the users
follows decision making process of under the EUT framework.
The results are described below.

A. Bandwidth reallocation

In bandwidth reallocation, the SP has the freedom to change
the amount of bandwidth allocated to each user, subject to the
total bandwidth constraints. The rate offered must also be the
same.

Theorem 4. With bandwidth reallocation, the revenue loss
can be reduced, but not fully recovered.

Proof: In order to retain strict RRM constraints, all
the users must accept the same offer containing the same
rate and bandwidth, i.e.,∀i ∈ SEUT , rPT (b

∗
1,EUT ) <

hi(b
∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,EUT )). Hence, we have
rPT (b

∗
1,EUT ) < mini∈SEUT

{hi(b
∗
1,EUT )w(F̄Bi

(b∗1,EUT ;
BWi,EUT ))}. However, mini∈SEUT

{hi(b
∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,EUT ))} < rEUT (b
∗
1,EUT ). Hence, in order

to retain strict RRM constraints, the SP must take a
revenue loss of at leastLRRM = rEUT (b

∗
1,EUT ) −

mini∈SEUT
{hi(b

∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,EUT ))} =
maxi∈SEUT

{rEUT (b
∗
1,EUT ) − hi(b

∗
1,EUT )w(F̄Bi

(b∗1,EUT ;
BWi,EUT ))}. Allowing reallocation of the bandwidth will
reduce the revenue loss, since the revenue loss allowing
bandwidth allocationLBA is the minimum revenue loss



7

over all possible bandwidth allocation, and the bandwidth
allocation under strict RRM constraints is only one instance.

We next show that allowing reallocation of the band-
width cannot help the SP to fully recover the revenue by
contradiction. Since the service is offered to the same set
of users and the offered rate remains the same, the price
must be the same in order to retain the revenue, i.e.,
rEUT (b

∗
1,EUT ) = rPT (b

∗
1,EUT ). Assume that there exists a

bandwidth allocation such that∀i ∈ SEUT , rPT (b
∗
1,EUT ) <

hi(b
∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,PT )). Then we must have
∀i ∈ SEUT ,

BWi,PT > F̄−1
Bi

(

w−1

(

rPT (b
∗
1,EUT )

hi(b∗1,EUT )

)

; b∗1,EUT

)

= F̄−1
Bi

(

λi; b
∗
1,EUT

)

. (16)

Hence, the summation over the setSEUT yields the condi-
tion specified in (14), contradicting the assumption that the
bandwidth is insufficient in the first place.

Note that the SP can acquire the optimal bandwidth allo-
cation under the PT game by minimizingLRRM with respect
to the amount of bandwidth allocated to each user. Hence the
reduction ofLRRM is 0 if the original bandwidth allocation
under the EUT is the same as this optimal bandwidth allocation
scheme.

Next, we explore other ways of relaxing the RRM con-
straints the SP can resort to in order to recover her revenue.
We discuss a set of necessary and sufficient conditions under
which the revenue can be recovered.

B. Admission control

The SP is allowed to violate the RRM constraints by
selectingSPT ⊂ SEUT . Upon excluding one user, the SP
is able to reallocate the bandwidth to other users to increase
service performance.

Proposition 1. The necessary and sufficient condition for the
SP to recover her revenue is to have sufficient bandwidth under
the EUT game. Mathematically,

BWmax,EUT =
∑

i∈SPT

BWi,PT

> min
SPT⊂SEUT

∑

i∈SPT

F̄−1
Bi

(

w−1 (λi,AD) ; b∗1,EUT

)

,

(17)

with

λi,AD =

|SEUT |
|SPT | rEUT (b

∗
1,EUT )−

(

|SEUT |
|SPT | − 1

)

c1b
∗
1,EUT

hi(b∗1,EUT )
.

(18)

Proof: We start by showing necessity. In order to
retain revenue, we must have|SEUT |(rEUT (b

∗
1,EUT ) −

c1b
∗
1,EUT ) − c3BWmax,EUT = |SPT |(rPT (b

∗
1,PT ) −

c1b
∗
1,PT ) − c3BWmax,PT , where b∗1,EUT = b∗1,PT ,

and BWmax,EUT = BWmax,PT . Hence, ∃rPT (b
∗
1,PT )

and SPT s.t., |SEUT |(rEUT (b
∗
1,EUT ) − c1b

∗
1,EUT ) =

|SPT |(rPT (b
∗
1,PT ) − c1b

∗
1,PT ), i.e., the form of the pricing

function under the PT game at rateb∗1,PT is

rPT (b
∗
1,PT ) =

|SEUT |

|SPT |
rEUT (b

∗
1,EUT )−

−

(

|SEUT |

|SPT |
− 1

)

c1b
∗
1,EUT . (19)

In order for the users to accept the offer, we must have∀i ∈
SPT ,

rPT (b
∗
1,PT ) < hi(b

∗
1,PT )w(F̄Bi

(b∗1,PT ;BWi,PT )), (20)

i.e., ∀i ∈ SPT , the amount of bandwidth under the PT game
is lower bounded by

BWi,PT > F̄−1
Bi

(

w−1

(

rPT (b
∗
1,PT )

hi(b∗1,PT )

)

; b∗1,PT

)

= F̄−1
Bi

(

w−1 (λi,AD) ; b∗1,EUT

)

. (21)

Since the total bandwidth is constrained toBWmax,EUT , we
have

BWmax,EUT =
∑

i∈SPT

BWi,PT

>
∑

i∈SPT

F̄−1
Bi

(

w−1 (λi,AD) ; b∗1,EUT

)

, (22)

which can be further lower bounded by taking the minimum
over allSPT ⊂ SEUT .

We next prove sufficiency. Firstly, if the above condition
is satisfied, then we must have a setSPT ⊂ SEUT and
a corresponding price under the NErPT (b

∗
1,PT ) such that

∀i ∈ SPT , equation (20) holds. This is obvious, as we can
simply choose the price as given by equation (19) and allocate
BWi,PT slightly higher than the minimum amount required.

Hence, the only thing left to show is that

|SPT |(rPT (b
∗
1,PT )− c1b

∗
1,PT ) > c3

∑

i∈SPT

BWi,PT . (23)

This is also true since the left hand side minus the right
hand side is just the revenue of the SP under the EUT game.
By assumption, this revenue must be positive.

C. Bandwidth Expansion/Reduction

As suggested by the name, the SP is allowed to violate the
RRM constraints such thatBWmax,PT 6= BWmax,EUT . By
doing this, the SP is also allowed to reallocate her bandwidth
among the users. A set of necessary and sufficient conditions
is given as follows.

Proposition 2. The necessary and sufficient condition for the
SP to recover her revenue under the EUT game is that she has
sufficient bandwidth under the EUT game. Mathematically,

BWmax,EUT >
1

c3
{|SEUT |rEUT (b

∗
1,EUT )− sup

BWPT

sup
~BWPT

min
i∈SEUT

[|SEUT |hi(b
∗
1,EUT )w

(

F̄Bi
(b∗1,EUT ;BWi,PT )

)

−

− c3BWPT ]}, (24)
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where the outer supremum is to find the optimal total amount
of bandwidthBWPT under the PT game. The inner supremum
is to find the optimal bandwidth allocation subject to the
constraint that the total amount of bandwidth under the PT
game isBWPT .

Proof: We start by showing necessity. In order to
retain revenue, we must have|SEUT |(rEUT (b

∗
1,EUT ) −

c1b
∗
1,EUT ) − c3BWmax,EUT = |SPT |(rPT (b

∗
1,PT ) −

c1b
∗
1,PT )−c3BWmax,PT , whereSEUT = SPT , andb∗1,EUT =

b∗1,PT . Hence, the form of the pricing function under the
PT game at rateb∗1,PT is rPT (b

∗
1,EUT ) = rEUT (b

∗
1,EUT ) +

c3
|SEUT | (BWmax,PT − BWmax,EUT ). Once again, equation
(20) must hold∀i ∈ SEUT in order for the users to accept
the offer, hence∀i ∈ SEUT ,

rEUT (b
∗
1,EUT ) +

c3
|SEUT |

(BWmax,PT −BWmax,EUT )

< hi(b
∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,PT )).
(25)

This implies that the left hand side of the above equation
must be smaller than the minimum of the right hand side
with respect toi. It also implies that there exists a way
of allocating bandwidthBWmax,PT under the PT game
such that BWmax,EUT > 1

c3
{|SEUT |rEUT (b

∗
1,EUT ) −

mini∈SEUT
[|SEUT |hi(b

∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,PT )) −
c3BWmax,PT ]}, which further implies (24).

We next show sufficiency. Similar to the case of admission
control, the form ofrPT has been specified. Also, there exists
a way of allocating the bandwidth among the users such that
equation (25) holds∀i ∈ SPT . This can be achieved by sim-
ply choosingw(F̄Bi

(b∗1,EUT ;BWi,PT )) to be the minimizing
solution for the right hand side of (24).

Remark 2. We can obtain a result parallel to the
above proposition, which bounds the maximum amount
of allowed skewness of the PWE of the users given
the bandwidth of the SP. From equation (25), we can
equivalently havehi(b

∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,PT )) −
c3

|SEUT |BWmax,PT > rEUT (b
∗
1,EUT ) −

c3
|SEUT |BWmax,EUT .

Hence, for eachBWmax,PT we requires the existence
of an allocation of the bandwidth under the PT game,
such that we haverEUT (b

∗
1,EUT ) − c3BWmax,EUT <

sup ~BW
mini[|SEUT |hi(b

∗
1,EUT )w(F̄Bi

(b∗1,EUT ;BWi,PT )) −

c3BWmax,PT ], where ~BW subjects to the total bandwidth
constraints under the PT game. For anyBWmax,PT , the
optimal way of maximizing the left hand side of the above
inequality by allocating the bandwidth is to make the weighted
guarantee the same for all the users. Hence, upon assum-
ing this guarantee isx, the above relationship becomes
|SEUT |hi(b

∗
1,EUT )x − c3

∑

i∈SEUT
F̄−1
Bi

(w−1(x); b∗1,EUT ) >
rEUT (b

∗
1,EUT ) − c3BWmax,EUT . Hence, in order for

a valid BWmax,PT to exist, we must havec3 <

supx
|SEUT |hi(b

∗

1,EUT )x−(rEUT (b∗
1,EUT )−c3BWmax,EUT )

∑
i∈SEUT

F̄
−1

Bi
(w−1(x);b∗

1,EUT
)

, where

x is constrained to the region where probability is under-
weighted, i.e.,(e−1, 1].

Note that, although the constraint is onc3 (which appears
on both sides of the condition), it actually reveals a constraint

on w. If no PWE is involved, i.e.,w(p) = p, then this
constraint is always satisfied. This is because we can select
x such that the denominator on the right hand side is the
total bandwidth of the SP under the EUT game. In this case,
x is lower bounded by the minimum service guarantee of all
the users under the NE of the EUT game. However, as the
PWE sets in, the denominator of the right hand side increases
monotonically, indicating that in order for the SP to recover
the revenue under the EUT game, the user’s cannot have a
too skewed perception of the probability. In case of Prelec’s
PWF, it means that for every value ofBWmax,EUT , there is
a minimumα below which the SP is unable to recover her
revenue. This is also a necessary and sufficient condition for
the SP to recover her revenue under the EUT game.

D. Rate control

Lastly, we consider the option of rate control, which allows
the SP to optimize over the rate she offers to the users, the
bandwidth allocation, but constraining the total bandwidth to
be the same as in the EUT game. Here, a necessary and
sufficient condition is specified as follows.

Proposition 3. A necessary and sufficient condition for the SP
to recover her revenue under the EUT game is that the SP has
sufficient bandwidth under the EUT game. Mathematically,

BWmax,EUT =
∑

i∈SEUT

BWi,PT

> inf
b1,PT

∑

i∈SEUT

F̄−1
Bi

(

w−1 (λi,RC) ; b1,PT

)

,

(26)

where

λi,RC =
rEUT (b

∗
1,EUT ) + c1(b1,PT − b∗1,EUT )

hi(b1,PT )
. (27)

Proof:
Starting from the same equation, in order for the SP

to recover the revenue, there must exist a price under the
NE of the PT game such that|SEUT |(rEUT (b

∗
1,EUT ) −

c1b
∗
1,EUT ) − c3BWmax,EUT = |SPT |(rPT (b

∗
1,PT ) −

c1b
∗
1,PT )− c3BWmax,PT , where now we haveSEUT = SPT

and BWmax,EUT = BWmax,PT . Thus, rEUT (b
∗
1,EUT ) −

c1b
∗
1,EUT = rPT (b

∗
1,PT )−c1b

∗
1,PT , and the form of the pricing

function under the PT game at rateb∗1,PT is rPT (b
∗
1,PT ) =

rEUT (b
∗
1,EUT ) + c1(b

∗
1,PT − b∗1,EUT ). Once again, the con-

dition for the users to accept the offer (20) must apply.
Hence,∀i ∈ SEUT , rEUT (b

∗
1,EUT ) + c1(b

∗
1,PT − b∗1,EUT ) <

hi(b
∗
1,PT )w(F̄Bi

(b∗1,PT ;BWi,PT )). Thus,

BWi,PT > F̄−1
Bi

(

w−1 (λi,RC) ; b
∗
1,PT

)

, (28)

indicating that

BWmax,EUT =
∑

i∈SEUT

BWi,PT

> inf
b1,PT

∑

i∈SEUT

F̄−1
Bi

(

w−1 (λi,RC) ; b1,PT

)

.

(29)
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Here b1,PT > 0 and satisfies the constraint such that
hi(b1,PT ) − c1b1,PT < rEUT (b

∗
1,EUT ) − c1b

∗
1,EUT , but can

be further constrained if we desire to avoid letting the SP to
recover the revenue by offering the users a substantially lower
rate.

The sufficiency follows immediately if we chooseb1,PT to
be the minimizing solution of the above equation.

Remark 3. The result shown above automatically implies that
the probability weighting function of the users cannot be too
skewed. In case of Prelec’s PWF, asα decreases, the right
hand side monotonically increases, showing that for every
original design of the EUT game, there is a minimumα below
which the SP cannot recover her revenue.

E. Summary

The result shown by the previous subsections also indicates
that the maximum amount of revenue that could be retained
by combining each of the strategies of bandwidth expan-
sion/reduction, rate control, admission control with prospect
pricing is different. Since the relative performance of the
three methods above can be evaluated by comparing the
minimum amount of bandwidth needed for the SP to recover
her anticipated revenue, the method that corresponds to the
lowest threshold is most robust. With further assumptions
regarding the forms of the service guarantee and the user’s
benefit, we compare the performance of those three strategies
numerically in the next section.

VII. N UMERICAL RESULTS

A. Experiment setup

In this section, we demonstrate some of the conclusions
drawn above. We consider a scenario whereN = 10 users
are spread uniformly within a single cell with a radius of 800
meters. There are no interference between different users,and
we assume that the SP offers the service to all the users. Each
user experiences a combination of path loss, shadowing, and
Rayleigh fading. The guarantee of the service for each user
in this setup is one minus the outage probability of the fading
channel between the user and the base station and the rate
offered is the encoding rate at the transmitter. The path loss
and shadowing are calculated using a simplified model [44]

Pri = Pt +K − γ log10
d

d0
+ ϕi,dB, (30)

wherePt and Pri are the transmitted signal power and the
received signal power at thei-th user in decibels,K is a
constant taking the value−20 log10(4πd0/λ). γ is the path
loss exponent,d is the distance between the user and the base
station antenna, andd0 is the reference distance for the antenna
far-field. In addition,ϕi,dB is a Gaussian random variable that
captures the effect of shadow fading. Finally, the guarantee
function for each user can be expressed as

F̄Bi
(b) = exp

{

−
2

b
BWi,EUT − 1

Pri/(N0BWi,EUT )

}

. (31)

TABLE II: Parameters used for simulation

Parameter Meaning Value
Pt Transmission power 10 W
K Antenna dependent constant −64.5 dB
N0 PSD of thermal noise −174 dBm
d0 Reference distance for the antenna far-field 20 m
γ Path loss exponent 4
σ Standard deviation forϕi,dB 4
r Cell radius 800 m

whereN0 is the power spectral density (PSD) of the noise,
BWi,EUT represents the bandwidth allocated to thei-th user,
andb represents the encoding rate of the SP.

A list of the values for the parameters can be found in the
following table.

B. Bandwidth reallocation

In Figure 3, the minimum revenue loss with and without
enforcing strict RRM constraints are shown. The horizontal
axis represents different values ofα, the parameter that cap-
tures the level of probability weighting of the users, while
the vertical axis represents the revenue loss normalized by
the revenue the SP makes under the EUT game. The total
amount of bandwidth is 10 percent more than the minimum
bandwidth needed for all the users to accept the offer with
probability 1, and is allocated in a way such that each user
receives 10 percent more bandwidth than the minimum amount
needed for her to accept the offer under the EUT game. The
blue curve shows the minimum revenue loss when strict RRM
constraints are enforced, while the red curve corresponds to the
case where the SP is allowed to violate the RRM constraints by
reallocating the bandwidth among the users. As can be seen
from the graph, whenα = 1, the users weight the service
guarantee accurately, and no revenue is lost. Asα decreases,
the system with blue curve starts to lose revenue first, and the
revenue loss is always higher than that corresponding to the
system that allows bandwidth reallocation, which corresponds
to our result in Theorem 3. It can also be seen from the
plot that the system with strict RRM constraints do not start
losing revenue untilα is smaller than 0.94. This is because
of the extra 10 percent of bandwidth, which holds (12) for
all the users whenα ≥ 0.94. Finally, we point out that when
α < 0.93, the difference between the revenue losses of the two
systems are roughly 1 percent of the total revenue of the SP.
SinceN = 10, this converts to roughly 10 percent of revenue
the SP makes from a single user. The price at rateb∗1,EUT

under the EUT and PT game is shown in Figure 4. We can
see that the price reduction is smaller when the SP is allowed
to re-allocate her bandwidth.

C. Bandwidth expansion/reduction

To illustrate the effect of the bandwidth expan-
sion/reduction, we show minimum amount of bandwidth
under the EUT game required for the SP to recover her
revenue and normalize it byBWmax,EUT , and we show
the corresponding maximum revenue under the PT game,
normalized by the revenue of the SP under the EUT game.
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Fig. 3: Revenue loss of the SP normalized by the revenue
under EUT game.N = 10, hi(b) = 10−2 × (b × 10−3)0.65,
rEUT (b) = 2 × 10−3 × (b × 10−3)0.82, c1 = 1

3 × 10−6,
c3 = 10−8, ci(b;BWi,EUT ) = c1b + c3BWi,EUT b∗1,EUT ≈
7Mbps, BWmax,EUT ≈ 14MHz.
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Fig. 4: Price of the SP at rateb∗1,EUT normalized by the price
under the EUT game.N = 10, hi(b) = 10−2×(b×10−3)0.65,
rEUT (b) = 2 × 10−3 × (b × 10−3)0.82, c1 = 1

3 × 10−6,
c3 = 10−8, ci(b;BWi,EUT ) = c1b + c3BWi,EUT , b∗1,EUT ≈
7Mbps, BWmax,EUT ≈ 14MHz.

We also showBWmax,EUT normalized by itself (which is
equal to the horizontal linef(x) = 1). It can be immediately
seen from Figure 5 that, whenα is higher than 0.89, the
maximum revenue under the PT game goes above 1 after
normalization, which implies that the SP is able to recover her
revenue under the PT game completely. The same threshold
is also exactly the same crossing of the curves showing the
minimum bandwidth requirement under the EUT game and
the horizontal line showing the normalized system bandwidth
under the EUT game. This illustrates our proposition, since
on the right hand side of the crossing, the actual bandwidth
of the SP under the EUT game is above the threshold, which
implies that she is able to recover the revenue completely.

D. Rate control

It can be expected that the performance of the rate control
would display a similar pattern to the results of bandwidth
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Fig. 5: With prospect pricing, the minimum amount of band-
width needed to recover the revenue in full and the maximum
amount of revenue attainable under the PT game with the total
bandwidth constraintBWmax,EUT .
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Fig. 6: Admission control applied to 50 users distributed in
the cell, excluding up to 3 users.

expansion/reduction. We thus show the results as a comparison
to the other methods in last subsection.

E. Admission control

The result of admission control is shown in Figures 6 and
7, where we have considered a 50-user scenario, and have
plotted the pricing function of the SP under the NE versus
α for different levels of admission control. Each time the SP
applies the admission control to the current user set, she drops
the user that consumes most bandwidth. It can be seen from
Figure 7 that, when no admission control is applied, the SP
suffers revenue loss. However, upon excluding one user, sheis
able to redistribute the bandwidth among the remaining users,
raise the service guarantee for them. The SP is also able to
mitigate the impact of the PWE and recover her revenue for
alpha above a certain threshold for each different value of
|SPT |.

The characterization of the minimum amount of bandwidth
is shown in next subsection.
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Fig. 7: Admission control applied to 50 users distributed in
the cell, excluding up to 3 users.

F. Performance comparison

In Figure 8, we show the minimum amount of bandwidth
needed for the three methods to help the SP retain revenue
with prospect pricing, and show the minimum bandwidth
needed in order for the SP to retain partial RRM constraints
without prospect pricing. It can be immediately seen from the
graph that the bandwidth expansion/reduction without prospect
pricing requires the largest amount of bandwidth for low
values ofα, indicating that it’s the least robust against the
probability weighting effect, and it cannot help the SP to
completely recover her revenue under the EUT game as can
be seen in Figure 9. Secondly, whenα is below 0.96, there is
no solution for admission control. This shows that admission
control is not effective against lowα when the number of users
is low, since the spare bandwidth recycled from the denied
user cannot efficiently raise the perceived service guarantee
of the remaining users. However, admission control is able
to recover the revenue whenα is close to 1. Finally, in this
particular case, the rate control is the most efficient method in
recovering the revenue. Part of the reason is that the cost for
data rate is higher than the cost for bandwidth, giving more
freedom to the method of rate control.

VIII. P SYCHOPHYSICS EXPERIMENTS WITH VIDEOQOS

In this section, we provide experimental data which supports
the procedure of modeling the end-user’s probability weighting
effect with Prelec’s PWF. Specifically, we conducted human
subject studies as it relates to the perception of video service
quality and then used these studies to estimate the parameter
α that reflects people’s weighting effect on the uncertainty in
QoS. The experiment was conducted using a testbed shown
in Figure 10 with 23 psychology college students, where
each subject is asked to assess the quality of a 1 hour video
comprised of 30 2-minute segments, where each segment of
the video is subject to different packet loss and delay param-
eters. The testbed comprises a single compute/communication
device (the programmable ORBIT radio node [45]) with two
major software components (i) a network emulation module
(NETEM), and (ii) a content caching module. The radio
modem in the ORBIT node is used to implement a soft access
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Fig. 8: Minimum bandwidth required for the SP to retain
partial RRM constraints under the PT game without prospect
pricing (bandwidth expansion/reduction without prospectpric-
ing) and other methods to retain revenue
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Fig. 9: Maximum normalized recoverable revenue for the SP
through bandwidth expansion/reduction with/without prospect
pricing, rate allocation, and admission control with 9 out of
10 users.

point which end-users connect to. All the traffic coming to the
access point is subject to traffic shaping policies as specified in
the NETEM module, specifically to control wireless network
performance in terms of packet loss and delay. To alleviate the
artifacts of wide area internet connectivity on the experimental
conditions, we logically created a local caching functionality
in the platform. The end-user interface device is a laptop used
to watch the video.

Using the testbed, for each pair of packet loss and delay
chosen, we are able to objectively measure the corresponding
decoded frames per second at the video player used to display
the video. Our psychophysics experiments have revealed that
the decoded video frames per second serves as the best objec-
tive proxy for the quality of the video among the parameters
chosen, while the feelings about the number of stops and
stutters occurred is the best proxy for the subjective ratings on
the overall video quality. The human subjects are also asked
to subjectively evaluate on a four level scale the quality ofthe
video as they perceive it, with 4 being the highest rating and



12

1 being the lowest rating.
Tables III and IV show the subjective (on a scale of 1-4) and

objective (decoded video frames per second) measurements
along with their mean and standard deviation. As can be seen
in the tables, the highest actual video quality correspondsto
the unit in the upper left corner, where no packet loss and
delay are present. The lowest video qualities being rated are
the units just above the blackened out units. The blackened
out area of the tables essentially refers to the situations where
there quality of the wireless channel is so poor that there isno
video displayed in the player. Even the raw data in terms of the
subjective scores reveals that there is tendency of the human
subjects to “underweight” the best (even perfect) video quality
and “overweight” the worst case video quality. This effect can
also be observed explicitly in Figure 11, where we show the
relationship between the subjective rating and the objective
metric with 95% confidence level.

It also follows from the objective measurements in Table
IV, that the x-axis in Figure 11 can be mapped directly as
a proxy for the objective probability of service guarantee.In
order to map the relationship between objective and subjective
probabilities to that of a Prelec-like PWE, as a first cut, we use
a simple uniform mapping of the subjective measurements to
the region[0, 1]. The result is depicted in Figure 12, where we
obtain the probability of each frame being displayed success-
fully as p, and the probability of the participant believing that
the video is uninterrupted asw(p). The relationship between
these two variables display an inverse S-shaped probability
weighting effect. We fit a parametric function of the Prelec
form to the above data set and the resulting parameterα
that minimizes the mean-squared error (MSE) is found to be
α ≈ 0.585.

Note that there have been efforts to subjectively evaluate
video QoS [46] that have used various technical measures
such as peak signal to noise ratio (PSNR) but there have
been none to evaluate the probability weighting effect (psy-
chophysics function) such as undertaken here. The human
subject studies presented here is the first such effort and will
be further expanded to include larger data sets as well as more
detailed mapping techniques to map objective and subjective
measurements to the corresponding probabilities of service
guarantees (uncertainty). Further, such psychophysics studies
can also be conducted by the SP for learning each individual
user’s subjective perceptions to objective metrics and canbe
easily implemented via appropriate “apps” on end-user devices
such as smart phones.

IX. CONCLUSION AND DISCUSSION

In this work, we considered the impact of end-users’
decisions in regard to service offers in a CRN when there
is uncertainty in the QoS guarantee offered by the SP. We
formulated a Stackelberg game to study the interplay between
the price offerings, bandwidth allocation by the SP and the
service choices made by end-users. We characterized the NE
of the game, and showed that when the end-users under-
weight the service guarantee, they tend to reject the service
offers which results in under-utilization of radio resources and

Fig. 10: Experimental platform illustration
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decoded video frames per second with 95% confidence level.
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revenue loss for the SP. To combat this effect, we proposed
prospect pricing, which combines the pricing strategy of the
SP with the radio resource management strategy available
under a CRN setting. In particular, we studied four distinct
strategies, namely bandwidth reallocation, bandwidth expan-
sion/reduction, rate control, admission control, and studied the
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Subjective Ratings
Packet Loss (%) 0 2 4 8 16

Delay (ms) mean dev mean dev mean dev mean dev mean dev
0 3.67 0.64 3.71 0.56 3.60 0.58 3.16 1.02 1.29 0.45
20 3.80 0.40 2.89 1.15 2.66 1.10 1.54 0.77 1.16 0.36
40 3.82 0.48 2.00 0.85 1.54 0.86 1.27 0.54 1.10 0.30
60 3.58 0.76 1.71 0.87 1.34 0.57 1.25 0.54 1.21 0.52
80 3.69 0.71 1.40 0.77 1.21 0.41 1.10 0.44
160 3.53 0.63 1.17 0.48 1.24 0.64
320 2.65 0.92 1.10 0.29
640 1.87 0.99

TABLE III: Subjective Measurement

Decoded Video Frames per Second
Packet Loss (%) 0 2 4 8 16

Delay (ms) mean dev mean dev mean dev mean dev mean dev
0 21.28 1.79 21.50 1.81 21.27 1.83 19.67 3.30 5.32 2.46
20 21.55 1.50 18.01 4.87 15.28 5.39 9.26 4.10 3.39 2.77
40 21.84 1.43 13.33 4.97 9.79 3.71 5.11 2.59 2.90 1.79
60 20.92 4.34 10.28 5.08 7.54 3.70 5.74 4.34 2.47 1.70
80 21.62 1.60 7.50 4.22 5.48 3.08 3.65 2.44
160 20.14 2.53 4.66 2.48 3.94 4.10
320 16.97 4.39 3.67 1.74
640 11.71 4.94

TABLE IV: Objective Measurement

capability of each individual strategy in helping to improve the
utilization of radio resources and enable the SP to recover her
revenue loss. Our results first show that the SP must have
sufficient bandwidth in order to combat the under-weighting
effect by the end-users without prospect pricing, and if the
bandwidth is insufficient, then bandwidth reallocation alone
cannot help the SP recover her revenue. As for the remaining
three strategies, our results show that, for each individual
strategy, there is a threshold dependent on the skewness of the
end-users’ PWF and the unit cost for data rate and bandwidth,
such that in order for the SP to recover her revenue, her
total bandwidth under the EUT game must be above this
threshold. We also showed that having sufficient bandwidth
that is above this threshold (dependent on the strategy taken)
is also a necessary and sufficient condition for the SP to
be able to recover her revenue. We also compared the per-
formance of the bandwidth expansion/reduction, rate control
and admission control strategies with numerical examples
that illustrate the threshold effect described above. We also
conducted psychophysics experiments with human subjects
to assess perceived video QoS over wireless channels and
modeled the probability weighting effect. The focus of this
paper has been on studying the PWE effects of end-user
behavior and the role FE in influencing end-user behavior is
a topic for future study.
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