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Abstract—Advances in cognitive radio networks have primarily available spectrum by performing spectrum sensing herself
focused on the design of spectrally agile radios and novel [11], a mis-detection will cause the user to experienceelarg
spectrum sharing techniques that are founded on Expected Uity y4ise and low service guarantee when accessing the channel.

Theory (EUT). In this paper, we consider the development of L ..
novel spectrum sharing algorithms in such networks taking nto In fact, the result of a Federal Communications Commission

account human psychological behavior of the end-users, wthi  (FCC) survey, which aims to provide the users information on
often deviates from EUT. Specifically, we consider the impdcof the service qualities of offerings by different SPs when imgk

end-user decision making on pricing and management of radio their decisions to purchase, has shown that the advertised
resources in a cognitive radio enabled network when there is transmission rate (which affects the QoS) was not 100%

uncertainty in the Quality of Service (QoS) guarantees offieed . . .
by the Se};vice Provider %SP). Using Igrosp)egt Theory (a Nobel guaranteed even in the broadband interinet [13][14]. Theabo

Prize-winning behavioral economic theory that captures hman issues naturally lead to the problem of data pricing, since
decision making and its deviation from EUT), we design data the guarantee of the service quality contributes to thesuser

pricing and channel allocation algorithms for use in cognitve decision making process. Furthermore, research has sheaivn t
radio networks by formulating a game theoretic analysis of he a users subjective perceptions of the service qualityrofte

interplay between the price offerings, bandwidth allocaton b . ) e .
the gPyand the servic% choices nglade by end-users. We SyhOV\sjeVIateS from the actual service quality [15][16][17]. Shi

that, when the end-users under-weight the service guarange Indicates that pricing should not be entirely based on thg Qo
they tend to reject the offer which results in under-utilization of ~ without taking the users’ subjective perceptions of theviser
radio resources and revenue loss. We propose prospect pmg, 2 into consideration.
pricing mechanism that can make the system robust to decisio An even more important reason that motivates this work
making and improve radio resource management. We present . . . .

is that we believe that end-user behavior plays an important

analytical results as well as preliminary human subject stdies . ) )
with video QoS. role under a CRN setting, and many algorithms designed

Index Terms—Game Theory, Prospect Theory, Probability for CRN can be p(.)tent.ially impacted by those behaviors.
Weighting, Prospect Pricing Examples include situations where a secondary user needs
to decide whether or not to access spectrum based on the
uncertainty in the spectrum sensing performed. Altergatel
when a primary user chooses to lease her unoccupied spectrum

OGNITIVE Radio Networks (CRNs)_[1] and advancedo secondary users by algorithms based on non-cooperative
spectrum sharing techniques have been studied extgames or auction mechanisms, the secondary users have to
sively over the past decade [2]. In general, game theorysplajecide on whether or not to lease the spectrum, and how
a major role in studying the economical effects that CRNwuch to pay for it given the uncertainty surrounding the QoS.
could bring to the Service Providers (SPs), as well as tiithe above scenarios demand an understanding and accurate
optimal radio resource management for the SPs when desigredeling of an end-user’s decision making process, so that
ing spectrum sharing rules and algorithms. Some exampthe primary users, when leasing their spectrum resourees, ¢
of the applications of game theory in CRNs include auctiomore accurately evaluate their expected outcomes.
based spectrum sharingl! [3], data pricing [4], power control This leads to the basic structure of our work. We investigate
and allocation[[b][6], Quality of Service (QoS) managemert secondary system, where an SP acquires bandwidth from
[Z1[8], and security[[9]. primary users, and sells broadband internet service to end-

Among the aspects mentioned above, QoS guarantee asdrs. In particular, we assume that the service cannotllye fu
data pricing are particularly interesting to us. One reaisonguaranteed, and we model the uncertainty involved in the-gua
that QoS is often hard to guarantee in CRNs, mainly duwmtee of the service with the probability that the servicaliy
to spectrum uncertainty under a CRN setting! [10][11][12hctually meets the advertised service quality and assuate th
For example, the uncertainty in available spectrum due tiois piece of information is available to the end-users when
interfering users (or even primary users) can result iraitns they make decisions, an idea inspired byl [13][14]. Next, we
where the service cannot be guaranteed for the time perimdbdel the impact of end-user’s decision making processgyusin
required by the user. When the SP opportunistically acquirerospect Theory (PT) [18], a Nobel-Prize-winning theorgtth

I. INTRODUCTION
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is particularly successful in modeling and explaining howlternatives. For the first problem, the participants wesleed
people’s decisions under risks and uncertainty deviaten frdo choose between

the framework of Expected Utility Theory (EUT) [19]. We . A: $2500 with probability 0.33; $2400 with probability
study the impact of the end-users’ decision making process 0.66; $0 with probability 0.01;

on the profit and radio resource management of the SP, wheg B: $2400 with certainty,

they have a skewed view on the service guarantee. To COMpafle in the second problem between

this impact, we propose prospect pricing, which focuses on - . ¢>500 with probability 0.33; $0 with probability 0.67;

possible strategies for the SP including bandwidthreatio, 5. 45400 with probability 0.34; $0 with probability 0.66.
rate control, bandwidth expansion/reduction, and adwrissi ) .
According to EUT, the expected utility of each alterna-

control, all of which can be achieved under a CRN setting, ) )
wh eved u I %ve can be calculated by taking the expectation of payoff

and study their capabilities of recovering the revenue ffier t t for diff t out hich. f it tiverwi
SP. Our results relate the SP’s bandwidth resources with EpOUNt Tor difierént outcomes, which, Tor an alternativewi
outcomeso; to op; and their corresponding occurring

ability to dynamically manage her radio resources so as babiliti ¢ b ted with
obtain the same amount of revenue as originally anticipatgflO apiiitieso, 10 o, Can be computed wi
without considering the end-users’ skewed perceptions. We M

show that under some conditions, the impact of the end-users Urur = Z vEUT(0:)Pi- 1)
perception is large enough so that the SP simply cannotrobtai i=1
the amount of revenue originally anticipated. It can be easily verified that

The rest of the paper is organized as follows. In Section I,
we introduce the rrélaried worlgon data pricing, the backgdoun Upyr(A) = 2500 x 0.33 + 2400 x 0.66 + 0 x 0.01
on PT, as well as the works that applies PT to wireless commu- = 2409 > 2400 = Upur (B), (2)
nications scenarios. In Section Ill, we model the inte@wi hije
between the end-users and the SP as a Stackelberg game, while
the conditions under which the existence of a pure strategy Upur(C) = 2500 x 0.33 = 825 < 850
NE can be guaranteed are discussed in Section IV. In section = 2500 x 0.34 = Ugyr(D). 3)

V, we discuss the impact of the Probability Weighting Effect

(PWE) on the end-user’s decision making process, the rweﬁl’&us, if the participants make their decisions following th
Ediction of EUT, i.e., choosing the alternative that maizxies

of the SP. Section VI discusses the prospect of recoveri ] o
the revenue of the EUT game via prospect pricing. Numeric e expected utility, then the participants should prefefoA

results are shown in Section VII while in section VIII, WeB in problem 1 and D to C in problem 2. However, the result

discuss psychophysics experiments with human subjectsslr)lf)\"’S that the majority (82%) of the participants chose B in
i 0 .
video QoS over wireless channels so as to model the param@{&blem 1 and the majority (83%) of the participants chose C

used to characterize the probability weighting effect. In problem 2.
P y weighting The results violate the predictions of EUT, but under the

framework of PT, they can be well explained. Under PT,

II. RELATED WORK people are assumed to choose the alternative that maximizes

A. Prospect Theory: a brief introduction the prospect, which can be computed with

The rationality assumption in game thedry|[20], which state M
that a player’s decision making process is often assumed to Upp = ZUPT(Oi)w(pi)- (4)
be completely following the axioms and theorems estahtishe i—1

in Expected Utility Theorey[[19], has long been questionefe gefinition of prospect is very similar to the definition of
by behavioral science [21]. Although EUT explains most qfe expected utility, except that is weighted by an inverse-
the people’'s decision making successfully, paradoxes haé’—eshaped Probability Weighting Function (PWE}-), which
been observed in real life that contradict the predictiohs @,o acterizes the PWE analytically. In addition;;r(0;) is
EUT. Alternative the_zorle_s explaining human’s decision mgk replaced by pr(0;), which depicts the FE. Figuf 1 illustrates
processes were raised in the 1970s, with the most succes§{liqes of PWE by Prelec’s PWF. The PWF captures the fea-
one being Prospect Theoty [18], whose main differences wifi-e that people often over-weight low probabilities andem
EUT are weight moderate and high probabilities. The value function

1) Probability Weighting Effect (PWE): the weight of thecaptures the effect of loss aversion on people, i.e., theesam
payoff of each possible outcome is different from th@mount of loss usually looms larger than the same amount of
probability of the occurrence of that outcome. gain to a person.

2) Framing Effect (FE): the payoff of each outcome is The result of the experiment can be explained immediately
framed into either gain or loss relative to a referencgith the above setup. In problem 1, since alternative B pro-
point. vides a guaranteed payoff, that payoff becomes the referenc

These two features can be illustrated with a variation of thmint when framing the payoff of each outcome under the
famous Allais’s Paradox [22], which is also used[inl[18]. other alternative. Thus, $2500 becomes a gain of $100, while

In the experiment, two problems were sequentially pr&0 becomes a loss of $2400. It can then be readily seen that

sented to a group of 100 participants. Each problem congaing the probability 0.01 is over-weighted as depicted in Fau
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Fig. 2: System model

Fig. 1: Prelec’s probability weighting function with three
different valuesx indicating different levels of skewness.
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[0, then most people would have indeed preferred B to A. The
same argument applies to problem 2. In our work, we adopt
Prelec’s PWF, which is first proposed in [23], and paramettiz
by a € (0,1]:

w(p) = exp {—(—Inp)®)}. (5) With Prospect Theory, spe'mninlg a r‘1ur_nb‘er_of‘ areas including
) ) i communication networks [29], [30], [81]. [32], [33], [B4BY],
However, most of thg conclusions in this work can be easily,q smart energy managemeént [36][37]. The subject of wicin
generalized to other inverse-S-shaped PWFs. We also reporis addressed i [29][30], and in our previous work][38][39].
psychophysics studies with human subjects to experinigntah [38), we studied the same problem of this work under a
determine the value of in sectior{ VIIl. Note that we do not more specific setting, i.e., assuming there exists only ode e

consider the role of FE in this paper and that is a topic fQfser, We studied the conditions under which an NE exists,

future study. and found the NE that gives the SP maximum revenue. We
o then studied the case when the end-user follows the decision
B. Data pricing making process of PT, and showed that the SP cannot avoid

Pricing of wireless data has been widely studied for overrgvenue loss if she wants to retain the same NE or the same
decade. Most of the work focuses on proposing mechanisregenue under the PT game. In_[39], we generalized the
that offer control over the network’s traffic while maxinmgj framework to the multiuser setting.
the revenue of the service provider. A comprehensive survey
of the most typical strategies adopted by the SPs over the pas I1l. A STACKELBERG GAME MODEL
years, offering either wired or wireless services, can hmfo ~ We study the scenario under a CRN shown in Fidure 2,
in [24]. Traditionally, the SPs use flat-rate pricing stgis where the secondary system has a service manager, or SP, who
as well as usage-based pricing strategies, which offetdani actively manages and allocates available radio resoumes a
ability on managing network traffic. More complicated pmigi sells service taV end-users. The scenario wheke=1is a
strategies are adopted later on, for example Paris Metcingri special case and is studied in [38]. The bandwidth is assumed
[25], time-of-day pricing[[25][27], and congestion levedsed to be obtained from primary users by means of trading, an
pricing [28]. Those strategies are harder to implement, bassumption that's frequently considered to maximize thelba
offer better performances in managing the congestion lefelwidth utilization [40][41]. Meanwhile, the data is assumied
the network, as well as higher service guarantee as they mékeobtained from the service offerings of higher tier ISAse T
some users back off when purchasing the service by makimgeraction between the SP and the end-users is modeled into
them aware of the actual cost of accessing the network wharbtackelberg game. The SP is aware of the number of users
the congestion level is high by setting a higher price. within its service range, and moves first by investing nesgss

However, even with advanced pricing strategies, the uresources, and making offers to the users. The end-users the
certainty involved in the guarantee of the service cannot decide whether or not to accept the service. The decisians ar
avoided. In particular, in wireless communication, theinipl assumed to be made at the same time.
and downlink rates cannot be guaranteed due to noise and inWe define an offer made by the SP under the EUT game
terference, which cannot be accurately predicted at thetira as a triple {b,7gy7(b), BW gyr}, which corresponds to
service is purchased. Thus, the end-users often have to m#ie rateb, the price of the service at that rate determined
difficult choices between several alternatives of accgssie by a predefined pricing functiomzy(b), and a specific
network, in which the service quality she gets is stochasticallocation of the SP’s bandwidth denoted BW pyr =

Recently, there has been a category of work that study tHiBW1 gur, ..., BWnN, gur}, Which satisfies the total band-
particular type of decision making problem of the end-usevadth constraianT/VEUﬂ = BWaz,guT. ON the user side,



Parameter Meaning Location
{b,rguT(b), BWEUT} service offering page 3

Wnae. EUT total bandwidth page 4

4 actual rate (a random variable) 6th user page 4
Fp,(b; BW; guT) service guarantee for theth user equation (6)
hi(b) i-th user’s benefit function page 4
Di i-th user’s probability of accepting the offer page 4
b guT rate offered under Nash Equilibrium equation (11)
P average acceptance probability Remark 1
Xiv Xi,AD+ Ai,RC dummy variables Theorem 2, Propositions 1,3
SeuT, SpT The set of users to which the service is offered | equation (15)
BWaz,PT total bandwidth constrained under PT and EUTequation (15)

games

rpr(b) price at rateb under PT game page 6
b pr rate under Nash Equilibrium in PT game equation (15)
BW pr bandwidth allocation under PT game equation (15)
Simulation parameters TABLE II, page 9

TABLE [: Parameters involved and the locations of their dééfins and introductions

we assume that the actual service rate for #tle user is a under the EUT game and PT gfﬂne
random variableB;, and the service guarantee at rates a As for the SP, a cost;(b, BW, gyr) is incurred upon her
function that only depends on the channel between the usgten she makes an offer at rdtéo thei-th user. Specifically,
and the SP, the rate offered and the amount of bandwidtle assume an affine cost function for each individual user
allocated to that user, and has the following form
¢i(b, BW; gur) = c1b + csBW, gur, 8)

Fp, (b BW: pur) := B(B; > b|BW; pur)- ) ince the SP invests in resources based on the number of users
. . . . __in its service rangec; andcz are the cost for unit data rate
For a fixed rateb, increasingBW; pur raises the service 5y pandwidth. The fixed cost for the SP is ignored. Hence,

guarantee. _ - the expected utility of the SP can be expressed as
Denote thei-th user’'s benefit upon receiving guaranteed

service at raté with h;(b). Since the SP offers constant rate, ~ -
we can see that if the user accepts the offer, she pays a pricQSP(pv b, BW pur) = Z[pi[TEUT(b) — ¢i(b, BW; pur)]
reur(b), and with probabilityF s, (b; BW; pur) she receives i=1

successful service, and with probabiliiys, (b; BW; pyr) == (1 = pi)(=¢i(b, BWi gur)))- 9)
1 — Fpg, (b; BW,; gur) the channel cannot successfully deliver

the service at rateand the user experiences an outage. Hen(ﬁ
denoting the acceptance probability of thtéh user ag;, the

expected utility of the-th user can then be represented as

N

We place a few more natural assumptions on our model.
tstly, reur(b) and h;(b) are assumed to be monotonically
increasing and concave. The service guarantee for each user
is assumed to converge to 0 as the offered rate tends to
under fixed bandwidth. Meanwhile, the service guarantee for
Uuser,i(pi b, BWi pur) = pil~rpur (b)+ a user is a monotonically increasing function with respect t
+hi(b)F'g, (b; BW; gur) + hi(0)Fp, (b; BW; pu)] the bandwidth allocated to that user.
+(1 — ps)hi(0). (7) Lastly, we summarize the parameters we use in Tdble I.

As a natural assumption, we assume tha{0) = 0 for |, gy sTENCE OF MULTIPLENASH EQUILIBRIA OF THE
all users. ThusUyseri(pi, b, BWi pur) = pil-reur(b) + EUT GAME
h;i(b)Fp, (b; BW; gyr)]. Note that the above model of the
user’s utility function is a special case of a more general With the above settings, the conditions for the existence
scenario where the SP constantly adapts her transmisgion @ an NE can be characterized. Consider two cases, with
according to the channel's capacity. Under this genertihget one involving only a single user, and the other involving
Uuser.i(pis b, BW; gur) = pi[Elhi(B;)] — reur(b)] + (1 — multiple users. For simplicity, we dub the first case as alging
pi)hi(0). This general form of the user's expected utilityJser-Single-Provider (SUSP) game, and the second case as a
reduces to[{7) when the user's benefit function is a stéfultiple-User-Single-Provider (MUSP) game.
function, i.e.,h;(B:) = hi(b) > 0 for B; > b and hi(0) for = 050 1(The existence of multiple Nash Equilibria (NE))
B; < b with b being the advertised rate by the SP, which i : .

. . N . ssuming thavi,
equivalent to assuming that the user is insensitive to theahc
service rate hi_gher than adyertised, and is extremely thensi revr (0} gor) > (0} gurs BWmas,5uT), (10)
when the service delivered is below rateMore general cases
?nVOlVing more complicated form of;(B;) can b? studied, but  17ne computation of expectation of a continuous random bigiainder
involves tedious work on analyzing the propertie®k,(B;)] the probability weighting effect can be dealt with the helpni [42][43].



we set the revenue to 0 so that it will not be selected. The
revenues under different choicessofare then compared, and
the revenue maximizing NE is located for a specific Lastly,

) . the SP selects a possible choicesofvith sizen*, and allocate
then there exists a pure strategy NE for the MUSP dhife slightly more than the minimum bandwidth needed for each

and only if there exists a pure strategy NE for at least one kg g4 that they accept the offer with probability 1. Fipall
the SUSP game consisting of one of flieusers and the SP, \\4te that under the revenue-maximizing the choice ofS is
under which the SP allocates the entire bandwidth she hast}ﬂique which consists of the* users with the lowest values

where

bT,EUT = arginaX(TEUT(b) - Ci(ba BWmaz,EUT))v (11)

that user.

The detailed proof can be found in_[39].

of BW;(b] gyr)-

Remark 1. It is worth pointing out that we do not conside|Algorlthm 1 Locating the revenue-maximizing NE

mixed strategy NE in the MUSP game. This is becausé;

assuming that under an NE the acceptance probability of

the users is represented Ly, the offered rate ish, and 2

the allocation of the bandwidth is represented BW EUT,

we have USP(ﬁ, b’ BWEUT) = ZieSEUTpi(rEUT(b) - 3
p|Seur|reur(d) — |SEUT|C1b — 4:

ci(b, BW; gur))
cs BWa2, EuT, Wherep is the average acceptance probability

of all the users within sebgy7. In order to reach a mixed 5:

strategy NE, the SP must find a raieand a corresponding

bandwidth aIIocationBT/VEUT such that all the users are in- 6:

different between accepting and denying the offer. Howéver

expression also shows that the users’ acceptance prokabili 7
represented by only affect the SP’s decisions through their 8:
averagep. Hence, for any combinations of offered rate and9:
bandwidth allocation that induce a mixed strategy NE, theo:
acceptance probabilities of the users can be arbitrary aglo 11:
as the average acceptance probability remains fixed andfhe $2:
cannot obtain a higher revenue through offering the sertice 13:

Input: Seur, rEvT (0), BWihas,gur, and for alli’s h;(b)

and BW;(b).

Output:  The revenue maximizing

(01 pur: TEUT (] BUT), BW EBUT).

for n = |Sgyur| to 1do
bi purln] <« argmax,nreyr(b) — neibd,
MiNgC sy, |81=n 2 jes BWi(b) < BWinas,put-
Usp,pur[n] < nreur (b7 gurln]) — neidi gorlnl -
c3BWas, EUT
if 39 - Seur, S| > n,
> jes BWi(b] pur) < BWinae, gur then

Usp,eur[n] < 0

end if

end for

n* < argmax, Usp gur[n]

strategy

s.t.,

such that

bi gur < bT,EUT[”*]
S* < argg | s1=n 2 jes BWi(01 pur) < BWias,EuT
BW; « BWi(b} pyr) + € if i € S, and BW; + 0

a subset ofSg . Hence, the SP does not have control over otherwise
the individual user's acceptance probability under a mixed

strategy NE.

V. THE IMPACT OF PROSPECTTHEORY ON END-USER

We next specifies a procedure with which the SP finds DECISIONS

the strategy that leads to the revenue-maximizing NE. This ) ) ) _
strategy includes a service offering, and the correspandin In the remainder of this paper, we consider the impact of
bandwidth allocation. We define the minimum amount dfrospect Theory on end-users’ decisions of whether or not to

bandwidth that can be allocated to useat rateb to be accept a service offer, its impact on the radio resourcestand
. ) revenue of the SP. In particular, we focus on the effect of end
BW;(b) = Fgﬂl (%,b) 7

user’s weighting of the service guarantee, i.e., the PWE@&sp
hi(b) of PT. We shall see that, when the end-users under-weight the
which is equivalent to the amount of bandwidth that satisfiegervice guarantee, they tend to reject the offer, whichde¢ad
- —A an under-utilization of the SP’s radio resources and a loss i
Fp,(b; BW;(b)) W’ revenue.
¢ For the MUSP game, we study the condition under which
and we assume that the SP knows this piece of informatigie system is robust to the PWE in the sense of retaining all

for all users. The procedure is specified in algoritim 1. the users without having to change the service offer. Theltres
In algorithm[1, the SP first categorizes all pure strategy summarized as follows.

NE according to the number of users that accepts the offer.

For an NE wheren users accept the offer, the SP goes ohheorem 2. If all the users under-weight the service guaran-
to find the rate such that when users accept the offer, the!®®, and the same offer inducing the pure strategy NE under

revenue is maximized while the minimum bandwidth needdd® EUT game is offered to the same set of users, then the NE
to support the service to the selected users satisfies thk tt Preserved under PWE if and onlyvii € Sgur,
bandwidth constraint. However, if there exists &nwith a

: : BW; > Fgt (N, b7 12
larger size, then the strategy will not lead to an NE. Hence wpur > Fp! (A b pur) (12)
where
2We use the phrase “pure strategy NE” to refer the NE where tmesu
accept the service with probability 1. The case where thesudecline the I * . 7
service offer is excluded from our context. Ai =w (FBT: (bl.,EUTv BWZ(bl,EUT))) . (13)



Proof: For the i-th wuser, the necessary andised to retain strict RRM constraints, at the cost of the SP

sufficient condition for him to accept an offer at ratdosing revenue of at least
bi gyr and price rgyr(b] gy under the impact .
of PWE s hi(bI,EUT)w(FBi (bT,EUT§BWi7EUT)) > Lrry = z'enb%?;(T{TEUT(bl’EUT)_
reur (V] pur), €. w(Fs (0] pyrs BWiEsuT)) > b (b F (b - BW, .
Fa, (b pyri BWi(b} pur)).  Since  the  probability hi01pur)w s, (01 purs BW: pur))}
weighting  function is  monotonically  increasing, The detailed proof can be found in [39].
and thus have an inverse, we havBW,; pyr > Next, we discuss four other strategies that can be used by
Fgt (w™ (Fp, (b7 gur: BWi(b% pur))) 0% sur)- B the SP along with prospect pricing. These include

The above result indicates that, in order to retain all the
users without changing the service offer, the total amodint o
bandwidth of the SP must be “sufficient”:

« Bandwidth reallocation: the SP reallocates the available
unoccupied bandwidth among the users. In a CRN, the
SP is capable of performing this since she needs to

BWasz.5UT = Z BW; gur reallocate her bandwidth whenever a channel allocated

to a secondary user is occupied by a primary user.

—— N o Admission control: the SP offers the service to a set of

> _ Z Fp, (/\i’bLEUT) : (14) usersSpr which is a subset ofgyr.
i€Spur « Bandwidth expansion/reduction: the SP invests in a

Whena = 1, w(p) = p, and the PT game reduces to EUT  different amount of bandwidt®W,,.. pr. This can be

game. Asa decreasesy ! (p) increases for every fixeglthat achieved when the spectrum of the SP is leased from

satisfiesw(p) < p, and hence the right hand side of the above primary users, which has been a commonly adopted
inequality increases, indicating that when PWE is intragtlic assumption[[111].

and the users under-weight the service guarantee, the SP mus Rate control: the SP offers a different raté; ;. to

invest in more bandwidth than the amount required under the the users, similar to rate adaptation often used in CRN

EUT game in order to retain all the users with the same offer. algorithms.

1€ESEUT

Note that, except for bandwidth expansion/reduction, thero
VI. PROSPECTPRICING strategies requires maintaining the total bandwidth cairst

In this section, we introduce the idea of prospect pricingf:s BWmaz, 5ur = BWmaq, pr. The allocation of the band-
to make the system robust against the PWE experiencedjith among the end-users, however, can be arbitrary. When
the users. For the MUSP game, the SP needs to perf ) is not satisfied, we want to find out whether the above
prospect pricing by setting a new pricer(b) at the offered four strategies, when applied together with prospect pgici
rate b when the bandwidth of the system does not Sati?}puld help the SP retain the revenue she would get if the users
the condition specified in equation {14). The goal of prosp ollows decision makiqg process of under the EUT framework.
pricing consists the following two aspects. The results are described below.

o Retain the Radio Resource Management (RRM) con-
straints when PWE is introduced. The RRM constrain{§ Bandwidth reallocation

for the MUSP game are defined as follows
d ! W In bandwidth reallocation, the SP has the freedom to change

Sgur = Spr, the amount of bandwidth allocated to each user, subjecteto th
b gur = b1 prs (15) total bandwidth constraints. The rate offered must alschbe t
BWmaz,EUT = BWmaz,PTa ' same.

BWpur = BW pr Theorem 4. With bandwidth reallocation, the revenue loss
The constraints restrict the SP to offer service of the saroan be reduced, but not fully recovered.
rate to the same set of users when PWE is introduced. ] . . .
They also restrict the SP to allocate the same amount Rf Proof: In order to retain strict RRM cor_13_tra|nts, all
bandwidth to each user within the set. the users must accept the same offer containing the same

« Retain the revenue of the EUT game when the end-us e* and bar]dW|d*th, Le.vi € Spur, rpr(bipur) <
under-weight the service guarantee. (03 pur)w(FB, (07 gyr; BWipur)). Hence, we have

) . o (b < min, hy (b (-

We first show that, in the MUSP game the SP cannot retﬁga} 1EU):§}? HOWI;l/I:rGSE’&i’( 1E%)EZ£ Bl()i’ﬁ%ﬁf

her revenue and the RRM constraints simultaneously, peavid, . ’EUTB ' ’ éfSEUT oL EUT: Eéi
Wei : - (b7 gy BWigur))t < reur(b] gpr). Hence, in order

that all the users under-weight the service guarantegthe. to retain strict RRM constrainis. the SP must take a

SP cannot strictly retain all RRM constraints without stiffg revenue loss of at least, T v (b ) —

a revenue loss. We then show that by partially relaxing the. RRM = EUTVLEUT

RRM constraints, it is possible for the SP to retain her remsenmmieSEUT{hi(bl’EZT)w(FBi (bl’EUT;*BWi’EUT))} .
under the EUT game ma‘XiGSEUT{TEUT(bl_,EUT) - _hi(bl,EUT)w(FBi (b_l,EUT7_
) BW,; gur))}. Allowing reallocation of the bandwidth will

Theorem 3. When[(I4) is not satisfied, and when all the usereduce the revenue loss, since the revenue loss allowing
under-weight the service guarantee, Prospect Pricing can bandwidth allocationLg4 is the minimum revenue loss



over all possible bandwidth allocation, and the bandwidi¥pr|(rpr (b7 pr) — 107 pr), i.€., the form of the pricing
allocation under strict RRM constraints is only one instanc function under the PT game at ratg p- is
We next show that allowing reallocation of the band-

width cannot help the SP to fully recover the revenue by rpr (b} pr) = %TEUT(I)T,EUT)_
contradiction. Since the service is offered to the same set PT
of users and the offered rate remains the same, the price _ |SeuT| _ *

. . . 1) by gy (19)
must be the same in order to retain the revenue, i.e., |Spr| '

reur (0] pur) = TPr(b] pyr). ASsume that there exists ajn order for the users to accept the offer, we must have
bandwidth allocation such thati € Spur, rpr (0] pyr) < Spr,

hi(b} gy )w(Fp, (b3 gyr; BWi pr)). Then we must have

Vi € SguT, TPT(bT,PT) < hy( T,PT)W(FBI'( T,PT§BW1'.,PT)), (20)
* i.e., Vi € Spr, the amount of bandwidth under the PT game
=—1 -1 TPT(blEUT) .
BW;pr > Fg~ | w ———— | ;b sur is lower bounded by
‘ hi(bl,EUT) ’ )
- % _ r *
= FBi1 (i 07 o) - (16) BW,; pr > ngl w ! 7ZT£*LPT) ;01 pr
H th ti the &ty yields th di 0,pr)
ence, the summation over the ur Yields the condi- _ =1, =1y, B
tion specified in [(T4), contradicting the assumption tha th = Fp, (0™ (Aap) b pur) - (21)
bandwidth is insufficient in the first place. B Since the total bandwidth is constrained 0V, ... cur, wWe
Note that the SP can acquire the optimal bandwidth allbave
cation under the PT game by minimizidgz gy, with respect W B B,
to the amount of bandwidth allocated to each user. Hence the® "/ mazBUT = Z &PT
reduction of Lrrys is 0 if the original bandwidth allocation i€Spr _ .
under the EUT is the same as this optimal bandwidth allogatio > Y Fpl(w (Nap) bl por) . (22)
scheme. i€Spr

Next, we explore other ways of relaxing the RRM conwhich can be further lower bounded by taking the minimum
straints the SP can resort to in order to recover her revengger all Spr C Sgyr.
We discuss a set of necessary and sufficient conditions undewe next prove sufficiency. Firstly, if the above condition
which the revenue can be recovered. is satisfied, then we must have a s&r C Sgyr and
a corresponding price under the NE7 (b} p) such that
Vi € Spr, equation[(20) holds. This is obvious, as we can
simply choose the price as given by equatiod (19) and akocat
The SP is allowed to violate the RRM constraints bBWi,PT slightly higher than the minimum amount required.

selectingSpr C Sgyr. Upon excluding one user, the SP Hence, the only thing left to show is that
is able to reallocate the bandwidth to other users to inereas . .
service performance. Spr|(rpr(b] pr) — c1bf pr) > cs > BWipr. (23)

iE€ESpT
Proposition 1. The necessary and sufficient condition for the

: iy . This is also true since the left hand side minus the right
SP to recover her revenue is to have sufficient bandwidthrunde o

. and side is just the revenue of the SP under the EUT game.
the EUT game. Mathematically,

By assumption, this revenue must be positive.

B. Admission control

BWiaz,EUT = Z BW; pr u
i€Spr
>  min Z F—; (0™ (Nioan) 55 por) C. Bandwidth Expansion/Reduction
SprCSpur B2 As suggested by the name, the SP is allowed to violate the
(17) RRM constraints such tha@W,,.. pr # BWmae zur- By
with doing this, the SP is also allowed to reallocate her bandwidt
among the users. A set of necessary and sufficient conditions
%TEUT(I)T,EUT) _ (% _ 1) bl pup 1S given as follows.
Ai,AD = hi(b% por) ‘ Proposition 2. The necessary and sufficient condition for the
" (18) SP to recover her revenue under the EUT game is that she has
sufficient bandwidth under the EUT game. Mathematically,
Proof: We start by showing necessity. In order to 1
retain revenue, we must hav&Sgur|(revr (b pur) —  BWiae,sur > —{|Seur|revr (b gyr) — sup  sup
abi pur) — 8BWmaepvr = [Sprl|(rpr(b] pr) — “ BWer BW pr
c1bi pr) — c3BWpae,pr, Where b pyr = b prp, min [|Spur|hi(b] pur)w (Fp, (bT,EUT§BWi-,PT)) -
and BWoaz,pur = BWinas,pr. Hence, Irpr(b; pp) €787

and Spr st [Spor|(revr(V gur) — abfpop) = eBWerlh (24)



where the outer supremum is to find the optimal total amouot w. If no PWE is involved, i.e.w(p) = p, then this
of bandwidthBWpr under the PT game. The inner supremuroonstraint is always satisfied. This is because we can select
is to find the optimal bandwidth allocation subject to the such that the denominator on the right hand side is the
constraint that the total amount of bandwidth under the Pibtal bandwidth of the SP under the EUT game. In this case,
game isBWpr. x is lower bounded by the minimum service guarantee of all
the users under the NE of the EUT game. However, as the
cfDWE sets in, the denominator of the right hand side increases
monotonically, indicating that in order for the SP to recove
the revenue under the EUT game, the user's cannot have a
too skewed perception of the probability. In case of Pralec’
%WF, it means that for every value 8\, rur, there is

. . _a minimuma below which the SP is unable to recover her
Winaz, P — BWnas gur). Once again, equation

é[sﬁ[)”rln(ust holdvi € S in order for the users to accept€VENUe: This is also a necessary and sufficient condition fo
the offer. henceri e SEUT P the SP to recover her revenue under the EUT game.
' EUT,

. c
reur (01 pur) + %(meazf:r — BWiaa,EUT)

Proof: We start by showing necessity. In order t
retain revenue, we must haveSgur|(revr (0] pur) —
aibi pur) — 3BWiaapvr = [Sprl(rpr(b] pr) —
ClbiPT)_CB‘BWmaz,PTn WhereSEUT = Spr, andb’l‘_’EUT =
bi pr- Hence, the form of the pricing function under th
PT game at raté; o is rpr (0] pyr) = TEvT (0] BUT) +

D. Rate control

< hi(biEUT)w(FBi (b1, mur; BWi pr)). Lastly, we consider the option of rate control, which allows
(25) the SP to optimize over the rate she offers to the users, the

This implies that the left hand side of the above equatidindwidth allocation, but constraining the total bandtvitt
must be smaller than the minimum of the right hand sidee the same as in the EUT game. Here, a necessary and
with respect toi. It also implies that there exists a waysufficient condition is specified as follows.

of allocating ba”dWidthBWmtllz=PT under the* PT game proposition 3. A necessary and sufficient condition for the SP
such that BWoaz,pur > o A{|Seur|reor (0] sur) = to recover her revenue under the EUT game is that the SP has

miﬂz‘esEUT[|5EUT|h_i(bT,EUT)w_(FBi_(bT,EUﬁBWLPT)) — sufficient bandwidth under the EUT game. Mathematically,
¢3 BWnaz, pr)}, Which further implies[(24).

We next show sufficiency. Similar to the case of admission BW,az, rur = Z BW; pr

control, the form ofrpr has been specified. Also, there exists i€SpuT

a way of allocating the bandwidth among the users such that > inf Z Fgl (w™ (A\ire) sb1,p7) |
equation[(2b) hold¥i € Spr. This can be achieved by sim- PLPT o ’ 7

ply choosingw(F, (bT,EU:N BW; pr)) to be the minimizing (26)

solution for the right hand side of (R4).

- where

reur (01 gur) + c1(b1,pr — b1 gyr)

Remark 2. We can obtain a result parallel to the Ai,RC =
above proposition, which bounds the maximum amount hi(b1,pr)
of allowed skewness of the PWE of the users given PpProof:

the bandwidth of the SP. From equatioh |(25), we can Starting from the same equation, in order for the SP

(27)

equivalently haveh;(b] gyr)w(Fp, (0] gyr; BWipr)) — to recover the revenue, there must exist a price under the
%meam,PT > TEUT(bT,EUT) - |S];—3UT|BWmam,_EUT- NE of the PT game such tthEUT|(7’EUT(bI7EUT) —
Hence, for eachBWy..,pr wWe requires the existencec,bt ,...) — c3BWyaesvr = |Spr|(rpr(b] pr) —

of an allocation of the bandwidth under the PT gam%lbfp;p)—CgBWmam,PT, where now we hav€gr = Spr
such that we haverpur(b] pyr) — 3BWmas,evr < and BWpae o = BWinae, pr- ThUS, 7507 (0} gur) —

sup gy, min;[|Spur|hi(0] pur)w(Fp, (0 puri BWipr)) —  e1bi gy = rpr(bf, pp) —c1bi py, and the form of the pricing

s BWinasz, pr), Where BW subjects to the total bandwidthfunction under the PT game at ra¢ o is rpr (b7 pr) =
constraints under the PT game. For afyWaz, pr, the 7reuT (b gyr) + c1(b pr — b7 pyr). Once again, the con-
optimal way of maximizing the left hand side of the abowtion for the users to accept the offdr {20) must apply.
inequality by allocating the bandwidth is to make the wegght Hence,Vi € Sgur, reur (b gur) + 1 (b pr — b5 gur) <
guarantee the same for all the users. Hence, upon assubitb; ,,)w(Fp, (b5 pp; BWi pr)). Thus, '

ing this guarantee isz, the above relationship becomes 1 .
|Spurlhi (] pur)T = ¢s Yiesppr Fa, (0™ (@);b] pyr) > BWipr > Fp' (w™ (A\ipc)ibipr),  (28)
TEUT(bT,EUT) — ¢3BWyee,gur. Hence, in order for indicating that

a valid BWy,. pr to exist, we must havecs <

sup, ‘SEUT‘hi(b){’EUT)I—(T;Eil{T(bjl,EUT)*_CSBWmaz,EUT), where BWiaw BUT = Z BW; pr
] . EiESEU FB,L (“’_ ()51 pur) . . i€SpuT

z is constrained t0 the region where probability is under- . _

weighted, i.e.{e”!, 1]. > nf > Fgl (w ' (Mre)ibier).
Note that, although the constraint is eg (which appears " i€Spur

on both sides of the condition), it actually reveals a coaistr (29)



Here by pr > 0 and satisfies the constraint such that TABLE II: Parameters used for simulation

hi(b1,pr) — 01b17PT < TEUT(bI,E_UT) — Clb-iEU’I:, but can [ Parameter Meaning Value
be further constrained if we desire to avoid letting the SP 10~ TfanS(fijSIOL;I power 10 V\g
; : K Antenna dependent constant —64.5 dB
recover the revenue by offering the users a substantiakigrio N 55D of tharmal fioise 77 dBm
rate. o _ . . do Reference distance for the antenna far-figld 20 m
The sufficiency follows immediately if we choos$e pr to v Path loss exponent 4
be the minimizing solution of the above equation. o Standard deviation fop; ap 4
- r Cell radius 800 m

Remark 3. The result shown above automatically implies that

the probability weighting function of the users cannot be to . . .
skewed. In case of Prelec’s PWF, asdecreases, the right where Ny is the power spectral density (PSD) of the noise,

. . ; . W, guT represents the bandwidth allocated to tké user,
hand side monotonically increases, showing that for evely v represents the encoding rate of the SP

orr:glrr]]atlhdezlgn of thet EUT gar?]e, there is a minimurbelow A list of the values for the parameters can be found in the
which the cannot recover her revenue. following table.

E. Summary B. Bandwidth reallocation

The result ;hown by the previous subsections also indic_ate§n Figure [3, the minimum revenue loss with and without
that the maximum amount of revenue that could_be retalnSﬂforcing strict RRM constraints are shown. The horizontal
by combining each of the strategies of bandwidth expagis represents different values of the parameter that cap-
sion/reduction, rate control, admission control with @&t 165 the level of probability weighting of the users, while
pricing is different. Since the relative performance of thg g ertical axis represents the revenue loss normalized by
three methods above can be evaluated by comparing {ig revenue the SP makes under the EUT game. The total
minimum amount of bandwidth needed for the SP to recovgg,qnt of bandwidth is 10 percent more than the minimum
her anticipated revenue, the method that corresponds to 1§ qwidth needed for all the users to accept the offer with
Iowest_threshold is most robus_t. With further assumptio%obabi”ty 1, and is allocated in a way such that each user
regarding the forms of the service guarantee and the USL3eives 10 percent more bandwidth than the minimum amount
benefit, we compare the performance of those three strategigeed for her to accept the offer under the EUT game. The
numerically in the next section. blue curve shows the minimum revenue loss when strict RRM

constraints are enforced, while the red curve correspantiet
VII. NUMERICAL RESULTS case where the SP is allowed to violate the RRM constraints by
A. Experiment setup reallocating the bandwidth among the users. As can be seen

In this section, we demonstrate some of the conclusioﬁgm the graph, whemv = 1, the USErs weight the service
drawn above. We consider a scenario whafe— 10 users duarantee accurately, and no revenue is lostaAdecreases,

are spread uniformly within a single cell with a radius of 8o§€ System with blue curve starts to lose revenue first, aad th
meters. There are no interference between different uaeds, '€VENU€ 0SS is always higher than that corresponding to the
we assume that the SP offers the service to all the users. ES{HEM that al[ows bandwidth reallocation, which corresjso
user experiences a combination of path loss, shadowing, dRqeur result in Theor_elﬂ] 3_‘ It can also be_ seen from the
Rayleigh fading. The guarantee of the service for each uﬂ?_t that the system V‘_”th strict RRM constram_ts _do not start
in this setup is one minus the outage probability of the fgdir°Sing revenueounuh IS ST%”erdth%nho'gi: -Lh'hs IIS bec;u?e
channel between the user and the base station and theozétg;]e extra 1 hperc>ent 0 _an"W' th, whic ogﬂ(lh) or
offered is the encoding rate at the transmitter. The path I3 € users whewv > 0.94. Finally, we point out that when

and shadowing are calculated using a simplified mddel [44];y§t£r'3§”;?: r(i)lg(geﬁyr/]cle;:rt(\;\sﬁno:‘ht(:lerze':ﬁgr?el\?esrsljz g‘; ttmitvsvg

P, =P+ K —vlogy, d + Qian, (30) Since N = 10, this converts to roughly 10 p(_ercent of revenue
do ’ the SP makes from a single user. The price at tatg;

where P, and P,, are the transmitted signal power and th&nder the EUT and PT game is shown in Figdre 4. We can
received signal power at theth user in decibelsk is a Ssee that the price reduction is smaller when the SP is allowed
constant taking the value201log,,(47dy/\). 7 is the path to re-allocate her bandwidth.
loss exponent] is the distance between the user and the base
station antenna, ant} is the reference distance for the antenng. Bandwidth expansion/reduction
far-field. In additionp; 45 is a Gaussian random variable that To
captures the effect of shadow fading. Finally,
function for each user can be expressed as

illustrate the effect of the bandwidth expan-
the gualmmgion/reduction, we show minimum amount of bandwidth
under the EUT game required for the SP to recover her
~ QW 1 revenue and normalize it bYW, pur, and we show
Fp,(b) :exp{—P N B, } (31) the corresponding maximum revenue under the PT game,
v/ (NoBWipur) normalized by the revenue of the SP under the EUT game.
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0.14 —e— Strict RRM constraints, with prospect pricing —#&— Portion of the revenue under the EUT game recoverable under PWE 3
. N N . —— Minimum amount of bandwidth (normalized) required to recover the revenue as a function of
RRM constraints allowing bandwidth re-allocation, idth of the SP under the EUT game (normalized)
0.12P% with prospect pricing

H
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~
Normalized bandwidth (%)

Normalized Revenue Loss
[

Portion of recoverable revenue (%)
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0 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
o

=
0.95 1

Fig. 3: Revenue loss of the SP normalized by the revenfi- 5: With prospect pricing, the minimum amount of band-
under EUT gameN = 10, h;(b) = 1072 x (b x 10~3)0-65  width needed to recover the revenue in full and the maximum
reur(d) = 2 x 1073 x (b x 1073)9%2, ¢; = L x 1079, amount of revenue attainable under the PT game with the total
c3 = 1078, ¢;(b; BW; gur) = c1b + s BW; pur bf pyr ~ bandwidth constrainBW,,,... cur-

7Mbp8, BWmaw,EUT ~14MHz:~.
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3 0.9 7 0.856°7 —e—Strict RRM constraints, with prospect pricing
N . : —=—Admission control, 49 users, with prospect pricing
g u Prl(.:e under the EU_T game - Admission control, 48 users, with prospect pricing
5 0.88 —&— Strict RRM constra\lllnts, WI[[? pr;sze':t prlcllrIIg 08 . . —=— Admission control, 47 users, with prospect pricing
z RRM constraints allowing bandwidth re-allocation, g

086 ‘ ‘ T with prospect pricing 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

. v
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 ‘

a

Fig. 6: Admission control applied to 50 users distributed in
Fig. 4: Price of the SP at raté ;.- normalized by the price the cell, excluding up to 3 users.
under the EUT gameY = 10, h;(b) = 10~2x (b x 10~3)0-65,
rpur(b) = 2 x 1072 x (b x 1073)082, ¢y = 1 x 107,
cs = 1078, ¢;(b; BW; gur) = c1b+ csBW; gur, b pur =

expansion/reduction. We thus show the results as a coroparis
7Mbp8, BWmaw,EUT ~14MHz:.

to the other methods in last subsection.

We also showBW,,... cur normalized by itself (which is o
equal to the horizontal ling () = 1). It can be immediately E- Admission control

seen from Figur¢lS that, when is higher than 0.89, the he regult of admission control is shown in Figufés 6 and

maximum revenue under the PT game goes above 1 afieryhere we have considered a 50-user scenario, and have
normalization, which implies that the SP is able to recover hplotted the pricing function of the SP under the NE versus

revenue under the PT game completely. The same threshglg, jitferent levels of admission control. Each time the SP
is also exactly the same crossing of the curves showing H6yjies the admission control to the current user set, styasdr
minimum bandwidth requirement under the EUT game anfa ;ser that consumes most bandwidth. It can be seen from
the horizontal line showmg tr_le normalized SyStem_pandW'dF:igure[] that, when no admission control is applied, the SP
under the EUT game. This illustrates our proposition, sintgters revenue loss. However, upon excluding one useiisshe
on the right hand side of the crossing, the actual bandwidi|e (g redistribute the bandwidth among the remainingsyser
of the SP under the EUT game is above the threshold, whigljse the service guarantee for them. The SP is also able to
implies that she is able to recover the revenue completely.mitigate the impact of the PWE and recover her revenue for
alpha above a certain threshold for each different value of

D. Rate control |Spr|.

It can be expected that the performance of the rate controlThe characterization of the minimum amount of bandwidth
would display a similar pattern to the results of bandwidtis shown in next subsection.
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0.16 2
4 ‘ —o— Strict RRM constraints, with prospect pricing —e— Bandwidth expansion/reduction, without prospect pricing
= —=—Admission control, 49 users, with prospect pricing 180\ —=— Bandwidth expansion/reduction, with prospect pricing
L > o ) L B\ ) -

0.14 . Admission control, 48 users, with prospect pricing \ Rate control, with prospect pricing ) .
= —s— Admission control, 47 users, with prospect pricing 16F Admission control with 8 out of 10 users, with prospect pricing
S 0.12 ml Admission control with 9 out of 10 users, with prospect pricing
@ : @\S 14 & —+— Normalized system bandwidth under the EUT game
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Fig. 7: Admission control applied to 50 users distributed iRig. 8: Minimum bandwidth required for the SP to retain
the cell, excluding up to 3 users. partial RRM constraints under the PT game without prospect
pricing (bandwidth expansion/reduction without prosp@at-
ing) and other methods to retain revenue
F. Performance comparison
In Figure[8, we show the minimum amount of bandwidt
needed for the three methods to help the SP retain revel
with prospect pricing, and show the minimum bandwidt
needed in order for the SP to retain partial RRM constrair
without prospect pricing. It can be immediately seen from tt
graph that the bandwidth expansion/reduction withoutpeos
pricing requires the largest amount of bandwidth for lo
values ofq, indicating that it's the least robust against thi

151

Normalized recoverable revenue (%)

probability weighting effect, and it cannot help the SP t ! P -

completely recover her revenue under the EUT game as ¢ *E‘E”’**:ijf;:+fd_?ﬁ:—pipwj—
be seen in Figure] 9. Secondly, whens below 0.96, there is Al Prospect pricng

no solution for admission control. This shows that admissic o L e et & o o A6 care i ovteet ricing
control is not effective against low when the number of users 08 082 084 085 08 09 092 094 09 093 1

@

is low, since the spare bandwidth recycled from the denicu
user cannot efficiently raise the perceived service guaeantig. 9: Maximum normalized recoverable revenue for the SP
of the remaining users. However, admission control is abilerough bandwidth expansion/reduction with/without et

to recover the revenue whenis close to 1. Finally, in this pricing, rate allocation, and admission control with 9 ofit o
particular case, the rate control is the most efficient miiho 10 users.

recovering the revenue. Part of the reason is that the cost fo

data rate is higher than the cost for bandwidth, giving more

freedom to the method of rate control. point which end-users connect to. All the traffic coming te th
access point is subject to traffic shaping policies as sp€difi

VIIl. PSYCHOPHYSICS EXPERIMENTS WITH VIDEAGQOS  the NETEM module, specifically to control wireless network

In this section, we provide experimental data which sugpoigerformance in terms of packet loss and delay. To alleviae t
the procedure of modeling the end-user’s probability weigh artifacts of wide area internet connectivity on the expental
effect with Prelec’s PWF. Specifically, we conducted humagonditions, we logically created a local caching functidga
subject studies as it relates to the perception of videciarvin the platform. The end-user interface device is a laptaulus
quality and then used these studies to estimate the panamt@evatch the video.
« that reflects people’s weighting effect on the uncertainty i Using the testbed, for each pair of packet loss and delay
QoS. The experiment was conducted using a testbed shartnwsen, we are able to objectively measure the correspgndin
in Figure [I0 with 23 psychology college students, whemecoded frames per second at the video player used to display
each subject is asked to assess the quality of a 1 hour videe video. Our psychophysics experiments have revealdd tha
comprised of 30 2-minute segments, where each segmentha decoded video frames per second serves as the best objec-
the video is subject to different packet loss and delay parative proxy for the quality of the video among the parameters
eters. The testbed comprises a single compute/commuoticatthosen, while the feelings about the number of stops and
device (the programmable ORBIT radio nodel[45]) with twatutters occurred is the best proxy for the subjective gation
major software components (i) a network emulation moduthe overall video quality. The human subjects are also asked
(NETEM), and (ii) a content caching module. The radito subjectively evaluate on a four level scale the qualityhef
modem in the ORBIT node is used to implement a soft accedgdeo as they perceive it, with 4 being the highest rating and
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1 belng the |OW€St ratlng. Network Performance Control Appliance
TabledTll andTV show the subjective (on a scale of 1-4) ar s R

objective (decoded video frames per second) measureme > St

along with their mean and standard deviation. As can be se “‘m S

in the tables, the highest actual video quality correspdads g

the unit in the upper left corner, where no packet loss al

delay are present. The lowest video qualities being rated @

the units just above the blackened out units. The blacken
out area of the tables essentially refers to the situatidmesrev
there quality of the wireless channel is so poor that thenmis
video displayed in the player. Even the raw data in termsef tl
subjective scores reveals that there is tendency of the hun ;
subjects to “underweight” the best (even perfect) videditjua ,,qzammabie
and “overweight” the worst case video quality. This effe@hc Rjggg%de
also be observed explicitly in Figutell1l, where we show the
relationship between the subjective rating and the objecti
metric with 95% confidence level.

It also follows from the objective measurements in Tabl
V] that the x-axis in Figure 11 can be mapped directly ¢ af 1
a proxy for the objective probability of service guarantke. F ﬁ?

R

\///%

Fig. 10: Experimental platform illustration

order to map the relationship between objective and sutbgect
probabilities to that of a Prelec-like PWE, as a first cut, we u
a simple uniform mapping of the subjective measurements
the region|0, 1]. The result is depicted in Figukel12, where wi
obtain the probability of each frame being displayed susce: il

fully as p, and the probability of the participant believing tha
the video is uninterrupted as(p). The relationship between 1 H

these two variables display an inverse S-shaped prohabi h@ %@

weighting effect. We fit a parametric function of the Prele e e S S S

form to the above data set and the resulting parameter © " " DecodedVideo FramesperSecond

that minimizes the mean-squared error (MSE) is found to be ) . ) .
o ~ 0.585. Fig. 11: Quality of service ratings shown as a function of

Note that there have been efforts to subjectively evaluaqg(:()ded video frames per second with 95% confidence level.

video QoS [[46] that have used various technical measures
such as peak signal to noise ratio (PSNR) but there he
been none to evaluate the probability weighting effect {ps
chophysics function) such as undertaken here. The hun
subject studies presented here is the first such effort atd v
be further expanded to include larger data sets as well as m
detailed mapping techniques to map objective and subgct
measurements to the corresponding probabilities of serv
guarantees (uncertainty). Further, such psychophysichest

can also be conducted by the SP for learning each individt
user’s subjective perceptions to objective metrics andlman

Subjective Ratings
e

Weighted Probability
S

—— Estimated Prelec's PWF with a~ 0.585

easily implemented via appropriate “apps” on end-userasyvi o Data points mapped t0 [0,1]x[0.1] from

subjective and objective measurements

SUCh as Smal’t phones o L | | | Probability without weighting, a=1

0 0.1 0.2 03 04 05 06 07 08 09 1

Objective Probability

IX. CONCLUSION AND DISCUSSION Fig. 12: The probability weighting effect can be well approx

In this work, we considered the impact of end-userdmMated with a Prelec’s PWF with ~ 0.585.
decisions in regard to service offers in a CRN when there
is uncertainty in the QoS guarantee offered by the SP. We
formulated a Stackelberg game to study the interplay betwemvenue loss for the SP. To combat this effect, we proposed
the price offerings, bandwidth allocation by the SP and thmrospect pricing, which combines the pricing strategy & th
service choices made by end-users. We characterized the S with the radio resource management strategy available
of the game, and showed that when the end-users undander a CRN setting. In particular, we studied four distinct
weight the service guarantee, they tend to reject the servgtrategies, namely bandwidth reallocation, bandwidthaexp
offers which results in under-utilization of radio resces@nd sion/reduction, rate control, admission control, and istithe



Subjective Ratings
Packet Loss (%) 2 4 8 16
Delay (ms) mean | dev | mean| dev | mean| dev | mean| dev | mean| dev
0 3.67 | 064 371 | 056 | 360 | 058 ] 3.16 | 1.02| 1.29 | 0.45
20 380 | 040 | 289 | 1.15| 266 | 1.10| 154 | 0.77 | 1.16 | 0.36
40 3.82 | 048] 200 | 0.85| 154 | 0.86 | 1.27 | 0.54 | 1.10 | 0.30
60 358 | 0.76 | 1.71 | 0.87 | 1.34 | 057 | 125 | 054 | 1.21 | 0.52
80 369 | 0.71] 140 [ 0.77 ] 1.21
160 353 | 063 1.17 | 048 | 1.24
320 265 [ 092 1.10 | 0.29
640 1.87 | 0.99
TABLE llI: Subjective Measurement
Decoded Video Frames per Second
Packet Loss (%) 0 2 4 8 16
Delay (ms) mean | dev | mean| dev | mean]| dev | mean| dev | mean| dev
0 2128 1.79| 2150 181 | 21.27| 183 | 19.67| 3.30 | 532 | 2.46
20 2155| 150 1801 487 | 1528 539 | 9.26 | 410 | 3.39 | 2.77
40 2184 | 143 1333 497 979 | 371 511 | 259 290 | 1.79
60 2092 | 434 | 10.28 | 5.08 | 754 | 3.70 | 574 | 434 | 247 | 1.70
80 2162 | 1.60| 750 | 422 | 548 | 3.08 | 3.65
160 20.14 | 253 | 466 | 248 | 3.94 | 4.10
320 16.97 | 439 | 3.67 1.74
640 11.71 | 494
TABLE IV: Objective Measurement
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