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Abstract—In many scenarios, networks emerge endogenously A. Motivation

as cognitive agents establish links in order to exchange iofma-
tion. Network formation has been widely studied in economis,
but only on the basis of simplistic models that assume that #
value of each additional piece of information is constant. i this
paper we present a first model and associated analysis for net
work formation under the much more realistic assumption that
the value of each additional piece of information depends othe
type of that piece of information and on the information already
possessed: information may be complementary or redundaniVe
model the formation of a network as a non-cooperative game in
which the actions are the formation of links and the benefit of
forming a link is the value of the information exchanged minws
the cost of forming the link. We characterize the topologies
of the networks emerging at a Nash equilibrium (NE) of this
game and compare the efficiency of equilibrium networks with
the efficiency of centrally designed networks. To quantify he
impact of information redundancy and linking cost on social
information loss, we provide estimates for the Price of Anachy
(PoA); to quantify the impact on individual information los s we
introduce and provide estimates for a measure we call Maximmn
Information Loss (MIL). Finally, we consider the setting in which
agents are not endowed with information, but must produce it
We show that the validity of the well-known “law of the few”
depends on how information aggregates; in particular, the faw
of the few” fails when information displays complementarities.

Index Terms—Cognitive networking, cognitive agents, infor-
mation networks, network formation, self-organizing networks.

I. INTRODUCTION

HE widespread usage of mobile devices, together WiﬁJ1
T the emergence of social-based services and applicatio%g
have inspired novel and self-organized networking paradig
that capitalize on the ability of mobile devices to conne
and share information in an ad-hoc fashion. Contempor
networks, where users produce and exchange informati
are “socio-technological” in nature; users do not necdgsar

Many emerging networks are formed endogenously by self-
interested agents, who take information sharing and ptazhuc
actions. Examples of such networks are: dynamic spectrum
management by wireless users [1], social networks overlaid
on technological networks [2] [3], device-to-device (D2D)
communications, vehicular networks [5], Internet-of-idp
(IoT) [6], and smart sensor networks [7]. In many of these
networks, users connect to each other in order to exchange
and gather information. For instance, secondary users ex-
change information about spectrum occupancy in cognitive
radio networks [8] [9], autonomous rescue robots exchange
environmental sensory information [6] [10], D2D users egga
in short range communications in order to exchange data
content of Social Networks Services (SNSs) [11], and self-
interested users take capacity allocation decisions fdticast
streaming over networks [12]. Users in such networks pgsses
two key features: they arepportunisti¢ in the sense that
they exploit their opportunistic encounter with other niebi
users to establish short-range communication links wigmth
and they arecognitive in the sense that they need to reason
about establishing costly communication links with others
given the value of information they can get via these links.
Information in this context is an abstraction for any class
of data that users gather and process, such as multi-modal
content, geographical information, event-related infation,
cached content, behavioral data, and personal sensony info
mation [13]-[15]. For instance, mobile users who coexist in
ose proximity can share information about traffic congpest
d road accidents which helps them update their routes via
applications such as Waze and Google maps, and D2D users

an gather offloaded traffic of context-aware applicatioomf
(Fther users by forming short-range communications link$.[1

oreover, information can also be produced by the agents
thémselves in the form of user-generated content, sucheas th
pload and creation of blogs, videos and photos on online

i : . u
exploit an exogenously designed network infrastructure, b™" .
rather form an endogenous network driven by the individugf‘)Clal networks (OSN), the purchase of content from service

uses' quest fo iformaton. I this paper, we present HOUCETs I peerio pee vetuercs pdatng vafle vy
novel network formation model for information exchangé PP o ’

over endogenously formed networks. Albeit being abstrae*:ltetwOrkS can jointly decid_e how ”.‘“Ch information ShOUIqﬂhe.
our model provides insights into understanding and deB'ggnipdeuce’ and how much information should they opportunisti

many emerging and envisioned classes of applications. pally acquire from other users. Asitis wh(_anever users dfe se
interested, a game-theoretic framework is naturally degdo

to study which networks will emerge at equilibrium and what
are their characteristics. Network formation has beenistud
in the economics, electrical engineering and computenseie
literature. In the following subsection, we briefly revielese
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related works on endogenous network formation. monetary, energy, or delay costs incurred by the agent faymi
the link. An agent in the network is an abstraction for a mebil

B. Related Works user, a mobile device, or a transmitter/receiver that immat
and self-interested.

Strategic network formation was first studied in the eco- -
o o . We show that the networks that emerge at equilibrium are
nomics literature. Some of this literature [16]-[21] asKsiet o . L
minimally connected; thus, agents tend to minimize the aiver

networks are stable (according to some criteria) and hence : : .

: : : cost of constructing the network. With homogeneous link
more likely to persist and be observed. A (smaller) literatu e . .

. osts, equilibrium leads to a network in which each compbnen

asks which networks emerge as the result of some speciiic . )

. .~ ~r IS "a star. Moreover, we show how information redundancy
dynamic process [22] [23]. In all these works, simplisti¢ . .

) : " affects the link cost ranges at which the network becomes
benefit functions are used: the value of each additionaldgoo

. . o connected or disconnected, in addition to its impact on the
exchanged is constant [16]-[19]. However, in realistidisgs, network efficiency by quantifying the Price-of-Anarchy @o
information possessed by different agents can be redund n%

. . of instance, we show that for networks with low link costs,
or complementary. For instance, secondary users in a multi- . :
‘when the link costs are homogeneous, all emerging networks

!oand cognitive radio system may be interested in gathengge efficient; in contrast, information redundancy can oelu
information about spectrum occupancy for bands that they do

S . costly anarchy in networks with heterogeneous link costs.
not sense by communicating with other users who do sens inally, we consider a setting in which each agent will
t_hese bands [8]; SENsors deploy_ed over a correlated randr%rg only decide which links to form, but also the amount
field [24]-[28] may be interested in gat_hermg complemeptarof information to produce and we provide a characterization
measurements about some set of physical processes ofinte & the emerging NE. We show that when the number of
and mobile users who exchange offloaded traffic of SN )

d text licati v int ted ineyat %ents is large, the fraction of agents producing inforomati
and context-aware applications are only interested ineg 9 at equilibrium depends on the amount of redundancy in
non-redundant traffic and data updates.

the agents’ information. When the agents produce strongly
correlated information, the fraction of information pradus
C. Summary of contributions is small and tends to zero as the number of agents tends to
This paper introduces a new model for strategic netwoikfinity: most agents get the information they need from a
formation where autonomous cognitive agents exchange vasnall set of agents. On the other hand, when agents have
able information. We refer to such networks asgnitive uncorrelated information, the number of information proeis
information networkgCIN); networks in which agents self-can grow at the same rate of total number of agents. Thus,
organize to gather/exchange and produce information adbousuch networks violate what Galeotti and Goyal [31] call the
state of the world. This state of the world can be spectrutfaw of the few. In addition, we quantify the total amount
occupancy information and primary user activity in a multief information produced in an asymptotically large network
band cognitive radio system, location information prodithy and identify scenarios in which the amount of information
anchors of wireless networks, a set of messages sent by infaoduced at equilibrium grows with the number of agents.
mation sources in a multicast network, or blogs, videos, andThis paper introduces a new model for cognitive agents ex-
data exchanged by users of social-physical networks. Ageahanging information/knowledge and studying what network
are cognitive since theyperceiveinformation possessed byemerge endogenously as a result of self-organizing cegniti
other agentsieasonabout which links to establish, how muchagents. Since many applications can use the presented model
information to produce, and then take information procarcti we do not delve on the idiosyncratic details of specific
and link formationdecisionswhich result in an endogenously-applications. The rest of the paper is organized as folldws.
formed network topology. We assume that agents in a CIBection Il, we formalize the network formation game among
possess different amounts of information, benefit only froagents in a CIN. Section Ill characterizes the emergingestab
gathering non-redundant information, and they form linkhw networks when the link formation costs are homogeneous, and
each other in order to gather information and maximize théhe efficiency of such networks are investigated. Section IV
knowledgeof the state of the world. analyzes the network topology and equilibrium efficiency fo
Since the information possessed by different agents ming case of heterogeneous link costs. The joint information
be correlated (redundant), and link formation is costlygrag production and link formation game is studied in Section V.
should cognitively selectvhich agents to link with. We for- Suggested future extensions for our model are provided in
mulate this problem as mon-cooperative network formationSection VI. Finally, conclusions are drawn in Section VII.
game Using information-theoretic measures for the value of
the information possessed by each agent, we aim at char- Il. BAsic MODEL
acterizing the emerging stable network topologies at Nashin this section, we discuss the problem setting and propose
Equilibrium (NE). Throughout our analysis, we focus on tw@ basic model to formulate the endogenous network formation
classes of linking cost scenarios: homogeneous link faonat game emerging among cognitive agents.
cost and heterogeneous link formation costs. In the former,
connecting to any agent entails the same cost, while in the Information model
later, the link cost is recipient-dependent. The link camt ¢ Let N' = {1,2,3,..., N} be the set of agents in the CIN.
correspond to tokens [29] [30], or an abstraction for arfgyach agent possesses exogenous information in the form of a



discrete random variabl&; and aims to form links with other information attained by agent from connecting toi, i.e.
agents to maximize its utility, which is defined as the benetite amount of extra information thgt gets when getting
from the total information it possesses minus the linkingtco the information ofi. If this benefit is low, it means that
The formation of links is costly; thus, an agent has to trad€.X;; X;) is high, i.e.X; and X; are highly correlated, and
off the benefits of the information it obtains from anothevice versa. Note that mutual information is symmetric, i.e.
agent versus the cost it needs to pay for connecting with tHatX;; X,;) = H(X,;) — H(X;|X;) = H(X,) — H(X;|X,).
agent. The amount of information iN; is quantified by the Finally we quantify the total amount of redundant informa-
entropyfunction H (X;). In addition, the random variables oftion in the network. Letp (X) = p(X1, Xs,...,Xn) and
all agents may be correlated, which indicates that sometagen(X) = 1Y ,p(X;), wherep(X;) is the pmf of X;. The
may possess similar information that is redundant to that Kfillback Leibler (KL) divergence for these distributions can
the other agents. The common information between agenbe computed as follows [36]
andj is captured by thenutual information/ (X;; X;).

The information possessed by the set of agehfsis D (plla) :Zp(X) log (ﬁ)
captured by arentropic vectorthat we define as follows. X q (%)
Definition 1: Entropic vector- a vectorﬁ is said to be an
entropic vector of ordetV if there exists a random variable =Y H(X;) - H(X1,Xa,... Xn). (1)
tuple (X1, Xo, ..., X)), where associated with any subsét i=1
of N, there is a joint entropyd (Xy) that is an element of The KL divergence is a natural metric for quantifying the
, WhereXy, = {X;|i € V} [35]. m distance between probability measures, and it can be @atain

The elements o represent the joint entropies between ain terms of the entropy as shown in (1). In particular, the
possible subsets of random variables possessed by agentélindivergence ofq (') from p (X) is equal to the differ-
N. The set of all entropic vector constitute thetropic region €nce between the amount of information possessed jointly
which we define as follows. by the agents, and the corresponding amount of information
Definition 2: Entropic region- the entropic regiols, ¢ possessed by the same agents if such information has no
RiN_l is the set of all entropic vectors of ord@, i.e. the redundancies. Throughoutthe paper, we H$&(_;) to denote
set of all possible entropic vectors that can correspontigo t/(X/{X:}), and KL&) = D(p|lq) to denote the KL
information possessed by agents. Thus, if a vectoH is divergence.
entropic, thenH € I'y; [35]. =
We denote by #H the set of entropic vectors havingB. Network formation game
H(Xy, X2, ... Xn) = Y0, H(X;), where# C T'y. The Agents benefit from gathering information by linking to

set of entropic vectors it is simply a hyperplane i’y other agents. The link formation strategy adopted by agent
that correspond to all entropic vectors with no informatiop s genoted by a tuple; = (¢:j)jeq1.... N/} € {0 V-1
g /g€t J ) ’

redundancies, which captures the aggregation models in [Jg% = 1 if agenti forms a link with agentj and g;; =
[17] [21]. ) _ 0 otherwise. We assume unilateral link formation where an
The entropic vector can be constructed as follows. Givefyent decides to form a link and solely bears the cost of link
the set of agents\V' and a corresponding set of randomqgmatiort. A strategy profileg is defined as the collection
variables X = {Xl,XQ,...,X{V}, we construct the set strategies of all agents, i.g = (g))Y, € G, where
V = P(X)/{¢}, where P(X) is the power set oft. If & js 5 finite space. When agentforms a link with agent
V = {v1,v,..,vpy}, then the entropic vector is given by; it incurs a cost ofc;;. We define the topology of the
= (H(X,,))), where [V| = 2V — 1, and H(X,,) network asT = {(i,j) € N x N|max{gi;,g;i} = 1}.
is the joint entropy between all random variables in tha|| connected agents exchange information bilaterallysti
set v;. For instance, if we have 3 agents in the networks an undirected graph. Information is shared between agent

then V = {{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}}, that are indirectly connected and agents do not benefit from
and the entropic vector is given by receiving multiple versions of the same information frore th
(H(X4),H(X2),H(X3),H(X1,2), H(X1,3), H(X23), same agent. Such model is suitable for networks with multi-

H(X172_,3))T, where H(X12) = H(X;,X2). We denote a hop relaying where information is forwarded from one node

single element in the entropic vector Byv) = H(X,). The to another [37]. We writei — j to indicate that agen

mutual information between the random variables possessedeachable by agenit either directly or indirectly. Define

by any two subset¥V andi/ of agents is given by [36] the set of agents thatform links with (set of neighbors) as

Ni(g) = {jlg:;; = 1}, and the set of agents reachable by agent
I(Xw; Xu) = H(Xw) + H(Xu) — H(Xw, Xu). i asRi(g) = {jli — j}. Throughout the paper, we adopt the

The total amount of information in the network is given byollowing definitions.

the joint entropy of the random variables of individual aggen Definition 3: Network component-a component is a set

H(X) = H(X1, Xs, X3, ..., Xn), Where H(X) € H. of agents such that — j,Vi,j € C, andi 4 j,Vi € C and
The mutual information between any two ageh'emdj Is 10other link formation models, such as link formation withabéral consent

given by I(X;; X;) = H(X;) — H(X;|X;), whereH (X;|X;)  can be used with an appropriate solution concept such awigeistability

is the conditional entropywhich represents the additionalas we discuss in Section ViII.



j ¢ C, i.e. two agents in two different components cannot Theorem 1: (The Existence of Nash Equilibriufm)pure
share information. m strategy NE always exists f@" = (M, G, u, H).
Definition 4: Minimally connected component-a compo-
nent is minimally connected if each agent C is connected
to each agenj € C via a unique path.m The social welfare of the network formation game is defined
Agents in a component share the information they possess artthe sum of agents’ individual utilities. For a strategyfie
consequently attain “informational” benefits that are oagd g, the social welfare is defined as
via a utility function. The utility function of agent is given

Proof See Appendix A. &

by U(g) = Z ui(g). 4)
we) = (HXum@) = > @ o VU
JEN(g) A strategy profileg is calledsocially optimalif it maximizes

. . the social welfare (achieves the social optimi) i.e.
where the functiory(.) represents the benefit of agerfrom ( P U

the information it gathers. We assume that the agents benefit U:= U(g) >U(g),vg € G. (5)

from acquiring information increases, while the marginahb . I .
. : X . \When there are multiple equilibria, we use two metrics to
efit decreases, with the increase of the amount of informatio

gathered. That is, in a sensor network setting, the ben%ﬁsess the equilibrium gfficiengy. First, we adopt Fhiee Of.
of a sensor node from collecting information saturates inarchy(PoA) to quantify the impact of the agents’ selfish

o ) .~ behavior on the social welfare. The PoA is defined as the
it is connected to a large number of sensors; thi(s) is

. . . : . . ratio between the social optimum and the lowest social welfa
assumed to be twice continuously differentiable, incregsi : o :
achieved at equilibrium, i.e.

and concave withf(0) = 0. Note that the total information

acquired byi in (2) can be written in terms of the conditional POA — U 6
entropies based on the chain rule as [36] O0A= ming-cq- U(g*)’ (6)
IRi(e)l . In addition, we analyze the impact of the agents selfish
H(X;ur,(g) = H(X:) + H(X;, |Xi,{Xj,.},.—1),  behavior on the information gathering process by defining a

—

k= novel metric that we term th&laximum Information Loss
whereR;(g) = {1, j2, .- jir: ()| }» Which implies that agents (MIL). The MIL is defined as the maximum difference be-
benefit by acquiring new information conditioned on its owiween the amount of information gathered by any agent at two
information and the information it acquires from other cean different equilibria as shown in (7). Unlike the PoA, the MIL
tions. Moreover, the aggregate information can be exp(bsgwantiﬁes the maximum information loss without considgrin
in terms of the mutual information as the link cost. In addition, while the PoA considers the wedfa

of all agents the MIL quantifies the highest information loss
H(Xiur,(g) = H(Xi) + H(Xr,(g) — 1(Xi; Xr,(g)), incurred by anagentin the worst case.

where the ternff (X, () represents the net information that
agenti acquires after connecting to the agentMjig), where  [Il. NASH EQUILIBRIUM ANALYSIS FORHOMOGENEOUS
the termI(X;; X, ()) captures the redundancy between the LINK COSTS
information of agent and the information it acquires from the |n this section, we assume that the cost of forming a link
setR;(g). Letu = (u1, uz, ..., un). Throughout the paper, we between any two agentsandj is given byc;; = ¢,Vi,j € N.
denote the network formation game 6Y' (M, G,u, H). We The goal of this section is to answer the following question:
assume a complete information scenario, where all agemés hgiven an entropic vectoﬁ, what are the network topologi&s
knowledge of the entropic vectﬁ, the strategy spacé and that can emerge at an NE of the gag& when the link costs

the utilities of all agentsa. are homogeneousWe start with the following motivating
example to identify different factors that affect the eiuih
C. Stability concept and network efficiency of .

The link formation game is formulated as a non-cooperative
simultaneous move game and we focus on the Nash Eqﬁi- Motivating example for two-agents interaction: doe®inf
librium (NE) as the solution concept. The NE is defined dgation redundancy matter?
follows Consider a simple network with only two agenf§ & 2)
. X Ne1 possessing random variablés and X,. We aim at charac-
ui(gi,8%i) = wi(gi g7:), Ve € {0, 1]7L Vi €N, (3) terizing the equilibria 072 = ({1,2}, G,u,ﬁ>. The strategy
where g¥ is the NE strategy of agent, and g*, is the of agent 1 is simply a linking decisiop2 € {0,1}, while
NE strategy profile of all users other thanA strict NE is for agent 2, the strategy ig.1 € {0,1}. We write G2 in
obtained by making the inequality in (3) strict. The gameormal form in Table I, where the row player is agent 2
can have multiple NE defined &* = {g*| Vu;(g},g*,) > and the column player is agent 1. Each cell displays the
ui(gi,g*,;), Vg € {0,1}¥~1}. In the following Theorem, we utilities of agents 1 and 2 respectively. Assume that the
show that there exists at least one network satisfying the NiEk cost is the same for both agents and equalctolt
conditions, i.e. G* # ¢. can be easily shown that the payoffs of agent 1 are given



MIL = max

< sup H(XiUXp,(g;)) — inf H(X; UXRi(gJE))> :
v gLeG”

()

g eG”

by vi(giz = 1,921 = 1) = wi(gi2 = 1,921 = 0) =
J(H(X1, X2)) — ¢, ui(giz = 0,921 = 1) = f (H(X1, X2)),
andui (g2 = 0,921 = 0) = f (H(X1)).

TABLE |: Two agent network formation game in normal form

g2 =1 g2 =0
g21 =1 [ ui(gi2 = 1,921 = 1), u1(giz = 0,921 = 1),
u2(gi2 = 1,921 = 1) uz(g12 = 0,921 = 1)
g21 =0 [ ui(g12 = 1,921 = 0), u1(giz2 = 0,921 = 0),
uz(g12 = 1,921 = 1) u2(g12 = 0,921 = 0)

Fig. 1 depicts the entropic regioly; of the two random
variables X; and X,. The entropic regiorl'; can be eas-

ily constructed by applying the three Shannon inequaliti%

H(X) < H(X1,X2), H(X) < H(X1,X5), and H(X;) +

cost threshold for which these two equilibria emerge insesa
This means that the characterization of the NE is sensitive t
the amount of information redundancy KX), even if we

fix the individual entropiedd (X;) and H (X2). Note that the
strategy profileg = (912 = 1,921 = 1) never emerges as an
NE since under such profile any of the two agents can break
the link formed and get a strictly higher utility.

B. Characterization of the NE fag™V

In this subsection, we present a generic characterization f
the NE of V.
Proposition 1:(Network minimality) In every NE, all net-
ork components are minimally connected.

H(X,) > H(X1, X5). The intersection of these three hyperProof See Appendix B.

planes inR? results in the polyhedral cone depicted in Fig. 1.
The distance between an entropic vector (depicted by a th'#ck

dot insidel5) and the corresponding entropic vector&rthe
light-colored hyperplane) with the sané(X;) and H(X>)
is equal to the KL divergence. If KX, X5) = 0, then the

entropic vector lies ofi, and the 2 agents have non-redunda

information.

H(X1)

Fig. 1: The entropic regiol's for 2 random variables.

The equilibria of this game depend on both the link cost

Proposition 1 implies that agents in each component will
orm the minimal number of links possible to gather the
maximum amount of information. This results from indirect
information sharing within each network component, i.e. if
rt1rt1ere exists a path to an agent then there is no extra benefit
in making a direct link to that agent since all the informatio
from that agent is already accessible.

Next, we characterize the connectivity of the network as a
function of the link cost in the following Lemma.

Lemma 1: (Network connectivity regions)
() If c<¢,withe = f(H(X))— f(min; H(X_;)), then,
at every NE (a) the network is minimally connected
(the network has one component) and (b) the amount
of information possessed by each agentH$X) (all
information is shared).
(i) If ¢ > ¢y, wherec, = f (H(X))— f(min; H(X;)), then
there is a unique NE which is strict. At this equilibrium,
the network is fully disconnected and the amount of
information possessed by each ageéns H(X;) (no
information is shared).

and the entropic vector, which corresponds to the amountfoof See Appendix C.m

information redundancy. For an arbitrary entropic vectoe,
game has two possible equilibrigt = (g12 = 1,921 = 0)
andg* = (g12 = 0,921 = 1) if ¢ < f(H(X1,X3)) —
f(max{H(X1), H(X3)}). Assume thatH (X;) > H(X>s).
Therefore, the network has a unique equilibrigin= (g12
0, g21 1) when f(H(X1,X2)) — f(H(X1)) < ¢
f(H(X1,X5)) — f(H(X2)), and a unique equilibriung*
(912 = 0,921 = 0) whenc > f(H(X1, X)) — f(H(X2)).

A

On the other hand, if we fix the link cost and the entropies
H(X,) and H(X5), we observe that the equilibria change by
changing the KL divergence. For instance, the network hase

two equilibriag* = (g12 = 1,921 = 0) andg* = (g12 =
0,921 = 1) when ¢ < f(H(Xl) + H(XQ) — KL(X)) —

f (max{H(X1),H(X32)}). Thus, as the entropic vector be-

comes closer to the hyperplafg i.e. KL(&X') decreases, the

From the above Lemma, we can see that three factors affect
the connectivity of a network: the link cost, the amount of
information possessed by each agent, and the redundancies
among the agents’ information. Based on the result of Lemma
1, we define three regions for the connectivity of the NE
networks based on the link cost as follows:

« Connected agents regioffCc): A network with an en-

tropic vectorﬁ has a single component when the link

cost isc < ¢.

Isolated agents regiof¥C;): The network hasV compo-

nents when the link cost is> ¢,.

« Mixed region(XC,): Depending on the entropic vector,
the network can have different number of components
ranging from 1 toN when the link cost is; < ¢ < ¢,.



While the connectivity regions describe the impact of link
cost on network topology, they also have informational sig-
nificance. For instance, the amount of information possksse
by any agent in thes region is H(X), while in the K;
region, no agent gathers any extra information other than its
own intrinsic informationH (X;). On the other hand, agents
in the ICy; region can end up gathering different amounts
of information as there are potentially multiple equildori
with different topologies and connectedness. In the falhgw

Link cost (c)

illustrative example, we demonstrate the impact of the link 4T K&NKE
cost and information redundancy on the network’s conniggtiv = T S = TR
regions. D(plla)

lllustrative example 1:To illustrate the impact of in- Fig. 2: Impact of link cost and information redundancy on the
formation redundancy and link cost on the NE networksietwork’s connectivity.
connectivity, we plot thelC,;, K¢, and K; regions in the
link cost-information redundancy plane for 2 different fam , }
ilies of entropic vectors. Assume that we have a 3-agefkan arbitrary CIN topology in NE.
CIN, with H(X;) > H(X»), and H(X,) = H(X3), and _Theorem 2:A network in which the components are pre-
that agent 1 has non-redundant information, i.e. the rand&i§ely {C1,Cz, ..,Cx} can be supported in a NE if and only
variable X, is independent orX, and X5. Thus, we have if the foIIovylng relat|0ns_h|ps between the cost and the ealu
KL(X) = I(X2;X3). We consider two different families ©f information are satisfied
of entropic vectors (i.e. two different assignments for thel) f(H(Xc,)) — min{f(H(Xc,/(3), fF(H(X;)} = «
values of individual agents’ entropies), the first is given b~ Vi € {1,2,..., K}, j € C;.
(HY(X,) = 5,H*(X,) = 4, HY(X3) = 4), whereas the 2) f(H(Xc,ue,)) — f(H(Xc,)) <¢ Vi, j€{1,2,...K}.
second is given.b.)(HQ()_(l) = 7,H2_(X2) = 4,H2(ng) = Proof See Appendix D. m
2). The connectivity regions associated with entropic vector _
family i is denoted bY(’CicJCfra’Cﬁw)- An exemplary utility From Theorem 2 we I§n0w that, at NE, the network is gen-
function of f(z) = log(1 + z) is used. In Fig. 2, we plot the erally composed of multiple components and each component
connectivity regions in the cost-KL divergence plane fae this minimally connected. Each component possesses a set of
2 families of entropic vectors. For both families of entopirandom variables that are jointly highly correlated to tbieg
vectors, thekCy, region shrinks as the information redundanc{@ndom variables possessed by other components. Condition
increases. That is, when agents share more informatiomm cd1) in Theorem 2 implies that each agent in a component
mon, the NE network connectivity becomes less “uncertaigither benefits from forming a link to some other agent in
since thekC,; region (which is the only region with potentiallythat component, or other agents benefit from linking to it,
multiple equilibria with different levels of connectivityin ~ While condition (2) implies that agents in different compats
this case will correspond to a limited range of link costdlave no incentives to connect to agents in other components.
Moreover, we note that for the first family of entropic vestor Note that due to indirect information sharing, many equitib
when agents 2 and 3 information are fully redundant (i.6an exist with highly variant topologies. In the subsequent
KL(X) = 4), we have a sharp threshold on the link cosffheorem, we refine the equilibrium notion used, and we
below which we have a connected network, and above whiégtermine the specific topologies emerging in a strict NE.
we have a fully disconnected network (i.e. tkig; region is  Theorem 3:A network is a strict NE if and only if the
empty). The intuition behind this is that since agents 2 af@llowing conditions are simultaneously satisfied
3 are fully “correlated”, they only benefit from connectingg t o All conditions stated in Theorem 2 are satisfied.
agent 1. Thus, agent 1 acts as the only information source, ane For each componerit of size M/ > 1, there exists a set
it is the benefit from getting agent’s 1 information that $ple ¢ C C with |¢|] > M — 1 such that
determines the cost at which the network would be connected .
or not. If agents 2 and 3 information are not redundant, they ¢={1F(H(Xe)) = F(H(Xep31)) > e
add value to the network, and the cost thresholds become des Each non-singleton component forms a core-sponsored
pendent on their information as well. However, for the secon  star topology, where the periphery agents belong to the
family of entropic vector, since there is more heterogsneit set(.
the amount of information possessed by the agents, no single .
. . . roof See Appendix Em
agents monopolizes the information at any value of the KL
divergence, thus th&,, region does not vanish for the second This Theorem states that for homogeneous link formation
vector for any value of KLY). ® costs, each network component of size comprises a single
While Lemma 1 focuses on the impact of link cost on thagent bearing the cost of getting connected\fo— 1 other
connectivity of the network, it does not provide a completagents. Such networks exhibitare-periphernstructure, i.e. a
characterization for an NE network. In the next Theorem, waingle agent at the core is connected to a sét/ef1 periphery
give the necessary and sufficient conditions for the emesjeragents. The conditions in Theorem 3 state that the periphery
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FH(X)) — f(min; H(X_;)) < ¢ < f(H(X)) — f(min; H(X;))

Fig. 3: The exemplary strict NE topologies for various linkst
ranges.

agents must bkigh entropyagents. This is because the benef

obtained by connecting to a periphery aggrat equilibrium
must exceed the cost, i.¢(H(Xc)) — f(H(Xc/;3)) > c

The intuition behind this condition is as follows. For al
agent to be a periphery agent, it must have both high entr
and low redundancy with the information possessed by ot

component members such that core agents have an incenfgeeds a certain threshold. Thus, for(Ri) = 4 the network

information redundancy reduces the PoA in #ig regior?.
While the social welfare captures the sum utilities, it dones
quantify the individual losses by agents. In the next cargll
we quantify the MIL for different connectivity regions.

Corollary 1: For a CIN with homogeneous link cost, the
MIL satisfies

MIL =0,V (H,c) € Ko UK,
and
MIL < H(X) - min H(X,), ¥ (ﬁ, c) € K.
Proof See Appendix G.m

Fig. X depicts the PoA for a 3-agent CIN with the first fam-

ily of entropic vectors defined in illustrative example 1cén

be seen that the PoA is greater than 1 only inkhg region.

In addition, the PoA decreases as the KL divergence incsease
since the value of information in the network decreases,
which means that the best equilibrium (connected network)
Achieves a smaller social welfare while the welfare of the
worst equilibrium (fully disconnected network) is indeplemt

of the KL divergence. The PoA also decreases as the link cost

dncreases. From Fig. X, we can see that wher{K). = 4, the
gﬁ@twork exhibit an emptyC,, region, i.e. the network changes

Lpm a connected to a fully disconnected network if the cost

to form a link with it. Fig. 3 depicts an exemplary topology® robust to efficiency loss for all values of link cost as ihg

of a CIN at strict NE for various link formation cost ranges.
In the next subsection, we study the efficiency of the

region is the only region where efficiency loss can occur. Fig
X depicts the MIL upper bound for the same network. It is also

NE networks and compare the self-organized CINS to thongerved that the MIL upper bound decreases monotonically

designed by a network planner.

C. Equilibrium efficiency analysis

The goal of this subsection is to investigate the equiliriu

with the increasing information redundancy.

IV. NASH EQUILIBRIUM ANALYSIS FORHETEROGENEOUS
LINK COSTS

In this section, we extend the analysis done in the previous

efficiency of GV with homogeneous link costs by quantifyingsection for the gamg?”, but assuming that the cost of link
the PoA and the MIL. We start by quantifying the PoA oformation is exclusively recipient-dependent, kg.= ¢;, V.

CINs in the following Lemma.

It is easy to show that Proposition 1 applies to the case of

Lemma 2:For a CIN with homogeneous link costs, théneterogeneous link costs, i.e. all network components that

Price-of-Anarchy satisfies
PoA=1,V (H,c) € Ko UK,

and
Nf(H(X))

S f(H(X))
Proof See Appendix F. ®

PoA <

,v(ﬁ,c) € K.

This Lemma shows that all NE networks in thé- and
K1 regions are socially optimal. While in thEs region
multiple equilibria exist, they all have the same socialfese
of Nf(H(X)) — (N — 1)c. However, in theK,; region

the NE networks may not be socially optimal, and we give

satisfy the NE conditions are minimally connected.

A. Characterization of the NE fogv

The following proposition relates the link costs to the

connectivity of the NE networks.

Proposition 2:

() If ¢; < fF(H(X)) — f(H(X_;)),Vi € N, then, at every
NE (a) the network is minimally connected (the network
has one component) and (b) the amount of information
possessed by each agentA§X) (all information is
shared).

(i) If f(H(X)) — f(min; H(X_;)) < mingea/4} Ck,

wherei = arg min; H(X_,), then there is a unique NE

an upper bound on the PoA. When all agents possess non- which is strict. At this equilibrium, the network is fU”y

redundant information, the POA is upper bounded Ny

whereas when agents possess redundant information, we

N f(max; H(X;))

POA < ¥ T(mH(x0)

hay

< N, which gives an indication that fixed, which means that the PoA decreases.

2This is intuitive since when information redundancy inses the socially

al welfare decreases, while the welfare of a discamgenetwork is



disconnected and the amount of information possessedrheorem 5:For a CIN with recipient-dependent link costs
by each agent is H(X;) (no information is shared). inthe X region and for fixed values of the individual agents’
entropies, the Price-of-Anarchy is a monotonically insieg

Proof This can be proven straightforwardly using the same  ion of the total information redundancy

arguments in the proof of Lemma 1m

This proposition shows that the network topology is highl)l:/)rOOf See Appendix . m

dependent on the heterogeneity of the agents as it depetids boThus, in stark contrast with the results obtained for the
on the heterogeneous costs and heterogeneous informétionhamogeneous cost CINs, Theorem 5 states that information
agents. Also the case when all NE networks are connected aedundancy induces costly anarchy for a networkCa re-
responds to théC- region in the homogeneous cost scenarigjon. This results from the heterogeneity of the link forimat
while the case when the NE is a fully disconnected netwodosts, which promotes anarchy in the network as agents are no
corresponds to th&; region. An appropriate definition for thelonger indifferent to the links they form as in the homogareo
connectivity regions for the heterogeneous cost case Engivcost scenario. As a matter of fact, some agents may end

by (9), (10), and (11). up forming “expensive” links and getting the same amount
In the following Theorem, we give a generic characterizaf information that they could have gathered by forming a
tion for this class of networks in NE. “cheaper” link. When information redundancy increases, th

Theorem 4:A network in which the components are prevalue of the information gathered by agents decreases, thus
cisely {C1,Cs, ...,Cx} can be supported in a NE if and onlyanarchy costs more and the PoA increases. Contrarily, in
if the following relationships between the cost and the galuhe K5, region, the upper bound on PoA decreases as the

of information are satisfied information redundancy increases in a similar manner to the
1) f(H(Xc,ue,)) — f(H(Xe,)) > mingec, cx, Vi,j € homogenous link costs scenario. Unlike the PoA, the MIL
{1,2,...,K}. upper bound is not sensitive to cost heterogeneity since it i
2) f(H(X¢,)) = min{f(H(Xc,/(;3)) + ¢, f(H(X;)) + only sensitive to informational losses. It can be easilysho
mingec, /(53 Ck}r Vi € {1,2,..., K}, j € C;. that the MIL in recipient-dependent CINs behaves in the same

way as in the homogeneous cost scenario. In the next section,
$ie tackle the problem of joint information production arkli
formation in CINSs.

Note that unlike the homogeneous cost scenario, we cannot
characterize and plot the connectivity versus a singleevalu V. JOINT INFORMATION PRODUCTION AND LINK
for link cost since the link cost is now a multidimensional FORMATION GAMES IN CINS

parameter. In the next subsection, we analyze the efficiency, ihe network formation game so far, we have assumed that
of the NE networks. agents in a CIN are gifted with an exogenously determined
entropic vector. Nevertheless, in many practical CINsnége
B. Equilibrium Efficiency Analysis decide the amount of information to “produce” given some
In this subsection, we quantify the impact of the link costgroduction cost, e.g. mobile users in cellular systems may
heterogeneity on the network efficiency. Unlike the casdef tdownload data for social-based services by themselvedegia t
homogeneous link costs, we show that information redundarggllular network infrastructure, or get this data oppoistin
induces costly anarchy in thé. region when the link costs cally from other users by establishing D2D links [11]. Ingthi
are recipient-dependent. In the following Lemma, we gdgntisection, we focus on a CIN where each agent jointly decides

Proof This can be proven following the same idea for th
proof of Theorem 2. m

the PoA for thelCc and K; regions. the amount of information to produce and the links to form.
Lemma 3:For a CIN with heterogeneous link costs, the PoA
satisfies A. Game formulation
1, Y (ﬁ, c) e Ky When agents choose what information to produce, a crucial
PoA= N f(H(X))—(N—1) ming ez v(ﬁ ) cK aspect that affects the network topology and information
NF(H(X))=37L, ¢j+ming e’ € ¢ production is how information aggregates. [31] assumes tha
and information aggregates simply by addition; this will be the
poa < _SHX) (ﬁ C) cK case only if the value of each additional piece of informatio
Zif\il f(H(X;)) ’ ’ M- is constant; thus, there are no complementarities nor redun

dancies. [20] assumes a specific functional form, Ehit-

Stiglitzfunction; this captures informational complementarities
Thus, unlike in the homogeneous cost scenario, not all Nfd redundancies in a very special way, i.e. agents appgecia

networks in theCo region are socially optimal. In fact, any“diversity of information sources” rather than the “divitys

NE network other than geriphery-sponsoredtar with the of the information”. In this paper, we consider two modes of

agent having the lowest link cost residing in the core, is naggregation that seem more natural and are suggested by the

socially optimal. How does information redundancy afféxt t formulation of information in terms of entropy.

PoA in such networks? The following Theorem answers this The information production decision taken by agents

guestion. in a CIN corresponds to the selection of a point inside the

Proof See Appendix H. m



Ke = {(ﬁ,c = (c1, co, ...,cN))
Kr= {(ﬁ,c = (c1, ¢, ...,CN))

ce Ry, H e Ty, ande; < f(H(X)) — fF(H(X_,)),i = arg min H(X_,) } )

c e RY, H e Ty, andf(H (X)) — f(min H(X_;)) < min ey, i = argmin H(X_)
J

J keN /{i}
(10)
Ky = {(ﬁ,c = (e, co, ...,CN)) ‘V (ﬁ,c) ¢ Ko UKz,c € R},ﬁ el'y } . (11)
entropic regiorl™},. Correlations between the random variables H(X1,X2)=H(X1) +H(X2)
of different agents are exogenously determined by external P

factors, e.g. geographical locations of sensors. To captur
information redundancy, we define an aggregation function
Fy : RY — R, that maps the entropies of a set of agents
to a joint entropy of these agents, iH.(X, Xo,...,Xy) =
Fy (H(X1),H(X2),...,H(Xy)). Clearly, the range of the
function F(.) should belong tol},. Throughout this sec-
tion, we study two different aggregation functions: thetfirs
is the one corresponding to independent random variables
H(X1,X,..,Xn) = SN H(X;), and the second is the
one corresponding to strongly correlated random variables
H(Xl, XQ, ceey XN) = Inax{H(Xl), H(XQ), ceey H(XN)}
Both aggregation functions provide insights on how informasjg 4. The aggregation function for independent randoniatates.
tion redundancy affects the information production decisi
at equilibrium. H(X1,X2) = maf H(X1), H(X2)}

In real-world networks, the aggregation function captures  H(xi,Xo) e
the informational relationships between different agents
CIN. For instance, in a sensor network where sensors are
deployed over a correlated random field [25], the infornmatio 15
production decision can be thought of as the precision at
which a sensor quantizes its measurements. Larger precisio
corresponds to larger value for the entropy. However, naenat
what precision a sensor uses, its measurements will be-corre %%
lated to that of another nearby sensor. Thus, the joint pytro
of the two sensors would be governed not only by the precision P
they decide, but also by the redundancy in their information Hxy
that is determined exogenously by their geographical ionat 20
and the nature of the physical process that they sense. The

aggregation function captures such exogenous factors, i@ 5 The aggregation function for strongly correlateshdam

based on it, the behavior of cognitive agents is determined*®"12P1es:
In the information production and link formation game,

the strategy of an agerntis denoted bys; = (H(X;),g:)-

o 15
H(X?)

' . i amount of information it produces._The set of NE profiles is
A strategy profile of the game is written as = {enoted byS*. Finally, we denote byd the maximum amount

(H(X1), H(X2), ..., H(Xx),g), and the strategy space$s f information that each agent can produce at equilibrium,
We denote the joint information production and link forneati 1, ,s 7 can be obtained by solving'(}_]) — k [31]. In the

game byG" = (N, S, u). Thus, different fronG™, agents do ¢oj10wing subsection, we revisit the motivating exampletus

not observe an entropic vector, but they decide the entropig, ,gents interaction in order to understand the cognitive
vector based on their knowledge of the aggregation functiogahavior of agents iG>,

The utility function of agent is given by

ui(s) = f (H(Xivri(g))) — kH(Xi) — [Ni(g)le,  (11) B, Motivating example for two-agents interaction: To progu

where k is the cost of producing one unit of information©r Not to produce?

|V;(g)] is the number of agents which agériorm links with, Consider a simple CIN with only two agent&v(= 2)
and H(X;ur,(g)) is determined by, given the production who are playing the gamég?. We aim at characterizing the
levels of all agents. We adopt the NE as a solution conceptuilibria of G2 = ({1,2}, S, u), and investigate the impact
Thus, a strategy profile* is an NE profile if no agent benefitsof F, k, and ¢ on the cognitive behavior of the agents.
from unilaterally forming a link, breaking a link, or alteg the Specifically, we are interested in identifying scenariogirich
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one agent may decide not to produce any information and fulformation. Thus, redundancy discourages informaticar-sh
rely on the other. Let us focus on agent 1. The utility funttioing between agents and reduces the number of agents produc-

of this agent is given by ing information when the link cost is low. When> kH, we
always have a disconnected network with all agents producin
ui(s) = f (H(Xwr,(g)) — FH(X1) = g12c, information for both aggregation functions. However, bt

amount of information in the network when the random
variables of both agents are independenfis\, X») = 2H,
while when the information of both agents are fully corre-
lated (i.e., H(X1,X2) = max{H(X1),H(X>2)}), we have
H(X1,X5) = H. In the next subsection, we generalize these

. results to theg game.
Note that the decision of agent 1 depends on the value OF &9

H(X1uR,(g)), Which is determined byF,. For 2 agents, o . o

the entropic vector iH — [H(X1), H(Xs), H(X1, X2)]. C. (_Zharacterlz(_’:\tlon of th_e NE fog" and asymptotic infor-
The function F;, maps the information production de-Mation production behavior

cisions H(X;) and H(X,) to H(X;,X:). Thus, we In this subsection, we characterize the NE for
have H(X,X,) = Fy(H(X,),H(X2)). In the fol- the GV game. We study the equilibria for the two
lowing, we focus on two different aggregation funcaggregation functionsF, (H(X1), H(Xs),...,H(Xk)) =
tions Fy (H(X1),H(X2)) = H(X1) + H(X) and ZfilH(Xi), and F} (H(X1),H(X>),....HXk)) =
Fy (H(X1),H(X2)) = max{H(X1), H(X2)}. max{H(X1), H(X3), ..., H(Xy)}. In the following Theorem,

1) Fy (H(X1),H(X2)) = H(X;) + H(X2): In this we obtain some properties of the equilibria@¥ when the
case, the information of agents 1 and 2 are not redundaggregation function ig!.
which means that the random variablés and X, are Theorem 6:For the aggregation functioR! we have:
independent. ThusFy, maps the production profile of both (1) If ¢ > kH, then there exists a unique equilibrium
agents to a point in the sét. This reduces to the aggregatiors* where the network is fully disconnected and every agent
function used in [31]. Fig. 4 plotg?,, which corresponds produces the individually optimal amount of information
to the upper surface of the convex cohg (or equivalently, (H*(X;) = H).
the hyperplaneX). Assume that the link cost is given by (2) If ¢ < kH, thens* is an equilibrium if and only if:
¢ > kH. In this case, we have a unique equilibrium in whiclgi) the CIN is minimally connected, (ii) the total amount of
gfy = g3 =0, and H*(X,) = H*(X2) = H. Thus, we have information is H(X) = H, and (iii) if any agenti forms
a fully disconnected network with both agents producing link in the network ¢, = 1,i,j € N), then the cost of
information. This means that when the link cost is verlnking should be less than the cost of producing the amount
high, every agent decides to produce information and not @b information obtained by forming a link < kH*(X_,).
get information from the other. Now assume that kH.
It is easy to show thayi,g5;, = 0, g7, = 1 or g5, = 1,
and H*(X;) + H*(X2) = H. Thus, when the link cost is Condition (1) results from indirect information sharing amgy
low, agents generally produce some of the information thepnnected agents. In addition, the network has a total -infor
need and get some other information from the other agentation of A since all agents perfectly share the information
However, one possible equilibrium has one agent producitigey produce, which results in condition (2). Finally, ciiosh
an amountHd of information with the other forming a link (3) says that the cost of linking should be less than the dost o
with it and not producing any information on its own. producing the amount of information obtained via linking. |

2) Fy (H(X1),H(X2)) = max{H(X;), H(X2)}: the following Theorem, we characterize the equilibrium whe
Agents may possess fully correlated information in whicthe aggregation function if™.
the joint entropy is always bounded by the entropy of one of Theorem 7:For the aggregation functioR? we have:
them. Fig. 5 plotsFy; which corresponds to the lower surface (1) If ¢ > kH, then there exists a unique equilibriush
of the convex cond’;. In this case, it is never beneficial forwhereg;; = O,_and H*(X;) = H,Vi,j €N.
any agent to form a link and produce a positive amount of (2) If ¢ < kH, thens* is an equilibrium if and only if: (i)
information simultaneously. Far > kH, we have a unique the CIN is minimally connected, (i) there exists exactlyeon
equilibrium comprising a fully disconnected network withagenti with H*(X;) = H, and H*(X _;) = 0, (iii) all agents
each agent producingl. For ¢ < kH, we have only one with zero information production form exactly one link.
agent producing positive amount of information in ever
equilibrium.

Thus, information redundancy influences the agents’ infor- Theorem 7 states that when agents’ information is strongly
mation production decisions. When the information corgairtorrelated, information production is monopolized by dlac
no redundancies, there exist many equilibria in which botine agent. That is, unlike the case of uncorrelated infaonat
agents produce positive amount of information when kH. agents do not distribute the production of information agion
However, forc < kH, when agents have strongly correlatednultiple agents who produce complementary information.
information, every equilibrium has only one agent prodgcinThus, we conclude that information redundancy can have

whereR,(g) = ¢ if g12 = go1 = 0, andR+(g) = 2 otherwise.
The best response of agent 1 is given by

ul(s*) — qlznﬁﬁl) (f (H(XluRl(g))) — /{H(Xl) — 9126) .

Proof See Appendix J.m

¥>roof See Appendix K. &
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significant impact on the information production behavior avhile for F}, we have

equilibrium. Z(s*)|
Several questions arise in networks where cognitive agents Nlim Sup

take joint information production and link formation deci- Tosres

sions: what is the fraction of agents producing informaton For both FZ, and F},, the total information in the network is

equilibrium in an asymptotically large network? What is the . =

asymptotic total amount of information in the network? e th M H(X1, Xo,0 Xn) = H. (17)

rest of this subsection, we address these questions anilieroyroof See Appendix M. m

a characterization for the asymptotic informational bedaof ) )

agents in a CIN. We investigate the asymptotic behavior of t ThiS corollary states that the law of the few introduced

basic quantities: the fraction of agents producing infdiara N [31] does not generally apply in the case of indirect

at equilibrium, and the total amount of information in thdnformation sharing. The applicability of the law of the few
network. depends on the link cost and information redundancy. For

Denote the set of agents producing information at equilil!ﬁStancej in & network with agents producing highly redumda
rium by Z(s*) = {i |i € N, and H*(X,) > 0}. [31] show information, the law of the few only applies when the link
that if agents produce non-redundant information and thaeref:OSt ISc < kH, whereas forc - kH all agents will Pe
no indirect information sharing, then in equilibrium, infioa- Information producers as shown in Fig. 6, where we display
tion is produced by only a small subset of agents, and tm_;e network topology at equilibrium with each agen labeled

fraction of information producers becomes vanishingly gmaY the amount of information it produces for> kH and
as the network size grows, i.Bmy SUPye e |Z(s%)] ¢ < kH. Moreover, there exists information aggregation
I — 00 s*eS* -

[31] calls this ‘the law of the fel In the next corgllary We functions in which the network at NE can have all the agents

characterize the fraction of information producers anddia belng mformatlor_w producers for any link cost, and prodoret
amount of information in the network iG> when the link 'S N longer dominated by a small setmibagents. Thus, even
cost is large for low link costs, the applicability of the law of the few is

Corollary 2: In the G¥ game, when: > kH, we have still gngrned by.the amount of information redundancyh t
agents’ information are strongly correlated, the law of fing
. |Z(sM)] applies and information production is dominated by a small
ngnoo N L (12) fraction of agents in every equilibrium fer< kH. In contrast,
when the agents produce non-redundant information, the law
of the few fails even for low link costs, i.e: < kH. Fig 7
depicts the equilibria for an 8-agent network with< kH
lim H(X1, Xa,..., Xy) = H, (13) when the aggregation function B} and F3,. It is observed
N—oo that the law of the few applies when the aggregation function
is F, but fails when the aggregation function#3, .
Note that while we focused on the extreme cases of informa-

—1. (16)

for both F}, and F;,. For I, the total amount of information
in the network inG* is given by

while for F}, we have

lim H(X1,Xs,..,Xy) = cc. (14) tion redundancy by considering the aggregation functiBps
N—oo and F}, the analysis can be extended to other generic aggre-
Proof See Appendix L. m gation functions. Such generic aggregation functions khioe

) . ) derived from a real-world network setting (e.g. geograghic
Corollary 2 says that when the link cost is very high, thgeployment of sensor networks), and an interesting problem
network is fully disconnected and every agent produces tigcomes studying the information production behavior of
information it needs. Thus, when the network is asympt¥ica gqents under these aggregation functions. However, itfis su
large, every agent is an information producer no matter whdent to only considef”, and F2 to show that the celebrated

the amount of information redundancy is. The number @ of the few does not generally hold whenever information
agents producing information is alwayé. While the number redundancy is considered.

of information producers does not depend Bp, it is clear

that the total amount of information in the network depends VI. FUTURE WORK AND EXTENSIONS
on the amount of redundancy. When the agents’ information . . .
are strongly correlated, the total amount of information ig. In this section, we propose some potential future research

always bounded byZ. On the other hand, when agents hav irections _that capltall_ze on our mod(_al. .
- Dynamic games with incomplete information:we have

uncorrelated information, the total amount of informatimn considered a one-shot complete information aame in which al
asymptotically large network is unbounded. In the next koro P 9

lary, we study the case the information production behavi{ﬁlfgents ha(\j/el kn?wledg(_adof thz entrqp|c vector._tﬁ\r) extenlsl?n
when the link cost is low. 0 our model is to consider a dynamic game with incomplete

Corollary 3: In the G¥ game, when: < kT, the fraction information [23], in which agent$éearn the entropic vector

of information producers foF is given by over time by |r_1teract_|ng with other agents. In this Casenage
would pay a linkmaintenancecost to keep connected to in-

|Z(s*)] formative agents, and would break links with non-informeti

Nhjnoo nglg* N 0, (15)  ones. In such model, the network can be characterized irsterm
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fmmmmmmmmm—mm———-— fmmmmmmmmmmmm e — o VII. CONCLUSIONS

1
° ' In this work, we present a first model for the endogenous
c ! formation of networks by cognitive agents who aim at gath-
' ering and producing information. Using Nash Equilibrium as
a ' a solution concept, we formulated a non-cooperative nétwor
° ' formation game where agents get informational benefits by
' forming costly links with each other. We show that the
e ' information possessed by the cognitive agents affects the
________________ P e e oo eee i network topology, efficiency, and information productioe-b
> kH c< kH havior. We show the impact of information redundancy on the
topologies of NE networks, and its impact on the network
efficiency in terms of the Price-of-Anarchy and Maximum
Information Loss. Finally, we consider the asymptotic hatia
of a network where each agent both produces information
and forms links with other agents. For such networks, we
study the impact of information redundancy on the number
of agents producing information at equilibrium. We showttha
e TR T the validity of the law of few depends on how information

Fig. 6: Connectivity and information production behaviara net-
work with strongly correlated information sources.

players in which each player can choose from finitely many
pure strategies has at least one Nash equilibrium [38]. hgsu

1 1
: @ e ° ! aggregates.
1 1 1 1
! 1! 1
: @ @ e ° ° ! APPENDIX A
: @ i e : PROOF OFTHEOREM 1
E @ @ : E a a : From Nash’s Existence Theoremve know that if we allow
' o , mixed strategies, then every game with a finite number of
: i !
1 1 1 1
1 1

H(X0, X, X) = SV, H(X) H(Xy, X, Xy) = that agent adopts a mixed strateg; = (pi1, pi2, ..., Pin),
meax{H(X,), H(Xz), ... H(Xn)} where p;; is the probability that agent forms a link with
Law of the few does not apply Law of the few applies agentj, andp;; = 0,Vi € N. The utility of agent: in this
case is obtained by averaging over all possible networks as
Fig. 7: Exemplary equilibria for different aggregation &tions. The follows
law of the few does not apply when the agents’ information as 2N=1 1 N-1
redundancies. wi(A;) = Z w; f (H(X; UXa,)) — Z pac, (A1)
J=1 =1

where«; is an element of the power set &f/{i}, andw;

. . is th bability of th f twork t
of the probability of emergence of certain topology at NE| anIS © Probabiiity of fhe emergence of a network componen

) comprising agents in the sdt U«;} based on the mixed
the time needed for the network to converge to aSteady'Stngategies. For instance, in a 2 agent network, the utility

topology. ¢ - arice
. . . . unction of agent 1 is given b

2- Incorporating capacity-constrained links: we have as- g ¢ y

sumed perfect indirect information sharing among agemts. | u(Aq) =

some settings, such as multi-hop relaying networks, infarm

tion sharing can be lossy and the links between agents can(P12(1 = p21) + p21(1 = pr2) + prapa) f (H (X1, Xz))

be capacity-constrained. While lossy be_nefit flow has been +(1 = p12)(1 = po1) f (H(X1)) — piac.

modeled before by assuming that benefits are discounted at

each links [16], in our model lossy information sharing can bn this case,w; = pi2(1 — p21) + p21(1 — p12) + p12p21
modeled using an information-theoretic approach by tngatiand w2 = (1 — p12)(1 — p21). Let the NE strategy profile
links as erroneous channels. Incorporating these facies ibe A* = (A7, A3, ..., AY), where A = (pjy,pja, -, Pin)-
our model can lead to interesting results on both the netwafecording to (3), the following condition olA* needs to be
topology at NE and information production behavior. satisfied

3- N.ew so_lution concepts:the network formatiqn game WAL A > ug(Ay, A7) VA,; € 0,11V, Vi e N. (A2)
considered in this paper adopts the NE as a solution concept.

However, different networks and applications can be bettiow we show that for any agentthe NE strategy\; needs
suited by different solution concepts. For instance, in ynamo be a pure strategy for condition (A.2) to be satisfied. We
applications, such as D2D communications, establishirgka | focus on agent with a NE strategyA! = (p};, pls, -, Pin ),
requires a mutual consent among agents. In this ga@seyise wherep;; € [0, 1]. Now assume we induce a perturbatioto
stability can be used as a solution concept instead of the Nlie mixed strategy of agemntby modifying p};. to p}, + € for
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a certaink, wheree € [—pf,,1 — pj,]. We call this modified N, i.e. the marginal benefit from connecting to that agent
strategyA’ (e). Note that we can write any; in (A.1) in the is always more than the link cost irrespective to the current
form of w; = w;p};, +w;(1 —pj,). This results in a perturbed connections of the agent forming the link. Thus, we must

utility u;(A;(e)) as follows have c < max; f(H (X)) — f(H(X_;)). Hence, part (i) of
GN-1_ the Lemma follows.
wi(AX(e)) = Z (ﬁ)j(pfk yof (H(Xl- UXaj)) If no agent have an incentive to form any link, then the

network is fully disconnected. From the monotonicity prndpe
of the entropy, we know that if agerithas no incentive to
B . . . connect to a se¥ of agents, then it has no incentive to connect
+;(1 — e = piy) f (H(X; U Xa,))) = (Pjp+e)e— Z Put  to a setid if U C V. Thus, if agenti has no incentive to
l:”#k(A 3) connect to the setV'/{i} via a single link, then it has no
' incentive to form any link in the network. This occurs if and
onlyif ¢ > f(H(X))— f(H(X;)). If this condition is satisfied
u; (Al (€)) = for all agents, then the network is indeed disconnected, and
part (ii) of the Lemma follows.

Jj=1

N-1

which can be rearranged as

2N-1_

ui(AY) + ¢ (W —w;) f (H(X: UXy,)) —cf.
; ’ ’ ( ) APPENDIXD

N1 PROOF OFTHEOREM 2

Leto =37, (@ —@;)f (H(X; U Xq,)) —c. ltcanbe  Eor the network to be in NE, no agent should have an
easily shown thaw >0if § >0, andw < 0 incentive to unilaterally deviate by forming a new link or
otherwise. Thus, i > 0, agent can always increase its utility breaking an existing link. We focus on an arbitrary network
by increasinge and settinge = 1 — p,. (and thus playing a component at NE, say componeht Inside this component,
pure strategy wittp;;, = 1), and if § < 0, agenti can always each agent should either have an incentive to form at least
increase its utility by setting = —p7, (and thus playing a pure one link, or other agents should have an incentive to connect
strategy withp;, = 0), which contradicts withA; being a NE to it. Otherwise, this agent can get disconnected (by having
strategy. Thus, for alk € N/{i}, agenti needs to select a this agent breaking a link or other agents break their links
pure strategyp’, € {0,1} for A’ to be a best response towith that agent) from the component while strictly increasi
A*, regardless of the strategies of other agents, i.e. non-pitee utility or the utility of other agents in the component.
strategies are always dominated by a pure strategy. DueTteus, we must have eithef(H(Xc,)) — f(H(X;)) > ¢
symmetry, this applies to all agentsM. Therefore, it follows or f(H(X¢,)) — f(H(Xc,/(;3)) = c for all agentsj in C;.

1

that a pure strategy NE always exists. This should apply to all components in the network. Hence,
condition (1) follows.
APPENDIX B Now focus on the interaction between different components
PROOF OFPROPOSITION1 of the network. If any agent in componefit benefits from

If the componen€ is not minimally connected, then it has aforming a link to any agent in componety, then the network
least one cycle as there exist agensmd; that are connected iS Not NE since in this case an agentincan strictly increase
via (at least) two pathg;;, and p;;2, such that any of the its utility by unilateral deviation. Hence, we should have
two paths is not a subset of the other. For such component/&f (Xc.uc;)) — f(H(Xc,)) < ¢ for any two components
NE, assume that agentis on pathp,;; and agents is on in the network. Thus, condition (2) follows.
pathp;; ». Note that all the agents receive the same amount of

total informationH (C), and we know that there indeed exists APPENDIXE
links: g7, (or g;,) andg;,, (or g;,,), where agent € p;;; and PROOF OFTHEOREM 3
agenty < pi;2. Now focus on any link of them, say,, = 1. \when the three conditions in Theorem 3 are satisfied, then

We observe that agent can break this link and still receive the network is a strict NE since the action of each agent is
the same benefit by gathering the same amount of informatigictly better than any other action, i.e. core agents ithea
from pathp;; 1, thus receiving a strictly higher utility function component strictly better off when sponsoring the peripher

as it will not pay the cost for the link with agent which agents; and all the periphery agents strictly better off whe
contradicts with the fact that" is an NE. Thus, a single pathihey do not form any links. Thus, no agent is indifferent to

exists between any two agents. multiple actions, which implies that the NE is strict. Now we
prove the converse by showing that if the network is a strict
APPENDIXC NE, the 3 conditions in Theorem 3 must be satisfied. Under
PROOF OFLEMMA 1 strict NE, a non-singleton componefthas two agents and

If there exists an agent in which other agents have an incgnsuch thatg;; = 1. Now assume thay;, = 1 for some
tive to connect to even if they possess all other informati@gentk < C. It is clear thatk can achieve the same utility by
in the network, then the network is indeed connected at adgleting its link withj and connecting ta. This contradicts
equilibrium. This is satisfied if and only if the linking costwith the fact thatg™ is a strict NE. Thusgj; = 0. Using
satisfiesc < f(H(X)) — f(H(X_;)) for some agent in a similar argument, it can be shown thgt = 0. Thus, we



14

conclude thatg, = 1. This is true for all agents € C, with equality whenf(H(X;, X;)) — f(H(X;)) < ¢,¥i,j €
which implies that a single core agenforms links with all A/, and f(H(X)) — f(H(X;)) > ¢, Vi (i.e., agents do
other agents irC. Therefore, the core agentshould strictly not get immediate benefit from forming links to individual
increase its utility for each of th&/ — 1 links it forms. The agents, thus a fully disconnected network is an NE since not
marginal utility of agenti from forming a link with agentj forming a link is a best response for all agents in a fully
given thati is connected to all other agents éhis given by disconnected network). On the other hand, the social weelfar
f(H(X¢)) — f(H(Xc/gj1)) — c. This should be positive for of the socially optimal network in théC,; region is upper

all agents;j in ¢, where( is the set of the\/ — 1 periphery bounded byN f(H (X)), i.e. the social welfare is always
agents, because otherwise core ageran break some of the strictly less than the sum benefit of all agents when they
links in the component. Thus, for agehte C to be a core possess all the information in the network. Thus, it follows

agent, and for agents € C to reside in the periphery, we that PoA< %

must havef (H (X¢)) — f(H(Xc/q;y)) > ¢, Vj # i. Note that =1 '

conditions (1) and (2) in Theor_em 2 shou_lo_l _also be sa_tis_fied APPENDIX G

for the network to be an NE, while the feasibility of organigi PROOF OFCOROLLARY 1

each component as a core-sponsored star guarantees that tpe he K . K hat all NE K i
network is at strict NE. Thus, strict NE exists if there exist nthe Ao region, we know that a .networ S aré con
an NE with the set having a cardinality that is not less thar€Cted. Thusiupg. ¢ - H(X;UXR,(g;)) = infg; cc- H (XU
M —1 for all components, i.e. a single core agent can spons)(g?“(gii)) = H(X), and MIL = 0. Slmllarly, in thek'; region,
each component. we havesupg.cg- H(X; U Xg,(gr)) = infgrec H(X; U
XRl(g;;)) = min; H(Xl), thus MIL = 0. In the K
region, the MIL is maximized if both a connected and
APPENDIXF a fully disconnected network are equilibria. In this case,
PROOF OFLEMMA 2 SUpg- - H(X; U X, (g)) = H(X), andinfg: e H(X; U
We know that in thefCs region, all the NE networks areXRi(“g;)) = min; H(X;). Thus, MIL < H(X)—min; H(X;),
minimally connected. For a minimally connected, each agenith equality whenc > FH(X:, X)) — f(H(X3)),Vi,5 €

has an aggregate benefit pf// (X)) and the total number of A/, andc < fH(X)) - f(H(X;)),Vi €N.
links is N —1 (total cost is(N — 1)c), thus the social welfare

of any minimally connected network with strategy profjes APPENDIXH
given by PROOF OFLEMMA 3

Ulg) = NF(H(X)) = (N = 1)e For a connected network in thié- region, the utility of
In the following we show that this is indeed the maximunagenti is given by u;(g*) = f(H(X)) — 3 ,.cn;(gr) Cm-
social welfare in théCc region, which means that the sociallyThe social welfare is given by/(g*) = >, \ ui(g*). Since
optimal network in this region is minimally connected. Noteve know from Proposition 1 that the network is minimally
that the maximum sum benefits for all agents in the netwodonnected at equilibrium, then it has exacf\y — 1 links.
is Nf(H(X)), i.e. all agents share all information, thus anfherefore, we havé/(g*) = N f(H(X)) — >_,c ;7 ¢j, Where
connected network maximizes the sum benefit. Recall thatjhis the set of links in the network designated by the index of
the K¢ region, we have: < f (H(X)) — f(min; H(X_;)). link recipient, and 7| = N — 1. The social optimal topology
Thus, for any (disconnected) network with less thdn— 1 is the connected network with minimum total link costs, whic
links, the social welfare can always be increased by addingrresponds to a periphery-sponsored star with the dgent
a set of links that makes the network (minimally) connectedrgmin; c¢; residing in the core of the star. The social welfare
On the other hand, we know from the pigeonhole principlef such topology id/(g*) = N f(H (X)) — (N — 1) min; ¢;.
that any network with more thav — 1 has cycles, thus Note that this is also an NE equilibrium as each agent does not
the social welfare can always be increased by breaking a benefit from breaking its link with the core agent and linkiag
of links such that all cycles are eliminated while keepingny other periphery agents. Next, we identify the equilibri
the network minimally connected. Therefore, we concludeith the worst social welfare. Assume that the link costs are
that the social optimal network in thEs region is mini- arranged ascendingly ag < co < c3 < ... < eny-1 < cy. We
mally connected, and/ = Nf(H (X)) — (N — 1)c. Since know that the network is minimally connected, thus totaltsos
the social welfare of any NE network ifl¢< is given by of link formation is given byzjej ¢;. What are the elements
U(g*) = Nf(H(X)) — (N — 1)¢, then every NE network of the set such that the total cost is maximized and the
is socially optimal and we have PoA 1. Next, we focus network is at equilibrium? Note that for the socially optima
on the K; region. In this region, any connection will resultprofile, 7 = {1,1,1,...,1}, with a cardinality of N — 1. Now
a negative payoff for any agent who forms a link sincassume a line network witf ;. ; = 1,V1 <i < N. Thus, we
¢ > f(H(X)) — f(min; H(X;)). Thus, the social optimal is havegi, = ¢33 = ... = gnv_; v = 1. Thus,J7 = {2,3,..., N—
a fully disconnected network, which is also the unique ¢gtri 1, N'}. It can be easily shown that this line network is stable,
NE, and the PoA = 1 in th&; region. For theCy, region, we since no agentcan break its link with agerit+-1 and increase
compute an upper bound on the PoA. The lowest social welfarg utility. For instance, ifi breaks its link withi + 1, it must
of any equilibrium network in théC; region is lower bounded connect to any agent > i + 1 to receive the same amount
by vazl fH(X;)), i.e.infgrca- U(g*) > vazl f(H(X;)), ofinformation but at a higher cost. It can be also shown that
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this is the worst equilibrium. This is because for a conréct@art (ii) is directly concluded. Finally, i§ is an equilibrium
network, only one agent connects to the agem¥ with the and g;; = 1, then this should be optimal for agefit thus
highest link cost, and others can connectitwhich has a ¢ < kH*(X_;),ViN.

lower link cost) and get the information oV via indirect

sharing. The same applies to agevit— 1, where one agent APPENDIXK

connects to it, and others share information by connecting t PROOF OFTHEOREM 7

that agent. Thus, to maximize the total link cost and mamtai The case of > kH is exactly the same as in Theorem 6

equilibrium, only one link is formed with each agent excepind the proof will be similar to that in Appendix J. Now focus
the one with the minimum link cost. Thus, the social welfargp the case of: < kf. We show that ifs satisfies (i), (ii),

in this case isSNH(X) — }2;_, ¢; + min, ¢z, and the POA anq (jii), thens is an NE. Part (i) follows from Proposition 1

formula follows. _ . and the proof of Theorem 6. Now assume that only one agent
For theK'; and Ky, regions, the proof is the same as thaf, the network produce# information and all others do not
of Lemma 2. produce any information and only form links in the network.
In this case, the agent producing information does not bette
APPENDIXI off by producing any amount of information other thah In
PROOF OFTHEOREMS addition, the agents forming links do not better off by fomgi

In thj\g K¢ re iEn, the PoA can be written as PoA new links or breaking their links and producing information
NJQuimy HX) B (X) - (N-Dmink et v can pe easily Sincec < kH. Thus, part (ii) follows. Since there af¥ — 1
NSy HX) =KL (4)) =300, ¢; +ming e agents forming links, then the network is connected, and no

ts:(:(v[rg)t(f;ailfKtre I\fvl;lgrl;/e&gfnfel(\(anzﬁgr?hrg \Igfh)]ez l(;l_tlhe agent benefits from forming an extra link in the network, vihic
o 2 concludes part (iii).

individual agents’ entropies are fixed, then the PoA inasas _—
N _(N—1)min, ¢ We now prove the converse. Lebe an equilibrium. Due to
ie. we have YL HOX)-KLi(¥)-(N-Dminker P a

NF(CN, H(X:)-KL1) =N, ¢;+miny indirect information sharing, part (i) follow straightfwardly.
NFGoE H(X) =KL 3)— (N—1) miny e Assume that we have two agents with*(X;) > H*(X;) >
NI, HX)-KL2) =32 ¢ +ming e 0, then agenyj can always better off by setting*(X;) = 0

since the aggregate informationo&ndj is H*(X;). There-
fore, the agent with maximum information production has to
) - - setH*(X;) = H, and all others do not produce information
We start with the case af > kH. Assume that there existsgnd form a link in the network since< kH. Finally, sinces

a link in g* with g7 = 1. In this case, agent can always s an equilibrium, agents act optimally (their actions aestb
better off by breaking this link and producing an amoiiht responses to the actions of others), thus each agent frosethe
of information. This applies to any agentin . Thus, we of N1 non-producers forms exactly one link in the network.
have a unique equilibrium witly?; = 0, and H*(X;) = H,

Vi, j € N. - _ APPENDIX L
Now focus on the case of < kH. We show that ifs PROOF OFCOROLLARY 2

§at|sf|es (), (i), and (i), thers is an NE. The minimal . _From Theorem 6, we know that when> kH, then we
ity of each network component can be easily proved usin , R ) . :
y .~ Itave a unique equilibriure* for both £}, and £}, in which
Proposition 1. Now we show that the connected network is ap L N -
: = 0,Vi,j € N, and H*(X;) = H. Thus, we have
NE. In a disconnected network, an agent has to produce ‘df ) Z(s™)] , .
amountA of information, which is not optimal since< k. 117 (Xi) > 0,Vi € N, and == = 1, which applies when

Thus, no agent in a connected network has incentive to brdd number of agents in the CIN grows to infinity, hence (12)

its link and part (i) follows. Since the network is minimally_fouows' Next, we focus on the total amount of information

connected, then each agent obtains all the total amount'dfthe network. ForF, we have H (X1, Xs, ..., Xn) =
information H(X). If H(X) = H, then no agent in the Max{#, H, ... H} = H, and (13) follows. Finally, forF%,,
component has incentive to alter their information proguct W& have H(Xy, Xs,... Xn) = >, H = NH, and (14)
profile because all agents benefit only from obtaining dRIIOWS-

amountH of information. Thus, part (i) is proved. Finally, if

APPENDIXJ
PROOF OFTHEOREM 6

c < kH*(X_;), Vi, then no agent in the network has incentive APPENDIXM
to break the link it forms and produce an amou#it(X_;) PROOF OFCOROLLARY 3
of information on its own. Thus; is a Nash equilibrium. We start by deriving (15). From Theorem 7, we know that

We now prove the converse. Let be an equilibrium. for F},, every equilibrium has only one information producer.
Assume that the network has two compone@itsand C;. When the number of agents grows to infinity, we will still
The total amount of information in each component mustave one information producer adﬂ(]f,—*)‘ = 0. In order to
be H at equilibrium, thus, any agent with positive amounprove (16), one needs to find one network in equilibrium
of information production in one component will better offor £}, in which, for arbitrary N, we haveN information
by not producing any information and forming a link toproducers. Consider this network fof agents. Assume that
the other component. Thus, the network is connected in NEE(X;) = %,Vz’ € N, and the network has a single component
and part (i) follows. Due to indirect information sharingwhich is periphery-sponsored star network. For this nefkwor



we have|Z(s)| = N. We want to show that this network is an21]
NE by showing that every agents strategy is best response

to all others. It is easy to see that since< kH, each

periphery agent has no incentive to break its link with the
core since=tkH > ¢ when N is asymptotically large. [23]
Moreover, no agent has incentive to alter its information
production profile since the total information in the netlvis

ZZN:I & = H. Thus,s is an NE. Since this applies to ady,

(16) follows. Finally, since the network is always connelcte[25]

in any equilibrium, then (17) directly follows.
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