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Abstract—In this paper, we study a broker-based TV white
space market, where unlicensed white space devices (WSDs)
purchase white space spectrum from TV licensees via a third-
party geo-location database (DB), which serves as a spectrum
broker, reserving spectrum from TV licensees and then re-
selling the reserved spectrum to WSDs. We propose a contract-
theoretic framework for the database’s spectrum reservation
under demand stochasticity and information asymmetry. In such
a framework, the database offers a set of contract items in the
form of reservation amount and the corresponding payment, and
each WSD chooses the best contract item based on its private
information. We systematically study the optimal reservation
contract design (that maximizes the database’s expected profit)
under two different risk-bearing schemes: DB-bearing-risk and
WSD-bearing-risk, depending on who (the database or the WSDs)
will bear the risk of over reservation. Counter-intuitively, we
show that the optimal contract under DB-bearing-risk leads to a
higher profit for the database and a higher total network profit.

Index Terms—TV White Space Networks, spectrum Reserva-
tion, Contract Theory, Game Theory

I. INTRODUCTION

A. Background and Motivations

Nowadays, radio spectrum is becoming more congested
and scarce with the explosive development of wireless ser-
vices and networks. Dynamic spectrum sharing can effectively
improve the spectrum efficiency and alleviate the spectrum
scarcity, by allowing unlicensed secondary devices access to
the licensed spectrum in an opportunistic manner. TV white
space network is one of the promising paradigms of dynamic
spectrum sharing [2], [3], where unlicensed devices (called
white space devices, WSDs) exploit the un-used or under-
utilized broadcast television spectrum (called TV white spaces,
TVWS1) opportunistically.

In order to fully utilize TVWS while not harming licensed
devices, regulatory bodies (e.g., FCC in the US and Ofcom in
the UK) have advocated a database-assisted spectrum access
solution, which relies on a third-party white space database
called geo-location [2], [3].2 In this solution, WSDs obtain
the available spectrum information through querying the geo-
location database, instead of performing spectrum sensing.
More specifically, WSDs periodically report their location
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IEEE 802.22 [5], CEPT ECC [6], and ETSI [7] proposed corresponding
standards for WSDs operating in a database-assisted TV white space network.

Fig. 1. Broker-based spectrum reservation market. In Step 0, the geo-location
database (broker) reserves spectrum from TV licensees and PMSE for every
reservation period (e.g., one day). In Step 1, each WSD (master) reports its
location and demand in every access period (e.g., one hour). In Step 2, the
database sells the corresponding spectrum to the WSD in every access period.
In Step 3, the WSD serves end-users (slaves) in every access period using the
obtained spectrum. Notice that Steps 1-3 will occur repeatedly within every
reservation period, as one reservation period consists of many access periods.

information and other optional information (e.g., spectrum
demand) to a geo-location database, and then the database
returns the available spectrum in the respective locations and
time periods to WSDs.

In general, there are two types of different TV white space
spectrum resources. The first type is the TV spectrum not
registered to any TV licensee or Programme Making and
Special Events (PMSE) at a particular location. This type of
spectrum is usually for the open and shared usage among
unlicensed WSDs, according to the regulators’ policies [2].
The second type is the TV spectrum already registered to
some TV licensees and PMSE, but not fully utilized by those
licensees. Hence, the licensees can temporarily lease these idle
spectrum to unlicensed WSDs for the exclusive usage. In such
a secondary spectrum market, the geo-location database can
act as an intermediary (e.g., a broker) between the licensees
(sellers) and the WSDs (buyers), due to its proximity to both
sides of the market.3

In this work, we focus on the secondary sharing and trading
of the second type spectrum resource, i.e., those registered
but under-utilized spectrum. Such spectrum can be exclusively
used by a WSD (with the permission of the licensees), hence
are particularly suitable for supporting applications that require
a high QoS.

B. Market Model and Problem

Specifically, we study a broker-based secondary spectrum
market, where TV licensees lease their idle spectrum to
unlicensed WSDs via a spectrum broker acted by a geo-
location database. As a broker, the database purchases spec-
trum from TV licensees in advance, and then resells the leased
spectrum to WSDs. Figure 1 illustrates such a broker-based
spectrum reservation market model. As the TV towers have
fixed locations and TV programs have well planned schedules,
the reservation period of TV spectrum can be relative long [8].

3This model is currently employed by real-world geo-location database
operators such as SpectrumBridge (https://spectrumbridge.com/) in the US
and COGEU (http://www.ict-cogeu.eu/) in Europe.
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Thus, we model and analyze a spectrum reservation market,
where the database reserves spectrum from TV licensees in
advance for a relatively large time period (e.g., more than
one day), called the reservation period. Then, within each
reservation period, the database sells the reserved spectrum to
WSDs periodically with a relatively small time period (e.g.,
one hour), called the access period. Namely, the spectrum
reservation decision is made at the beginning of the reservation
period, which consists of many access periods. 4

In such a spectrum reservation market, the database needs
to reserve spectrum in advance, without knowing the actual
future demands from WSDs. Therefore, an important problem
for the database in this market is:
• How much bandwidth should the database reserve for

each WSD, aiming at maximizing the database’s profit?
The problem is challenging due to the demand stochasticity
and the information asymmetry.

(i) Demand Stochasticity. Due to the stochastic nature of
end-users’ activities and requirements, each WSD’s spectrum
demand (for serving its end-users) is a random variable, and
cannot be precisely predicted by the WSD or the database
in advance. Therefore, there is inevitably a risk of reser-
vation mismatch, e.g., spectrum over-reservation or under-
reservation. Accordingly, the database’s spectrum reservation
decision depends on the risk-bearing scheme, namely, who
will bear the risk of spectrum over-reservation: the database
(called DB-bearing-risk) or the WSD (called WSD-bearing-
risk)? In the former case, the WSD only pays for the spectrum
it actually purchases in every access period; while in the latter
case, the WSD has to pay for the reserved spectrum(even if it
is more than actually needed) in every access period.5

(ii) Information Asymmetry. The above mentioned demand
information is asymmetric between the database and WSDs.
Due to the proximity to end-users, the WSD usually has more
information (i.e., with less uncertainty) about the spectrum
demand than the database. This implies that the database can
potentially make a better reservation decision, if it is able to
know the WSD’s private information regarding the demand.
However, without proper incentives, the WSD may not be
willing to share its private information with the database. As
will be shown in Section 5, the WSD may even report a false
information to the database intentionally, as long as such a
misreport can increase the WSD profit.

C. Results and Contributions

We propose a contract-theoretic spectrum reservation
framework, in which the database offers a list of contract
items in the form of reservation amount and the corresponding
payment, and each WSD chooses the best contract item based
on its private demand information (from its served end-users).
We first study the incentive compatible contract design, under
which each WSD will disclose its private demand information
credibly, by choosing the contract item intended for its private

4Please refer to Section III-B for the detailed model.
5 The DB-bearing-risk scheme is widely used in manufacturing outsourcing

systems such as [9], [10], while the WSD-bearing-risk scheme is widely used
in many Newsvendor models and practical retailing markets such as [11].

information. With the incentive compatibility, we further de-
rive the optimal spectrum reservation contracts that maximize
the database expected profit under both DB-bearing-risk and
WSD-bearing-risk schemes. For clarity, we summarize the key
results regarding the optimal contract design in Table I.

As far as we know, this is the first paper that systematically
studies the contract-based spectrum reservations under differ-
ent risk-bearing schemes for TV white space markets. The
proposed market model, together with the derived spectrum
reservation solutions, can offer the proper economic incentives
for the database operator, and support the practical and com-
mercial deployment of TV white space networks. The main
contributions of this paper are summarized as follows.
• Novel modeling and solution techniques: We study

a generic spectrum reservation market under demand
stochasticity and information asymmetry, and propose a
contract-theoretic reservation framework, which ensures
that WSDs disclose their private information truthfully,
and meanwhile maximizes the database profit.

• Optimal contract design: We analytically derive the op-
timal spectrum reservation contract design under DB-
bearing-risk and WSD-bearing-risk schemes, and numeri-
cally compare their performances. Through these numer-
ical comparisons, we characterize the impacts of risk-
bearing scheme, demand stochasticity, and information
asymmetry on the spectrum reservation solutions.

• Numerical results and insights: Our numerical results
show that the optimal contract under the DB-bearing-risk
scheme can achieve a higher database profit and a higher
total network profit, compared to the optimal contract
under the WSD-bearing-risk scheme. The intuition is that
the WSD is more risk-averse than the database.

The rest of this paper is organized as follows. In Section
II, we review the related literature. In Section III, we present
the system model. In Sections IV, we provide the integrated
optimal reservation solution as a benchmark. In Sections V
and VI, we study the decentralized spectrum reservations
without information sharing and with information sharing (via
contract), respectively. We provide numerical results in Section
VII, and finally conclude in Section VIII.

II. RELATED WORK

In the recent regulator’s policy [6], the databases are allowed
to determine their own pricing schemes for operating the
TVWS. This motivates researchers to study the economic
issues in TVWS [13]–[19]. In [13], Feng et al. studied the
hybrid pricing scheme for the database manager. In [14], Luo
et al. studied the pricing strategy of oligopoly competitive
WSDs. However, none of the existing work considered the
bandwidth reservation problem under information asymmetry.
Some recent studies [15]–[19] proposed the pure and hybrid
information models for TV white spaces, which focus on
unlicensed TV white space.

Our work is related to the supply chain contract design in
the operations management and marketing science literature.
Supply chain contract is widely used as a mechanism to coor-
dinate production quantity and pricing, so that the performance
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TABLE I
KEY RESULTS IN THIS PAPER

Risk-Bearing Information & Sharing Spectrum Reservation Decision Solution Section
Symmetry
(Benchmark)

— The database makes the reservation decision based
on the WSD’s knowledge about demand.

kSYM
(I) in Eq. (6) V-A1

DB-Bearing-Risk
(Scheme I)

Asymmetry
(Benchmark)

No Sharing The database makes the reservation decision based
on its own knowledge about demand.

kASY
(I) in Eq. (8) V-A2

Asymmetry
(Our Focus)

Credibly Sharing
via Contract

The database offers a spectrum reservation con-
tract, and each WSD chooses a proper contract item
(reservation-payment pair).

k∗(I) in Theorem 1 VI-A

Symmetry
(Benchmark)

— Each WSD makes the reservation decision based on
its knowledge about demand.

kSYM
(II) in Eq. (11) V-B1

WSD-Bearing-Risk
(Scheme II)

Asymmetry
(Benchmark)

No Sharing Each WSD makes the reservation decision based on
its knowledge about demand.

kASY
(II) in Eq. (12) V-B2

Asymmetry
(Our Focus)

Credibly Sharing
via Contract

The database offers a spectrum reservation con-
tract, and each WSD chooses a proper contract item
(reservation-payment pair).

k∗(II) in Theorem 2 VI-B

of decentralized supply chain is close or the same as that
of an integrated one. In [9], Cachon et al. considered the
stochastic nature of demand and prescribed analytical remedies
for credible information sharing between a supplier and a
manufacturer. Özer et al. in [10] extended Cachon’s work and
further examined how a supplier can screen buyers’s private
information by offering a menu of contracts. However, the
above work considered the case where the contract designer
bears all of the risk of over-reservation. We consider both
cases where the contract designer (the database) and the buyer
(WSD) bears the risk of over-reservation, respectively.

Recently, the concept of contract was also introduced into
the spectrum trading model (e.g. [20]–[22]). In [20], Gao
et al. proposed a quality-price contract for the spectrum
trading in a monopoly spectrum market. In [21], Duan et
al. proposed a contract-based cooperative spectrum sharing
mechanism to promote the cooperation of a primary user and
a secondary user. In [22], Sheng et al. proposed a contract for
a primary license holder to sell its excess spectrum capacity to
potential secondary users. In this paper, we propose a contract-
based mechanism for the spectrum reservation problem. In
our model, the demand of a WSD consists of two parts:
one is unknown by both the database and the WSD, and
the other is only known by the WSD (hence is the WSD’s
private information). Thus, the optimal contract design needs
to consider not only the truthful information disclosure of the
WSD, but also the uncertainty of demand for both the database
and the WSD. This makes our contract design much more
challenging than existing contract designs.

III. SYSTEM MODEL

A. System Overview

We consider a TV white space network where unlicensed
WSDs exploit the under-utilized broadcast television spectrum
(called TV white space, or spectrum for simplicity) via a
geo-location database. Each WSD is an infrastructure-based
device (e.g., a base station), and serves a set of unlicensed
end-users/devices called “slave” devices. We assume that
the number of unlicensed WSDs is large enough, so that
the spectrum demand of a particular WSD does not affect
other WSDs’ demand. This allows us to concentrate on the
interaction between the database and each WSD.

Fig. 2. Spectrum reservation and access processes. Step 0: the database
reserves spectrum for every reservation period T ; Step 1: the WSD reports
the realized demand in every access period t; Step 2: the database returns
spectrum to the WSD in every access period t; Step 3: the WSD serves end-
users in every access period t.

We focus on the secondary sharing and trading of the under-
utilized licensed spectrum of TV licensees. In particular, we
model a broker-based secondary spectrum market, where the
geo-location database acts as a spectrum broker, reserving
spectrum from TV licensees in advance and then reselling the
reserved spectrum to unlicensed WSDs.

B. Broker-based Spectrum Reservation Market

Now we discuss the proposed spectrum reservation market
more detailedly. Let c denote the unit price (cost) at which the
database reserves spectrum from TV licensees. Let w denote
the unit price (wholesale price) at which the database sells
spectrum to the WSD. Let r and s denote the unit price
(market price) at which the WSD serves the subscribed and
un-subscribed end-users, respectively.6 In order to concentrate
on the spectrum reservation problem, we consider a fixed
spectrum trading model, that is, the trading prices c, w, r,
and s are fixed system parameters.7 This implies that our
proposed spectrum reservation framework does not need to
alter the spectrum trading process, and thus is compatible
with many existing spectrum market mechanism designs.
Moreover, to make the trading model meaningful, we assume
that min{r, s} > w > c, i.e., both the database and the mater
will benefit from the trading process.

We illustrate the detailed spectrum reservation and trad-
ing/access processes in Figure 2 and Algorithm 1. It is notable

6In Section III-C, We will discuss the two types of users in details.
7Our model does allow the possibility of changing the prices over a longer

time horizon. Specifically, we can divide the whole time period into multiple
frames, each lasting for certain time (say several hours). At the beginning of
each frame, the WSD can adjust the trading price of r and s according to the
congestion level of spectrum. Then trading prices remain fix during a frame,
and our results and analysis characterize the system within this frame.
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that the spectrum reservation process (Step 0) is performed at
a relatively large time period (e.g, oncen every day or every
week), called the reservation period (denoted by T ); while the
spectrum trading/access processes (Steps 1-3) are performed
at a relatively small time period (e.g., once per hour), called
the access period (denoted by t).

Algorithm 1: Algorithmic statement for the three-stage
hierarchical model.

for each reservation period T = 1, 2, . . . do
Step 0: The database reserves k unit of spectrum from TV
licensees at a unit price c, for each reservation period; for
each access period t = 1, ..., T do

Step 1: The WSD collects the realized end-user
demand d, and requests d units of spectrum from the
database in each access period;
Step 2: The database sells min{k, d};
Step 3: The WSD serves end-users using the received
spectrum at a market price r or s in each access period.

end
end

We focus on the following database’s spectrum reservation
problem: how to determine the proper spectrum reservation
amount k to maximize the database profit? The problem is
challenging due to the demand stochasticity (see Section III-C)
as well as the information asymmetry (see Section III-D).
Moreover, the spectrum reservation decision also depends on
the risk-bearing scheme (see Section III-E), namely, who (i.e.,
the database or the WSD) will bear the risk of spectrum over-
reservation. This further complicates the problem.

C. Demand Stochasticity

In each access period, a WSD n ∈ N uses the purchased
spectrum to serve its end-users. We consider two types of end-
users for each WSD: registered end-users (called subscribers)
and unregistered end-users (called random access users or
random users). Let Jn and In denote the sets of WSD n’s
subscribers and random users, respectively.

Specifically, subscribers characterize the residents in the
WSD’s serving area, and these users can sign a service contract
with the WSD in advanced. Because of this, the WSD has a
good knowledge regarding the demand of these users based on
the long-term interactions. The random end-users characterize
the travelers to the WSD’s serving area, and these users do
not have any prior contractual relationship with the WSD. It
is difficult for the WSD to predict the demand from these
users. Naturally, we assume that subscribers have a higher
priority in obtaining service than random users. That is, when
the spectrum received by the WSD (from the database) is not
enough to meet all end-users’ demand, the WSD will satisfy
the subscribers’s demand first, and then serve the random users
using the remaining spectrum. Recall that r and s are the
unit prices (of spectrum) for serving subscribers and random
users, respectively. Due to the high priority of subscribers, it
is reasonable to assume that r > s.

Let ξn,j and εn,i denote the spectrum demands of a sub-
scriber j ∈ Jn and a random user i ∈ In (to WSD n)
in one access period, respectively. We assume that (i) ξn,j

keeps unchanged within each reservation period T (but may
vary across T ), which implies that each contract’s validity is
larger than one access period; and (ii) εn,i keeps unchanged
within each access period t (but may vary across t), which
implies that each random user’s average QoS and wireless
characteristic remain constant in each access period.8 The total
demand (of all subscribers and random users) of WSD n in
one access period is:

dn =
∑
j∈Jn ξn,j +

∑
i∈In εn,i , ξn + εn, (1)

where ξn ,
∑
j∈Jn ξn,j is total subscriber demand, and

εn ,
∑
i∈In εn,i , ξn is total random user demand. For

convenience, we refer to ξn as the scheduled demand of WSD
n (as it is known at the beginning of each reservation period,
and keeps unchanged during the whole reservation period), and
refer to εn as the bursty demand of WSD n (as it is known only
at the beginning of each access period, and changes randomly
in different access periods).9

Based on the assumptions mentioned above, the scheduled
demand ξn is a random variable changing each reservation
period T , and the bursty demand εn is a random variable
changing each access period t. For simplicity, we assume that
ξn and εn are independent and identically distributed (i.i.d) in
different reservation periods and access periods, respectively.
Let f(ξ) and F (ξ) denote the probability density function
(pdf) and cumulative distribution function (cdf) of ξ, and g(ε)
and G(ε) denote the pdf and cdf of ε, respectively. As in many
mechanism design literature (see, e.g., [20]–[22]), we assume
that such distribution information are public information to
both the database and the WSD. In practice, they can be
obtained through machine learning in a sufficiently long time
period. As mentioned previously, the number of WSDs is
large enough so that one WSD’s strategy is independent
of others. Hence, we can concentrate on the interaction
between the database and one WSD.

Since the total demand d changes randomly in each access
period t, while the spectrum reservation is performed at the
beginning of each reservation period T , the database or the
WSD faces a spectrum reservation problem under demand
stochasticity. Obviously, a higher reservation can serve more
demand potentially, but may also lead to a higher risk of spec-
trum over-reservation. A lower reservation, however, may lead
to a higher loss due to the spectrum under-reservation.

Next we draw some useful properties of the scheduled
demand ξ and the bursty demand ε. First, we notice that the
random users’ bursty demand usually depends on the real-
time market price s and end-users’ wireless characteristics.

8Although the small scale fading coherence time can be much smaller than
one access period, we can use proper modulation and coding schemes to
combat the impact of fast fading. The assumption on demand εn,i implies
that the large scale fading does not change faster than one access period (e.g.,
users do not move often).

9Note that such a two-fold demand formulation in Eq. (1) is widely used
in economic literature to characterize the asymmetry of demand information
(see, e.g., [?]- [10]). It can represent a lot of practical demand scenarios,
such as (i) the two-stage demand used in the electricity market, where ξn is
the pre-ordered demand and εn is the real-time replenishment, and (ii) the
forecast demand with error, where ξn is the estimated demand and εn is the
forecast error.
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As an example commonly used in the networking literature
(e.g., [1]- [23]), a random user i’s utility πi can be defined
as the difference between the achiavable data rate (e.g., the
Shannon capacity assuming high SNR [24]) and the payment,
e.g.,10

πi = β · εi · ln
(
Pi|hi|2
εin0

)
− s · εi,

where |hi| is the channel gain, Pi is the transmission power,
n0 is the noise power per unit bandwidth, and β denotes the
monetary income per unit of data rate. Based on the above
utility definition, the optimal bursty demand for a random user
i that maximizes its payoff πi is

εi = Pi·e−(1+s/β)·|hi|2
n0

.

Notice that the channel coefficient hi satisfies: (i) hi ∼ C(0, 1),
the complex normal distribution (when the channel experi-
ences the Rayleigh fading), and (ii) hi is i.i.d for different
users i ∈ In. Therefore, both εi and ε follow the chi-
square distribution [24] (with different degrees of freedom).
Note, however, that our analysis also holds for other demand
distributions such as the normal distribution.

Second, the subscribers’ scheduled demand ξ is a long-
term average demand (changing every reservation period, e.g.,
one day), and usually independent of the short-term wireless
characteristics. Our analysis holds for arbitrary ξ distribution
with the increasing failure rate (IFR), i.e., f(ξ)

1−F (ξ) is increasing
in ξ.11

D. Information Asymmetry

Due to the different proximities to end-users, the database
and the WSD usually have different knowledge about the
scheduled demand ξ and the bursty demand ε. Table ??
illustrates the difference between the database’s knowledge
and the WSD’s knowledge regarding the end-user demand at
the beginning of each reservation period T (when making the
reservation decision). Specifically,
• Bursty demand ε of random users: Notice that ε changes

randomly every access period. Thus, neither the WSD nor
the database knows the exact value of ε at the beginning
of the reservation period. That is, both the WSD and the
database only know the distribution of ε.

• Scheduled demand ξ of subscribers: Notice that ξ keeps
unchanged within each reservation period. Thus, the
WSD is able to know the exact value of ξ (e.g., through
bilateral agreements signed with subscribers) at the be-
ginning of the reservation period. The database, however,
does not know the exact value of ξ unless the WSD shares
such information. That is, the database only knows the
distribution of ξ.

We refer to the difference between the database’s knowledge
and the WSD’s knowledge regarding demand information

10This is just an illustrative example. Our analysis applies to more generic
utility functions.

11Such an IFR constraint is widely used in the mechanism design literature
(e.g., [9], [10]). Many commonly used distributions, such as the uniform
distribution, exponential distribution, and normal distribution, satisfy the IFR
constraint.

as information asymmetry. The co-existence of these two
types of end-users and the information asymmetry provide
incentives for the WSD to misreport its private information.
Without the existence of random users, the WSD would
request the database to reserve spectrum equal to the demand
of subscribed users. With the existence of random end-users,
the WSD would reserve the amount of spectrum larger than
the demand of subscribed end-users, in order to gain more
revenue by serving both the subscribed end-users and the
random end-users. However, the exact value of the random
end-users demand is unknown by the WSD at the beginning
of the reservation period. Hence, to maximize its own profit,
the WSD would optimize the value to be reported to the
database, instead of truthfully revealing his information of the
certain demand of subscribed users. Such strategic misreport-
ing will make it difficult for the database to make the optimal
reservation decision to maximize the database’s payoff. To
hedge information asymmetry, it is important to design an
incentive compatible mechanism to elicit the WSD’s private
demand information (i.e., ξ). In this work, we will propose
contract-theoretic spectrum reservation mechanisms to achieve
this goal.

E. Risk-Bearing Scheme

Due to the demand stochasticity, there is a risk of spectrum
over-reservation.12 Thus, the spectrum reservation decision
depends greatly on the risk-bearing scheme. Namely, who will
bear the risk of spectrum over-reservation, i.e., the database
or WSDs? We refer to the former scheme as DB-bearing-
risk (Scheme I) and the latter scheme as WSD-bearing-risk
(Scheme II). Specifically,
• DB-bearing-risk (Scheme I): In this case, the WSD only

pays for the spectrum it actually purchases in each
access period, and thus the database bears all the risk of
spectrum over-reservation. That is, in each access period,
the WSD will only pay for min{k, d} units of spectrum
that it consumes.

• WSD-bearing-risk (Scheme II): In this case, the WSD
pays for all the spectrum reserved, and thus the WSD
bears all the risk of spectrum over-reservation. That is,
in each access period, the WSD will pay for all k units of
reserved spectrum, even if the total demand d is smaller
than k.

In this paper, we will study the spectrum reservation prob-
lem under both risk-bearing schemes systematically. In the
following sections, we first study the centralized/integrated
spectrum reservation solution as a (centralized) benchmark
(Section IV). Then we study the decentralized reservation
solution without information sharing as another (decentralized)
benchmark (Section V), and show that it may lead to a
poor performance (in terms of database profit and network
profit) due to the asymmetry of information. To this end,

12Note that spectrum under-reservation will hurt the profits of both the
database and the WSD directly, and thus there is no need to discuss the risk
sharing under spectrum under-reservation. Under spectrum over-reservation,
however, the database and the WSD must decide who will pay for the over-
reserved spectrum.
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we study the decentralized reservation solution with contract-
based credible information sharing (Section VI). To facilitate
the understanding, we have listed the key results of this work
in Table I.

IV. INTEGRATED SPECTRUM RESERVATION SOLUTION

In this section, we consider an integrated system, where
the database and the WSD act as an integrated decision
maker to maximize their aggregate profit (called network
profit, denoted by Π). We will study this integrated/centralized
optimal spectrum reservation as the centralized benchmark.

Obviously, in this case the integrated player (database and
WSD) knows the precise value of ξ and the distribution of ε.
Moreover, there is no difference between the DB-bearing-risk
scheme and the WSD-bearing-risk scheme. Specifically, given
any spectrum reservation k, the expected network profit is

Π(k, ξ) =r ·min {k, ξ}+ s · Eε
[

min
{
ε, (k − ξ)+

}]
− c · k,

(2)
where (x)+ = max{x, 0}. This formula implies that the WSD
will satisfy the subscribers’ scheduled demand first (1st term),
and then satisfy the random users’ bursty demand using the
remaining spectrum (2nd term).

Next we study the centralized optimal reservation k◦ that
maximizes the network profit defined in (2). Notice that when
k ≤ ξ, we have ∂Π(k,ξ)

∂k = r − c > 0, which implies that
the optimal k cannot be smaller than ξ; when k ≥ ξ, we
have (i) ∂Π(k,ξ)

∂k = s
[
1 − G(k − ξ)

]
− c, and (ii) ∂2Π(k,ξ)

∂k2 =
−s · g

(
k − ξ

)
≤ 0. Thus, the centralized optimal reservation

k◦ is given by the first-order condition ∂Π(k,ξ)
∂k = 0, and more

formally,
k◦ = ξ +G−1

(
s−c
s

)
. (3)

Intuitively, k◦ consists of two parts: (i) the scheduled demand
ξ, and (ii) the best response to the bursty demand ε. Note
that the centralized optimal reservation k◦ is a function of ξ,
but not a function of ε. This is because the integrated player
knows the precise value of ξ, but not the value of ε.

V. DECENTRALIZED SPECTRUM RESERVATION – NO
INFORMATION SHARING

Now we consider a general decentralized system, where
the database and the WSD make decisions independently,
aiming at maximizing their individual profits. In this section,
we will study the decentralized spectrum reservation solution
under information symmetry and under information asymmetry
without information sharing as the decentralized benchmarks.

A. Scheme I: DB-Bearing-Risk

Under the DB-bearing-risk scheme, the WSD only pays for
the spectrum it actually uses, and thus the database bears
all the risk of spectrum over-reservation. That is, in each
access period, the WSD will only purchase min{k, d} units
of spectrum.

1) Information Symmetry: We first study the database’s
optimal spectrum reservation solution under information sym-
metry, where the database is assumed to know the precise
value of ξ. Specifically, for any reservation k, the WSD’s and
the database’s (ex-ante) expected profits are, respectively,

πMS(k, ξ) =(r − w) ·min{k, ξ}
+ (s− w) · Eε

[
min

{
ε, (k − ξ)+

}]
,

(4)

πDB(k, ξ) = w·Eε
[

min{ε+ξ, k}
]
−c·k. (5)

The optimal reservation for the database (i.e., that maximizes
its profit defined in (5)) is

kSYM
(I) = ξ +G−1

(
w−c
w

)
. (6)

Similar to the centralized optimal reservation k◦, the above
decentralized optimal reservation kSYM

(I) under information sym-
metry is also a function of ξ.

2) Information Asymmetry: In practice, the demand in-
formation is asymmetric between the database and the WSD
as discussed in Section III-D. Now we study the database’s
optimal spectrum reservation solution under information asym-
metry, where the database does not know the precise value of
ξ.

We first show that the reservation solution kSYM
(I) in (6)

under information symmetry may not be the database’s optimal
solution in this case, as it cannot ensure that the WSD
shares its private information ξ with the database credibly.
Notice that (i) the WSD profit πMS(k, ξ) in (4) increases with
the spectrum reservation k, and (ii) the database’s optimal
spectrum reservation kSYM

(I) in (6) is linear to ξ. This implies
that the WSD has an incentive to inflate its private information
ξ. The key reason behind this phenomenon is that the database
bears all the risk of over-reservation.

As a consequence, the database will not trust the informa-
tion (i.e., the value of ξ) informed by the WSD, and therefore
will act based on its own prior distribution information of ξ
and ε. That is, it will maximize the following expected profit:

π̄DB(k) , Eξ
[
πDB(k, ξ)

]
= w ·Eξ,ε

[
min{ε+ξ, k}

]
−c·k, (7)

where the expectation Eξ,ε is taken over the distribution of ξ
and ε. The optimal reservation for the database that maximizes
its expected profit defined in (7) is

kASY
(I) = (F ×G)−1

(
w−c
w

)
, (8)

where F ×G is the joint c.d.f. of ξ + ε.
Note that kASY

(I) is not a function of ξ, which is different
from (3) and (6). This implies that the database cannot
adjust its spectrum reservation decision to account for the
WSD’s private information. Therefore, both parties’s profits
may reduce due to the ignorance of information ξ (that WSD
has) in the spectrum reservation. To solve this problem, we
will propose a spectrum reservation contract to achieve the
credible information sharing between the database and the
WSD in Section VI-A.
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Fig. 3. (a) Spectrum Reservation vs Scheduled Demand ξ, and (b) Network Profit vs Wholesale Price w. Here, σξ denotes the variance of the scheduled
demand ξ. .

B. Scheme II: WSD-Bearing-Risk

Under the WSD-bearing-risk scheme, the WSD pays for all
the spectrum reserved, and thus the WSD bears all the risk of
spectrum over-reservation. That is, in each access period, the
WSD will pay for all k units of reserved spectrum, even if the
total demand d is smaller than k.

1) Information Symmetry: Similarly, we first study the
WSD’s optimal spectrum reservation decision under informa-
tion symmetry. Specifically, for any reservation k, the WSD’s
and the database’s (ex-ante) expected profits are, respectively,

πMS(k, ξ) =r ·min{k, ξ}+ s · Eε
[

min
{
ε, (k − ξ)+

}]
− wk,

(9)
πDB(k, ξ) = (w − c) · k. (10)

Note that if the WSD bears the risk, then the WSD will
determine the spectrum reservation amount. Otherwise, the
database will always choose a very large reservation as it does
not bear the risk of over-reservation. Accordingly, the optimal
reservation for the WSD (i.e., that maximizes its profit defined
in (9)) is

kSYM
(II) = ξ +G−1

(s− w
s

)
, (11)

which is also a function of ξ.
2) Information Asymmetry: Since the WSD itself holds the

private information under information asymmetry, the WSD’s
expected profit under information asymmetry is exactly same
as (9). Thus, the optimal reservation for the WSD under
information asymmetry is same as that under information
symmetry, i.e.,

kASY
(II) = kSYM

(II) = ξ +G−1
(s− w

s

)
. (12)

Notice that the database profit πDB(k, ξ) defined in (10) is
increasing in the spectrum reservation k. This implies that it is
possible for the database to improve its profit by incentivizing
the WSD to increase the spectrum reservation k. In Section
VI-B , we will propose a spectrum reservation contract to
maximize the database profit under the WSD-bearing-risk
scheme.

C. Comparison

Now we compare the above decentralized optimal reserva-
tions (without information sharing). It is easy to see that these
decentralized solutions deviate from the integrated optimal
solution (3), due to the “double marginalization” effect as
well as the lack of information on the database side under
information asymmetry.

1) Performance under Information Symmetry: We first
compare two spectrum reservation solutions under information
symmetry, i.e., kSYM

(I) and kSYM
(II) .

Lemma 1. There exists a critical wholesale price w∗ =
√
sc

such that

1) when w < w∗, then k◦ > kSYM
(II) > kSYM

(I) ;
2) when w > w∗, then k◦ > kSYM

(I) > kSYM
(II) .

We illustrate the spectrum reservation solutions vs sched-
uled demand ξ in Figure 3.a, where s = 0.8, w = 0.5,
c = 0.2, and obviously, w >

√
sc = 0.4. It is easy to

see that kSYM
(I) under DB-bearing-risk (the blue triangle curve)

is always larger than kSYM
(II) under WSD-bearing-risk (the red

square curve). This is because with a large wholesale price
(e.g., w >

√
sc), the risk of over-reservation that the WSD

bears under WSD-bearing-risk is higher than that the database
bears under DB-bearing-risk, and thus the WSD will reserve
less spectrum than the database. We can further see that kSYM

(I)
and kSYM

(II) are smaller than k◦ in the integrated system (the
green circle curve) . The gap between kSYM

(I) (or kSYM
(II) ) and k◦

is caused by the double marginalization effect.

Lemma 2. Under information symmetry, there exists a critical
wholesale price w∗ =

√
sc such that

1) when w < w∗, the optimal network profit under WSD-
bearing-risk (i.e., under kSYM

(II) ) is larger than that under
DB-bearing-risk (i.e., under kSYM

(I) );
2) when w > w∗, the optimal network profit under WSD-

bearing-risk (i.e., under kSYM
(II) ) is smaller than that under

DB-bearing-risk (i.e., under kSYM
(I) )

Lemma 2 can be obtained by Lemma 1, together with the
fact that the network profit increases with k when k ≤ k◦. For
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clarity, we illustrate the network profit under different reserva-
tion solutions vs wholesale price w in Figure 3.b. We can see
that (i) the centralized optimal network profit (the green circle
curve) does not depend on the wholesale price w, and (ii)
the decentralized optimal network profit under DB-bearing-
risk (the blue triangle curve) increases with the wholesale
price w, while the decentralized optimal network profit under
WSD-bearing-risk (the red square curve) decreases with the
wholesale price. This is because with a larger wholesale price,
the database will reserve more spectrum under DB-bearing-
risk (hence, the network profit increases), while the WSD
will reserve less spectrum under WSD-bearing-risk (hence, the
network profit decreases).

2) Performance under Information Asymmetry: We now
compare two spectrum reservation solutions under information
asymmetry, i.e., kASY

(I) and kASY
(II) .

From Figure 3.a, we can see that kASY
(I) (blue dashed curve

with mark “x”) under DB-bearing-risk is independent of ξ,
while kASY

(II) (red dashed curve with mark “+”) under WSD-
bearing-risk increases linearly with ξ. Obviously, kASY

(I) > kASY
(II)

when ξ is small (e.g., ξ < 14), while kASY
(I) < kASY

(II) when ξ
is large (e.g., ξ > 14). This is because the database makes
the reservation decision kASY

(I) without knowing the exact value
of ξ, and thus it is likely to over-reserve spectrum when ξ is
small, while under-reserve spectrum when ξ is large.

Similarly, from Figure 3.b, we can see that (i) the decentral-
ized optimal network profits under DB-bearing-risk (the blue
dash curves with mark “x”) increases with the wholesale price
w, while the decentralized optimal network profit under WSD-
bearing-risk (the red dash curve with mark “+”, overlapping
with the red square curve) decreases with w. The reason
is similar to that under information symmetry, i.e., a larger
wholesale price will increase the database’s reservation kASY

(I)
under DB-bearing-risk, but reduce the WSD’s reservation
kASY

(II) under WSD-bearing-risk. Moreover, we can see that
the decentralized optimal network profit under DB-bearing-
risk (the blue dash curves with mark “x”) decreases with
the variance of scheduled demand ξ (denoted by σξ). This is
because the database’s spectrum reservation kASY

(I) under DB-
bearing-risk does not consider the exact value of ξ; hence, a
larger variance of ξ will lead to a larger network profit loss.

D. Observation

By the above comparison, we can see that performances of
the decentralized optimal solution under information asymme-
try (i.e., kASY

(I) in (8) and kASY
(II) in (12)) depend on the wholesale

price w and the variance of scheduled demand ξ. Moreover,
both of these solutions may lead to low profits for both
the database and the WSD (comparing with the centralized
benchmark), due to the lack of information and/or the double
marginalization effect.

VI. DECENTRALIZED SPECTRUM RESERVATION –
CONTRACT-THEORETIC APPROACH

In the previous section, we have shown that lacking of
information and/or the double marginalization effect may
result in profit losses for both the database and the WSD.

In this section, we will propose a contract-theoretic approach
to achieve credible information sharing and hedge double
marginalization in spectrum reservation.

A. Contract under DB-Bearing-Risk

As shown in (8), under the DB-bearing-risk scheme, the
profit loss under information asymmetry is mainly due to
the lack of information ξ (when the database makes the
spectrum reservation decision). Therefore, we propose a Spec-
trum Reservation Contract to achieve the credible information
sharing between the database and the WSD. We derive the
optimal contract that maximizes the database profit under
information asymmetry analytically. Simulations demonstrate
that with the optimal contract, the total network profit can
also be improved, comparing with that (under information
asymmetry) without credible information sharing.

1) Contract Design: The key idea of a spectrum reservation
contract is as follows. To motivate the WSD credibly reveal
its private information ξ, the database put an additional charge
on the WSD for spectrum reservation (on top of the wholesale
charge of w ·min [k, ξ]). This forces the WSD to share the
cost of over-reservation, such that the WSD has no incentive
to inflate the value of ξ.

Based on this idea, we design the following contract:
Ψ(I) , {〈k(ξ), p(ξ)〉}∀ξ, which consists of a menu of contract
items, 〈k(ξ), p(ξ)〉, each intending for a possible scheduled
demand ξ. Here, k(ξ) and p(ξ) denote the spectrum reservation
and the WSD’s payment to the database, respectively, when
the scheduled demand is ξ.13 The detailed spectrum reservation
process is as follows.

1) Before reserving spectrum, the database announces the
contract Ψ(I) = {〈k(ξ), p(ξ)〉}∀ξ;

2) The WSD selects the contract item 〈k(ξ̂), p(ξ̂)〉 that
maximizes its expected profit, based on its private in-
formation ξ;

3) The database reserves spectrum k(ξ̂) for one reservation
period, and charges the WSD a reservation fee p(ξ̂) (Step
0 in Figure 2);

4) The database sells spectrum to the WSD in each access
period (Steps 1-3 in Figure 2).

When the WSD with information ξ chooses a contract item
〈k(ξ̂), p(ξ̂)〉 (i.e., that intended for information ξ̂), the WSD
profit, the database profit, and the aggregate profits (network
profit) are, respectively,

πMS(k(ξ̂), p(ξ̂), ξ) = (r − w) ·min{k(ξ̂), ξ}
+ (s− w) · Eε

[
min

{
ε, (k(ξ̂)− ξ)+

}]
− p(ξ̂),

(13)

πDB(k(ξ̂), p(ξ̂), ξ) = w · Eε
[

min{ε+ ξ, k(ξ̂)}
]

− c · k(ξ̂) + p(ξ̂),
(14)

Π(k(ξ̂), p(ξ̂), ξ) = r ·min {k(ξ̂), ξ}
+ s · Eε

[
min

{
ε, (k(ξ̂)− ξ)+

}]
− c · k(ξ̂).

(15)
We define a feasible contract as follows.

13Note that p(ξ) is the WSD’s payment for reserving spectrum via the
database, and is not the total cost of using spectrum.
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Definition 1 (Feasible Contract). A contract is feasible, if and
only if
• Incentive Compatibility (IC): The WSD with any in-

formation ξ prefers the contract item 〈k(ξ), p(ξ)〉
(that is intended for ξ) than all other contract items
〈k(ξ̂), p(ξ̂)〉,∀ξ̂ 6= ξ. Formally, we have

πMS(k(ξ), p(ξ), ξ) ≥ πMS(k(ξ̂), p(ξ̂), ξ), ∀ξ̂, ξ. (16)

• Individual Rationality (IR): The WSD can achieve a min-
imum acceptance profit πmin

MS when choosing 〈k(ξ), p(ξ)〉.
Formally, we have

πMS(k(ξ), p(ξ), ξ) ≥ πmin
MS , ∀ξ. (17)

Moreover, we define an optimal contract, denoted by Ψ∗(I) =
{〈k∗(I)(ξ), p

∗
(I)(ξ)〉}∀ξ, as follows.

Definition 2 (Optimal Contract). The contract Ψ∗(I) =
{〈k∗(I)(ξ), p

∗
(I)(ξ)〉}∀ξ is optimal if this contract is feasible and

maximizes the database expected profit. Formally, the optimal
contract is given by

max
〈k(ξ),p(ξ)〉,∀ξ

Eξ
[
πDB(k(ξ), p(ξ), ξ)

]
,

subject to : IC and IR in (16) and (17).
(18)

In the following, we first provide the necessary and suffi-
cient conditions for a feasible contract. Then, we derive the
optimal contract systematically. For clarity, we present all of
the detailed proofs in [25].

2) Feasibility: Suppose that a contract Ψ(I) =
{〈k(ξ), p(ξ)〉}∀ξ is feasible. Then, the following necessary
conditions hold.

Proposition 1 (Necessary Condition I for Feasibility).

k(ξ1) > k(ξ2), if and only if p(ξ1) > p(ξ2).

Proposition 2 (Necessary Condition II for Feasibility).

k(ξ1) ≥ k(ξ2), ∀ξ1 > ξ2.

Proposition 1 implies that in a feasible contract, a larger
spectrum reservation k(·) must correspond to a larger reser-
vation fee p(·). This is quite intuitive, as the WSD’s profit is
increasing in k(·) but decreasing in p(·). Proposition 2 implies
that the spectrum reservation k(·) increases with the value of
scheduled demand ξ.

For convenience, we denote πMS(ξ) , πMS(k(ξ), p(ξ), ξ)
as the WSD profit when choosing the contract item intended
for its true private information ξ. Given any feasible k(ξ) (i.e.,
those non-decreasing with ξ), we have the following necessary
conditions for the feasible p(ξ), or equivalently, for the WSD
profit πMS(ξ).

Proposition 3 (Necessary Condition III for Feasibility).

πMS(ξ1) ≥ πMS(ξ2), ∀ξ1 > ξ2.

Proposition 4 (Necessary Condition IV for Feasibility).

πMS(ξ) =πMS(ξ) + (r − s) · (ξ − ξ)

+

∫ ξ

ξ

(s− w) ·G
(
k(x)− x

)
dx.

Proposition 3 implies that in a feasible contract, the WSD
profit increases with the value of ξ. Proposition 4 further gives
the detailed form of the WSD profit in a feasible contract,
given any feasible k(ξ). Note that the third term on the r Here,
ξ is the minimum achievable value of scheduled demand ξ, i.e.,
g(ξ) = 0 if ξ < ξ.

By Proposition 4, we can get the following feasible reser-
vation fee p(ξ) directly:

p(ξ) =− πMS(ξ) + (r − w) ·min{k(ξ), ξ}
+ (s− w) · Eε

[
min

{
ε, (k(ξ)− ξ)+

}]
,

(19)

where πMS(ξ) is given in Proposition 4.
We have shown the necessary conditions for a feasible

contract through Propositions 1-4. Next we show that these
conditions are also sufficient for a contract to be feasible.

Proposition 5 (Sufficient Conditions for Feasibility). A con-
tract Ψ(I) = {〈k(ξ), p(ξ)〉}∀ξ is feasible, if the following
conditions hold:
• k(ξ) is non-decreasing in ξ (i.e., Necessary Condition II

in Proposition 2),
• p(ξ) is given by (19) (i.e., Necessary Condition IV in

Proposition 4),
• πMS(ξ) ≥ πmin

MS (i.e., IR Condition).

Intuitively, the first two conditions guarantee the IC condi-
tion for the contract, and the last condition guarantees the
IR condition for the contract. Therefore, the conditions in
Proposition 5 are sufficient.

3) Optimality: Now we study the database’s optimal con-
tract characterized by (18). By (13) and (14), we notice that
the total profit can be freely transferred between the database
and the WSD through the reservation fee p(ξ). Therefore, to
maximize the database profit, we need to shrink the WSD’s
profit as much as possible. This leads to the following opti-
mality condition immediately.

Proposition 6 (Optimality Condition I).

πMS(ξ) = πmin
MS .

Proposition 6 implies that in the optimal contract, the
database will assign the minimal acceptable profit to the WSD.
Intuitively, if the WSD profit πMS(ξ) = X > πmin

MS , then the
database can immediately improve its profit by increasing the
reservation fee p(ξ) by a constant (X − πmin

MS ) for all ξ.
Denote πDB(ξ) , πDB(k(ξ), p(ξ), ξ) and Π(ξ) ,

Π(k(ξ), p(ξ), ξ). By (13)-(15), we can write the database’s
profit as πDB(ξ) = Π(ξ) − πMS(ξ). Together with Proposition
4 and Proposition 6, we can rewrite the database profit
maximization problem (18) as follows.

max
k(ξ),∀ξ

Eξ
[
πDB(ξ)

]
,
∫ ξ̄
ξ
φ(I)
(
k(ξ), ξ

)
· f(ξ)dξ − πmin

MS ,

subject to : k(ξ) is non-decreasing in ξ, (20)

where

φ(I)
(
k(ξ), ξ

)
, Π(ξ)− 1−F (ξ)

f(ξ)

[
r−s+ (s−w) ·G

(
k(ξ)− ξ

)]
.

We first notice that φ(I)(k(ξ), ξ) is related to a particular ξ
only, and is independent of other ξ̂ 6= ξ. Thus, the optimal
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solution of (20) can be obtained by maximizing φ(I)
(
k(ξ), ξ

)
for each ξ independently (as long as the non-decreasing
condition is not violated). However, due to the non-convexity
of G(·), φ(I)(k(ξ), ξ) is non-convex in k(ξ), and thus the
classic Karush-Kuhn-Tucker (KKT) analysis cannot be directly
applied here.14

Next we can show that φ(I)(k(ξ), ξ) has the nice property
of piecewise convexity. Based on this, the maximizer of
φ(I)(k(ξ), ξ) is unique, and it satisfies the first-order condition:
∂φ(I)(k,ξ)

∂k = 0. Formally, the optimal k(ξ),∀ξ, is given by
∂φ(I)(k,ξ)

∂k =s · [1−G(k(ξ)− ξ)]− c

− 1− F (ξ)

f(ξ)
· (s− w) · g(k(ξ)− ξ) = 0.

(21)

We can further check that optimal k(ξ) given by (21) is indeed
non-decreasing in ξ, due to the IFR assumption for F (·), i.e.,
1−F (ξ)
f(ξ) decreases with ξ. Therefore, we have the following

optimal contract under DB-bearing-risk.

Theorem 1. Under DB-bearing-risk, the database’s optimal
contract Ψ∗(I) = {〈k∗(I)(ξ), p

∗
(I)(ξ)〉}∀ξ is given by: ∀ξ ∈ [ξ, ξ̄],

• k∗(I)(ξ) is given by (21), and
• p∗(I)(ξ) is given by (19) with πMS(ξ) = πmin

MS .

Now we provide some useful properties for the optimal
contract Ψ∗(I) = {〈k∗(I)(ξ), p

∗
(I)(ξ)〉}∀ξ. Specifically,

dp∗(I)
dk∗(I)

=
dp∗(I)/dξ

dk∗(I)/dξ
= (s− w) ·

[
1−G(k∗(I) − ξ)

]
≥ 0, (22)

d2p∗(I)

d k∗(I)
2 =

d
(

dp∗(I)
dk∗(I)

)
/dξ

dk∗(I)/dξ
=
−(s−w)·g(k∗(I)−ξ)·(dk∗(I)/dξ−1)

dk∗(I)/dξ
≤ 0.

(23)
The above properties show that p∗(I) is concavely increasing in
k∗(I) (which can be seen from Figure 4.a). This implies that
the database’s reservation fee charge for each additional unit
of spectrum reservation will decrease with the total amount of
spectrum reservation.

B. Contract under WSD-Bearing-Risk
Comparing (3) and (12), we can see that under WSD-

bearing-risk, the gap between the centralized optimal reserva-
tion k◦ and the decentralized optimal reservation kASY

(II) (under
information asymmetry without information sharing) is mainly
due to the double marginalization effect, which further leads
to some loss in both the database profit and the total network
profit. The perfect coordination of the WSD’s optimal solution
(12) and the centralized optimal solution (3) requires the
wholesale price to be as low as the cost (i.e., w = c). This
is obviously undesirable for a profit-maximizing database.
To this end, we propose a Spectrum Reservation Contract
to mitigate the double marginalization effect in this case.
Similarly, we analytically derive the optimal contract that
maximizes the database profit under information asymmetry.
Simulations demonstrate that with the optimal contract, the
total network profit can also be improved, comparing with that
(under information asymmetry) without credible information
sharing.

14As an example mentioned in Section III-C, the bursty demand ε’s
distribution G(·) is the chi-square distribution, which is non-convex.

1) Contract Design: The detailed contract formulation
under WSD-bearing-risk is similar to that under DB-bearing-
risk (in Section VI-A). Specifically, to motivate the WSD to
order spectrum according to the database’s profit-maximizing
objective, the database charges the WSD for the spectrum
reservation (in addition of the wholesale charge of w·k).15 This
forces the database to share the cost of over-reservation,
such that the WSD operates as the database desired.

Similarly, we design the following contract: Ψ(II) ,
{〈k(ξ), p(ξ)〉}∀ξ, where each contract item 〈k(ξ), p(ξ)〉 spec-
ifies a spectrum reservation level k(ξ) and the correspond-
ing WSD’s payment p(ξ). The detailed spectrum reservation
process is the same as that in Section VI-A. However, the
definitions for the database’s and the WSD profits are different,
due to the different risk-bearing schemes.

Specifically, when the WSD with information ξ chooses a
contract item 〈k(ξ̂), p(ξ̂)〉 (i.e., that intended for ξ̂), the WSD’s
profit, the database profit, and the aggregate profits (network
profit) are, respectively,

πMS(k(ξ̂), p(ξ̂), ξ) = r ·min{k(ξ̂), ξ} − w · k(ξ̂)

+ s · Eε
[

min
{
ε, (k(ξ̂)− ξ)+

}]
− p(ξ̂),

(24)

πDB(k(ξ̂), p(ξ̂), ξ) =(w − c) · k(ξ̂) + p(ξ̂), (25)

Π(k(ξ̂), p(ξ̂), ξ) = r ·min {k(ξ̂), ξ}
+ s · Eε

[
min

{
ε, (k(ξ̂)− ξ)+

}]
− c · k(ξ̂).

(26)

Obviously, the aggregate profit in (26) is same as that in (15),
that is, the network profit does not depend on the choice of
the risk-bearing scheme.

Similar as in Definition 1 and 2, we first define the contract
feasibility and optimality.

Definition 3 (Feasible Contract under WSD-risk-bearing). The
contract Ψ(II) = {〈k(ξ), p(ξ)〉}∀ξ is feasible, if and only if it
satisfies the following conditions.

IC : πMS(k(ξ), p(ξ), ξ) ≥ πMS(k(ξ̂), p(ξ̂), ξ), ∀ξ̂, ξ; (27)

IR : πMS(k(ξ), p(ξ), ξ) ≥ πmin
MS , ∀ξ. (28)

We denote the optimal contract by Ψ∗(II) =
{〈k∗(II)(ξ), p

∗
(II)(ξ)〉}∀ξ, which is defined below.

Definition 4 (Optimal Contract). The contract Ψ∗(II) =
{〈k∗(II)(ξ), p

∗
(II)(ξ)〉}∀ξ is optimal if this contract is feasible and

maximizes the database expected profit. Formally, the optimal
contract is given by

max
〈k(ξ),p(ξ)〉,∀ξ

Eξ
[
πDB(k(ξ), p(ξ), ξ)

]
,

subject to : IC and IR in (27) and (28).
(29)

15Note that this wholesale charge is different from that under DB-bearing-
risk. The latter is w·min [k, ξ], as the WSD only needs to pay for the spectrum
it actually purchases.
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2) Feasibility: It is easy to check that the necessary condi-
tions II and III in Propositions 2-3 also hold for the feasible
contract under WSD-bearing-risk. However, the necessary
condition IV in Proposition 4 is a bit different. Specifically,

Proposition 7 (Necessary Condition IV for Feasibility un-
der WSD-bearing-risk). Given a feasible k(ξ), the WSD’s
expected profit is

πMS(ξ) =πMS(ξ) + (r − s) · (ξ − ξ) +

∫ ξ

ξ

s ·G
(
k(x)− x

)
dx.

Accordingly, the feasible reservation fee p(ξ) is

p(ξ) =− πMS(ξ) + r ·min{k(ξ), ξ}
+ s · Eε

[
min

{
ε, (k(ξ)− ξ)+

}]
− w · k(ξ),

(30)

where πMS(ξ) is given in Proposition 7.
3) Optimality: Notice that the optimality condition in

Proposition 6 also holds for the WSD-bearing-risk scheme.
Thus, we can similarly rewrite the database profit maximiza-
tion problem (29) as

max
k(ξ),∀ξ

Eξ
[
πDB(ξ)

]
,
∫ ξ̄
ξ
φ(II)

(
k(ξ), ξ

)
· f(ξ)dξ − πmin

MS ,

subject to : k(ξ) is non-decreasing in ξ, (31)

where

φ(II)
(
k(ξ), ξ

)
, Π(ξ)− 1−F (ξ)

f(ξ) ·
[
r − s+ s ·G

(
k(ξ)− ξ

)]
.

Using a similar analysis as in Section VI-A, we can show
that the optimal solution of (31) can be obtained by maxi-
mizing φ(II)

(
k(ξ), ξ

)
for each ξ independently. Moreover, the

optimal k(ξ) satisfies the first-order condition: ∂φ(II)(k,ξ)
∂k = 0.

Formally,

∂φ(II)(k(ξ),ξ)
∂k =s · [1−G(k(ξ)− ξ)]− c

− 1− F (ξ)

f(ξ)
· s · g(k(ξ)− ξ) = 0.

(32)

Therefore, the optimal contract under the WSD-bearing-risk
scheme is given in the following theorem.

Theorem 2. Under WSD-bearing-risk, the optimal contract
Ψ∗(II) = {〈k∗(II)(ξ), p

∗
(II)(ξ)〉}∀ξ is given by: ∀ξ ∈ [ξ, ξ̄],

• k∗(II)(ξ) is given by (32), and
• p∗(II)(ξ) is given by (30) with πMS(ξ) = πmin

MS .

We provide some useful properties for the optimal contract
Ψ∗(II) = {〈k∗(II)(ξ), p

∗
(II)(ξ)〉}∀ξ. Specifically,

dp∗(II)
dk∗(II)

=
dp∗(II)/dξ

dk∗(II)/dξ
= s ·

[
1−G(k∗(II) − ξ)

]
− w, (33)

d2p∗(II)

d k∗(II)
2 =

d
(

dp∗(II)
dk∗(II)

)
/dξ

dk∗(II)/dξ
=
−s·g(k∗(II)−ξ)·(dk∗(II)/dξ−1)

dk∗(II)/dξ
≤ 0.

(34)
The second property shows that p∗(II) is concave in k∗(II), and the
first property shows that p∗(II) is non-monotonous in k∗(II). More
precisely, p∗(II) first increases with k∗(II) and then decreases with
k∗(II), as illustrated in Figure 4.a.

C. Comparison

Now we compare the optimal contract Ψ∗(I) =
{〈k∗(I)(ξ), p

∗
(I)(ξ)〉}∀ξ under the DB-bearing-risk

scheme (in Theorem 1) and the optimal contract
Ψ∗(II) = {〈k∗(II)(ξ), p

∗
(II)(ξ)〉}∀ξ under the WSD-bearing-

risk scheme (in Theorem 2).
Figure 4.a compares the structures of both contracts, by

showing the relationships of reservation and reservation fee
under both optimal contracts.
• For the optimal contract Ψ∗(I) under DB-bearing-risk,

we can see that the reservation fee p∗ monotonically
increases with the spectrum reservation k∗. This is be-
cause the WSD always benefits from a larger spectrum
reservation level (as it does not need to bear the risk);
hence, the database can charge a higher reservation fee
for a higher reservation level.

• For the optimal contract Ψ∗(II) under WSD-bearing-risk,
we can see that the reservation fee p∗ first increases
and then decreases with the spectrum reservation k∗.
This is because the WSD’s profit first increases with the
reservation level, and then decreases with the reservation
level (due to the high risk of over-reservation); hence, the
reservation fee first increases with the reservation level,
and then decreases with the reservation level.

We can further see that under the same reservation level k∗,
the reservation fee under DB-Bear-Risk is larger than that
under WSD-Bear-Risk, hence charges a higher reservation fee
to compensate its expected cost due to over-reservation.

Then we compare the spectrum reservations under both
contracts. By Proposition 2, both k∗(II)(ξ) and k∗(I)(ξ) are
increasing in ξ. By (21) and (32), we further have the following
observation.
Lemma 3 (Contract-based spectrum reservation).

k∗(II)(ξ) ≤ k∗(I)(ξ) ≤ k◦(ξ), ∀ξ ∈ [ξ, ξ̄],

and k∗(II)(ξ) = k∗(I)(ξ) = k◦(ξ) only when ξ = ξ̄.

That is, only when the realized scheduled demand ξ reaches
its maximum value (i.e., ξ = ξ̄), the spectrum reservations
under both optimal contracts are identical, and are equal the
integrated optimal spectrum reservation. Under other values of
ξ, the spectrum reservation in the contract Ψ∗(II) (under WSD-
bearing-risk) is smaller than that in the contract Ψ∗(I) (under
DB-bearing-risk), which is further smaller than the integrated
optimal spectrum reservation.

We illustrate the result of Lemma 3 in Figure 4.b. Intuitively,
When the database bears the risk, it has an incentive to
charge a high reservation fee in order to force the WSD to
shoulder some of the potential cost. When the WSD bears
the risk, however, the database has less incentive to charge
a high reservation fee. Hence, for the same ξ, we find that
p∗(I)(ξ) > p∗(II)(ξ). Combined with Proposition 1, we have
k∗(II)(ξ) < k∗(I)(ξ).

VII. NUMERICAL RESULTS

In this section, we provide numerical results to compare
the performances of the proposed contract-based spectrum
reservation mechanisms. Practically speaking, the database’s
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Fig. 4. (a) Illustration of Optimal Contracts, (b) Contract-based Spectrum Reservations vs Scheduled Demand ξ. Here, σξ denotes the variance of scheduled
demand ξ.

contract choice depends on many factors, among which the
spectrum reservation decision and the resulting (expected)
profit are the most important ones. Hence, we will present the
expected profits (of the database, WSD, and the aggregated
one) under different contracts associated with different risk-
bearing schemes. Unless specified otherwise, we assume the
following spectrum trading parameters: r = 1, s = 0.8,
w = 0.5, and c = 0.2. We further assume that the scheduled
demand ξ follows the normal distribution, and the bursty
demand ε follows the chi-square distribution.16

A. Profit vs Wholesale Price

Figure 5 illustrates (a) the database profit and (b) the
network profit (aggregate profit) achieved in different spectrum
reservation solutions (associated with information asymmetric
under different wholesale prices w.) In this simulation, we
assume that ξ follows the normal distribution with mean
µξ = 30 and variance σ2

ξ = 64, and ε follows the chi-square
distribution with mean µε = 30 and variance σ2

ε = 60.
From Figure 5.a, we have the following observations re-

garding the database profit.
• Under both risking bear-schemes, the contract-based

spectrum reservation leads to a much higher profit for
the database, compared to the reservation solution without
information sharing.

• The database can achieve a higher profit with the optimal
spectrum reservation contract under DB-bearing-risk (the
blue triangle curve) than that under WSD-bearing-risk
(the red square curve).

This is quite counter-intuitive. The reason is that the WSD is
more risk-averse than the database.

From Figure 5.b, we have the following observations.
• Centralized Optimal Network Profit: The green circle

curve denotes the optimal network profit achieved in the
centralized reservation solution k◦ given in (3), which
is independent of the wholesale price w, and serves as

16The parameter setting is for an illustrative purpose; similar insights can
be obtained using other parameter settings.

an upper-bound of the network profit under any other
reservation solution.

• Network Profit under DB-Bear-Risk: The blue “x” (dash)
curve and blue triangle (solid) curve denote the net-
work profit achieved under DB-Bearing-Risk, without
and with contract, respectively. Specifically, the former
one is achieved from the reservation solution without
information sharing, i.e., kASY

(I) given in (8). The latter
one is achieved from the optimal spectrum reservation
contract Ψ∗(I) given in Theorem 1. Obviously, information
sharing based on the optimal spectrum reservation con-
tract proposed in this paper improves the total network
profit up to 5%.

• Network Profit under WSD-Bear-Risk: The red “+”
(dash) curve and red square (solid) curve denote the
network profit achieved under WSD-Bearing-Risk, with
and without contract, respectively. Specifically, the former
one is achieved from the reservation solution without
information sharing, i.e., kASY

(II) given in (12). The latter
one is achieved from the optimal spectrum reservation
contract Ψ∗(II) given in Theorem 2. Different with the
DB-Bearing-Risk scheme, we can see that only when the
wholesale price w is large (e.g., w > 0.62 in this exam-
ple), the performance under the optimal spectrum reser-
vation contract is better than that without information
sharing. This is because the purpose of contract under the
WSD-bearing-risk is to reduce the double marginalization
effect. Hence, the network profit under WSD-Bearing-
Risk contract is independent of the wholesale price.
However, as the objective of contract is maximizing the
database profit, the database would charge an equivalent
high “wholesale price” from the WSD. As shown by
the Figure 5.b, such equivalent “wholesale price” lies
between 0.6 and 0.7. This high equivalent high wholesale
price decreases the performance of social welfare.

Our results provide the following important insight for a
general reservation problem: it is not only individually better,
but also socially better to leave the over-reservation risk to the
less risk-averse decision maker.
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B. Profit vs Scheduled Demand Variance

Figure 6 illustrates (a) the database profit and (b) the
network profit achieved in different spectrum reservation solu-
tions (associated with information asymmetry), under different
scheduled demand variance σ2

ξ . Notice that σ2
ξ reflects the

degree of information asymmetry. That is, a higher σ2
ξ implies

a larger variance of ξ, and thus a higher uncertainty of the
database regarding ξ. In this simulation, we assume that ξ
follows the normal distribution with mean µξ = 30 (and with
different variances), and ε follows the chi-square distribution
with mean µε = 30 and variance σ2

ε = 60.
From Figure 6.a, we can further see that under both risk-

bearing schemes, the optimal contracts (Ψ∗(I) and Ψ∗(II)) can
greatly improve the database profit. Moreover, the database can
achieve a slightly higher profit with the optimal contract Ψ∗(I)
under DB-bearing-risk, than the optimal contract Ψ∗(II) under
WSD-bearing-risk.

Figure 6.b leads to a similar observation as Figure 5.b.
Specifically, under DB-bearing-risk, the optimal contract Ψ∗(I)
can always increase with the total network profit; while under
WSD-bearing-risk, the optimal contract Ψ∗(II) can only increase
the total network profit when σ2

ξ is small (i.e., when the degree
of information asymmetry is low). We can further see that the
profits under both optimal contracts decrease with σ2

ξ . This
is because with a larger σ2

ξ , the scheduled demand ξ varies
more dramatically. As the scheduled demand ξ is the private
information of the WSD, the larger variance of ξ means that
the database needs to pay a higher information rent to the
WSDs.

VIII. CONCLUSION

We propose a broker-based spectrum reservation market
model for TV white space network, under stochastic demand
and information asymmetry. To solve the problem, we pro-
pose a contract-based spectrum reservation framework, which
ensures WSDs share their private information credibly. We
analyze the incentive compatibility of contracts, and fur-
ther derive the optimal contracts under different risk-bearing
schemes. Our analysis and extensive simulations indicate that
the optimal contract under DB-bearing-risk leads to a higher

database profit and higher network profit than that under WSD-
bearing-risk. As there is no large-scale commercializatin of
TV white space network with detailed spectrum reservation
scheme, our work can serve as a first step to give theoretical
insights into the problem of risk-bearing between the database
and the WSD, and promote the economic study of such a
network.

In this work, we have focused on the TV white space
network, where the primary users are the TV broadcasters. As
the TV towers have fixed locations and TV programs have well
planned schedules, the database has full information regarding
the primary usage of TV spectrum ahead of time. This allows
us to focus on the demand uncertainty from unlicensed users
in this paper. On the other hand, the issue of primary usage
uncertainly becomes much more important, if we consider the
Licensed Shared Access (LSA) and Authorised Shared Access
(ASA) models, where unlicensed users may access specific
non-TV band (e.g., 3.5 GHz band in the United States and
2.3 GHz band in Europe). This is because these bands are
used for ship- and air-borne radar systems which are critical
to the operation of the national defense. Our model can be
directly extended to analyze the LSA/ASA systems, if there
is no penalty to the database and the WSD for not being able
to serve all demands. However, when the expected payoffs
of the database and the WSD depend on both the demand
randomness and the available spectrum randomness, it would
be much more challenging to obtain theoretical results by
solving the contract design problem. We will consider the
issue of two-sided uncertainty and the interaction among the
licensee, the database, and the WSDs in our future work.
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APPENDIX

A. Total Spectrum Reservation

In this section, we will show how the database determines
the optimal aggregate reservation after knowing WSDs’ con-
tract item choices.

1) Aggregate Reservation under DB-Bearing-Risk: Under
the DB-bearing-risk scheme, a WSD only purchases the spec-
trum that it actually needs in each access period, and hence
the database can sell the over-reserved spectrum to other co-
located WSDs in each access period.

Consider a set N of co-located WSDs. Suppose that in a
particular reservation period, the scheduled demand of each
WSD n ∈ N is ξn. By the incentive compatibility of
the optimal contract Ψ∗(I) = {〈k∗(I)(ξ), p

∗
(I)(ξ)〉}∀ξ (defined in

Theorem 1), each WSD n will choose the reservation amount
k∗(I)(ξn) intended for its demand type. Without the further
optimization on the aggregate reservation, the database will
simply reserve an amount k∗(I)(ξn) for each WSD n, hence the
total reservation is K0 =

∑
n∈N k

∗
(I)(ξn). Next we study how

to further optimize the aggregate reservation for the database.
Let ξ0 =

∑
n∈N ξn denote the aggregated scheduled de-

mand of all WSDs in N , and let ε0 =
∑
n∈N εn denote the

aggregated bursty demand of all WSDs in N . Note that ξ0
does not change during the whole reservation period, while
ε0 changes every access period. Moreover, the database can
deduce the previous value of the scheduled demand ξn of
each WSD n (hence the total scheduled demand ξ0) from
the WSDs’ selections. However, neither the database nor the
WSDs can obtain the precise value of ε0, as it changes every
access period. Let h(ε0) and H(ε0) denote the p.d.f and c.d.f.
of ε0, respectively.

It is easy to see that when the realized total demand
D0 = ξ0 + ε0 is smaller than the total reservation K0,
the database can reduce the reservation cost by reducing the
reservation amount. With a reduced aggregate reservation,
on the other hand, the database may need to replenish the
spectrum reservation (with a higher replenishment cost) when
the realized total demand D0 is larger than the aggregate reser-
vation. Let K(I) denote that the reduced aggregate reservation
of the database (for WSDs N ). Let K0 =

∑
n∈N k

∗
(I)(ξn)

denote the total reservation requests of all WSDs, and we have

http://jianwei.ie.cuhk.edu.hk/publication/WSN-Contract.pdf
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K(I) ≤ K0 as each WSD will not purchase an amount larger
than its request.

The database profit depends on the actual realization of
total demand D0. Let c be the database’s reservation cost,
and let cEX > c be the replenishment cost. Then, we have,
(a) when D0 ≤ K(I), the database can reduce the reservation
cost by c · (K0 − K(I)); (b) when K(I) ≤ D0 ≤ K0, the
database needs to replenish a reservation amount D0−K(I) to
meet the requirements of WSDs, which will introduce a total
replenishment cost of cEX ·(D0−K(I)); (c) when K0 ≤ D0, the
database needs to replenish a reservation amount K0−K(I) to
meet the requirements of WSDs, which will introduce a total
replenishment cost of cEX · (K0 −K(I)). Based on the above
discussion, the expected increasing profit of the database is

πA
DB =Eε0

[
c · (K0 −K(I)) · Pr(D0 ≤ K(I) ≤ K0)

− cEX · (D0 −K(I)) · Pr(K(I) ≤ D0 ≤ K0)

− cEX · (K0 −K(I)) · Pr(K(I) ≤ K0 ≤ D0)

]
(35)

The database’s optimal aggregate reservation K∗(I) that max-
imizes (35) satisfies

cEX + c · (K0 −K∗(I)) · h(K∗(I) − ξ0)

− (c+ cEX) ·H(K∗(I) − ξ0) = 0.
(36)

Obviously, K∗(I) is a function of ξ0.
Figure 7 illustrates the database profit with and without

aggregate reservation optimization under different numbers
of WSDs. The blue-square and the red-circle curves denote
the database profit with and without further optimization on
the aggregate reservation, respectively. In this simulation, we
assume that different WSDs’ scheduled demands ξn, n ∈ N
are i.i.d., and different WSDs’ bursty demands εn, n ∈ N are
also i.i.d. The scheduled demand ξn of each WSD n follows
a normal distribution with mean µξ = 9 and variance σ2

ξ = 3.
The bursty demand εn of each WSD n follows a chi-square
distribution with different values of the degrees of freedom.17

Figure 7 shows that with the further optimization, the
database can increase its profit up to 12%. This benefit in-
creases with the number of WSDs, as more WSDs submitting
their spectrum reservation requirements, more freedom for the
database to assign over-reserved spectrum of one WSD to
other WSDs in need. As the mean µε and variance σ2

ε of the
bursty demand increase, the difference between the database
profit with and without aggregated reservation schedule also
increases.

2) Aggregate Reservation under WSD-Bearing-Risk: Under
the DB-bearing-risk scheme, a WSD purchases all the spec-
trum it requests in each access period, even if the realized
demand is smaller than the requested reservation. Hence,
the database cannot sell the over-reserved spectrum to other
co-located WSDs in each access period. In this case, the
database does not need to make the further optimization

17When the degrees of freedom of a chi-square distribution changes, the
mean and the variance of this chi-square distribution change accordingly.
Specifically, the value of mean is equal to the value of the degrees of freedom,
while the value of variance is two times of the value of the degrees of freedom.
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Fig. 7. Database profit vs. numbers of WSDs, where µε and σ2
ε denote the

mean and variance of the bursty demand of each WSD n, respectively.

on the aggregate reservation. Namely, the database’s optimal
aggregate reservation K∗(II) is18,

K∗(II) =
∑
n∈N

k∗(II)(ξn), (37)

which is exactly the total requested reservation of all WSDs.

B. Proof for Lemma 1

Proof. Since s > w > c, we have k◦ is always larger than
kSYM

(I) and kSYM
(II) . Note that kSYM

(I) = ξ + G−1
(

(w − c)/w
)

is
monotonic increasing with wholesale price w while kSYM

(II) =

ξ+G−1
(

(s− w)/s
)

decreases monotonically with w. We can
easily get the conclusion.

C. Proof for Lemma 2

Proof. Note that (6) and (11) show that the optimal bandwidth
k ≥ ξ for any realized ξ. Hence, we can write the expected
network profit in (2) with respect to ξ as:

Eξ[Π] =(r − c)Eξ[k]

− (r − s)(Eξ[k]− µξ)− s ·
∫ Eξ[k]−µξ

0

G(u)du

(38)
where µξ = E[ξ] is the mean of the scheduled demand. More-
over, the first derivative with respect to expected bandwidth
Eξ[k] is:

∂Eξ[Π]

∂Eξ[k]
= (s− c)− s ·G(Eξ[k]− µξ) (39)

and the second derivative is −s · g(Eξ[K]− µξ) ≤ 0. Hence,
the maximum solution of (38) is Eξ[k◦] and the network profit
increases with Eξ[k] when Eξ[k] < Eξ[k]. By applying Lemma
1, we can get the conclusion.

18According to existing regulations [2], [3], WSDs cannot directly com-
municate with each other to sell their extra spectrum. Hence, we assume that
the over-reservation spectrum under the WSD-bearing-risk scheme is wasted.
How to let different WSDs trade their over-reservation spectrum through the
database will be our future work.
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D. Proof for Proposition 1

Proof. We prove it by contradiction. ←: When ξ = ξ1, the
following IC constraint must be satisfied:

(s− w)Eε
[

min
{
ε, (k(ξ2)− ξ1)+

}]
− (s− w)Eε

[
min

{
ε, (k(ξ1)− ξ1)

}]
≥ p(ξ2)− p(ξ1)

(40)
from which we can find that if p(ξ1) > p(ξ2), then k(ξ1) >
k(ξ2). For otherwise, the IC cannot be satisfied. →: We first
differentiate (19) with respect to ξ and get:

dp(ξ)

dξ
= (s− w) · [1−G(k(ξ)− ξ)] · dk(ξ)

dξ
(41)

Then we can conclude that if K(ξ1) > K(ξ2), then P (ξ1) >
P (ξ2)

E. Proof for Proposition 2

Proof. We prove it by contradiction. Note that:

∂2πMS(k, p, ξ)

∂k∂ξ
= (s− w)g

(
k − ξ

)
> 0, and (42)

∂2πMS(k, p, ξ)

∂k2
= −(s− w)g

(
k − ξ

)
< 0. (43)

Hence, for any ξ1 > ξ2, if k(ξ1) < k(ξ2). That we have:

0 =
∂πMS (k, p, ξ1)

∂k

∣∣∣∣
k=k(ξ1)

>
∂πMS (k, p, ξ1)

∂k

∣∣∣∣
k=k(ξ2)

>
∂πMS (k, p, ξ2)

∂k

∣∣∣∣
k=k(ξ2)

,

where the equality is because of IC and the inequalities are
because of the sign of the second-order derivatives. But this
contradicts the optimality of k (ξ2).

F. Proof for Proposition 3

Proof. The IC constraint implies that πMS(ξ) =
maxξ̂ πMS

(
k(ξ̂), p(ξ̂), ξ

)
. The envelope theorem further

shows that:

dπMS(ξ)

dξ
=
∂πMS(k(ξ̂), p(ξ̂), ξi)

∂ξ

∣∣∣∣∣
ξ̂=ξ

= (r − s) + (s− w)G
(
k(ξ)− ξ

)
> 0.

(44)

Then we have πMS(ξ) is increasing in ξ.

G. Proof for Proposition 4

Proof. By using IC constraint and the envelope theorem, we
have:

dπMS(ξ)

dξ
=
∂πMS(k(ξ̂), p(ξ̂), ξi)

∂ξ

∣∣∣∣∣
ξ̂=ξ

= (r − s) + (s− w)G
(
k(ξ)− ξ

)
.

(45)

By integrating both sides, we get the Proposition 4.

H. Proof for Proposition 5

Proof. We only have to show that these three conditions imply
IC and IR. Noted that (19), πMS(ξ) is obtained by Lemma (4).
We therefore have:

πMS

(
k(ξ̂), p(ξ̂), ξ

)
=

∫ ξ

ξ

∂πMS

(
k(ξ̂), p(ξ̂), x

)
∂x

dx+ πMS

(
k(ξ̂), p(ξ̂), ξ

)
= πMS

(
k(ξ̂), p(ξ̂), ξ̂

)
+

∫ ξ

ξ̂

[
(r − s) + (s− w) ·G

(
k(ξ)− x

)]
dx

= πMS

(
k(ξ), p(ξ), ξ

)
+

∫ ξ

ξ̂

(s− w)
[
G
(
k(ξ̂)− x

)
−G

(
k(x)− x

)]
dx

If ξ > ξ̂, then the above equation is non-positive (because
both k and G are increasing) and hence πMS

(
k(ξ), p(ξ), ξ

)
≥

πMS

(
k(ξ̂), p(ξ̂), ξ

)
. This inequality also holds for ξ < ξ̂ by a

similar argument. Therefore, the two condition imply IC.
Evaluate πMS(ξ) at ξ and using (6), we can get IR immedi-

ately.

I. Proof for Proposition 6

Proof. Let i = 1, 2 and define ξ̂∗i =
arg maxξ̂ πMS

(
k(ξ̂), p(ξ̂), ξi

)
We therefore have

πMS

(
k(ξ̂∗1), p(ξ̂∗1), ξ2

)
≤ πMS

(
k(ξ̂∗2), p(ξ̂∗2), ξ2

)
. Noted

that:

∂πMS

(
k(ξ̂), p(ξ̂), ξ

)
∂ξ

= (r − s) + (s− w)G
(
k(ξ̂)− ξ

)
≥ 0.

Hence, for any ξ1 < ξ2, We have πMS

(
k(ξ̂∗1), p(ξ̂∗1), ξ1

)
≤

πMS

(
k(ξ̂∗1), p(ξ̂∗1), ξ2

)
. By using the IC constraint, we

have ξ̂∗i = ξi, and therefore πMS

(
k(ξ1), p(ξ1), ξ1

)
≤

πMS

(
k(ξ2), p(ξ2), ξ2

)
. Hence IR only needs to be satisfied at

ξ = ξ and the other participation constraints for ξ > ξ are
redundant. Hence, we get (6).

J. Proof for Theorem 1

This Theorem can be simply proved by using Proposition 5
and Proposition 6. Here we jus show that the optimal point of
φ(I)(k(ξ), ξ) is unique by proving φ(I)(k(ξ), ξ) is unimodal.

Proof. We let z(ξ) = k(ξ) − ξ, then we rewrite φ(I)(k(ξ), ξ)
as φ(I)(z(ξ)) and get

∂φ(I)(z)

∂z
=s · [1−G(z)]− c− 1− F (ξ)

f(ξ)
(s− w)g(z).

(46)
To prove that φ(I)(z) is unimodal, it suffices to show

that ∂φ(I)(z)/∂z changes the sign once. Note that ε follows
chi-square distribution with support [0,+∞). Then we have
limz→0 ∂φ(I)(z)/∂z = s−c > 0,and limz→+∞ ∂φ(I)(z)/∂z =
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−c < 0. Then we consider the second order derivative of
φ(I)(z) with respect to z and we have

∂2φ(I)(z)

∂z2
= −s · g(z)− 1− F (ξ)

f(ξ)
(s− w)g

′
(z)

=
z
n
2−2e−

z
2

Γ(n2 )2
n
2

[
A(ξ)− 2

2
z −A(ξ)

(n
2
− 1
)]

(47)
where A(ξ) = ((1− F (ξ))(s− w))/(s · f(ξ)) and n
is the freedom of chi-square distribution. Note that
limz→+∞ ∂2φ(I)(z)/∂z

2 < 0, and case 1: A−2
2 < 0, then

∂2φ(I)(z)/∂z
2 < 0, and ∂φ(I)(z)/∂z changes the sign once;

case 2: A−2
2 > 0, then the value of ∂2φ(I)(z)/∂z

2 is first
negative, then becomes positive. However, as ∂2φ(I)(z)/∂z

2

is the linear function of z, then ∂φ(I)(z)/∂z only changes the
sign once.

If ε follows from normal distribution with mean µ and
standard variance σ, then φ(I)(z) is also unimodal as long as
G(x) → 0 when x < 0. In such case, limz→0 ∂φ(I)(z)/∂z =
s− c > 0, and limz→+∞ ∂φ(I)(z)/∂z = −c < 0. And

∂2φ(I)(z)

∂z2
= −s · g(z)− 1− F (ξ)

f(ξ)
(s− w)g

′
(z)

=
1− F (ξ)

f(ξ)

s− w
s

1

σ
√

2π
e−

(z−µ)2

2σ2

[ z
σ2
− µ

σ2
− 1
]

The above equation shows that the value of ∂2φ(I)(z)/∂z
2 first

is negative, then become positive. However, as ∂2φ(I)(z)/∂z
2

is the linear function of z, then ∂φ(I)(z)/∂z only changes the
sign once.

K. Proof for Proposition 7

Proof. By using IC constraint and the envelope theorem, we
have:

dπMS(ξ)

dξ
=
∂πMS(k(ξ̂), p(ξ̂), ξi)

∂ξ

∣∣∣∣∣
ξ̂=ξ

= (r − s) + s ·G
(
k(ξ)− ξ

)
.

(48)

By integrating both sides, we get the Proposition 7.

L. Proof for Theorem 2

This Theorem can be simply proved by using Proposition 5
and Proposition 6. Here we jus show that the optimal point of
φ(II)(k(ξ), ξ) is unique by proving φ(II)(k(ξ), ξ) is unimodal.

Proof. We let z(ξ) = k(ξ)− ξ, then we rewrite φ(II)(k(ξ), ξ)
as φ(II)(z(ξ)) and get

∂φ(II)(z)

∂z
=s · [1−G(z)]− c− 1− F (ξ)

f(ξ)
· s · g(z). (49)

To prove that φ(II)(z) is unimodal, it suffices to show
that ∂φ(II)(z)/∂z changes the sign once. Note that ε fol-
lows chi-square distribution with support [0,+∞). Then
we have limz→0 ∂φ(II)(z)/∂z = s − c > 0,and
limz→+∞ ∂φ(II)(z)/∂z = −c < 0. Then we consider the

second order derivative of φ(II)(z) with respect to z and we
have

∂2φ(II)(z)

∂z2
= −s · g(z)− 1− F (ξ)

f(ξ)
· s · g

′
(z)

=
z
n
2−2e−

z
2

Γ(n2 )2
n
2

[
A(ξ)− 2

2
z −A(ξ)

(n
2
− 1
)]

(50)
where A(ξ) = ((1− F (ξ)) · s)/(s · f(ξ)) and n is
the freedom of chi-square distribution. Note that
limz→+∞ ∂2φ(II)(z)/∂z

2 < 0, and case 1: A−2
2 < 0,

then ∂2φ(II)(z)/∂z
2 < 0, and ∂φ(II)(z)/∂z changes the sign

once; case 2: A−2
2 > 0, then the value of ∂2φ(II)(z)/∂z

2 is first
negative, then becomes positive. However, as ∂2φ(II)(z)/∂z

2

is the linear function of z, then ∂φ(II)(z)/∂z only changes
the sign once.

If ε follows from normal distribution with mean µ and
standard variance σ, then φ(II)(z) is also unimodal as long as
G(x)→ 0 when x < 0. In such case, limz→0 ∂φ(II)(z)/∂z =
s− c > 0, and limz→+∞ ∂φ(I)(z)/∂z = −c < 0. And

∂2φ(II)(z)

∂z2
= −s · g(z)− 1− F (ξ)

f(ξ)
· s · g

′
(z)

=
1− F (ξ)

f(ξ)

s− w
s

1

σ
√

2π
e−

(z−µ)2

2σ2

[ z
σ2
− µ

σ2
− 1
]

The above equation shows that the value of ∂2φ(II)(z)/∂z
2 first

is negative, then become positive. However, as ∂2φ(II)(z)/∂z
2

is the linear function of z, then ∂φ(II)(z)/∂z only changes the
sign once.

M. Proof for Lemma 3

Proof. By comparing (21) and (32), we can easily get the
conclusion.
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