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Abstract—In many scenarios, networks emerge endogenously
as cognitive agents establish links in order to exchange informa-
tion. Network formation has been widely studied in economics,
but only on the basis of simplistic models that assume that the
value of each additional piece of information is constant. In this
paper we present a first model and associated analysis for net-
work formation under the much more realistic assumption that
the value of each additional piece of information depends onthe
type of that piece of information and on the information already
possessed: information may be complementary or redundant.We
model the formation of a network as a non-cooperative game in
which the actions are the formation of links and the benefit of
forming a link is the value of the information exchanged minus
the cost of forming the link. We characterize the topologies
of the networks emerging at a Nash equilibrium (NE) of this
game and compare the efficiency of equilibrium networks with
the efficiency of centrally designed networks. To quantify the
impact of information redundancy and linking cost on social
information loss, we provide estimates for the Price of Anarchy
(PoA); to quantify the impact on individual information los s we
introduce and provide estimates for a measure we call Maximum
Information Loss (MIL). Finally, we consider the setting in which
agents are not endowed with information, but must produce it.
We show that the validity of the well-known “law of the few”
depends on how information aggregates; in particular, the “law
of the few” fails when information displays complementarities.

Index Terms—Cognitive networking, cognitive agents, infor-
mation networks, network formation, self-organizing networks.

I. I NTRODUCTION

T HE widespread usage of mobile devices, together with
the emergence of social-based services and applications,

have inspired novel and self-organized networking paradigms
that capitalize on the ability of mobile devices to connect
and share information in an ad-hoc fashion. Contemporary
networks, where users produce and exchange information,
are “socio-technological” in nature; users do not necessarily
exploit an exogenously designed network infrastructure, but
rather form an endogenous network driven by the individual
users’ quest for information. In this paper, we present a
novel network formation model for information exchange
over endogenously formed networks. Albeit being abstract,
our model provides insights into understanding and designing
many emerging and envisioned classes of applications.

The authors are with the Department of Electrical Engineering, University
of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA (e-mail:
ahmedmalaa@ucla.edu, ahujak@ucla.edu, mihaela@ee.ucla.edu). This work
was funded by the Office of Naval Research (ONR).

A. Motivation

Many emerging networks are formed endogenously by self-
interested agents, who take information sharing and production
actions. Examples of such networks are: dynamic spectrum
management by wireless users [1], social networks overlaid
on technological networks [2] [3], device-to-device (D2D)
communications, vehicular networks [5], Internet-of-Things
(IoT) [6], and smart sensor networks [7]. In many of these
networks, users connect to each other in order to exchange
and gather information. For instance, secondary users ex-
change information about spectrum occupancy in cognitive
radio networks [8] [9], autonomous rescue robots exchange
environmental sensory information [6] [10], D2D users engage
in short range communications in order to exchange data
content of Social Networks Services (SNSs) [11], and self-
interested users take capacity allocation decisions for multicast
streaming over networks [12]. Users in such networks possess
two key features: they areopportunistic, in the sense that
they exploit their opportunistic encounter with other mobile
users to establish short-range communication links with them,
and they arecognitive, in the sense that they need to reason
about establishing costly communication links with others
given the value of information they can get via these links.
Information in this context is an abstraction for any class
of data that users gather and process, such as multi-modal
content, geographical information, event-related information,
cached content, behavioral data, and personal sensory infor-
mation [13]-[15]. For instance, mobile users who coexist in
close proximity can share information about traffic congestion
and road accidents which helps them update their routes via
applications such as Waze and Google maps, and D2D users
can gather offloaded traffic of context-aware applications from
other users by forming short-range communications links [11].
Moreover, information can also be produced by the agents
themselves in the form of user-generated content, such as the
upload and creation of blogs, videos and photos on online
social networks (OSN), the purchase of content from service
providers in peer-to-peer networks, updating traffic informa-
tion via an application such as Waze, etc. Thus, users in such
networks can jointly decide how much information should they
produce, and how much information should they opportunisti-
cally acquire from other users. As it is whenever users are self-
interested, a game-theoretic framework is naturally deployed
to study which networks will emerge at equilibrium and what
are their characteristics. Network formation has been studied
in the economics, electrical engineering and computer science
literature. In the following subsection, we briefly review these
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related works on endogenous network formation.

B. Related Works

Strategic network formation was first studied in the eco-
nomics literature. Some of this literature [16]-[21] asks which
networks are stable (according to some criteria) and hence
more likely to persist and be observed. A (smaller) literature
asks which networks emerge as the result of some specific
dynamic process [22] [23]. In all these works, simplistic
benefit functions are used: the value of each additional “good”
exchanged is constant [16]-[19]. However, in realistic settings,
information possessed by different agents can be redundant
or complementary. For instance, secondary users in a multi-
band cognitive radio system may be interested in gathering
information about spectrum occupancy for bands that they do
not sense by communicating with other users who do sense
these bands [8]; sensors deployed over a correlated random
field [24]-[28] may be interested in gathering complementary
measurements about some set of physical processes of interest;
and mobile users who exchange offloaded traffic of SNSs
and context-aware applications are only interested in gathering
non-redundant traffic and data updates.

C. Summary of contributions

This paper introduces a new model for strategic network
formation where autonomous cognitive agents exchange valu-
able information. We refer to such networks ascognitive
information networks(CIN); networks in which agents self-
organize to gather/exchange and produce information abouta
state of the world. This state of the world can be spectrum
occupancy information and primary user activity in a multi-
band cognitive radio system, location information provided by
anchors of wireless networks, a set of messages sent by infor-
mation sources in a multicast network, or blogs, videos, and
data exchanged by users of social-physical networks. Agents
are cognitive since theyperceive information possessed by
other agents,reasonabout which links to establish, how much
information to produce, and then take information production
and link formationdecisionswhich result in an endogenously-
formed network topology. We assume that agents in a CIN
possess different amounts of information, benefit only from
gathering non-redundant information, and they form links with
each other in order to gather information and maximize their
knowledgeof the state of the world.

Since the information possessed by different agents may
be correlated (redundant), and link formation is costly, agents
should cognitively selectwhich agents to link with. We for-
mulate this problem as anon-cooperative network formation
game. Using information-theoretic measures for the value of
the information possessed by each agent, we aim at char-
acterizing the emerging stable network topologies at Nash
Equilibrium (NE). Throughout our analysis, we focus on two
classes of linking cost scenarios: homogeneous link formation
cost and heterogeneous link formation costs. In the former,
connecting to any agent entails the same cost, while in the
later, the link cost is recipient-dependent. The link cost can
correspond to tokens [29] [30], or an abstraction for any

monetary, energy, or delay costs incurred by the agent forming
the link. An agent in the network is an abstraction for a mobile
user, a mobile device, or a transmitter/receiver that is rational
and self-interested.

We show that the networks that emerge at equilibrium are
minimally connected; thus, agents tend to minimize the overall
cost of constructing the network. With homogeneous link
costs, equilibrium leads to a network in which each component
is a star. Moreover, we show how information redundancy
affects the link cost ranges at which the network becomes
connected or disconnected, in addition to its impact on the
network efficiency by quantifying the Price-of-Anarchy (PoA).
For instance, we show that for networks with low link costs,
when the link costs are homogeneous, all emerging networks
are efficient; in contrast, information redundancy can induce
costly anarchy in networks with heterogeneous link costs.

Finally, we consider a setting in which each agent will
not only decide which links to form, but also the amount
of information to produce and we provide a characterization
for the emerging NE. We show that when the number of
agents is large, the fraction of agents producing information
at equilibrium depends on the amount of redundancy in
the agents’ information. When the agents produce strongly
correlated information, the fraction of information producers
is small and tends to zero as the number of agents tends to
infinity: most agents get the information they need from a
small set of agents. On the other hand, when agents have
uncorrelated information, the number of information producers
can grow at the same rate of total number of agents. Thus,
such networks violate what Galeotti and Goyal [31] call the
“ law of the few”. In addition, we quantify the total amount
of information produced in an asymptotically large network
and identify scenarios in which the amount of information
produced at equilibrium grows with the number of agents.

This paper introduces a new model for cognitive agents ex-
changing information/knowledge and studying what networks
emerge endogenously as a result of self-organizing cognitive
agents. Since many applications can use the presented model,
we do not delve on the idiosyncratic details of specific
applications. The rest of the paper is organized as follows.In
Section II, we formalize the network formation game among
agents in a CIN. Section III characterizes the emerging stable
networks when the link formation costs are homogeneous, and
the efficiency of such networks are investigated. Section IV
analyzes the network topology and equilibrium efficiency for
the case of heterogeneous link costs. The joint information
production and link formation game is studied in Section V.
Suggested future extensions for our model are provided in
Section VI. Finally, conclusions are drawn in Section VII.

II. BASIC MODEL

In this section, we discuss the problem setting and propose
a basic model to formulate the endogenous network formation
game emerging among cognitive agents.

A. Information model

Let N = {1, 2, 3, ..., N} be the set of agents in the CIN.
Each agenti possesses exogenous information in the form of a
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discrete random variableXi and aims to form links with other
agents to maximize its utility, which is defined as the benefit
from the total information it possesses minus the linking cost.
The formation of links is costly; thus, an agent has to trade
off the benefits of the information it obtains from another
agent versus the cost it needs to pay for connecting with that
agent. The amount of information inXi is quantified by the
entropyfunctionH(Xi). In addition, the random variables of
all agents may be correlated, which indicates that some agents
may possess similar information that is redundant to that of
the other agents. The common information between agenti
andj is captured by themutual informationI(Xi;Xj).

The information possessed by the set of agentsN is
captured by anentropic vectorthat we define as follows.

Definition 1: Entropic vector- a vector
−→
H is said to be an

entropic vector of orderN if there exists a random variable
tuple (X1, X2, ..., XN ), where associated with any subsetV
of N , there is a joint entropyH(XV) that is an element of
−→
H, whereXV = {Xi|i ∈ V} [35].

The elements of
−→
H represent the joint entropies between all

possible subsets of random variables possessed by agents in
N . The set of all entropic vector constitute theentropic region
which we define as follows.

Definition 2: Entropic region- the entropic regionΓ∗
N ⊂

R
2N−1
+ is the set of all entropic vectors of orderN , i.e. the

set of all possible entropic vectors that can correspond to the
information possessed byN agents. Thus, if a vector

−→
H is

entropic, then
−→
H ∈ Γ∗

N [35].
We denote by H̃ the set of entropic vectors having
H(X1, X2, ..., XN ) =

∑N
i=1 H(Xi), where H̃ ⊂ Γ∗

N . The
set of entropic vectors iñH is simply a hyperplane inΓ∗

N

that correspond to all entropic vectors with no information
redundancies, which captures the aggregation models in [16]
[17] [21].

The entropic vector can be constructed as follows. Given
the set of agentsN and a corresponding set of random
variables X = {X1, X2, ..., XN}, we construct the set
V = P(X )/{φ}, where P(X ) is the power set ofX . If
V = {v1, v2, ..., v|V|}, then the entropic vector is given by
−→
H = (H(Xvi))

|V|
i=1, where |V| = 2N − 1, and H(Xvi)

is the joint entropy between all random variables in the
set vi. For instance, if we have 3 agents in the network,
then V = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}},
and the entropic vector

−→
H is given by

(H(X1), H(X2), H(X3), H(X1,2), H(X1,3), H(X2,3),

H(X1,2,3))
T , whereH(X1,2) = H(X1, X2). We denote a

single element in the entropic vector as
−→
H(v) = H(Xv). The

mutual information between the random variables possessed
by any two subsetsW andU of agents is given by [36]

I(XW ;XU ) = H(XW) +H(XU )−H(XW , XU ).

The total amount of information in the network is given by
the joint entropy of the random variables of individual agents
H(X ) = H(X1, X2, X3, ..., XN ), whereH(X ) ∈

−→
H.

The mutual information between any two agentsi andj is
given byI(Xi;Xj) = H(Xi)−H(Xi|Xj), whereH(Xi|Xj)
is the conditional entropywhich represents the additional

information attained by agentj from connecting toi, i.e.
the amount of extra information thatj gets when getting
the information of i. If this benefit is low, it means that
I(Xi;Xj) is high, i.e.Xi andXj are highly correlated, and
vice versa. Note that mutual information is symmetric, i.e.
I(Xi;Xj) = H(Xi) − H(Xi|Xj) = H(Xj) − H(Xj|Xi).
Finally we quantify the total amount of redundant informa-
tion in the network. Letp (X ) = p(X1, X2, ..., XN ) and
q (X ) = ΠN

i=1p(Xi), where p(Xi) is the pmf of Xi. The
Kullback Leibler (KL) divergence for these distributions can
be computed as follows [36]

D (p||q) =
∑

X

p (X ) log

(

p (X )

q (X )

)

=

N
∑

i=1

H(Xi)−H(X1, X2, ..., XN ). (1)

The KL divergence is a natural metric for quantifying the
distance between probability measures, and it can be obtained
in terms of the entropy as shown in (1). In particular, the
KL divergence ofq (X ) from p (X ) is equal to the differ-
ence between the amount of information possessed jointly
by the agents, and the corresponding amount of information
possessed by the same agents if such information has no
redundancies. Throughout the paper, we useH(X−i) to denote
H(X/{Xi}), and KL(X ) = D (p||q) to denote the KL
divergence.

B. Network formation game

Agents benefit from gathering information by linking to
other agents. The link formation strategy adopted by agent
i is denoted by a tuplegi = (gij)j∈{1,...,N}/{i} ∈ {0, 1}N−1;
gij = 1 if agent i forms a link with agentj and gij =
0 otherwise. We assume unilateral link formation where an
agent decides to form a link and solely bears the cost of link
formation1. A strategy profileg is defined as the collection
of strategies of all agents, i.e.g := (gi)

N
i=1 ∈ G, where

G is a finite space. When agenti forms a link with agent
j, it incurs a cost ofcij . We define the topology of the
network asT = {(i, j) ∈ N × N|max{gij , gji} = 1}.
All connected agents exchange information bilaterally; thusT
is an undirected graph. Information is shared between agents
that are indirectly connected and agents do not benefit from
receiving multiple versions of the same information from the
same agent. Such model is suitable for networks with multi-
hop relaying where information is forwarded from one node
to another [37]. We writei → j to indicate that agentj
is reachable by agenti either directly or indirectly. Define
the set of agents thati form links with (set of neighbors) as
Ni(g) = {j|gij = 1}, and the set of agents reachable by agent
i asRi(g) = {j|i → j}. Throughout the paper, we adopt the
following definitions.

Definition 3:Network component-a componentC is a set
of agents such thati → j, ∀i, j ∈ C, and i 6→ j, ∀i ∈ C and

1Other link formation models, such as link formation with bilateral consent,
can be used with an appropriate solution concept such as pairwise stability
as we discuss in Section VII.
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j /∈ C, i.e. two agents in two different components cannot
share information.

Definition 4: Minimally connected component-a compo-
nent is minimally connected if each agenti ∈ C is connected
to each agentj ∈ C via a unique path.
Agents in a component share the information they possess and
consequently attain “informational” benefits that are captured
via a utility function. The utility function of agenti is given
by

ui(g) = f
(

H(Xi∪Ri(g))
)

−
∑

j∈Ni(g)

cij , (2)

where the functionf(.) represents the benefit of agenti from
the information it gathers. We assume that the agents benefit
from acquiring information increases, while the marginal ben-
efit decreases, with the increase of the amount of information
gathered. That is, in a sensor network setting, the benefit
of a sensor node from collecting information saturates if
it is connected to a large number of sensors; thus,f(.) is
assumed to be twice continuously differentiable, increasing,
and concave withf(0) = 0. Note that the total information
acquired byi in (2) can be written in terms of the conditional
entropies based on the chain rule as [36]

H(Xi∪Ri(g)) = H(Xi) +

|Ri(g)|
∑

k=1

H(Xjk |Xi, {Xjm}k−1
m=1),

whereRi(g) = {j1, j2, ..., j|Ri(g)|}, which implies that agents
benefit by acquiring new information conditioned on its own
information and the information it acquires from other connec-
tions. Moreover, the aggregate information can be expressed
in terms of the mutual information as

H(Xi∪Ri(g)) = H(Xi) +H(XRi(g))− I(Xi;XRi(g)),

where the termH(XRi(g)) represents the net information that
agenti acquires after connecting to the agents inNi(g), where
the termI(Xi;XRi(g)) captures the redundancy between the
information of agenti and the information it acquires from the
setRi(g). Letu = (u1, u2, ..., uN). Throughout the paper, we
denote the network formation game byGN 〈N ,G,u,

−→
H〉. We

assume a complete information scenario, where all agents have
knowledge of the entropic vector

−→
H, the strategy spaceG and

the utilities of all agentsu.

C. Stability concept and network efficiency

The link formation game is formulated as a non-cooperative
simultaneous move game and we focus on the Nash Equi-
librium (NE) as the solution concept. The NE is defined as
follows

ui(g
∗
i ,g

∗
−i) ≥ ui(gi,g

∗
−i), ∀gi ∈ {0, 1}N−1, ∀i ∈ N , (3)

where g∗
i is the NE strategy of agenti, and g∗

−i is the
NE strategy profile of all users other thani. A strict NE is
obtained by making the inequality in (3) strict. The game
can have multiple NE defined asG∗ = {g∗| ∀ui(g

∗
i ,g

∗
−i) ≥

ui(gi,g
∗
−i), ∀gi ∈ {0, 1}N−1}. In the following Theorem, we

show that there exists at least one network satisfying the NE
conditions, i.e.G∗ 6= φ.

Theorem 1: (The Existence of Nash Equilibrium)A pure
strategy NE always exists forGN = 〈N ,G,u,

−→
H〉.

Proof See Appendix A.

The social welfare of the network formation game is defined
as the sum of agents’ individual utilities. For a strategy profile
g, the social welfare is defined as

U(g) :=
∑

i∈N

ui(g). (4)

A strategy profilẽg is calledsocially optimalif it maximizes
the social welfare (achieves the social optimumŨ ), i.e.

Ũ := U(g̃) ≥ U(g), ∀g ∈ G. (5)

When there are multiple equilibria, we use two metrics to
assess the equilibrium efficiency. First, we adopt thePrice of
Anarchy (PoA) to quantify the impact of the agents’ selfish
behavior on the social welfare. The PoA is defined as the
ratio between the social optimum and the lowest social welfare
achieved at equilibrium, i.e.

PoA=
Ũ

ming∗∈G∗ U(g∗)
. (6)

In addition, we analyze the impact of the agents selfish
behavior on the information gathering process by defining a
novel metric that we term theMaximum Information Loss
(MIL). The MIL is defined as the maximum difference be-
tween the amount of information gathered by any agent at two
different equilibria as shown in (7). Unlike the PoA, the MIL
quantifies the maximum information loss without considering
the link cost. In addition, while the PoA considers the welfare
of all agents, the MIL quantifies the highest information loss
incurred by anagent in the worst case.

III. N ASH EQUILIBRIUM ANALYSIS FOR HOMOGENEOUS

L INK COSTS

In this section, we assume that the cost of forming a link
between any two agentsi andj is given bycij = c, ∀ i, j ∈ N .
The goal of this section is to answer the following question:
given an entropic vector

−→
H, what are the network topologiesT

that can emerge at an NE of the gameGN when the link costs
are homogeneous?We start with the following motivating
example to identify different factors that affect the equilibria
of G2.

A. Motivating example for two-agents interaction: does infor-
mation redundancy matter?

Consider a simple network with only two agents (N = 2)
possessing random variablesX1 andX2. We aim at charac-
terizing the equilibria ofG2 = 〈{1, 2},G,u,

−→
H〉. The strategy

of agent 1 is simply a linking decisiong12 ∈ {0, 1}, while
for agent 2, the strategy isg21 ∈ {0, 1}. We write G2 in
normal form in Table I, where the row player is agent 2
and the column player is agent 1. Each cell displays the
utilities of agents 1 and 2 respectively. Assume that the
link cost is the same for both agents and equal toc. It
can be easily shown that the payoffs of agent 1 are given
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MIL = max
i

(

sup
g∗

u∈G∗

H(Xi ∪XRi(g∗

u)
)− inf

g∗

v∈G∗

H(Xi ∪XRi(g∗

v)
)

)

. (7)

by u1(g12 = 1, g21 = 1) = u1(g12 = 1, g21 = 0) =
f (H(X1, X2)) − c, u1(g12 = 0, g21 = 1) = f (H(X1, X2)),
andu1(g12 = 0, g21 = 0) = f (H(X1)).

TABLE I: Two agent network formation game in normal form

g12 = 1 g12 = 0
g21 = 1 u1(g12 = 1, g21 = 1),

u2(g12 = 1, g21 = 1)
u1(g12 = 0, g21 = 1),
u2(g12 = 0, g21 = 1)

g21 = 0 u1(g12 = 1, g21 = 0),
u2(g12 = 1, g21 = 1)

u1(g12 = 0, g21 = 0),
u2(g12 = 0, g21 = 0)

Fig. 1 depicts the entropic regionΓ∗
2 of the two random

variablesX1 and X2. The entropic regionΓ∗
2 can be eas-

ily constructed by applying the three Shannon inequalities
H(X1) ≤ H(X1, X2), H(X2) ≤ H(X1, X2), andH(X1) +
H(X2) ≥ H(X1, X2). The intersection of these three hyper-
planes inR3

+ results in the polyhedral cone depicted in Fig. 1.
The distance between an entropic vector (depicted by a thick
dot insideΓ∗

2) and the corresponding entropic vector onH̃ the
light-colored hyperplane) with the sameH(X1) andH(X2)
is equal to the KL divergence. If KL(X1, X2) = 0, then the
entropic vector lies oñH, and the 2 agents have non-redundant
information.

KL(X1, X2)

Γ∗

2

H(X1)

H(X1,X2)

H(X2)

Fig. 1: The entropic regionΓ∗

2 for 2 random variables.

The equilibria of this game depend on both the link cost
and the entropic vector, which corresponds to the amount of
information redundancy. For an arbitrary entropic vector,the
game has two possible equilibriag∗ = (g12 = 1, g21 = 0)
and g∗ = (g12 = 0, g21 = 1) if c ≤ f(H(X1, X2)) −
f (max{H(X1), H(X2)}). Assume thatH(X1) > H(X2).
Therefore, the network has a unique equilibriumg∗ = (g12 =
0, g21 = 1) when f(H(X1, X2)) − f(H(X1)) ≤ c ≤
f(H(X1, X2)) − f(H(X2)), and a unique equilibriumg∗ =
(g12 = 0, g21 = 0) when c ≥ f(H(X1, X2)) − f(H(X2)).
On the other hand, if we fix the link cost and the entropies
H(X1) andH(X2), we observe that the equilibria change by
changing the KL divergence. For instance, the network has
two equilibria g∗ = (g12 = 1, g21 = 0) and g∗ = (g12 =
0, g21 = 1) when c ≤ f(H(X1) + H(X2) − KL(X )) −
f (max{H(X1), H(X2)}). Thus, as the entropic vector be-
comes closer to the hyperplanẽH, i.e. KL(X ) decreases, the

cost threshold for which these two equilibria emerge increases.
This means that the characterization of the NE is sensitive to
the amount of information redundancy KL(X ), even if we
fix the individual entropiesH(X1) andH(X2). Note that the
strategy profileg = (g12 = 1, g21 = 1) never emerges as an
NE since under such profile any of the two agents can break
the link formed and get a strictly higher utility.

B. Characterization of the NE forGN

In this subsection, we present a generic characterization for
the NE ofGN .

Proposition 1:(Network minimality) In every NE, all net-
work components are minimally connected.

Proof See Appendix B.

Proposition 1 implies that agents in each component will
form the minimal number of links possible to gather the
maximum amount of information. This results from indirect
information sharing within each network component, i.e. if
there exists a path to an agent then there is no extra benefit
in making a direct link to that agent since all the information
from that agent is already accessible.

Next, we characterize the connectivity of the network as a
function of the link cost in the following Lemma.

Lemma 1: (Network connectivity regions)

(i) If c ≤ cl, with cl = f (H(X ))− f(miniH(X−i)), then,
at every NE (a) the network is minimally connected
(the network has one component) and (b) the amount
of information possessed by each agent isH(X ) (all
information is shared).

(ii) If c ≥ cu, wherecu = f (H(X ))−f(miniH(Xi)), then
there is a unique NE which is strict. At this equilibrium,
the network is fully disconnected and the amount of
information possessed by each agenti is H(Xi) (no
information is shared).

Proof See Appendix C.

From the above Lemma, we can see that three factors affect
the connectivity of a network: the link cost, the amount of
information possessed by each agent, and the redundancies
among the agents’ information. Based on the result of Lemma
1, we define three regions for the connectivity of the NE
networks based on the link cost as follows:

• Connected agents region(KC): A network with an en-
tropic vector

−→
H has a single component when the link

cost isc ≤ cl.
• Isolated agents region(KI ): The network hasN compo-

nents when the link cost isc ≥ cu.
• Mixed region(KM ): Depending on the entropic vector,

the network can have different number of components
ranging from 1 toN when the link cost iscl ≤ c ≤ cu.
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While the connectivity regions describe the impact of link
cost on network topology, they also have informational sig-
nificance. For instance, the amount of information possessed
by any agent in theKC region is H(X ), while in the KI

region, no agenti gathers any extra information other than its
own intrinsic informationH(Xi). On the other hand, agents
in the KM region can end up gathering different amounts
of information as there are potentially multiple equilibria
with different topologies and connectedness. In the following
illustrative example, we demonstrate the impact of the link
cost and information redundancy on the network’s connectivity
regions.

Illustrative example 1:To illustrate the impact of in-
formation redundancy and link cost on the NE networks’
connectivity, we plot theKM , KC , and KI regions in the
link cost-information redundancy plane for 2 different fam-
ilies of entropic vectors. Assume that we have a 3-agent
CIN, with H(X1) > H(X2), and H(X2) = H(X3), and
that agent 1 has non-redundant information, i.e. the random
variableX1 is independent onX2 and X3. Thus, we have
KL(X ) = I(X2;X3). We consider two different families
of entropic vectors (i.e. two different assignments for the
values of individual agents’ entropies), the first is given by
(H1(X1) = 5, H1(X2) = 4, H1(X3) = 4), whereas the
second is given by(H2(X1) = 7, H2(X2) = 4, H2(X3) =
2). The connectivity regions associated with entropic vector
family i is denoted by

(

Ki
C ,K

i
I ,K

i
M

)

. An exemplary utility
function of f(x) = log(1 + x) is used. In Fig. 2, we plot the
connectivity regions in the cost-KL divergence plane for the
2 families of entropic vectors. For both families of entropic
vectors, theKM region shrinks as the information redundancy
increases. That is, when agents share more information in com-
mon, the NE network connectivity becomes less “uncertain”
since theKM region (which is the only region with potentially
multiple equilibria with different levels of connectivity) in
this case will correspond to a limited range of link costs.
Moreover, we note that for the first family of entropic vectors,
when agents 2 and 3 information are fully redundant (i.e.
KL(X ) = 4), we have a sharp threshold on the link cost,
below which we have a connected network, and above which
we have a fully disconnected network (i.e. theKM region is
empty). The intuition behind this is that since agents 2 and
3 are fully “correlated”, they only benefit from connecting to
agent 1. Thus, agent 1 acts as the only information source, and
it is the benefit from getting agent’s 1 information that solely
determines the cost at which the network would be connected
or not. If agents 2 and 3 information are not redundant, they
add value to the network, and the cost thresholds become de-
pendent on their information as well. However, for the second
family of entropic vector, since there is more heterogeneity in
the amount of information possessed by the agents, no single
agents monopolizes the information at any value of the KL
divergence, thus theKM region does not vanish for the second
vector for any value of KL(X ).

While Lemma 1 focuses on the impact of link cost on the
connectivity of the network, it does not provide a complete
characterization for an NE network. In the next Theorem, we
give the necessary and sufficient conditions for the emergence
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Fig. 2: Impact of link cost and information redundancy on the
network’s connectivity.

of an arbitrary CIN topology in NE.
Theorem 2:A network in which the components are pre-

cisely {C1, C2, ..., CK} can be supported in a NE if and only
if the following relationships between the cost and the value
of information are satisfied

1) f(H(XCi
)) − min{f(H(XCi/{j})), f(H(Xj))} ≥ c,

∀i ∈ {1, 2, ...,K}, j ∈ Ci.
2) f(H(XCi∪Cj

))− f(H(XCi
)) ≤ c, ∀i, j ∈ {1, 2, ...,K}.

Proof See Appendix D.

From Theorem 2 we know that, at NE, the network is gen-
erally composed of multiple components and each component
is minimally connected. Each component possesses a set of
random variables that are jointly highly correlated to the joint
random variables possessed by other components. Condition
(1) in Theorem 2 implies that each agent in a component
either benefits from forming a link to some other agent in
that component, or other agents benefit from linking to it,
while condition (2) implies that agents in different components
have no incentives to connect to agents in other components.
Note that due to indirect information sharing, many equilibria
can exist with highly variant topologies. In the subsequent
Theorem, we refine the equilibrium notion used, and we
determine the specific topologies emerging in a strict NE.

Theorem 3:A network is a strict NE if and only if the
following conditions are simultaneously satisfied

• All conditions stated in Theorem 2 are satisfied.
• For each componentC of sizeM > 1, there exists a set

ζ ⊆ C with |ζ| ≥ M − 1 such that

ζ = {j | f(H(XC))− f(H(XC/{j})) > c}.

• Each non-singleton component forms a core-sponsored
star topology, where the periphery agents belong to the
setζ.

Proof See Appendix E.

This Theorem states that for homogeneous link formation
costs, each network component of sizeM comprises a single
agent bearing the cost of getting connected toM − 1 other
agents. Such networks exhibit acore-peripherystructure, i.e. a
single agent at the core is connected to a set ofM−1 periphery
agents. The conditions in Theorem 3 state that the periphery
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c ≤ f (H(X)) − f(mini H(X
−i))

f (H(X)) − f(mini H(X
−i)) ≤ c ≤ f (H(X)) − f(mini H(Xi))

c ≥ f (H(X)) − f(mini H(Xi))

Fig. 3: The exemplary strict NE topologies for various link cost
ranges.

agents must behigh entropyagents. This is because the benefit
obtained by connecting to a periphery agentj at equilibrium
must exceed the cost, i.e.f(H(XC)) − f(H(XC/{j})) > c.
The intuition behind this condition is as follows. For an
agent to be a periphery agent, it must have both high entropy
and low redundancy with the information possessed by other
component members such that core agents have an incentive
to form a link with it. Fig. 3 depicts an exemplary topology
of a CIN at strict NE for various link formation cost ranges.

In the next subsection, we study the efficiency of the
NE networks and compare the self-organized CINs to those
designed by a network planner.

C. Equilibrium efficiency analysis

The goal of this subsection is to investigate the equilibrium
efficiency ofGN with homogeneous link costs by quantifying
the PoA and the MIL. We start by quantifying the PoA of
CINs in the following Lemma.

Lemma 2:For a CIN with homogeneous link costs, the
Price-of-Anarchy satisfies

PoA= 1, ∀
(−→
H, c

)

∈ KC ∪ KI ,

and

PoA<
Nf(H(X ))

∑N
i=1 f(H(Xi))

, ∀
(−→
H, c

)

∈ KM .

Proof See Appendix F.

This Lemma shows that all NE networks in theKC and
KI regions are socially optimal. While in theKC region
multiple equilibria exist, they all have the same social welfare
of Nf(H(X )) − (N − 1)c. However, in theKM region
the NE networks may not be socially optimal, and we give
an upper bound on the PoA. When all agents possess non-
redundant information, the PoA is upper bounded byN ,
whereas when agents possess redundant information, we have
PoA < Nf(maxi H(Xi))∑

N
i=1

f(H(Xi))
< N , which gives an indication that

information redundancy reduces the PoA in theKM region2.
While the social welfare captures the sum utilities, it doesnot
quantify the individual losses by agents. In the next corollary,
we quantify the MIL for different connectivity regions.

Corollary 1: For a CIN with homogeneous link cost, the
MIL satisfies

MIL = 0, ∀
(−→
H, c

)

∈ KC ∪ KI ,

and

MIL ≤ H(X )−min
i

H(Xi), ∀
(−→
H, c

)

∈ KM .

Proof See Appendix G.

Fig. X depicts the PoA for a 3-agent CIN with the first fam-
ily of entropic vectors defined in illustrative example 1. Itcan
be seen that the PoA is greater than 1 only in theKM region.
In addition, the PoA decreases as the KL divergence increases,
since the value of information in the network decreases,
which means that the best equilibrium (connected network)
achieves a smaller social welfare while the welfare of the
worst equilibrium (fully disconnected network) is independent
of the KL divergence. The PoA also decreases as the link cost
increases. From Fig. X, we can see that when KL(X ) = 4, the
network exhibit an emptyKM region, i.e. the network changes
from a connected to a fully disconnected network if the cost
exceeds a certain threshold. Thus, for KL(X ) = 4 the network
is robust to efficiency loss for all values of link cost as theKM

region is the only region where efficiency loss can occur. Fig.
X depicts the MIL upper bound for the same network. It is also
observed that the MIL upper bound decreases monotonically
with the increasing information redundancy.

IV. NASH EQUILIBRIUM ANALYSIS FOR HETEROGENEOUS

L INK COSTS

In this section, we extend the analysis done in the previous
section for the gameGN , but assuming that the cost of link
formation is exclusively recipient-dependent, i.e.cij = cj , ∀ i.
It is easy to show that Proposition 1 applies to the case of
heterogeneous link costs, i.e. all network components that
satisfy the NE conditions are minimally connected.

A. Characterization of the NE forGN

The following proposition relates the link costs to the
connectivity of the NE networks.

Proposition 2:

(i) If ci < f(H(X )) − f(H(X−i)), ∀i ∈ N , then, at every
NE (a) the network is minimally connected (the network
has one component) and (b) the amount of information
possessed by each agent isH(X ) (all information is
shared).

(ii) If f(H(X )) − f(minj H(X−j)) < mink∈N/{i} ck,
wherei = argminj H(X−j), then there is a unique NE
which is strict. At this equilibrium, the network is fully

2This is intuitive since when information redundancy increases, the socially
optimal welfare decreases, while the welfare of a disconnected network is
fixed, which means that the PoA decreases.
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disconnected and the amount of information possessed
by each agenti is H(Xi) (no information is shared).

Proof This can be proven straightforwardly using the same
arguments in the proof of Lemma 1.

This proposition shows that the network topology is highly
dependent on the heterogeneity of the agents as it depends both
on the heterogeneous costs and heterogeneous information of
agents. Also the case when all NE networks are connected cor-
responds to theKC region in the homogeneous cost scenario,
while the case when the NE is a fully disconnected network
corresponds to theKI region. An appropriate definition for the
connectivity regions for the heterogeneous cost case is given
by (9), (10), and (11).

In the following Theorem, we give a generic characteriza-
tion for this class of networks in NE.

Theorem 4:A network in which the components are pre-
cisely {C1, C2, ..., CK} can be supported in a NE if and only
if the following relationships between the cost and the value
of information are satisfied

1) f(H(XCi∪Cj
)) − f(H(XCi

)) ≥ mink∈Cj
ck, ∀i, j ∈

{1, 2, ...,K}.
2) f(H(XCi

)) ≥ min{f(H(XCi/{j})) + cj , f(H(Xj)) +
mink∈Ci/{j} ck}, ∀i ∈ {1, 2, ...,K}, j ∈ Ci.

Proof This can be proven following the same idea for the
proof of Theorem 2.

Note that unlike the homogeneous cost scenario, we cannot
characterize and plot the connectivity versus a single value
for link cost since the link cost is now a multidimensional
parameter. In the next subsection, we analyze the efficiency
of the NE networks.

B. Equilibrium Efficiency Analysis

In this subsection, we quantify the impact of the link costs
heterogeneity on the network efficiency. Unlike the case of the
homogeneous link costs, we show that information redundancy
induces costly anarchy in theKC region when the link costs
are recipient-dependent. In the following Lemma, we quantify
the PoA for theKC andKI regions.

Lemma 3:For a CIN with heterogeneous link costs, the PoA
satisfies

PoA=







1, : ∀
(−→
H, c

)

∈ KI

Nf(H(X ))−(N−1)mink ck
Nf(H(X ))−

∑
N
j=1

cj+mink ck
, : ∀

(−→
H, c

)

∈ KC

and

PoA<
Nf(H(X ))

∑N
i=1 f (H(Xi))

: ∀
(−→
H, c

)

∈ KM .

Proof See Appendix H.

Thus, unlike in the homogeneous cost scenario, not all NE
networks in theKC region are socially optimal. In fact, any
NE network other than aperiphery-sponsoredstar with the
agent having the lowest link cost residing in the core, is not
socially optimal. How does information redundancy affect the
PoA in such networks? The following Theorem answers this
question.

Theorem 5:For a CIN with recipient-dependent link costs
in theKC region and for fixed values of the individual agents’
entropies, the Price-of-Anarchy is a monotonically increasing
function of the total information redundancy.

Proof See Appendix I.

Thus, in stark contrast with the results obtained for the
homogeneous cost CINs, Theorem 5 states that information
redundancy induces costly anarchy for a network inKC re-
gion. This results from the heterogeneity of the link formation
costs, which promotes anarchy in the network as agents are no
longer indifferent to the links they form as in the homogeneous
cost scenario. As a matter of fact, some agents may end
up forming “expensive” links and getting the same amount
of information that they could have gathered by forming a
“cheaper” link. When information redundancy increases, the
value of the information gathered by agents decreases, thus,
anarchy costs more and the PoA increases. Contrarily, in
the KM region, the upper bound on PoA decreases as the
information redundancy increases in a similar manner to the
homogenous link costs scenario. Unlike the PoA, the MIL
upper bound is not sensitive to cost heterogeneity since it is
only sensitive to informational losses. It can be easily shown
that the MIL in recipient-dependent CINs behaves in the same
way as in the homogeneous cost scenario. In the next section,
we tackle the problem of joint information production and link
formation in CINs.

V. JOINT INFORMATION PRODUCTION AND L INK

FORMATION GAMES IN CINS

In the network formation game so far, we have assumed that
agents in a CIN are gifted with an exogenously determined
entropic vector. Nevertheless, in many practical CINs, agents
decide the amount of information to “produce” given some
production cost, e.g. mobile users in cellular systems may
download data for social-based services by themselves via the
cellular network infrastructure, or get this data opportunisti-
cally from other users by establishing D2D links [11]. In this
section, we focus on a CIN where each agent jointly decides
the amount of information to produce and the links to form.

A. Game formulation

When agents choose what information to produce, a crucial
aspect that affects the network topology and information
production is how information aggregates. [31] assumes that
information aggregates simply by addition; this will be the
case only if the value of each additional piece of information
is constant; thus, there are no complementarities nor redun-
dancies. [20] assumes a specific functional form, theDixit-
Stiglitzfunction; this captures informational complementarities
and redundancies in a very special way, i.e. agents appreciate
“diversity of information sources” rather than the “diversity
of the information”. In this paper, we consider two modes of
aggregation that seem more natural and are suggested by the
formulation of information in terms of entropy.

The information production decision taken byN agents
in a CIN corresponds to the selection of a point inside the
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KC =

{

(−→
H, c = (c1, c2, ..., cN )

)

∣

∣

∣

∣

c ∈ R
+
N ,

−→
H ∈ Γ∗

N , andci < f(H(X ))− f(H(X−i)), i = argmin
j

H(X−j)

}

. (9)

KI =

{

(−→
H, c = (c1, c2, ..., cN )

)

∣

∣

∣

∣

c ∈ R
+
N ,

−→
H ∈ Γ∗

N , andf(H(X ))− f(min
j

H(X−j)) < min
k∈N/{i}

ck, i = argmin
j

H(X−j)

}

.

(10)
KM =

{(−→
H, c = (c1, c2, ..., cN )

) ∣

∣

∣
∀
(−→
H, c

)

/∈ KC ∪ KI , c ∈ R
+
N ,

−→
H ∈ Γ∗

N

}

. (11)

entropic regionΓ∗
N . Correlations between the random variables

of different agents are exogenously determined by external
factors, e.g. geographical locations of sensors. To capture
information redundancy, we define an aggregation function
FH : RN

+ → R, that maps the entropies of a set of agents
to a joint entropy of these agents, i.e.H(X1, X2, ..., XN ) =
FH (H(X1), H(X2), ..., H(XN )). Clearly, the range of the
function FH(.) should belong toΓ∗

N . Throughout this sec-
tion, we study two different aggregation functions: the first
is the one corresponding to independent random variables
H(X1, X2, ..., XN ) =

∑N
i=1 H(Xi), and the second is the

one corresponding to strongly correlated random variables
H(X1, X2, ..., XN ) = max{H(X1), H(X2), ..., H(XN )}.
Both aggregation functions provide insights on how informa-
tion redundancy affects the information production decisions
at equilibrium.

In real-world networks, the aggregation function captures
the informational relationships between different agentsin a
CIN. For instance, in a sensor network where sensors are
deployed over a correlated random field [25], the information
production decision can be thought of as the precision at
which a sensor quantizes its measurements. Larger precision
corresponds to larger value for the entropy. However, no matter
what precision a sensor uses, its measurements will be corre-
lated to that of another nearby sensor. Thus, the joint entropy
of the two sensors would be governed not only by the precision
they decide, but also by the redundancy in their information
that is determined exogenously by their geographical locations
and the nature of the physical process that they sense. The
aggregation function captures such exogenous factors, and
based on it, the behavior of cognitive agents is determined.

In the information production and link formation game,
the strategy of an agenti is denoted bysi = (H(Xi),gi).
A strategy profile of the game is written ass =
(H(X1), H(X2), ..., H(XN ),g), and the strategy space isS.
We denote the joint information production and link formation
game byḠN = 〈N ,S,u〉. Thus, different fromGN , agents do
not observe an entropic vector, but they decide the entropic
vector based on their knowledge of the aggregation function.

The utility function of agenti is given by

ui(s) = f
(

H(Xi∪Ri(g))
)

− kH(Xi)− |Ni(g)|c, (11)

where k is the cost of producing one unit of information,
|Ni(g)| is the number of agents which agenti form links with,
andH(Xi∪Ri(g)) is determined byFH given the production
levels of all agents. We adopt the NE as a solution concept.
Thus, a strategy profiles∗ is an NE profile if no agent benefits
from unilaterally forming a link, breaking a link, or altering the

Fig. 4: The aggregation function for independent random variables.

Fig. 5: The aggregation function for strongly correlated random
variables.

amount of information it produces. The set of NE profiles is
denoted byS∗. Finally, we denote bȳH the maximum amount
of information that each agent can produce at equilibrium,
thus H̄ can be obtained by solvingf

′

(H̄) = k [31]. In the
following subsection, we revisit the motivating example ofthe
two agents interaction in order to understand the cognitive
behavior of agents in̄G2.

B. Motivating example for two-agents interaction: To produce
or not to produce?

Consider a simple CIN with only two agents (N = 2)
who are playing the gamēG2. We aim at characterizing the
equilibria of Ḡ2 = 〈{1, 2},S,u〉, and investigate the impact
of FH, k, and c on the cognitive behavior of the agents.
Specifically, we are interested in identifying scenarios inwhich
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one agent may decide not to produce any information and fully
rely on the other. Let us focus on agent 1. The utility function
of this agent is given by

u1(s) = f
(

H(X1∪R1(g))
)

− kH(X1)− g12c,

whereR1(g) = φ if g12 = g21 = 0, andR1(g) = 2 otherwise.
The best response of agent 1 is given by

u1(s
∗) = max

g12,H(X1)

(

f
(

H(X1∪R1(g))
)

− kH(X1)− g12c
)

.

Note that the decision of agent 1 depends on the value of
H(X1∪R1(g)), which is determined byFH. For 2 agents,

the entropic vector is
−→
H = [H(X1), H(X2), H(X1, X2)].

The function FH maps the information production de-
cisions H(X1) and H(X2) to H(X1, X2). Thus, we
have H(X1, X2) = FH (H(X1), H(X2)). In the fol-
lowing, we focus on two different aggregation func-
tions FH (H(X1), H(X2)) = H(X1) + H(X2) and
FH (H(X1), H(X2)) = max{H(X1), H(X2)}.

1) FH (H(X1),H(X2)) = H(X1) +H(X2): In this
case, the information of agents 1 and 2 are not redundant,
which means that the random variablesX1 and X2 are
independent. Thus,FH maps the production profile of both
agents to a point in the set̃H. This reduces to the aggregation
function used in [31]. Fig. 4 plotsFH, which corresponds
to the upper surface of the convex coneΓ∗

2 (or equivalently,
the hyperplaneH̃). Assume that the link cost is given by
c > kH̄. In this case, we have a unique equilibrium in which
g∗12 = g∗21 = 0, andH∗(X1) = H∗(X2) = H̄. Thus, we have
a fully disconnected network with both agents producing
information. This means that when the link cost is very
high, every agent decides to produce information and not to
get information from the other. Now assume thatc < kH̄.
It is easy to show thatg∗12g

∗
21 = 0, g∗12 = 1 or g∗21 = 1,

and H∗(X1) + H∗(X2) = H̄ . Thus, when the link cost is
low, agents generally produce some of the information they
need and get some other information from the other agent.
However, one possible equilibrium has one agent producing
an amountH̄ of information with the other forming a link
with it and not producing any information on its own.

2) FH (H(X1),H(X2)) = max{H(X1),H(X2)}:
Agents may possess fully correlated information in which
the joint entropy is always bounded by the entropy of one of
them. Fig. 5 plotsFH which corresponds to the lower surface
of the convex coneΓ∗

2. In this case, it is never beneficial for
any agent to form a link and produce a positive amount of
information simultaneously. Forc > kH̄, we have a unique
equilibrium comprising a fully disconnected network with
each agent producinḡH . For c < kH̄ , we have only one
agent producing positive amount of information in every
equilibrium.

Thus, information redundancy influences the agents’ infor-
mation production decisions. When the information contains
no redundancies, there exist many equilibria in which both
agents produce positive amount of information whenc < kH̄.
However, forc < kH̄ , when agents have strongly correlated
information, every equilibrium has only one agent producing

information. Thus, redundancy discourages information shar-
ing between agents and reduces the number of agents produc-
ing information when the link cost is low. Whenc > kH̄, we
always have a disconnected network with all agents producing
information for both aggregation functions. However, the total
amount of information in the network when the random
variables of both agents are independent isH(X1, X2) = 2H̄,
while when the information of both agents are fully corre-
lated (i.e.,H(X1, X2) = max{H(X1), H(X2)}), we have
H(X1, X2) = H̄ . In the next subsection, we generalize these
results to theḠN game.

C. Characterization of the NE for̄GN and asymptotic infor-
mation production behavior

In this subsection, we characterize the NE for
the ḠN game. We study the equilibria for the two
aggregation functionsF 1

H (H(X1), H(X2), ..., H(XK)) =
∑K

i=1 H(Xi), and F 2
H (H(X1), H(X2), ..., H(XK)) =

max{H(X1), H(X2), ..., H(XN )}. In the following Theorem,
we obtain some properties of the equilibria ofḠN when the
aggregation function isF 1.

Theorem 6:For the aggregation functionF 1 we have:
(1) If c > kH̄ , then there exists a unique equilibrium

s∗ where the network is fully disconnected and every agent
produces the individually optimal amount of information
(H∗(Xi) = H̄).

(2) If c < kH̄, then s∗ is an equilibrium if and only if:
(i) the CIN is minimally connected, (ii) the total amount of
information is H(X ) = H̄ , and (iii) if any agenti forms
a link in the network (g∗ij = 1, i, j ∈ N ), then the cost of
linking should be less than the cost of producing the amount
of information obtained by forming a linkc ≤ kH∗(X−i).

Proof See Appendix J.

Condition (1) results from indirect information sharing among
connected agents. In addition, the network has a total infor-
mation of H̄ since all agents perfectly share the information
they produce, which results in condition (2). Finally, condition
(3) says that the cost of linking should be less than the cost of
producing the amount of information obtained via linking. In
the following Theorem, we characterize the equilibrium when
the aggregation function isF 2.

Theorem 7:For the aggregation functionF 2 we have:
(1) If c > kH̄ , then there exists a unique equilibriums∗

whereg∗ij = 0, andH∗(Xi) = H̄, ∀i, j ∈ N .
(2) If c < kH̄, thens∗ is an equilibrium if and only if: (i)

the CIN is minimally connected, (ii) there exists exactly one
agenti with H∗(Xi) = H̄ , andH∗(X−i) = 0, (iii) all agents
with zero information production form exactly one link.

Proof See Appendix K.

Theorem 7 states that when agents’ information is strongly
correlated, information production is monopolized by exactly
one agent. That is, unlike the case of uncorrelated information,
agents do not distribute the production of information among
multiple agents who produce complementary information.
Thus, we conclude that information redundancy can have
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significant impact on the information production behavior at
equilibrium.

Several questions arise in networks where cognitive agents
take joint information production and link formation deci-
sions: what is the fraction of agents producing informationat
equilibrium in an asymptotically large network? What is the
asymptotic total amount of information in the network? In the
rest of this subsection, we address these questions and provide
a characterization for the asymptotic informational behavior of
agents in a CIN. We investigate the asymptotic behavior of two
basic quantities: the fraction of agents producing information
at equilibrium, and the total amount of information in the
network.

Denote the set of agents producing information at equilib-
rium by I(s∗) = {i | i ∈ N , andH∗(Xi) > 0}. [31] show
that if agents produce non-redundant information and thereis
no indirect information sharing, then in equilibrium, informa-
tion is produced by only a small subset of agents, and the
fraction of information producers becomes vanishingly small
as the network size grows, i.e.limN→∞ sups∗∈S∗

|I(s∗)|
N = 0.

[31] calls this “the law of the few”. In the next corollary, we
characterize the fraction of information producers and thetotal
amount of information in the network in̄G∞ when the link
cost is large.

Corollary 2: In the ḠN game, whenc > kH̄, we have

lim
N→∞

|I(s∗)|

N
= 1, (12)

for bothF 1
H andF 2

H. ForF 2
H, the total amount of information

in the network inḠ∞ is given by

lim
N→∞

H(X1, X2, ..., XN ) = H̄, (13)

while for F 1
H we have

lim
N→∞

H(X1, X2, ..., XN ) = ∞. (14)

Proof See Appendix L.

Corollary 2 says that when the link cost is very high, the
network is fully disconnected and every agent produces the
information it needs. Thus, when the network is asymptotically
large, every agent is an information producer no matter what
the amount of information redundancy is. The number of
agents producing information is alwaysN . While the number
of information producers does not depend onFH, it is clear
that the total amount of information in the network depends
on the amount of redundancy. When the agents’ information
are strongly correlated, the total amount of information is
always bounded bȳH. On the other hand, when agents have
uncorrelated information, the total amount of informationin an
asymptotically large network is unbounded. In the next corol-
lary, we study the case the information production behavior
when the link cost is low.

Corollary 3: In the ḠN game, whenc < kH̄ , the fraction
of information producers forF 2

H is given by

lim
N→∞

sup
s∗∈S∗

|I(s∗)|

N
= 0, (15)

while for F 1
H we have

lim
N→∞

sup
s∗∈S∗

|I(s∗)|

N
= 1. (16)

For bothF 2
H andF 1

H, the total information in the network is

lim
N→∞

H(X1, X2, ..., XN) = H̄. (17)

Proof See Appendix M.

This corollary states that the law of the few introduced
in [31] does not generally apply in the case of indirect
information sharing. The applicability of the law of the few
depends on the link cost and information redundancy. For
instance, in a network with agents producing highly redundant
information, the law of the few only applies when the link
cost is c < kH̄ , whereas forc > kH̄, all agents will be
information producers as shown in Fig. 6, where we display
the network topology at equilibrium with each agen labeled
by the amount of information it produces forc > kH̄ and
c < kH̄. Moreover, there exists information aggregation
functions in which the network at NE can have all the agents
being information producers for any link cost, and production
is no longer dominated by a small set ofhubagents. Thus, even
for low link costs, the applicability of the law of the few is
still governed by the amount of information redundancy. If the
agents’ information are strongly correlated, the law of thefew
applies and information production is dominated by a small
fraction of agents in every equilibrium forc < kH̄. In contrast,
when the agents produce non-redundant information, the law
of the few fails even for low link costs, i.e.c < kH̄ . Fig 7
depicts the equilibria for an 8-agent network withc < kH̄
when the aggregation function isF 2

H andF 1
H. It is observed

that the law of the few applies when the aggregation function
is F 2

H, but fails when the aggregation function isF 1
H.

Note that while we focused on the extreme cases of informa-
tion redundancy by considering the aggregation functionsF 1

H

andF 2
H, the analysis can be extended to other generic aggre-

gation functions. Such generic aggregation functions should be
derived from a real-world network setting (e.g. geographical
deployment of sensor networks), and an interesting problem
becomes studying the information production behavior of
agents under these aggregation functions. However, it is suffi-
cient to only considerF 1

H andF 2
H to show that the celebrated

law of the few does not generally hold whenever information
redundancy is considered.

VI. FUTURE WORK AND EXTENSIONS

In this section, we propose some potential future research
directions that capitalize on our model.
1- Dynamic games with incomplete information:we have
considered a one-shot complete information game in which all
agents have knowledge of the entropic vector. An extension
to our model is to consider a dynamic game with incomplete
information [23], in which agentslearn the entropic vector
over time by interacting with other agents. In this case, agents
would pay a linkmaintenancecost to keep connected to in-
formative agents, and would break links with non-informative
ones. In such model, the network can be characterized in terms
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Fig. 6: Connectivity and information production behavior in a net-
work with strongly correlated information sources.

H̄/8

H̄/8

H̄/8

H̄/8

H̄/8

H̄/8

H̄

0

0

0

0

0

0

0

H̄/8

H̄/8

H̄/8

H(X1,X2, ...,XN ) =
max{H(X1),H(X2), ....,H(XN )}

H(X1,X2, ...,XN ) =
∑

N

i=1
H(Xi)

Law of the few appliesLaw of the few does not apply

Fig. 7: Exemplary equilibria for different aggregation functions. The
law of the few does not apply when the agents’ information hasno
redundancies.

of the probability of emergence of certain topology at NE, and
the time needed for the network to converge to a steady-state
topology.
2- Incorporating capacity-constrained links: we have as-
sumed perfect indirect information sharing among agents. In
some settings, such as multi-hop relaying networks, informa-
tion sharing can be lossy and the links between agents can
be capacity-constrained. While lossy benefit flow has been
modeled before by assuming that benefits are discounted at
each links [16], in our model lossy information sharing can be
modeled using an information-theoretic approach by treating
links as erroneous channels. Incorporating these factors into
our model can lead to interesting results on both the network
topology at NE and information production behavior.
3- New solution concepts: the network formation game
considered in this paper adopts the NE as a solution concept.
However, different networks and applications can be better
suited by different solution concepts. For instance, in many
applications, such as D2D communications, establishing a link
requires a mutual consent among agents. In this case,pairwise
stability can be used as a solution concept instead of the NE.

VII. C ONCLUSIONS

In this work, we present a first model for the endogenous
formation of networks by cognitive agents who aim at gath-
ering and producing information. Using Nash Equilibrium as
a solution concept, we formulated a non-cooperative network
formation game where agents get informational benefits by
forming costly links with each other. We show that the
information possessed by the cognitive agents affects the
network topology, efficiency, and information production be-
havior. We show the impact of information redundancy on the
topologies of NE networks, and its impact on the network
efficiency in terms of the Price-of-Anarchy and Maximum
Information Loss. Finally, we consider the asymptotic behavior
of a network where each agent both produces information
and forms links with other agents. For such networks, we
study the impact of information redundancy on the number
of agents producing information at equilibrium. We show that
the validity of the law of few depends on how information
aggregates.

APPENDIX A
PROOF OFTHEOREM 1

From Nash’s Existence Theorem, we know that if we allow
mixed strategies, then every game with a finite number of
players in which each player can choose from finitely many
pure strategies has at least one Nash equilibrium [38]. Assume
that agenti adopts a mixed strategy∆i = (pi1, pi2, ..., piN ),
where pij is the probability that agenti forms a link with
agentj, and pii = 0, ∀i ∈ N . The utility of agenti in this
case is obtained by averaging over all possible networks as
follows

ui(∆i) =

2N−1−1
∑

j=1

wjf
(

H(Xi ∪Xαj
)
)

−
N−1
∑

l=1

pilc, (A.1)

whereαj is an element of the power set ofN/{i}, andwj

is the probability of the emergence of a network component
comprising agents in the set{i ∪ αj} based on the mixed
strategies. For instance, in a 2 agent network, the utility
function of agent 1 is given by

u1(∆1) =

(p12(1− p21) + p21(1 − p12) + p12p21) f (H(X1, X2))

+(1− p12)(1 − p21)f (H(X1))− p12c.

In this case,w1 = p12(1 − p21) + p21(1 − p12) + p12p21
and w2 = (1 − p12)(1 − p21). Let the NE strategy profile
be ∆∗ = (∆∗

1,∆
∗
2, ...,∆

∗
N ), where∆∗

i = (p∗i1, p
∗
i2, ..., p

∗
iN ).

According to (3), the following condition on∆∗ needs to be
satisfied

ui(∆
∗
i ,∆

∗
−i) ≥ ui(∆i,∆

∗
−i), ∀∆i ∈ [0, 1]N , ∀i ∈ N . (A.2)

Now we show that for any agenti, the NE strategy∆∗
i needs

to be a pure strategy for condition (A.2) to be satisfied. We
focus on agenti with a NE strategy∆∗

i = (p∗i1, p
∗
i2, ..., p

∗
iN ),

wherep∗ij ∈ [0, 1]. Now assume we induce a perturbationǫ to
the mixed strategy of agenti by modifyingp∗ik to p∗ik + ǫ for
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a certaink, whereǫ ∈ [−p∗ik, 1 − p∗ik]. We call this modified
strategy∆∗

i (ǫ). Note that we can write anywj in (A.1) in the
form of wj = w̃jp

∗
ik+ w̄j(1−p∗ik). This results in a perturbed

utility ui(∆
∗
i (ǫ)) as follows

ui(∆
∗
i (ǫ)) =

2N−1−1
∑

j=1

(

w̃j(p
∗
ik + ǫ)f

(

H(Xi ∪Xαj
)
)

+w̄j(1− ǫ− p∗ik)f
(

H(Xi ∪Xαj
)
))

−(p∗ik+ǫ)c−
N−1
∑

l=1,l 6=k

p∗ilc,

(A.3)
which can be rearranged as

ui(∆
∗
i (ǫ)) =

ui(∆
∗
i ) + ǫ





2N−1−1
∑

j=1

(w̃j − w̄j)f
(

H(Xi ∪Xαj
)
)

− c



 .

Let δ =
∑2N−1−1

j=1 (w̃j − w̄j)f
(

H(Xi ∪Xαj
)
)

− c. It can be

easily shown that∂ui(∆
∗

i (ǫ))
∂ǫ > 0 if δ > 0, and ∂ui(∆

∗

i (ǫ))
∂ǫ < 0

otherwise. Thus, ifδ > 0, agenti can always increase its utility
by increasingǫ and settingǫ = 1 − p∗ik (and thus playing a
pure strategy withpik = 1), and if δ < 0, agenti can always
increase its utility by settingǫ = −p∗ik(and thus playing a pure
strategy withpik = 0), which contradicts with∆∗

i being a NE
strategy. Thus, for allk ∈ N/{i}, agenti needs to select a
pure strategyp∗ik ∈ {0, 1} for ∆∗

i to be a best response to
∆∗

−i regardless of the strategies of other agents, i.e. non-pure
strategies are always dominated by a pure strategy. Due to
symmetry, this applies to all agents inN . Therefore, it follows
that a pure strategy NE always exists.

APPENDIX B
PROOF OFPROPOSITION1

If the componentC is not minimally connected, then it has at
least one cycle as there exist agentsi andj that are connected
via (at least) two pathspij,1 and pij,2, such that any of the
two paths is not a subset of the other. For such component at
NE, assume that agentv is on pathpij,1 and agentw is on
pathpij,2. Note that all the agents receive the same amount of
total informationH(C), and we know that there indeed exists
links: g∗xv (or g∗vx) andg∗wy (or g∗yw), where agentx ∈ pij,1 and
agenty ∈ pij,2. Now focus on any link of them, sayg∗wy = 1.
We observe that agentw can break this link and still receive
the same benefit by gathering the same amount of information
from pathpij,1, thus receiving a strictly higher utility function
as it will not pay the cost for the link with agenty, which
contradicts with the fact thatg∗ is an NE. Thus, a single path
exists between any two agents.

APPENDIX C
PROOF OFLEMMA 1

If there exists an agent in which other agents have an incen-
tive to connect to even if they possess all other information
in the network, then the network is indeed connected at any
equilibrium. This is satisfied if and only if the linking cost
satisfiesc ≤ f(H(X )) − f(H(X−i)) for some agenti in

N , i.e. the marginal benefit from connecting to that agent
is always more than the link cost irrespective to the current
connections of the agent forming the link. Thus, we must
have c < maxi f(H(X )) − f(H(X−i)). Hence, part (i) of
the Lemma follows.

If no agent have an incentive to form any link, then the
network is fully disconnected. From the monotonicity property
of the entropy, we know that if agenti has no incentive to
connect to a setV of agents, then it has no incentive to connect
to a setU if U ⊆ V . Thus, if agenti has no incentive to
connect to the setN/{i} via a single link, then it has no
incentive to form any link in the network. This occurs if and
only if c ≥ f(H(X ))−f(H(Xi)). If this condition is satisfied
for all agents, then the network is indeed disconnected, and
part (ii) of the Lemma follows.

APPENDIX D
PROOF OFTHEOREM 2

For the network to be in NE, no agent should have an
incentive to unilaterally deviate by forming a new link or
breaking an existing link. We focus on an arbitrary network
component at NE, say componentCi. Inside this component,
each agent should either have an incentive to form at least
one link, or other agents should have an incentive to connect
to it. Otherwise, this agent can get disconnected (by having
this agent breaking a link or other agents break their links
with that agent) from the component while strictly increasing
its utility or the utility of other agents in the component.
Thus, we must have eitherf(H(XCi

)) − f(H(Xj)) ≥ c
or f(H(XCi

)) − f(H(XCi/{j})) ≥ c for all agentsj in Ci.
This should apply to all components in the network. Hence,
condition (1) follows.

Now focus on the interaction between different components
of the network. If any agent in componentCi benefits from
forming a link to any agent in componentCj , then the network
is not NE since in this case an agent inCi can strictly increase
its utility by unilateral deviation. Hence, we should have
f(H(XCi∪Cj

)) − f(H(XCi
)) ≤ c for any two components

in the network. Thus, condition (2) follows.

APPENDIX E
PROOF OFTHEOREM 3

When the three conditions in Theorem 3 are satisfied, then
the network is a strict NE since the action of each agent is
strictly better than any other action, i.e. core agents in each
component strictly better off when sponsoring the periphery
agents, and all the periphery agents strictly better off when
they do not form any links. Thus, no agent is indifferent to
multiple actions, which implies that the NE is strict. Now we
prove the converse by showing that if the network is a strict
NE, the 3 conditions in Theorem 3 must be satisfied. Under
strict NE, a non-singleton componentC has two agentsi and
j such thatg∗ij = 1. Now assume thatg∗kj = 1 for some
agentk ∈ C. It is clear thatk can achieve the same utility by
deleting its link withj and connecting toi. This contradicts
with the fact thatg∗ is a strict NE. Thus,g∗kj = 0. Using
a similar argument, it can be shown thatg∗ki = 0. Thus, we
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conclude thatg∗ik = 1. This is true for all agentsk ∈ C,
which implies that a single core agenti forms links with all
other agents inC. Therefore, the core agenti should strictly
increase its utility for each of theM − 1 links it forms. The
marginal utility of agenti from forming a link with agentj
given thati is connected to all other agents inC is given by
f(H(XC)) − f(H(XC/{j})) − c. This should be positive for
all agentsj in ζ, whereζ is the set of theM − 1 periphery
agents, because otherwise core agenti can break some of the
links in the component. Thus, for agenti ∈ C to be a core
agent, and for agentsj ∈ C to reside in the periphery, we
must havef(H(XC))−f(H(XC/{j})) > c, ∀ j 6= i. Note that
conditions (1) and (2) in Theorem 2 should also be satisfied
for the network to be an NE, while the feasibility of organizing
each component as a core-sponsored star guarantees that the
network is at strict NE. Thus, strict NE exists if there exists
an NE with the setζ having a cardinality that is not less than
M−1 for all components, i.e. a single core agent can sponsor
each component.

APPENDIX F
PROOF OFLEMMA 2

We know that in theKC region, all the NE networks are
minimally connected. For a minimally connected, each agent
has an aggregate benefit off(H(X )) and the total number of
links is N − 1 (total cost is(N − 1)c), thus the social welfare
of any minimally connected network with strategy profileg is
given by

U(g) = Nf(H(X ))− (N − 1)c.

In the following we show that this is indeed the maximum
social welfare in theKC region, which means that the socially
optimal network in this region is minimally connected. Note
that the maximum sum benefits for all agents in the network
is Nf(H(X )), i.e. all agents share all information, thus any
connected network maximizes the sum benefit. Recall that in
the KC region, we havec ≤ f (H(X )) − f(miniH(X−i)).
Thus, for any (disconnected) network with less thanN − 1
links, the social welfare can always be increased by adding
a set of links that makes the network (minimally) connected.
On the other hand, we know from the pigeonhole principle
that any network with more thanN − 1 has cycles, thus
the social welfare can always be increased by breaking a set
of links such that all cycles are eliminated while keeping
the network minimally connected. Therefore, we conclude
that the social optimal network in theKC region is mini-
mally connected, and̃U = Nf(H(X )) − (N − 1)c. Since
the social welfare of any NE network inKC is given by
U(g∗) = Nf(H(X )) − (N − 1)c, then every NE network
is socially optimal and we have PoA= 1. Next, we focus
on theKI region. In this region, any connection will result
a negative payoff for any agent who forms a link since
c > f(H(X )) − f(miniH(Xi)). Thus, the social optimal is
a fully disconnected network, which is also the unique (strict)
NE, and the PoA = 1 in theKI region. For theKM region, we
compute an upper bound on the PoA. The lowest social welfare
of any equilibrium network in theKI region is lower bounded
by
∑N

i=1 f(H(Xi)), i.e. infg∗∈G∗ U(g∗) ≥
∑N

i=1 f(H(Xi)),

with equality whenf(H(Xi, Xj)) − f(H(Xi)) < c, ∀i, j ∈
N , and f(H(X )) − f(H(Xi)) > c, ∀i (i.e., agents do
not get immediate benefit from forming links to individual
agents, thus a fully disconnected network is an NE since not
forming a link is a best response for all agents in a fully
disconnected network). On the other hand, the social welfare
of the socially optimal network in theKM region is upper
bounded byNf(H(X )), i.e. the social welfare is always
strictly less than the sum benefit of all agents when they
possess all the information in the network. Thus, it follows
that PoA< Nf(H(X ))

∑
N
i=1

f(H(Xi))
.

APPENDIX G
PROOF OFCOROLLARY 1

In theKC region, we know that all NE networks are con-
nected. Thus,supg∗

u∈G∗ H(Xi∪XRi(g∗

u)
) = infg∗

u∈G∗ H(Xi∪
XRi(g∗

u)
) = H(X ), and MIL= 0. Similarly, in theKI region,

we havesupg∗

u∈G∗ H(Xi ∪ XRi(g∗

u)
) = infg∗

u∈G∗ H(Xi ∪
XRi(g∗

u)
) = miniH(Xi), thus MIL = 0. In the KM

region, the MIL is maximized if both a connected and
a fully disconnected network are equilibria. In this case,
supg∗

u∈G∗ H(Xi ∪XRi(g∗

u)
) = H(X ), and infg∗

u∈G∗ H(Xi ∪
XRi(g∗

u)
) = mini H(Xi). Thus, MIL≤ H(X )−miniH(Xi),

with equality whenc > f(H(Xi, Xj)) − f(H(Xi)), ∀i, j ∈
N , andc < f(H(X ))− f(H(Xi)), ∀i ∈ N .

APPENDIX H
PROOF OFLEMMA 3

For a connected network in theKC region, the utility of
agent i is given by ui(g

∗) = f(H(X )) −
∑

m∈Ni(g∗) cm.
The social welfare is given byU(g∗) =

∑

i∈N ui(g
∗). Since

we know from Proposition 1 that the network is minimally
connected at equilibrium, then it has exactlyN − 1 links.
Therefore, we haveU(g∗) = Nf(H(X )) −

∑

j∈J cj , where
J is the set of links in the network designated by the index of
link recipient, and|J | = N − 1. The social optimal topology
is the connected network with minimum total link costs, which
corresponds to a periphery-sponsored star with the agentk =
argminj cj residing in the core of the star. The social welfare
of such topology isU(g∗) = Nf(H(X ))− (N − 1)minj cj .
Note that this is also an NE equilibrium as each agent does not
benefit from breaking its link with the core agent and linkingto
any other periphery agents. Next, we identify the equilibrium
with the worst social welfare. Assume that the link costs are
arranged ascendingly asc1 < c2 < c3 < ... < cN−1 < cN . We
know that the network is minimally connected, thus total costs
of link formation is given by

∑

j∈J cj. What are the elements
of the setJ such that the total cost is maximized and the
network is at equilibrium? Note that for the socially optimal
profile,J = {1, 1, 1, ..., 1}, with a cardinality ofN − 1. Now
assume a line network withg∗i,i+1 = 1, ∀1 ≤ i < N . Thus, we
haveg∗12 = g∗23 = ... = g∗N−1,N = 1. Thus,J = {2, 3, ..., N−
1, N}. It can be easily shown that this line network is stable,
since no agenti can break its link with agenti+1 and increase
its utility. For instance, ifi breaks its link withi+ 1, it must
connect to any agentj > i + 1 to receive the same amount
of information but at a higher cost. It can be also shown that
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this is the worst equilibrium. This is because for a connected
network, only one agenti connects to the agentN with the
highest link cost, and others can connect toi (which has a
lower link cost) and get the information ofN via indirect
sharing. The same applies to agentN − 1, where one agent
connects to it, and others share information by connecting to
that agent. Thus, to maximize the total link cost and maintain
equilibrium, only one link is formed with each agent except
the one with the minimum link cost. Thus, the social welfare
in this case isNH(X ) −

∑N
j=1 cj + mink ck, and the PoA

formula follows.
For theKI andKM regions, the proof is the same as that

of Lemma 2.

APPENDIX I
PROOF OFTHEOREM 5

In the KC region, the PoA can be written as PoA=
Nf(

∑
N
i=1

H(Xi)−KL (X ))−(N−1)mink ck

Nf(
∑

N
i=1

H(Xi)−KL (X ))−
∑

N
j=1

cj+mink ck
. It can be easily

shown that if the KL divergence varies from KL(X ) = KL1

to KL(X ) = KL2, where KL1 < KL2 and the values of the
individual agents’ entropies are fixed, then the PoA increases,

i.e. we have Nf(
∑N

i=1
H(Xi)−KL 1(X ))−(N−1)mink ck

Nf(
∑

N
i=1

H(Xi)−KL1)−
∑

N
j=1

cj+mink ck
<

Nf(
∑

N
i=1

H(Xi)−KL 2)−(N−1)mink ck

Nf(
∑

N
i=1

H(Xi)−KL 2)−
∑

N
j=1

cj+mink ck
.

APPENDIX J
PROOF OFTHEOREM 6

We start with the case ofc > kH̄ . Assume that there exists
a link in g∗ with g∗ij = 1. In this case, agenti can always
better off by breaking this link and producing an amountH̄
of information. This applies to any agenti in N . Thus, we
have a unique equilibrium withg∗ij = 0, andH∗(Xi) = H̄,
∀i, j ∈ N .

Now focus on the case ofc < kH̄ . We show that ifs
satisfies (i), (ii), and (iii), thens is an NE. The minimal-
ity of each network component can be easily proved using
Proposition 1. Now we show that the connected network is an
NE. In a disconnected network, an agent has to produce an
amountH̄ of information, which is not optimal sincec < kH̄.
Thus, no agent in a connected network has incentive to break
its link and part (i) follows. Since the network is minimally
connected, then each agent obtains all the total amount of
information H(X ). If H(X ) = H̄, then no agent in the
component has incentive to alter their information production
profile because all agents benefit only from obtaining an
amountH̄ of information. Thus, part (ii) is proved. Finally, if
c ≤ kH∗(X−i), ∀i, then no agent in the network has incentive
to break the link it forms and produce an amountH∗(X−i)
of information on its own. Thus,s is a Nash equilibrium.

We now prove the converse. Lets be an equilibrium.
Assume that the network has two componentsC1 and C2.
The total amount of information in each component must
be H̄ at equilibrium, thus, any agent with positive amount
of information production in one component will better off
by not producing any information and forming a link to
the other component. Thus, the network is connected in NE
and part (i) follows. Due to indirect information sharing,

part (ii) is directly concluded. Finally, ifs is an equilibrium
and gij = 1, then this should be optimal for agenti, thus
c ≤ kH∗(X−i), ∀iN .

APPENDIX K
PROOF OFTHEOREM 7

The case ofc > kH̄ is exactly the same as in Theorem 6
and the proof will be similar to that in Appendix J. Now focus
on the case ofc < kH̄ . We show that ifs satisfies (i), (ii),
and (iii), thens is an NE. Part (i) follows from Proposition 1
and the proof of Theorem 6. Now assume that only one agent
in the network produces̄H information and all others do not
produce any information and only form links in the network.
In this case, the agent producing information does not better
off by producing any amount of information other than̄H . In
addition, the agents forming links do not better off by forming
new links or breaking their links and producing information
sincec < kH̄ . Thus, part (ii) follows. Since there areN − 1
agents forming links, then the network is connected, and no
agent benefits from forming an extra link in the network, which
concludes part (iii).

We now prove the converse. Lets be an equilibrium. Due to
indirect information sharing, part (i) follow straightforwardly.
Assume that we have two agents withH∗(Xi) > H∗(Xj) >
0, then agentj can always better off by settingH∗(Xj) = 0
since the aggregate information ofi andj is H∗(Xj). There-
fore, the agent with maximum information production has to
setH∗(Xi) = H̄ , and all others do not produce information
and form a link in the network sincec < kH̄. Finally, sinces
is an equilibrium, agents act optimally (their actions are best
responses to the actions of others), thus each agent from theset
of N−1 non-producers forms exactly one link in the network.

APPENDIX L
PROOF OFCOROLLARY 2

From Theorem 6, we know that whenc > kH̄ , then we
have a unique equilibriums∗ for both F 1

H andF 2
H in which

g∗ij = 0, ∀i, j ∈ N , and H∗(Xi) = H̄ . Thus, we have

H∗(Xi) > 0, ∀i ∈ N , and |I(s∗)|
N = 1, which applies when

the number of agents in the CIN grows to infinity, hence (12)
follows. Next, we focus on the total amount of information
in the network. ForF 2

H, we haveH(X1, X2, ..., XN ) =
max{H̄, H̄, ..., H̄} = H̄ , and (13) follows. Finally, forF 1

H,
we haveH(X1, X2, ..., XN) =

∑N
i=1 H̄ = NH̄ , and (14)

follows.

APPENDIX M
PROOF OFCOROLLARY 3

We start by deriving (15). From Theorem 7, we know that
for F 1

H, every equilibrium has only one information producer.
When the number of agents grows to infinity, we will still
have one information producer and|I(s

∗)|
N = 0. In order to

prove (16), one needs to find one network in equilibrium
for F 1

H in which, for arbitraryN , we haveN information
producers. Consider this network forN agents. Assume that
H(Xi) =

H̄
N , ∀i ∈ N , and the network has a single component

which is periphery-sponsored star network. For this network,
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we have|I(s)| = N . We want to show that this network is an
NE by showing that every agents strategy is best response
to all others. It is easy to see that sincec < kH̄ , each
periphery agent has no incentive to break its link with the
core sinceN−1

N kH̄ > c when N is asymptotically large.
Moreover, no agent has incentive to alter its information
production profile since the total information in the network is
∑N

i=1
H̄
N = H̄. Thus,s is an NE. Since this applies to anyN ,

(16) follows. Finally, since the network is always connected
in any equilibrium, then (17) directly follows.
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