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Abstract

In this paper, a cross-layer framework to jointly optimize spectrum sensing and scheduling in

resource constrained agile wireless networks is presented. A network of secondary users (SUs) accesses

portions of the spectrum left unused by a network of licensed primary users (PUs). A central controller

(CC) schedules the traffic of the SUs, based on distributed compressed measurements collected by the

SUs. Sensing and scheduling are jointly controlled to maximize the SU throughput, with constraints on

PU throughput degradation and SU cost. The sparsity in the spectrum dynamics is exploited: leveraging

a prior spectrum occupancy estimate, the CC needs to estimate only a residual uncertainty vector via

sparse recovery techniques. The high complexity entailed by the POMDP formulation is reduced by a

low-dimensional belief representation via minimization of the Kullback-Leibler divergence. It is proved

that the optimization of sensing and scheduling can be decoupled. A partially myopic scheduling strategy

is proposed for which structural properties can be proved showing that the myopic scheme allocates SU

traffic to likely idle spectral bands. Simulation results show that this framework balances optimally the

resources between spectrum sensing and data transmission. This framework defines sensing-scheduling

schemes most informative for network control, yielding energy efficient resource utilization.

I. INTRODUCTION

The recent proliferation of mobile devices has been exponential in number as well as hetero-

geneity [1]. As mobile data traffic is expected to grow 13-fold, and machine-to-machine traffic

will experience a 24-fold increase from 2012 to 2017 [1], tools for the design and optimization
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of agile wireless networks is of significant interest [2]. Furthermore, network design needs to

explicitly consider the resource constraints typical of wireless systems. These resource constraints

will impact the acquisition of network state information, which is essential for network control.

In this paper, we consider a wireless network composed of a licensed network of primary

users (PUs) dynamically accessing a spectrum with F frequency bands, and an agile network

of secondary users (SUs) which opportunistically attempt to access the portion of the spectrum

left unused by the PUs [3]. The spectrum occupancy is inferred by a central controller (CC), by

aggregating compressed spectrum measurements collected in a distributed fashion by the SUs,

and by overhearing feedback signaling from the PUs. Accordingly, the CC allocates the traffic

of the SUs across the spectrum bands. Joint sensing-scheduling policies are defined, so as to

maximize the SU throughput, under constraints on the throughput degradation caused to the PUs

and on the sensing-transmission cost incurred by the SUs.

The contributions of this paper are as follows. We propose a framework which captures the

interplay between sensing and scheduling, by trading off the cost of acquisition of network

state information and the overall network performance. Spectrum sensing is done by collecting

compressed spectrum measurements from distributed SUs and local feedback at the CC. based

on it, spectrum scheduling decisions are done. This is in contrast to standard formulations

based on partially observable Markov decision processes (POMDPs) [4], where observations are

passively generated by control actions, rather than actively controlled via sensing. We provide

a motivational example for the case of a single spectrum band and noiseless sensing in Sec. II,

which highlights the need for adaptivity in a cross-layer and resource constrained environment,

and then extend the model to the general case. For the general case, in Sec. V, we show that

the joint sensing-scheduling policy can be optimized via dynamic programming (DP); we prove

the optimality of a two-stage decomposition, which exploits the sufficient statistics that drive the

decision making process (Theorem 1), and allows one to decouple the optimization of sensing

and scheduling (Algorithm 1). Additionally, in order to reduce the huge action space in the

spectrum scheduling phase, we propose a partially myopic scheduling scheme, where the total

traffic of the SUs is determined optimally via DP, whereas the allocation of the resulting total

budget across frequency bands is determined via a myopic maximization of the instantaneous

trade-off between PU and SU throughput. We prove structural properties of the partially myopic

scheduling scheme, showing that it effectively allocates the SU traffic to the spectrum bands
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more likely to be idle, thus minimizing interference to the PUs and maximizing SU throughput,

and that it can be solved efficiently using standard convex optimization tools (Theorem 2).

In order to tackle the high complexity of the DP algorithm [5], in Sec. VI we propose

complexity reduction techniques. We employ a compact state space representation by project-

ing the belief onto a low-dimensional manifold via the minimization of the Kullback-Leibler

divergence (KLD, Theorem 3). Based on the compressed belief, we design adaptive compressive

sensing (CS) schemes, which effectively exploit the sparse network dynamics typical of wireless

networks. In the spectrum sensing context analyzed in this paper, only few PUs join or leave

the spectrum at any time, so that the spectrum occupancy state exhibits sparse time variations.

Therefore, leveraging the estimate of the spectrum occupancy state in the previous slot, only a

sparse residual uncertainty vector needs to be estimated, and few measurements suffice to drive

scheduling decisions. Additionally, such representation allows us to design a state estimator based

on sparse recovery algorithms. Although the focus of this paper is on spectrum sensing in agile

wireless networks, this framework can be generalized to more general networked systems, where

the state of the system is a collection of features, rather than spectrum bands (e.g., buffer state

of all wireless nodes, or local channel quality), which evolve sparsely over time. These state

features can be tracked by collecting a few compressed measurements via distributed sensing,

enabling more informed network control.
A. Related work

There is significant prior work on cognitive radio and compressed sensing (CS); we have

focused on the literature that is most relevant to our current problem framework. Centralized

schemes for the tracking of sparse time-varying processes have been examined in [6]–[8] and

distributed CS has been studied in [9], [10] for static signals. In contrast to these two veins,

we study distributed CS for time-varying signals. Performance guarantees for recursive recon-

struction of sparse signals under the assumption of slow support changes is studied in [11];

however, joint sensing and control is not examined. Recovery of static binary sparse signals via

CS has been investigated in [12], [13]. Compressive spectrum sensing has been studied in [3],

for a static setting, and in [14], for a dynamic setting with noiseless measurements, but without

scheduling. We do not focus on recovery guarantees herein, but rather embed CS into a control

framework wherein the number of measurements is adapted based on prior information in order

to drive traffic scheduling decisions.
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Active sensor scheduling and adaptation [15] encompass applications such as target tracking

[16], [17], physical activity detection [18], and sequential hypothesis testing [19]. All these prior

works including ours [20]–[22] assume that the underlying state is given by nature and is not

controlled. In contrast, in this work, states are affected by scheduling decisions, via interference

and collisions generated by the SUs to the PUs, and we design joint controlled sensing, estimation

and scheduling schemes in wireless networks, which account for the cost of acquisition of state

information and its impact on the overall network performance.

Complexity reduction of POMDPs via exponential family principal components analysis en-

ables planning on a small dimensional manifold in [23]. Model reduction of complex Markov

chain models using the KLD as a metric is investigated in [24]. In contrast, we develop a belief

compression method based on Neyman-Pearson formulation of the compressive spectrum sensing

problem. Our scheme captures relevant features of the dynamic spectrum access problem, without

having to learn key statistics. As in [24], the KLD measure is also used to project the true belief

onto the low-dimensional manifold.

In this work, we assume that the PUs employ a retransmission process, which induces structure

in the PU signal. This structure has been exploited in [25] to design adaptive SU access tech-

niques, and in [26] to design smart interference cancellation techniques that exploit redundancy

introduced by retransmission. In this work, instead, we exploit the structure in the signal as

a result of sparse network dynamics, to design compressive spectrum sensing techniques and

sparse recovery schemes. We extend the model studied in [27] to include a more general traffic

model for the SU network, and propose a low-complexity solution based on the aforementioned

partially myopic scheduling scheme.

This paper is organized as follows. In Sec. II, we provide an example which motivates the need

for adaptivity in a cross-layer and resource constrained environment, for the case with a single

frequency band and noiseless sensing. In Sec. III, we present the system model for the general

case with multiple frequency bands and noisy sensing. In Sec. IV, we present the optimization

problem and, in Sec. V, the proposed optimization techniques. In Sec. VI, we present techniques

for the complexity reduction based on belief approximation via KLD minimization and sparse

recovery algorithms. In Sec. VII, we present numerical results, and, in Sec. VIII, we conclude

the paper. The proofs of the analytical results are provided in the Appendix.
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Figure 1. Licensed network of PUs and opportunistic network of SUs. The SU-CC receives spectrum measurements and

controls the SU network accordingly. SU transmissions generate interference to the PU network.

II. MOTIVATION: SINGLE FREQUENCY BAND AND NOISELESS SENSING

In this section, we provide an example which motivates the need for adaptivity in a cross-layer

and resource constrained environment, by comparing the performance achieved by non-adaptive

sensing strategies (Sec.II-A), with that achieved by adaptive schemes (Sec.II-B). In particular, we

focus on the special case of a single frequency band and noiseless sensing. Consider a network

of NS SUs with sensing capability, which attempt to access a licensed channel (single frequency

band), represented in Fig. 1. Herein, for mathematical convenience, we use the approximation

NS→∞ to derive the transition probabilities and performance of the system. The following

discussion can be generalized to NS<∞. The channel occupancy state in slot k is denoted as

bk ∈ {0, 1}, where bk = 0 if the channel is idle and bk = 1 if it is occupied by a PU.

The SUs opportunistically access the spectrum based on the traffic decision rk broadcasted

by the CC. Given rk, each SU, assumed to be backlogged, transmits data independently with

probability qk = rk/NS , incurring the transmission cost cTX ; otherwise, the SU remains idle,

incurring no cost. We employ a collision channel model, i.e., if more than one terminal (either

SUs or PUs) transmits on the same channel, those packets cannot be decoded correctly at the

corresponding receiver and are lost. Otherwise, if one and only one user transmits, then the

transmission is successful with probability 1−ρS (for the SU) and 1−ρP (for the PU). This

collision model represents a worst-case scenario, and thus provides performance guarantees.

The value rk = 1 maximizes the throughput for the SUs [28], and any larger value rk > 1

degrades both the PU and SU throughputs, and incurs larger energy cost for the SUs. We thus

restrict rk to take values in [0, 1].

The success probability for the PUs as a function of bk and rk is given by

P (P )
succ (bk, rk) , bk(1− ρP )e−rk , (1)
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where the probability of no collisions from the SUs satisfies (1−rk/NS)NS→e−rk for NS→∞.

Similarly, the probability of successful transmission for the SU system is given by

P (S)
succ (bk, rk) , (1− bk)(1− ρS)rke

−rk , (2)

where the probability that one and only one SU transmits satisfies rk (1− rk/NS)NS−1 → rke
−rk ,

and, if the channel is occupied by one PU, the transmission fails due to collisions.1

The PUs implement a retransmission mechanism in case of transmission failure. Retransmis-

sions are performed in the same channel, in the next slot. If the transmission is successful,

then the PU occupying the channel either has a new data packet to transmit in the next slot,

with probability θ, or leaves the spectrum idle. An idle channel is occupied by a new PU

with probability ζ ∈ (0, 1) and it remains idle otherwise. Therefore, the state bk ∈ {0, 1} is

a two-state Markov chain, whose transition probabilities depend on the allocated SU traffic,

rk ∈ [0, 1]. The transition probability from state bk=b to bk+1=b′, given rk=r, denoted as

PB(b′|b, r)=P(bk+1=b′|bk=b, rk=r), is given by

PB(1|b, r) = (1− b)ζ+
[
b−(1−θ)(1−ζ)P (P )

succ (b, r)
]

and PB(0|b, r) = 1− PB(1|b, r). In fact, the channel is occupied in the next slot if and only if

one of the following events occur: the PU transmits successfully and it has a new data packet

to transmit, with probability θ; a new PU arrives, with probability ζ; or the transmission of the

PU is unsuccessful and thus a retransmission is required.
Remark 1 The retransmission protocol implemented by the PUs can also be exploited by lever-

aging the redundancy of the retransmission process, using a technique termed chain decoding

[26] to remove the interference of the PU signal over the retransmission windows of the PU. In

this paper, we assume slot-by-slot decoding, so that the redundancy of the PU retransmission

protocol is not exploited for interference cancellation. The extension is left for future work.

A. Non-adaptive spectrum sensing

The SU traffic rk is scheduled based on spectrum measurements collected by the SUs in a

distributed fashion. Consider a scheme where the SUs collect and report to the CC noiseless

1Note that the analysis under the asymptotic assumption NS→∞ yields a good approximation even when NS is finite, e.g.,

NS ' 10. For instance, if ρP = 0 and rk = 1 in (1), or ρS = 0 in (2), we obtain P (P )
succ (1, 1) = P

(S)
succ (0, 1) ' 0.368 in the

asymptotic case and P (P )
succ (1, 1) = P

(S)
succ (0, 1) ' 0.349 when NS = 10.
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spectrum measurements at the beginning of slot k, with probability α = ψ/NS independently in

each slot, incurring the sensing-transmission cost cS , and they remain idle otherwise, incurring

no cost. The parameter ψ ∈ [0, 1] denotes the average SU sensing traffic. The SUs share a control

channel to report their measurements, resulting in packet losses if more than one SU transmits

on the same channel. The probability that the CC collects the spectrum measurement is thus

given by pS = NSα(1− α)NS−1 → ψe−ψ (for NS →∞).

Assume that the SUs are not allowed to cause any degradation to the PU system. Then, the

SU traffic is rk = r ∈ [0, 1] in those slots where the channel is detected by the CC to be

idle, otherwise no traffic is allowed (in order to not interfere with the PUs). In particular, if no

measurement is collected, no SU transmissions are allowed, due to the uncertainty in the current

channel state. The average long-term sensing and transmission cost incurred by the SUs, and

the SU and PU throughputs are given by

C̄sensing(ψ, r) = ψcS, C̄sched(ψ, r) = πP (0)ψe−ψrcTX , (3)

T̄S(ψ, r) = (1− ρS)πP (0)ψe−ψre−r, T̄P (ψ, r) = (1− ρP )πP (1), (4)

where πP (0) and πP (1) are, respectively, the steady-state probabilities of the channel being idle

and occupied, given by

πP (0) =
PB(0|1, 0)

PB(0|1, 0) + PB(1|0, r)
=

(1− θ)(1− ζ)(1− ρP )

(1− θ)(1− ζ)(1− ρP ) + ζ
(5)

and πP (1) = 1−πP (0). In fact, sensing is done independently in each slot, incurring the expected

sensing cost ψcS . If the measurement is received successfully (with probability ψe−ψ) and the

channel is detected to be idle (with steady-state probability πP (0)), then the data transmission

cost rcTX is incurred in the scheduling phase, and the expected throughput achieved is re−r.

We want to determine (ψ∗, r∗) such that

(ψ∗, r∗) = arg max
ψ,r

T̄S(ψ, r) s.t. C̄(ψ, r) ≤ C̄max, (6)

where we have defined the sensing-transmission cost C̄(ψ, r) , C̄sensing(ψ, r) + C̄sched(ψ, r),

and C̄max ≤ cS + πP (0)e−1cTX (achieved with ψ = r = 1). The above optimization problem

allows us to define the joint sensing-scheduling strategy that balances optimally between the

cost of acquisition of state information via distributed sensing and the overall network goal of

maximizing the SU throughput and, at the same time, avoiding interference to the PUs.
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Since both C̄(ψ, r) and T̄S(ψ, r) are increasing functions of ψ ∈ [0, 1] and r ∈ [0, 1], under

the optimal strategy we have C̄(ψ∗, r∗) = C̄max, yielding the optimal r as a function of ψ,

r(ψ) =
C̄max − ψcS
πP (0)ψcTX

eψ, (7)

where ψ∗ ≤ min
{
C̄max

cS
, 1
}

. Hence ψ∗ can be determined as

ψ∗ = arg max
ψ∈

[
0,min

{
C̄max

cS
,1
}]T̄S(ψ, r(ψ)), (8)

by exhaustive search. When C̄max � cS , hence ψ � 1, we approximate eψ ' 1, thus obtaining

T̄S(ψ, r(ψ)) ' (1− ρS)
C̄max − ψcS

cTX
e
− C̄max−ψcS
πP (0)ψcTX , T̄

(up)
S (ψ, r(ψ)), (9)

which represents an upper bound to T̄S(ψ, r(ψ)) for the general case. This upper bound can be

optimized in closed form, yielding the upper bound optimizing ψ∗ and r∗,

ψ∗ = min

{
2C̄max/cS

1 +
√

1 + 4πP (0)cTX/cS
, 1

}
, (10)

r∗ = r(ψ∗) =
C̄max − ψ∗cS
πP (0)ψ∗cTX

eψ
∗
. (11)

B. Adaptive spectrum sensing-scheduling

The above non-adaptive sensing strategy does not provide the best performance possible due

to its static nature. Indeed, it may be beneficial to adapt the sensing strategy over time, i.e., by

selectively sensing the channel state based on the prior channel information, in order to make

the best use of the scarce resources available to the SUs. We now demonstrate the importance

of using adaptive sensing schemes to optimize the performance of the system, as a means to

effectively cope with the cost of acquisition of state information for network control.

Thus, we consider the scenario where the sensing traffic ψ is adapted over time. We denote

the belief state at the CC as (b, τ), where τ ≥ 0 denotes the number of slots since the last

measurement was collected, and b ∈ {0, 1} denotes the last channel state detected. For instance,

bk = 0, τk = 1 denotes that the spectrum was detected as idle in slot k−1. Let ψ(b, τ) ∈ [0, 1] be

the sensing traffic, i.e., the expected number of measurements collected by the network of SUs,

when the state is (b, τ), so that the probability that a measurement is successfully collected is

given by pS(b, τ) = ψ(b, τ)e−ψ(b,τ). We denote the prior steady-state distribution (before sensing)

that the belief is (b, τ) as π(b, τ); similarly, we denote the posterior steady-state distribution (after
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sensing) that the belief is (b, τ) as π̂(b, τ). The steady-state equations relating the prior to the

posterior steady-state probabilities are given by

π̂(b, τ) = π(b, τ)(1− pS(b, τ)), τ > 0, (12)

π̂(b, 0) =
∑

b′∈{0,1}

∞∑
τ=1

π(b′, τ)pS(b′, τ)P(τ)(b|b′), (13)

where P(τ)(b′|b) is the τ -step probability of transition of the channel from state b′ to state b. In

fact, the posterior belief (b, τ) for τ>0 is reached from the prior belief (b, τ) if no measurement

is successfully collected at the CC. On the other hand, the posterior belief (b, 0) is reached if

the measurement is collected at the CC and the channel state b is detected.

Similarly, the steady-state equations relating the posterior to the prior steady-state probability

in the next slot are given by

π(b, τ) = π̂(b, τ − 1), ∀b ∈ {0, 1},∀τ ≥ 1. (14)

In fact, since we are moving to the next slot, the information about the last state detected becomes

outdated by one more slot. By solving the system of equations (12-14), we obtain

π(1, τ) =
f(1)∑

b∈{0,1} f(b)
∑∞

τ=1

∏τ−1
i=1 (1− pS(b, i))

τ−1∏
i=1

(1− pS(1, i)), τ > 1, (15)

π(0, τ) =
f(0)∑

b∈{0,1} f(b)
∑∞

τ=1

∏τ−1
i=1 (1− pS(b, i))

τ−1∏
i=1

(1− pS(0, i)), τ > 1, (16)

where we have defined

f(b) =
∞∑
τ=1

τ−1∏
i=1

(1− pS(1− b, i))pS(1− b, τ)P(τ)(b|1− b). (17)

We thus obtain

C̄(ψ, r) =
∑

b∈{0,1}

∞∑
τ=1

π(b, τ)ψ(b, τ)cS + π̂(0, 0)rcTX , (18)

T̄S(ψ, r) = (1− ρS)π̂(0, 0)re−r, (19)

where we have used the fact that data transmission occurs only when the spectrum is detected

to be idle (state (0, 0)), with cost rcTX and instantaneous throughput (1− ρS)re−r.

The goal is to define jointly the sensing-scheduling policy (ψ∗, r∗) solving (6). The optimal

policy can be determined via dynamic programming. For simplicity and for the sake of exposition,
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Figure 2.

here we evaluate the performance of an heuristic adaptive sensing policy such that ψ(b, τ) = ψ(b),

hence pS(b, τ) = pS(b), i.e., the sensing probability is only adapted to the value of the last state

detected, rather than the delay parameter τ . In this case, we obtain

π(b, τ) =
f(b)

f(0)
pS(0)

+ f(1)
pS(1)

(1− pS(b))τ−1, τ ≥ 1, b ∈ {0, 1}, (20)

and therefore

C̄(ψ, r) = cS
[
π̂(0, 0)eψ(0) + π̂(1, 0)eψ(1)

]
+ π̂(0, 0)rcTX .

By optimizing numerically the SU throughput T̄S(ψ, r) with respect to (ψ(0), ψ(1), r), we obtain

the plot in Fig. 2.a, where we also plot the non-adaptive sensing policy (unless otherwise stated,

the parameters are given as in Sec. VII). We observe that the adaptive scheme achieves twice as

much SU throughput as the non-adaptive one, for low values of the cost budget; the lower cost

budget is typical for wireless systems. In Fig. 2.b, we plot the ratio between the sensing cost

C̄sensing and the total budget C̄max. For both schemes, more than 65% of the resources is spent

for sensing, and consequently less than 35% is used for SU data transmission.

This example demonstrates the importance of taking into account the cost of acquisition of

state information for network control, and the importance of using adaptive sensing schemes to

optimize the performance of the system. In the next section, we investigate the more general

case with noisy compressed measurements collected by the SUs, F ≥ 1 frequency bands, B ≥ 1

control channels employed by the SUs to report their measurements, and feedback from the PUs.
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III. SYSTEM MODEL: MULTIPLE FREQUENCY BANDS AND NOISY SENSING

In this section, we extend the model considered in the previous section to the more practical

setting with multiple frequency bands and noisy sensing. These factors introduce two difficulties

in the problem: 1) due to the potentially large number of spectrum bands that need to be measured,

the SUs would incur a significant cost to sense each spectrum band independently; in order to

reduce this cost, we employ compressive spectrum sensing, where each SU collects a compressed

measurement of the spectrum and transmits it to the CC, thus incurring only a fraction of the

cost; this technique, in turns, complicates the design of the estimator and controller at the CC.

2) Due to the noise in the spectrum measurements, there is always some residual uncertainty in

the current estimate, thus zero-interference operation is not possible (unless the SUs remain idle

all the time); additionally, the accuracy of the spectrum estimate will depend on the number of

measurements received at the CC, so that, the more the measurements, the better the estimate.

This factor introduces a requirement that B ≥ 1, i.e., multiple control channels should be

employed by the SUs to report their measurements, as opposed to the noiseless case, where

one measurement suffices, and thus B = 1. In Secs. III-A and III-B, we introduce the models

of spectrum scheduling and (compressed) spectrum sensing, respectively, and, in Sec. III-C, we

characterize the dynamics of the system.

We consider a licensed spectrum composed of F frequency bands, represented in Fig. 1. Let

bk = (bk,1,bk,2, . . . ,bk,F )T be the F -dimensional spectrum occupancy (column) vector at time

k, where T denotes matrix transpose, and bk,i ∈ {0, 1} is the occupancy state of the ith band.

The system is time-slotted with slot duration 1 and operates in two phases [29]: a sensing

phase, of duration d, during which the SUs collect compressed distributed measurements of the

spectrum occupancy state and report them to a CC (e.g., a base station) (Sec. III-B); followed

by a scheduling phase, of duration 1 − d, where the SUs access the spectrum based on the

scheduling decision of the CC (Sec. III-A).

A. Spectrum Scheduling

In the spectrum scheduling phase, the SUs opportunistically access the spectrum based on the

traffic vector decision rk broadcasted by the CC, where rk=(rk,1, rk,2, . . . , rk,F )T∈[0, 1]F , and

rk,i is the average SU traffic in the ith spectrum band at time k. In each spectrum band, the

dynamics of the PU system evolve as described in Sec. II.
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We define the aggregate expected instantaneous throughput for the SU and PU systems,

respectively, given bk and rk, as

TX(bk, rk) =
F∑
i=1

P (X)
succ (bk,i, rk,i) , X ∈ {S, P}. (21)

B. Spectrum Sensing

At the beginning of slot k, the spectrum occupancy bk is inferred by collecting noisy com-

pressed spectrum measurements by the SUs,2 according to the observation model (for SU j)

yk,j = aTk,jbk + nk,j, ∀j = 1, 2, . . . , NS, (22)

where nk,j∼N (0, σ2
Z)3 is Gaussian noise, i.i.d. over time and across SUs, aTk,j is the measurement

vector, and the superscript ”T” denotes the matrix or vector transpose. Eq. (22) is the result of

filtering over the spectrum band, so that ak,j denotes the filtering coefficient vector, which in-

cludes also the signal attenuation between the PU and the SU. We assume that ak,j∼N (0, σ2
AIF ),

where In is the n× n identity matrix, and is known to the CC.

Remark 2 Note that each SU can, in principle, estimate the spectrum occupancy state bk

based only on local measurements yk,j . However, if F is large, or the measurement is very noisy

(σ2
Z/σ

2
A � 1), the estimation accuracy may be very poor. In contrast, by collecting measurements

from a large number of SUs, the CC can estimate bk more accurately.

The SUs share B orthogonal control channels to report their measurements, resulting in packet

losses if more than one SU transmit on the same channel. The SU sensing traffic in each control

channel is ψk in slot k, whose value is broadcasted by the CC to the SUs at the beginning

of slot k, so that the SUs activate with common probability αk = ψkB/NS , and transmit their

measurement in one of the B channels available, incurring the sensing-transmission cost cS . No

cost is incurred by staying inactive.

We denote the set of SUs that activate to sense and report their measurement as Ak with

cardinality Ak, and the set of SUs that report successfully their measurement to the CC as Mk

2We assume that the measurements are collected by the SUs. However, the analysis can be extended to the case where the

sensors collecting the measurements and the SUs performing spectrum access do not coincide.
3For simplicity and without loss of generality, we consider real-valued quantities. The following framework and analysis can

be extended to complex-valued ones.
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Figure 3. Block diagram of the system dynamics.

with cardinality Mk. We define the probability that Mk = m measurements are successfully

received at the CC, given that Ak = a SUs activate, as pM |A(m|a) = P(Mk = m|Ak = a).

Moreover, we define the probability that Mk = m measurements are successfully received at

the CC, given the sensing traffic ψk, as pM(m|ψk) = EAk [pM |A(m|Ak)|Mk = m,ψk], by taking

the expectation with respect to Ak ∼ B(NS, αk). Assuming a collision model for the B control

channels and NS → ∞, the number of measurements received at the CC, Mk, has binomial

distribution with B trials and success probability ψke−ψk [20], i.e.,

pM(m|ψk)=P(Mk=m|ψk)=

B
m

(ψke−ψk)m(1−ψke−ψk)B−m,
so that the expected number of measurements received is E[Mk|ψk] = Bψke

−ψk . In the following

treatment, we use this approximation, although the model can be extended to finite NS and more

general channel models, by defining pM(m|ψk) accordingly.

Let yk ∈ RMk be the vector of compressed measurements collected in slot k. From (22),

yk = AT
kbk + nk, (23)

where Ak = [ak,j]j∈Mk
is the measurement matrix, known to the CC, and nk = [zk,j]j∈Mk

is the

noise column vector. Note that the size of yk, Mk, is random, due to the probabilistic activation

decision of each SU and packet losses resulting from the shared wireless control channels.

C. System dynamics

The dynamics of the system in each slot can be summarized as follows (see also Fig. 3):
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1) Sensing phase: At the beginning of slot k, the sensing traffic ψk is selected by the CC, and

broadcasted to the SUs; each SU collects a compressed measurement with probability αk =

ψkB/NS and transmits it independently in one of the B control channels;

2) Measurement collection: The measurement vector yk ∼ N (AT
kbk, σ

2
ZIRk) is collected at the

CC, where Mk ∼ PM(Mk|ψk);

3) Scheduling phase: the traffic vector rk ∈ [0, 1]F is chosen by the CC and broadcasted to the

SUs; each SU transmits its own data with probability qk,i = rk,i/NS in the ith band;

4) State dynamics: state transitions with probability PB(bk+1,i|bk,i, rk,i) in the ith spectrum band.

We denote the prior belief that bk=b, based on the history collected up to time k, denoted as

Hk, and before the sensing phase, as πk(b)=P(bk=b|Hk). Similarly, we denote the posterior

belief that bk=b, given (Hk,yk,Ak), as π̂k(b)=P(bk=b|Hk,yk,Ak). Using (23), we have that

π̂k(b) ∝ πk(b) exp

{
− 1

2σ2
Z

∥∥yk −AT
kb
∥∥2

F

}
, (24)

where ∝ denotes proportionality up to a normalization factor, so that we can write π̂k =

Π̂(πk,Ak,yk), for a proper function Π̂(·).

The CC, at the end of the slot, may overhear the PU acknowledgments of correct (ACK)

or incorrect (NACK) reception of the packets, fed back by the PU receivers on each channel,

denoted as pk,i ∈ {ACK,NACK, ∅}, where pk,i = ∅ if either an erasure occurs (the ACK/NACK

message cannot be detected by the CC) or the ith band was idle, so that no feedback information

is reported. We denote the erasure probability as ε ∈ [0, 1], and the feedback vector collected at

the CC at the end of slot k as pk. Given bk,i and rk,i, the probability mass function (pmf) of

pk,i, denoted as PP (p|b, r) , P (pk,i = p|bk,i = b, rk,i = r), is given by

PP (∅|b, r) = 1− b+ bε, PP (ACK|b, r) = (1− ε)P (P )
succ(b, r), (25)

PP (NACK|b, r) = (1− ε)(b− P (P )
succ(b, r)), (26)

where χ(·) is the indicator function. Therefore, the pmf of pk given bk and rk is given by

P (pk = p|bk,i = b, rk,i = r) =
∏
i

PP (pi|bi, ri). (27)

Given rk and pk, the CC updates the next prior belief as

πk+1(b)=
∑
b̃

π̂k(b̃)
F∏
i=1

PB|P (bi|b̃i, rk,i,pk,i), (28)
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where PB|P (b′|b, r, p),P(bk+1,i=b
′|bk,i=b, rk,i=r,pk,i=p), given by

PB|P (1|1, r,ACK) = θ + (1− θ)ζ, PB|P (1|1, r,NACK) = 1, (29)

PB|P (1|b, r, ∅) = P (P )
succ(b, r)ε(θ + (1− θ)ζ) + (b− P (P )

succ(b, r))ε+ (1− b)ζ, (30)

and PB|P (0|b, r, p)=1−PB|P (1|b, r, p). Note that ACK/NACK reception (pk,i 6=∅) implies bk,i=1.

We can thus write πk+1=Π(π̂k, rk,pk), for a proper function Π(·).

IV. POLICY DEFINITION AND OPTIMIZATION PROBLEM

In this section, we present the spectrum sensing and scheduling policies (Sec. IV-A), and

we introduce the performance metrics and the optimization problem (Sec. IV-B). Complexity

reduction techniques will be carried out in the following Secs. V and VI.

A. Spectrum Sensing and Scheduling policies

In the sensing phase, given Hk, the CC choses ψk according to a sensing policy ψk=ψ(Hk).

In the scheduling phase, given Ĥk=(Hk,yk,Ak), the CC selects rk according to a scheduling

policy rk=r(Ĥk). We denote the joint sensing-scheduling policy as (ψ, r).

B. Performance metrics and Optimization problem

We define the average long-term sensing and data transmission cost of the SU network as

C̄sensing(ψ, r), lim
D→∞

1

D
E

[
D−1∑
k=0

ψkBcS

∣∣∣∣∣ π0

]
, (31)

C̄sched(ψ, r), lim
D→∞

1

D
E

[
D−1∑
k=0

F∑
i=1

rk,icTX

∣∣∣∣∣ π0

]
, (32)

respectively, where π0 is the initial prior belief at the beginning of slot 0. We define the total

cost of sensing and data transmission as

C̄(ψ, r) , C̄sensing(ψ, r) + C̄sched(ψ, r). (33)

Finally, we define the average SU/PU throughputs as

T̄X(ψ, r) , lim
D→∞

1

D
E

[
D−1∑
k=0

TX(bk, rk)

∣∣∣∣∣ π0

]
, X ∈ {S, P}, (34)

where the expectation is with respect to the realization of {bk,Ak,yk, rk,pk}, induced by (ψ, r).

The goal is to determine the joint sensing-scheduling policy (ψ∗, r∗) such that

(ψ∗, r∗) = arg max
(ψ,r)

T̄S(ψ, r) s.t. C̄(ψ, r) ≤ C̄max, T̄P (ψ, r) ≥ T̄min
P , (35)
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where C̄max is the maximum cost of sensing and data transmission, and T̄min
P is the minimum

PU throughput requirement. Alternatively, we consider the Lagrangian formulation

(ψ∗, r∗) = arg max
(ψ,r)

ξT̄S(ψ, r) + (1− ξ)T̄P (ψ, r)− λC̄(ψ, r), (36)

where the parameters λ≥0 and ξ∈(0, 1) capture the desired trade-off between achieving high

PU/SU throughputs and incurring low cost for data transmission and acquisition of state infor-

mation at the CC. We have the following theorem.
Theorem 1 The prior belief πk is a sufficient statistic to choose the sensing action ψk in slot

k. The posterior belief π̂k is a sufficient statistic to choose the traffic rk in slot k.

Proof: See Appendix A.

We can thus restrict the design to stationary policies of the form ψk = ψ(πk) and rk = r(π̂k)

which depend solely on the respective sufficient statistic, so that we can rewrite

C̄sensing(ψ, r) = BcS lim
D→∞

1

D
E

[
D−1∑
k=0

ψ(πk)

∣∣∣∣∣ π0

]
,

C̄sched(ψ, r) = cTX lim
D→∞

1

D
E

[
D−1∑
k=0

F∑
i=1

ri(π̂k)

∣∣∣∣∣ π0

]
,

T̄X(ψ, r) = lim
D→∞

1

D
E

[
D−1∑
k=0

∑
b

π̂k(b)TX(b, r(π̂k))

∣∣∣∣∣ π0

]
,

where the expectation is taken with respect to the sequence {πk, π̂k, k ≥ 0}, induced by (ψ, r).

V. OPTIMIZATION TECHNIQUES

In this section, we develop optimization techniques to solve the optimization problem (35)

with lower complexity. In particular, in Sec. V-A, we first introduce the optimal DP algorithm,

which exploits Theorem 1 to decouple the optimization of sensing and scheduling, and discuss

its enormous complexity. Then, in Sec. V-B, we present our proposed partially-myopic schedul-

ing scheme, which enables complexity reduction in the DP optimization. Due to the POMDP

formulation, in Sec. VI we will resort to belief approximation based on KLD minimization,

which enables the use of sparse recovery techniques to estimate the spectrum occupancy.

A. Optimal DP algorithm: decoupling the optimization of sensing and scheduling

The optimal solution of (36) can by found via DP. In particular, we can exploit Theorem 1

to decouple the DP algorithm into two sub-stages, which exploit the different sufficient statistic

used in the spectrum sensing and scheduling phases, respectively.
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Algorithm 1 (Optimal sensing-scheduling DP) 1) Initialize V [0](π̂) = 0, ∀π̂; l = 1;

2) Scheduling optimization stage: in the lth iteration, determine, ∀π̂,

V̂ [l](π̂) = max
r∈[0,1]F

∑
b

π̂(b)
{
ξTS(b, r) + (1− ξ)TP (b, r)

−λcTX1T r + E
[
V [l−1] (Π (π̂, r,p))

∣∣b, r]} , (37)

where the expectation is with respect to the realization of p, conditioned on b and r; the

maximizer is the optimal SU data traffic in the lth stage, r[l](π̂);

3) Sensing evaluation stage: in the lth iteration, determine, ∀π, ∀m ∈ {0, 1, . . . , B},

V [l]
m (π) =

∑
b

π(b)E
[
V̂ [l]

(
Π̂
(
π,A(m),y(m)

))∣∣∣b,m] ,
where the expectation is with respect to the realization of the measurement matrix A(m) ∈ RF×m

and measurement vector y(m)|b ∼ N (A(m),Tb, σ2
wIm), conditioned on b and the number of

measurements received, m;

4) Sensing optimization stage: in the lth iteration, determine, ∀π,

V [l](π)=max
ψ∈[0,1]

∑
b

π(b)

{
−λψBcS+

B∑
m=0

pM(m|ψ)V [l]
m (π)

}
,

the maximizer is the optimal sensing traffic in the lth stage, ψ[l](π);

5) repeat from step 2) with l := l + 1 until convergence; return policy (r[l], ψ[l]).

Remark 3 The term V
[l]
m (π) in step 3) represents an evaluation of the cost-to-go function when

m measurements are collected at the CC, and is independent of the scheme employed by the

SUs to report their measurements. On the other hand, the term V [l](π) in step 4) evaluates the

cost-to-go function under the specific reporting scheme, as described in Sec. III-B.

Importantly, Theorem 1 allows us to relax the joint optimization of the sensing and scheduling

actions and, instead, decouple it into two sub-stages: the first one, scheduling optimization stage,

uses only the posterior belief information to determine the optimal SU data traffic; the second

one, sensing optimization stage, uses only the prior belief information to determine the optimal

SU sensing traffic. The proposed algorithm, thus, effectively captures the sequential structure

of the decision making process, i.e., the prior belief drives the sensing traffic, which, in turn,

determines the posterior belief, based on which the SU data traffic is scheduled, and so on.
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Despite the complexity reduction obtained by decoupling the DP optimization into sub-stages,

the DP algorithm has enormous complexity, due to the POMDP formulation and the huge action

space. In particular, the prior and posterior beliefs π and π̂ are defined over a 2F dimensional

space of all possible realizations of the PU spectrum occupancy state, leading to the curse

of dimensionality. In Sec. VI, the POMDP formulation is relaxed by projecting the prior and

posterior beliefs on a lower dimensional manifold, thus leading to a compact belief representation.

Additionally, the SU traffic r is defined over the set [0, 1]F , leading to huge complexity in the

scheduling optimization stage due to the huge action space. In Sec. V-B, we propose a partially

myopic scheduling to relax this dimensionality issue.

B. Partially Myopic scheduling scheme

Let Λk=
∑

i rk,i be the total SU traffic budget in the scheduling phase in slot k. Then, we can

decouple the scheduling policy r(π̂) into the following sub-policies: a policy Λ(π̂)∈[0, F ] which

decides on the total traffic budget allocated as a function of π̂, and a policy z(π̂)∈Z , which

assigns the total budget to the different spectrum bands, where Z≡{z :
∑

zi = 1, z ≥ 0}. We

can thus rewrite the one-to-one mapping between r and (Λ, z)

r(π̂) = Λ(π̂)z(π̂). (38)

Then, step 2) in the DP Algorithm 1 can be replaced with

V̂ [l](π̂) = max
Λ,z

∑
b

π̂(b)
{
ξTS(b,Λz) + (1− ξ)TP (b,Λz)

−λcTXΛ + E
[
V [l−1](Π(π̂,Λz,p))

∣∣b,Λz
]}
, (39)

thus yielding the optimal Λ[l](π̂) and z[l](π̂). Note that the optimization over Λ∈[0, F ] can be

carried out with complexity linear in F , since the total traffic budget Λ is a scalar quantity taking

value in the closed set [0, F ]. On the other hand, the optimization over z has high complexity

since z∈Z , and the action space Z grows exponentially with the number of frequency bands

F . In order to reduce the complexity, using a similar approach as in [30], we use a myopic

approach to approximate z(π̂,Λ) for a given total budget Λ, namely,

z(π̂,Λ) = arg max
z∈Z

∑
b

π̂(b) [ξTS(b,Λz) + (1− ξ)TP (b,Λz)− λcTXΛ] , (40)
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which corresponds to the instantaneous cost in the DP stage (37), without the cost-to-go term

E
[
V [l−1]

]
. Using (1), (2) and (21), we can rewrite this optimization problem as

z(β̂,Λ)= arg max
z≥0

F∑
i=1

[
(1−β̂i)Λzi +

1− ξ
ξ

1−ρP
1−ρS

β̂i

]
e−Λzi s.t.

∑
i

zi = 1, (41)

where we have defined the expected posterior occupancy vector

β̂ =
∑
b

bπ̂(b), (42)

and we have expressed z(β̂,Λ) as a function of β̂ only, rather than of the posterior belief π̂.

Additionally, we can further bound the feasible values of the total traffic budget Λ as follows.

Let rmax(β̂) be the solution of the unconstrained optimization problem

rmax(β̂)= arg max
r≥0

∑
b

π̂(b) [ξTS(b, r) + (1− ξ)TP (b, r)] (43)

= arg max
r≥0

∑
i

[
ξ(1−β̂i)(1−ρS)ri + (1−ξ)β̂i(1−ρP )

]
e−ri =

[
1− β̂

1− β̂

(1− ξ)(1− ρP )

ξ(1− ρS)

]+

,

where we have defined [·]+ = max{·, 0} and component-wise operations. Note that rmax(β̂) is

the value of the SU traffic which maximizes the trade-off between the instantaneous PU and SU

throughputs, as a function of the expected occupancy β̂. If the SU traffic in the ith spectrum

band is such that rk,i > rmax,i(β̂k), then the following undesirable outcomes occur: a smaller

trade-off between PU and SU throughputs is achieved, since rmax,i(β̂k) optimizes such trade-off

(see (43)); a larger transmission cost is incurred by the SUs in the scheduling phase; collisions to

the PU operating in the ith spectrum band are more likely to occur, so that the ith spectrum band

is more likely to be occupied in the next slot, due to the retransmission mechanism. Therefore,

we restrict r(π̂k) to take values 0 ≤ r(π̂k) ≤ rmax(β̂k), so that

Λ(π̂) ≤
∑
i

rmax,i(β̂) , Λmax(β̂), (44)

and, for a given Λ ∈ [0,Λmax(β̂)], z ≤ rmax(β̂)
Λ

. Hence, (41) is equivalent to

z(β̂,Λ)= arg max
z

F∑
i=1

[
(1−β̂i)Λzi +

1− ξ
ξ

1−ρP
1−ρS

β̂i

]
e−Λzi s.t.

∑
i

zi=1,0≤z≤rmax(β̂)

Λ
. (45)

The partially myopic scheme and the optimization problem (45) have the following properties.

Theorem 2 1) The optimization problem (45) is concave;
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2) If β̂i ≥ ξ(1−ρS)
(1−ξ)(1−ρP )+ξ(1−ρS)

for some i, then ri(β̂,Λ) = 0.

3) The SU traffic r(β̂,Λ) = Λz(β̂,Λ) is a non-decreasing function of Λ (component-wise);

4) for a given Λ ∈ [0,Λmax(β̂)], if β̂i > β̂j for some i 6= j, then ri(β̂,Λ) ≤ rj(β̂,Λ);

Proof: See Appendix B.

Property 3) states that, when the budget Λ increases, the traffic scheduled in each spectrum

band does not decrease; Properties 2) and 4) state that more traffic is scheduled in those bands

more likely to be idle, and no traffic is scheduled in those bands likely to be occupied by a PU.

All these properties are desirable, since they ensure that the SU traffic is scheduled only to those

bands more likely to be idle, thus minimizing the interference to the PUs. The implication of

Property 1) is that (45) can be solved efficiently using standard convex optimization tools [31].

While z(β̂,Λ) is obtained myopically as the solution of problem (45), the total traffic budget

Λ(π̂) is determined optimally as the solution of the DP stage

V̂ [l](π̂) = max
Λ

∑
b

π̂(b)
{
ξTS(b,Λz(β̂,Λ)) + (1− ξ)TP (b,Λz(β̂,Λ))− λcTXΛ (46)

+E
[
V [l−1](Π(π̂,Λz(β̂,Λ),p))

∣∣∣b,Λz(β̂,Λ)
]}

,

which replaces step 2) in the DP Algorithm 1 and can be solved with linear complexity, rather

than exponential complexity as in the original DP step 2); hence the name partially myopic

scheduling scheme, obtained by combining an optimal DP solution of the total traffic budget

with a myopic scheduling of the total traffic budget across spectrum bands.

VI. COMPLEXITY REDUCTION

Although the dynamics of the spectrum bands evolve independently across frequency, the

compressed spectrum measurements (23) introduce frequency correlation, as is evident from the

belief update (24). Therefore, in general, the information available at the CC is represented by

a belief π(b), which may not factorize across frequency bands, resulting in high dimensionality

and huge optimization and operational complexity of the system.

In this section, we propose a compact belief representation, which makes it possible to optimize

and operate the system on a lower dimensional subspace. In particular, in Sec. VI-A, we will

resort to a compact belief representation via KLD minimization. Then, in Sec. VI-B, we will show

how this compact representation can be exploited to design sparse recovery techniques to estimate
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the spectrum occupancy. Finally, in Sec. VI-C, we discuss the computation of the transition

probabilities in the compact belief representation, which are required in the DP algorithm.

A. Compact belief representation via KLD minimization

In order to reduce the high dimensionality entailed by the POMDP formulation, we propose

a compact state space representation by projecting the belief onto a low-dimensional manifold

via KLD minimization. We approximate the belief π(b) with the factorized model

π(b) ' π̃(b) =
∏
i

[β̄(φ(i))]bi [1− β̄(φ(i))]1−bi , (47)

where β̄(L), β̄(H) ∈ [0, 1] with β̄(L) ≤ β̄(H) are low (L) and high (H) probability levels, and φ :

{1, 2, . . . , F} 7→ {L,H} is a function which maps the ith spectrum band to indices corresponding

to one of the levels β̄(L) or β̄(H). Note that this approximation assumes that the spectrum bands

are statistically independent of each other, and that their probability of being occupied takes two

possible values, β̄(L) or β̄(H). We can alternatively interpret the bands with high probability of

occupancy β̄(H) as those detected to be occupied, so that PFA = 1− β̄(H) is the corresponding

false-alarm probability. Similarly, the bands with low probability of occupancy β̄(L) are those

detected to be idle, so that PMD = β̄(L) is the corresponding missed-detection probability.

The approximate belief π̃(b) is parameterized by (β̄(L), β̄(H), φ(·)). We thus denote π̃ =

G(β̄(L), β̄(H), φ). The KLD between π and π̃ is given by

D(π, β̄(L), β̄(H), φ) , D(π||π̃) =
∑

b∈{0,1}F
π(b) ln

(
π(b)

π̃(b)

)
.

The goal is, given π, to find parameters (β̄(L)∗, β̄(H)∗, φ∗)(π) such that

(β̄(L)∗, β̄(H)∗, φ∗)(π)= arg min
β̄(L),β̄(H),φ

D(π, β̄(L), β̄(H), φ) (48)

= arg max
β̄(L),β̄(H),φ

∑
i

[
βi ln

(
β̄(φ(i))

)
+(1−βi) ln

(
1−β̄(φ(i))

)]
,

where we have used (47) and defined β=E[bk|πk=π]. Theorem 3 determines the solution of (48).

Theorem 3 The solution of (48) is given by

β̄(i)∗(π) = β̄(i)(ν∗(π)), i ∈ {L,H}, φ∗(π;m(i)) =

 L, i ≤ ν∗(π),

H, i > ν∗(π),
(49)
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where

β̄(L)(ν) =
1

ν

ν∑
i=1

βm(i), β̄
(H)(ν) =

1

F − ν

F∑
i=ν+1

βm(i), (50)

m : {1, 2, . . . , F} 7→ {1, 2, . . . , F} is a permutation of the entries of β in increasing order, i.e.,

such that βm(1) ≤ βm(2) ≤ · · · ≤ βm(F ), and ν∗(π) solves

ν∗(π) = arg min
ν∈{1,2,...,F−1}

νH2

(
β̄(L)(ν)

)
+ (F − ν)H2

(
β̄(H)(ν)

)
, (51)

where H2(x)=−x ln (x)−(1−x) ln (1−x) is the binary entropy function.

Proof: See Appendix C.

A sufficient statistic to represent the approximate belief π̃ is the compressed belief state

(CBS) s=(β̄(L), β̄(H), ν), where ν∈{1, 2, . . . , F − 1} is the number of bands detected as idle,

PFA=1−β̄(H) and PMD=β̄(L) are the false-alarm and missed-detection probabilities for the bands

detected as busy and idle, respectively. In fact, any φ(·) which maps ν spectrum bands to the low

probability of occupancy β̄(L) and the remaining F−ν spectrum bands to the high probability of

occupancy β̄(H) can be obtained by a proper permutation of the spectrum bands, which preserves

the dynamics of the system, due to the symmetry of the spectrum bands across frequency. Thus,

the specific φ(·) needs not be taken into account, but only the number of bands detected as idle,

ν. We denote the projection operator as s=P(β) or s=P(π) (used interchangeably).

Therefore, given the prior belief πk and posterior belief π̂k, we denote the prior CBS as

sk = P(πk) and the posterior CBS as ŝk = P(π̂k), determined as in Theorem 3. We then define

the policy ψk = ψ(sk) which maps the prior CBS to a value of the sensing traffic ψk, and the

policy Λk = Λ(ŝk), which maps the posterior CBS to a value of the total traffic budget Λk. While

the prior and posterior beliefs πk and π̂k are probability distributions over a space of size 2F (all

the possible realizations of the spectrum occupancy vector bk), which scales exponentially with

the spectrum size F , the CBS takes value from a low-dimensional space, which scales linearly

with F . Therefore, ψ(sk) and Λ(ŝk) can be found with lower complexity than ψ(πk) and Λ(π̂k).

Despite the dimensionality reduction achieved by operating based on the CBS, computing

π̂k = Π̂(π̃k,Ak,yk) and β̂k in the sensing phase via (24) has exponential complexity. To achieve

complexity reduction, we propose to decouple the estimator from the CC, i.e., the estimator is

treated as a black-box with input (π̃k,Ak,yk), which outputs a maximum-a-posteriori (MAP)

estimate b̂
(MAP )
k of bk (Sec. VI-B) and posterior false-alarm and missed-detection probabilities
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for the bands detected as busy and idle, denoted as P̂FA,k and P̂MD,k, respectively. Given b̂
(MAP )
k ,

P̂FA,k and P̂MD,k, the CC approximates the posterior expected occupancy as

β̂k = b̂
(MAP )
k (1− P̂FA,k) + (1− b̂

(MAP )
k )P̂MD,k, (52)

from which the CBS ŝk = ( ˆ̄β
(L)
k , ˆ̄β

(H)
k , ν̂k) is determined as ˆ̄β

(L)
k = P̂MD,k, ˆ̄β

(H)
k = 1− P̂FA,k and

ν̂k = F −
∑

i b̂
(MAP )
k,i , and the mapping function φ̂k as φ̂k(i) = L⇔ b̂

(MAP )
k,i = 0.

B. Spectrum estimation via sparse recovery

Given the prior βk = E[bk|πk], b̂
(MAP )
k solves

b̂
(MAP )
k = arg max

b∈{0,1}F
P(bk = b|βk,Ak,yk) = arg min

b∈{0,1}F

∥∥yk −AT
kb
∥∥2

F
+ 2σ2

Z

∑
i

bi ln

(
1− βk,i
βk,i

)
,

where we have assumed the factorized prior distribution

P(bk = b|βk) =
∏
i

βbi
k,i(1− βk,i)

1−bi . (53)

In particular, letting b
(map)
k = χ(βk ≥ 0.5) be the maximum-a-priori estimate, we can rewrite

b̂
(MAP )
k = b

(map)
k ⊕ ê

(MAP )
k , (54)

where ê
(MAP )
k is the correction vector informed by the measurement matrix Ak and observation

vector yk. By plugging (54) into (53), this is given by the solution of the optimization problem

ê
(MAP )
k = arg min

e∈{0,1}F

∥∥∥ŷk − ÂT
k e
∥∥∥2

F
+ µT

k e, (55)

where we have defined

ŷk , yk −AT
kb

(map)
k , Âk ,

(
IF − 2diag(b

(map)
k )

)
Ak, (56)

as the residual error from the prior estimate and the corrected measurement matrix, respectively,

and µk is a Lagrangian multiplier column vector with components

µk,i , 2σ2
Z

(
1− 2b

(map)
k,i

)
ln

(
1− βk,i
βk,i

)
. (57)

Note that the Lagrangian vector µk weights the components of the error vector e based on

their prior log-likelihood. As a result, each component ei may be weighted in a different way,

according to its prior. Moreover, from the definition of prior estimate b
(map)
k,i , we have that

µk,i ≥ 0, with equality if and only if βk,i = 0.5.

August 17, 2021 DRAFT



24

The optimization problem (55) has combinatorial complexity, since the cost function needs

to be evaluated for each e ∈ {0, 1}F . In order to overcome the combinatorial complexity, we

propose the following convex l1 relaxation:

ẽk = arg min
e∈[0,1]F

∥∥∥ŷk − ÂT
k e
∥∥∥2

F
+ µT

k e, (58)

i.e., the optimization is over the convex set [0, 1]F , rather than the discrete one {0, 1}F , and

can thus be solved using convex optimization techniques [31]. In particular, it is a quadratic

programming problem minimizing a least-squares term, plus an `1 regularization term, which

induces sparsity in the correction vector ẽk. The larger µk,i (i.e., the closer βk,i to 0 or 1), the

sparser the solution. Note that ẽk is not feasible with respect to the original optimization problem

(55). A feasible point is thus obtained by projecting ẽk into the discrete set {0, 1}F using, e.g.,

the minimum distance criterion χ(ẽk ≥ 0.5). This solution is not globally optimal with respect

to (55), and can be improved using the following hill climbing algorithm [32].
Algorithm 2 (Hill climbing algorithm) 1) Initialization: ê

[0]
k = χ(ẽk ≥ 0.5), counter l = 0;

2) Improvement step: at step l, compute the vector ∆[l], with the ith component given by

∆
[l]
i =

(
2ê

[l]
k,i − 1

){
−2[Âkŷk]i + 2

∑
j 6=i

[ÂkÂ
T
k ]i,j ê

[l]
k,j +

[
ÂkÂ

T
k

]
i,i

+ µk,i

}
.

Let i∗ = arg maxi ∆
[l]
i ; if ∆

[l]
i∗ ≥ 0, determine a new MAP estimate ê

[l+1]
k as ê

[l+1]
k,i = ê

[l]
k,i, ∀i 6= i∗,

ê
[l+1]
k,i∗ = 1− ê

[l]
k,i∗ , update the counter l := l+1 and repeat from the improvement step; otherwise,

return the MAP estimate ê
(MAP )
k := ê

[l]
k .

The term ∆
[l]
i represents the increase or decrease in the MAP cost function (58), by switching

the ith component of the current MAP estimate, ê
[l]
i , from 1 to 0, or vice versa, and keeping all

the other components unchanged. In particular, ∆
[l]
i is the difference in the cost function (58)

between the old cost and the new one, so that ∆
[l]
i∗ > 0 if an improved estimate is obtained.

By the definition of i∗, if ∆
[l]
i∗ ≥ 0, by switching the i∗th band of the current MAP estimate,

the MAP cost function (58) is decreased by the amount ∆
[l]
i∗ , yielding an improved estimate.

Otherwise (∆[l]
i∗ < 0), a local optimum has been determined by the algorithm, i.e., any change

of one and only one component of the current MAP estimate is sub-optimal.

C. CBS transition probabilities

In order to run the DP algorithm based on the CBS, we need to determine the corresponding

transition probabilities. Note that b̂
(MAP )
k can be written as a function of the prior expected
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occupancy βk, which maps to the corresponding CBS sk = P(βk), and of (Ak,yk). We denote

this function as b̂
(MAP )
k = MP(βk,Ak,yk). Similarly, the false-alarm and missed-detection

probabilities can be written as functions of (βk,Ak,yk), and thus are of difficult evaluation, due

to their dependence on the measurements (Ak,yk).

Herein, we propose to marginalize the false-alarm and missed-detection probabilities with

respect the measurements (Ak,yk), for a given value of the number of bands detected as idle,

ν̂k = F −
∑

i MPi(βk,Ak,yk), the number of measurements received, Mk, and the CBS sk.

The rationale is that the detection performance of the MAP estimator is mainly driven by the

number of measurements collected at the CC, rather than the specific observations (Ak,yk).

Equivalently,

P̂FA(s,m, ν̂),E

P̂FA,k
∣∣∣∣∣∣(sk,Mk, ν̂k)

=(s,m, ν̂)

=E

∑i(1−bk,i)MPi(βk,A
(m)
k ,y

(m)
k )

F − ν̂

∣∣∣∣∣∣(sk,Mk, ν̂k)

=(s,m, ν̂)

, (59)

P̂MD(s,m, ν̂),E

P̂MD,k

∣∣∣∣∣∣(sk,Mk, ν̂k)

=(s,m, ν̂)

=E

∑i bk,i(1−MPi(βk,A
(m)
k ,y

(m)
k ))

ν̂

∣∣∣∣∣(sk,Mk, ν̂k)

=(s,m, ν̂)

, (60)

where βk maps to the CBS s = P(βk), up to a random permutation of its entries. The

expectation is taken with respect to the realization of the measurement matrix A(m) ∈ RF×m,

the measurement vector y(m) (of size m), and the random permutation of the entries of βk.

Let Pν(ν̂|s,m),P(ν̂k=ν̂|sk=s,Mk=m) be the pmf of the number of bands detected as idle,

given the prior CBS s and the number of measurements received m, after marginalization with

respect to (Ak,yk). This is given by

Pν(ν̂|s,m) = E

χ(F−∑
i

MPi(βk,A
(m)
k ,y

(m)
k )=ν̂

)∣∣∣∣∣ (sk,Mk)

=(s,m)

 . (61)

We define a neighborhood around the (prior or posterior) CBS (β̄(L), β̄(H), ν) as

Sδ(β̄(L), β̄(H), ν) ≡
{
s = (x, y, ν) : x ∈ [β̄(L) − δ, β̄(L) + δ], y ∈ [β̄(H) − δ, β̄(H) + δ]

}
. (62)

The transition probability from the prior CBS sk=s to the posterior CBS ŝk ∈ Sδ(ŝ) is given by

P(ŝk ∈ Sδ(ŝ)|sk = s, ψk = ψ) =
B∑

m=0

PM(m|ψ)Pν(ν̂|s,m) (63)

× χ
(
P̂FA(s,m, ν̂) ∈ [1− ˆ̄β(H) − δ, 1− ˆ̄β(H) + δ]

)
χ
(
P̂MD(s,m, ν̂) ∈ [ ˆ̄β(L) − δ, ˆ̄β(L) + δ]

)
.
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Given the posterior expected occupancy β̂k, the SU traffic rk, and the feedback pk, the prior

expected occupancy in the next slot, βk+1, is given by

βk+1,i = P(bk+1,i = 1|rk,i = ri,pk,i = pi, β̂k,i)

=
PB|P (1|0, ri,pi)PP (pi|0, ri)(1− β̂k,i) + PB|P (1|1, ri,pi)PP (pi|1, ri)β̂k,i

PP (pi|0, ri)(1− β̂k,i) + PP (pi|1, ri)β̂k,i
, (64)

where PB|P (·) and PP (·) are defined in (29)-(30) and (25)-(26), so that we can write βk+1 =

β(β̂k, rk,pk) for a proper function β(·). This, in turn, maps to the prior CBS sk+1 = P(βk+1).

Therefore, for a given total traffic budget Λk = Λ, the transition probability from the posterior

CBS ŝk = ŝ = ( ˆ̄β(L), ˆ̄β(H), ν) to the prior CBS sk+1 ∈ Sδ(s) in the next slot, is given by

P(sk+1 ∈ Sδ(s)|ŝk = ŝ,Λk = Λ) (65)

=
∑

b,p∈{0,1}F

∏
i

PP (pi|bi,Λzi(β̂,Λ))β̂bi
i (1− β̂i)

1−biχ
(
P
(
β
(
β̂,Λz(β̂,Λ),p

))
∈ Sδ(s)

)
,

where we have marginalized with respect to bk and pk, and β̂ is given by β̂i = ˆ̄β(L), i ≤ ν̂,

β̂i = ˆ̄β(H), i > ν̂, so that P(β̂) = ŝ.

These probabilities, along with (59), (60) and (61), do not admit a closed form analytical

expression, but can be computed numerically via Monte-Carlo simulation.

VII. NUMERICAL RESULTS

In this section, we present numerical results for a system with parameters: number of fre-

quency bands F=20; SU and PU failure probabilities ρS=ρP=0.1; probability of new PU arrival

ζ=0.095; probability of a new data packet for an active PU θ=0.95; number of SUs NS=100;

number of control channels for the SUs B=5; SU sensing and data transmission costs cS=cTX=1;

variance of the entries of the measurement matrix σ2
A=1; variance of the measurement noise

σ2
Z=1/20; erasure probability ε=0.9. The performance is evaluated over 2× 104 slots.

Fig. 4.a plots the trade-off between the PU and SU throughputs, for different values of the

total cost C̄ (accounting for both the cost of sensing and of data transmission). Fig. 4.b plots

the fraction of the total cost C̄ that is spent for spectrum sensing (C̄sensing), as a function of the

PU throughput and total cost C̄. Note that the remaining fraction of the total cost is spent for

actual data transmission. We notice that the throughput trade-off improves for higher values of

the cost C̄. This is expected since, when more resources are available (higher C̄), there are more

opportunities to perform data transmission for the SUs. At the same time, for higher values of
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Figure 4.

the cost C̄, a larger fraction of this cost is spent for spectrum sensing. The reason is that, in

order to accommodate more traffic for the SUs, with minimal interference to the PUs, the SUs

need to acquire more accurate spectrum estimates, hence the sensing cost increases accordingly.

Additionally, when the requirement on the throughput degradation to the PUs is very strict (T̄P

approaching the maximal value), most of the resources are spent for spectrum sensing. This is

because, in order to meet the demanding requirement on the throughput degradation to the PU,

the SU traffic should be allocated only on those spectrum bands which are idle almost surely.

Such low level of uncertainty, in turn, demands significant sensing resources.

Fig. 5.a plots the total traffic allocated, Λk, as a function of the expected number of occupied

spectrum bands,
∑

i β̂k,i, for the case λ = 0.025 and ξ = 0.7. Each sample corresponds to a given

value of the posterior belief β̂k, lying on the low-dimensional manifold generated by the CBS.

We notice that, as the expected number of occupied spectrum bands increases, the total traffic

allocated tends to decrease. In fact, when more spectrum bands are expected to be occupied,

there are fewer opportunities to occupy the remaining idle bands by the SUs. Fig. 5.b plots the

SU sensing traffic per channel, ψk, and the expected number of measurements received at CC,

E(Mk), as a function of the entropy of the prior belief state,
∑

iH2(βk,i), where βk lies on

the low-dimensional manifold generated by the CBS. We notice that, as the entropy increases,

i.e., the amount of uncertainty on the current spectrum occupancy increases, the SU sensing

traffic also increases, and thus, more measurements are collected at the CC in order to reduce
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this uncertainty. The sensing resources are focused in those regions of the belief state where the

spectrum occupancy state is more uncertain, yielding energy efficient resource utilization.

VIII. CONCLUSIONS

In this paper, we have presented a cross-layer framework for joint distributed spectrum sensing,

estimation and scheduling in a wireless network composed of SUs that opportunistically access

portions of the spectrum left unused by a licensed network of PUs. In contrast to much prior

work, we jointly address sensing and control, wherein the sensing affects the quality of the

measurements. Inference of the underlying spectrum occupancy state is obtained by collecting

compressed measurements at the CC from nearby SUs, and via local ACK/NACK feedback

information from the PUs. In order to reduce the huge optimization and operational complexity

due to the POMDP formulation, we have proposed a technique to project the belief state

onto a low-dimensional manifold via the minimization of the Kullback-Leibler divergence. We

have proved the optimality of a two-stage decomposition, which enables the decoupling of

the optimization of sensing and scheduling. Additionally, we have proposed a partially myopic

optimization scheme, which can be solved efficiently using convex optimization tools. Simulation

results demonstrate how the proposed framework optimally balances the cost of acquisition of

state information via distributed spectrum sensing and the cost of data transmission incurred by

the SUs, while achieving the best trade-off between PU and SU throughput under the resource

constraints available.
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APPENDIX A: PROOF OF THEOREM 1

The instantaneous expected sensing cost (see (31)) is given by ψkBcS , and is thus independent

of Hk, given ψk. Moreover, the distribution of bk given Hk is given by P(bk = b|Hk) = πk(b).

Therefore, the prior belief πk is a sufficient statistic to select ψk in slot k [4].

After selecting ψk and collecting (Ak,yk), the CC computes the posterior belief π̂k =

Π̂(πk,Ak,yk) as in (24). In the scheduling phase, given the SU traffic rk and the history Ĥk,

the PU feedback pk has probability distribution

P
(

pk=p| rk, Ĥk

)
=
∑

b∈{0,1}F
P
(

pk=p|bk=b, rk, Ĥk

)
P
(

bk=b| rk, Ĥk

)
=
∑

b∈{0,1}F

∏
i

PP (pi|bi, rk,i)π̂k(b) = P (pk = p| rk, π̂k) ,

where we have used (27) and the definition of π̂k, thus the distribution is independent of Ĥk given

(rk, π̂k). Therefore, the next prior belief πk+1 = Π(π̂k, rk,pk) is statistically independent of Ĥk,

given (rk, π̂k). The instantaneous expected data transmission cost (32), and SU/PU throughputs

(21) given (rk, Ĥk), are given by

E

[
cTX

F∑
i=1

rk,i

∣∣∣∣∣ rk, Ĥk

]
= cTX

F∑
i=1

rk,i, (66)

E
[
TX(bk, rk)| rk, Ĥk

]
=
∑

b∈{0,1}F
P
(

bk = b| rk, Ĥk

)
TX(b, rk) =

∑
b∈{0,1}F

π̂k(b)TX(b, rk).

All these metrics of interest are functions of rk and π̂k only. Therefore, the posterior belief state

π̂k is a sufficient statistic to schedule the traffic rk in slot k [4].

APPENDIX B: PROOF OF THEOREM 2

Proof of Property 2) From (43), if β̂i ≥ ξ(1−ρS)
(1−ξ)(1−ρP )+ξ(1−ρS)

.

Proof of Property 1) Consider the optimization problem

max
0≤r≤rmax

F∑
i=1

[
(1−β̂i)ri +

1− ξ
ξ

1−ρP
1−ρS

β̂i

]
e−ri s.t.

∑
i

ri = Λ, (67)

obtained by replacing r=Λz in (45). Let i such that β̂i<
ξ(1−ρS)

(1−ξ)(1−ρP )+ξ(1−ρS)
, hence rmax,i>0. The

second derivative of the objective function with respect to ri is given by

g(ri) ,

[
(1−β̂i)(ri − 2) +

1− ξ
ξ

1−ρP
1−ρS

β̂i

]
e−ri . (68)
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Since ri ≤ rmax,i, we then obtain

g(ri) ≤ g(rmax,i(β̂)) ≤ −(1−β̂i)e−rmax,i(β̂) < 0. (69)

Therefore, the objective function in (67) is a concave function of r. Since the constraint set

{0 ≤ r ≤ rmax,
∑

i ri = Λ} is convex, the resulting optimization problem (67) is convex.

Proof of Property 3) We denote the maximizer of (67) as r∗(Λ), which obeys 0 ≤ r∗(Λ) ≤ rmax.

Solving (67) with the Lagrange multiplier method, we obtain max0≤r≤rmax f(r, µ), where

f(r, µ) ,
F∑
i=1

[
(1−β̂i)ri +

1− ξ
ξ

1−ρP
1−ρS

β̂i

]
e−ri + µ

(∑
i

ri − Λ

)
, (70)

whose maximizer is denoted as r̃(µ). The optimal Lagrange multiplier µ∗(Λ) must be such that∑
i

r̃i(µ
∗(Λ)) = Λ, (71)

yielding r∗(Λ) = r̃(µ∗(Λ)). We now solve the Lagrangian problem (70) for a specific µ. Since

the objective function is a concave function of r : 0 ≤ r ≤ rmax, we have the following cases:

a) If df(r,µ)
dri

∣∣∣
ri=0
≤ 0, then r̃i(µ) = 0. Equivalently,

−(1− β̂i) +
1− ξ
ξ

1−ρP
1−ρS

β̂i ≥ µ; (72)

b) If df(r,µ)
dri

∣∣∣
ri=rmax,i

≥ 0, then r̃i(µ) = rmax,i. Equivalently,[
(1−β̂i)(rmax,i − 1) +

1− ξ
ξ

1−ρP
1−ρS

β̂i

]
e−rmax,i ≤ µ; (73)

c) Otherwise, r̃i(µ) is the only ri ∈ [0, rmax,i] such that

−
[
(1−β̂i)(ri − 1) +

1− ξ
ξ

1−ρP
1−ρS

β̂i

]
e−ri + µ = 0. (74)

r̃i(µ) is a non-decreasing function of µ since, by increasing µ, the inequality in (72) becomes

tighter and the inequality in (73) becomes looser, and the left-hand expression of (74) is a

decreasing function of ri. Hence, µ∗(Λ) is a non-decreasing function of Λ, so that, for Λ1 ≥ Λ2,

r∗(Λ1) = r̃(µ∗(Λ1)) ≥ r̃(µ∗(Λ2)) = r∗(Λ2). (75)

Property 3) is thus proved.

Proof of Property 4) Let z∗ be the optimizer of (45) and let β̂i > β̂j for some i 6= j. Assume

by contradiction that z∗i > z∗j . Now, we define a new SU traffic z̃ as follows:

z̃l = z∗l , l /∈ {i, j}, z̃i = z∗j , z̃j = z∗i . (76)
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Equivalently, the SU traffic allocated to the ith and jth bands under z∗ is switched under the

new traffic scheme z̃. Note that
∑

i z̃i =
∑

i z
∗
i = 1, so that z̃ obeys the total traffic constraint,

and is thus feasible with respect to (45). Let v(z) be the value of the objective function in (45)

as a function of z. Due to the optimality of z∗, we have that v(z̃) − v(z∗) ≤ 0. We show that

this cannot hold, hence proving the contradiction. We have

v(z̃)− v(z∗) = (β̂i − β̂j)[γ(z∗j)− γ(z∗i )], (77)

where we have defined, for z ∈ [0, 1],

γ(z) ,

[
−Λz +

1− ξ
ξ

1−ρP
1−ρS

]
e−Λz. (78)

Note that γ(n) is a decreasing function of n ∈ [0, 1]. Therefore, since z∗i > z∗j , we have that

γ(z∗i ) < γ(z∗j), hence v(z̃) > v(z∗), yielding a contradiction.

APPENDIX C: PROOF OF THEOREM 3

The optimization problem (48) can be decomposed into the following two stages. First, given

(β̄(L), β̄(H)) with β̄(L) ≤ β̄(H), determine the mapping function φ(·) such that

φ∗(β̄(L), β̄(H)) = arg min
φ

D(π, β̄(L), β̄(H), φ) (79)

= arg max
φ

∑
i

[
βi ln

(
β̄(φ(i))

)
+ (1− βi) ln

(
1− β̄(φ(i))

)]
.

Second, determine β̄(L)∗ and β̄(H)∗ with optimal mapping φ∗(β̄(L), β̄(H)) into (48), yielding

(β̄(L), β̄(H))∗ = arg min
β̄(L),β̄(H)

D(π, β̄(L), β̄(H), φ∗(β̄(L), β̄(H))).

The solution to the intermediate problem (79) is trivially given by

φ(i) = L⇔ βi ln
(
β̄(L)

)
+(1− βi) ln

(
1− β̄(L)

)
≥βi ln

(
β̄(H)

)
+(1− βi) ln

(
1− β̄(H)

)
, (80)

yielding

φ(i) = L⇔ βi ≤

(
1 +

ln
(
β̄(H)

)
− ln

(
β̄(L)

)
ln
(
1− β̄(L)

)
− ln

(
1− β̄(H)

))−1

. (81)

Note that the solution is of threshold type. Therefore, defining the permutation function m(·) as

in the statement of the theorem, there exists ν such that φ(m(i)) = L for i ≤ ν, and φ(m(i)) = H
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for i > ν. We can thus restate the optimization problem (48) by enforcing this solution, yielding

(β̄(L)∗, β̄(H)∗, ν∗) = arg max
β̄(L),β̄(H),ν

ν∑
i=1

[
βm(i) ln

(
β̄(L)

)
+(1−βm(i)) ln

(
1−β̄(L)

)]
(82)

+
F∑

i=ν+1

[
βm(i) ln

(
β̄(H)

)
+ (1− βm(i)) ln

(
1− β̄(H)

)]
,

so that φ∗(i) = L ⇔ m(i) ≤ ν∗. We solve (82) with respect to (β̄(L), β̄(H)) first, for a fixed ν,

and then optimize over ν. We obtain

β̄(L)(ν) = arg max
β̄(L)

ν∑
i=1

[
βm(i) ln

(
β̄(L)

)
+ (1− βm(i)) ln

(
1− β̄(L)

)]
=

1

ν

ν∑
i=1

βm(i), (83)

β̄(H)(ν)=arg max
β̄(H)

F∑
i=ν+1

[
βm(i) ln

(
β̄(H)

)
+(1− βm(i)) ln

(
1− β̄(H)

)]
=

1

F − ν

F∑
i=ν+1

βm(i), (84)

yielding (50). By replacing (β̄(L)(ν), β̄(H)(ν)) into (82), we finally obtain ν∗ as in (51).

REFERENCES

[1] CISCO, “VNI Mobile Forecast Highlights, 2012 – 2017,” Tech. Rep. [Online]. Available: http://www.cisco.com/web/

solutions/sp/vni/vni mobile forecast highlight/index.html

[2] “Realizing the Full Potential of Government-Held Spectrum to Spur Economic Growth,” Tech. Rep., July 2012, report

to the president. [Online]. Available: http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast spectrum report

final july 20 2012.pdf

[3] J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han, “Collaborative Spectrum Sensing from Sparse Observations in Cognitive

Radio Networks,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 2, pp. 327–337, 2011.

[4] E. Sondik, “The optimal control of partially observable Markov processes,” Stanford University, Tech. Rep. AD0730503,

May 1971.

[5] D. Bertsekas, Dynamic programming and optimal control. Athena Scientific, Belmont, Massachusetts, 2005.

[6] J. Ziniel and P. Schniter, “Dynamic Compressive Sensing of Time-Varying Signals Via Approximate Message Passing,”

IEEE Trans. on Signal Processing, vol. 61, no. 21, pp. 5270–5284, 2013.

[7] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[8] M. Asif and J. Romberg, “Sparse recovery of streaming signals using `1-homotopy,” IEEE Transactions on Signal

Processing, vol. 62, no. 16, pp. 4209–4223, Aug 2014.

[9] D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Baraniuk, “Distributed Compressive Sensing,” CoRR, vol.

abs/0901.3403, 2009.

[10] J. Mota, J. Xavier, P. Aguiar, and M. Puschel, “Distributed Basis Pursuit,” IEEE Transactions on Signal Processing, vol. 60,

no. 4, pp. 1942–1956, 2012.

[11] J. Zhan and N. Vaswani, “Time Invariant Error Bounds for Modified-CS-Based Sparse Signal Sequence Recovery,” IEEE

Transactions on Information Theory, vol. 61, no. 3, pp. 1389–1409, March 2015.

[12] M. Stojnic, “Recovery thresholds for `1 optimization in binary compressed sensing,” in IEEE International Symposium on

Information Theory Proceedings (ISIT), 2010, pp. 1593–1597.

August 17, 2021 DRAFT

http://www.cisco.com/web/solutions/sp/vni/vni_mobile_forecast_highlight/index.html
http://www.cisco.com/web/solutions/sp/vni/vni_mobile_forecast_highlight/index.html
http://www.whitehouse.gov/sites/default/files/microsites/ostp/ pcast_spectrum_report_final_july_20_2012.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/ pcast_spectrum_report_final_july_20_2012.pdf


33

[13] U. Nakarmi and N. Rahnavard, “BCS: Compressive sensing for binary sparse signals,” in Military Communications

Conference (MILCOM), 2012, pp. 1–5.

[14] S. Bagheri and A. Scaglione, “The Restless Multi-Armed Bandit Formulation of the Cognitive Compressive Sensing

Problem,” IEEE Transactions on Signal Processing, vol. 63, no. 5, pp. 1183–1198, March 2015.

[15] A. Hero and D. Cochran, “Sensor Management: Past, Present, and Future,” IEEE Sensors Journal, vol. 11, no. 12, pp.

3064–3075, 2011.

[16] G. Atia, V. Veeravalli, and J. Fuemmeler, “Sensor Scheduling for Energy-Efficient Target Tracking in Sensor Networks,”

IEEE Trans. on Signal Processing, vol. 59, no. 10, pp. 4923–4937, 2011.

[17] V. Krishnamurthy and D. Djonin, “Structured Threshold Policies for Dynamic Sensor Scheduling: A Partially Observed

Markov Decision Process Approach,” IEEE Trans. on Signal Processing, vol. 55, no. 10, pp. 4938–4957, 2007.

[18] D.-S. Zois, M. Levorato, and U. Mitra, “Energy-Efficient, Heterogeneous Sensor Selection for Physical Activity Detection

in Wireless Body Area Networks,” IEEE Trans. on Signal Processing, vol. 61, no. 7, pp. 1581–1594, 2013.

[19] M. Naghshvar and T. Javidi, “Active Sequential Hypothesis Testing,” The Annals of Statistics, vol. 41, no. 6, pp. 2703–2738,

2013.

[20] N. Michelusi and U. Mitra, “Cross-Layer Design of Distributed Sensing-Estimation With Quality Feedback – Part I:

Optimal Schemes,” IEEE Transactions on Signal Processing, vol. 63, no. 5, pp. 1228–1243, March 2015.

[21] ——, “Cross-Layer Design of Distributed Sensing-Estimation With Quality Feedback – Part II: Myopic Schemes,” IEEE

Transactions on Signal Processing, vol. 63, no. 5, pp. 1244–1258, March 2015.

[22] ——, “Adaptive distributed compressed sensing for dynamic high-dimensional hypothesis testing,” in IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 6444–6448.

[23] N. Roy, G. Gordon, and S. Thrun, “Finding Approximate POMDP solutions Through Belief Compression,” Journal of

Artificial Intelligence Research, vol. 23, pp. 1–40, 2005.

[24] K. Deng, P. Mehta, and S. Meyn, “Optimal Kullback-Leibler Aggregation via Spectral Theory of Markov Chains,” IEEE

Transactions on Automatic Control, vol. 56, no. 12, pp. 2793–2808, Dec 2011.

[25] M. Levorato, U. Mitra, and M. Zorzi, “Cognitive Interference Management in Retransmission-Based Wireless Networks,”

IEEE Transactions on Information Theory, vol. 58, no. 5, pp. 3023–3046, May 2012.

[26] N. Michelusi, P. Popovski, and M. Zorzi, “Cognitive access policies under a primary ARQ process via chain decoding,”

in Information Theory and Applications Workshop (ITA), Feb 2013, pp. 1–8.

[27] N. Michelusi and U. Mitra, “Dynamic spectrum sensing-scheduling in agile networks with compressed belief information,”

in IEEE Global Conference on Signal and Information Processing (GlobalSIP), Dec 2014, pp. 808–812.

[28] N. Abramson, “The Throughput of Packet Broadcasting Channels,” IEEE Transactions on Communications, vol. 25, no. 1,

pp. 117–128, Jan 1977.

[29] N. Michelusi and U. Mitra, “A cross-layer framework for joint control and distributed sensing in agile wireless networks,”

in IEEE International Symposium on Information Theory (ISIT), June 2014, pp. 1747–1751.

[30] N. Michelusi, L. Badia, and M. Zorzi, “Optimal Transmission Policies for Energy Harvesting Devices With Limited

State-of-Charge Knowledge,” IEEE Transactions on Communications, vol. 62, no. 11, pp. 3969–3982, Nov. 2014.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.

[32] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Upper Saddle River, NJ, USA: Prentice

Hall Press, 2009.

August 17, 2021 DRAFT


	I Introduction
	I-A Related work

	II Motivation: single frequency band and noiseless sensing
	II-A Non-adaptive spectrum sensing
	II-B Adaptive spectrum sensing-scheduling

	III System Model: multiple frequency bands and noisy sensing
	III-A Spectrum Scheduling
	III-B Spectrum Sensing
	III-C System dynamics

	IV Policy definition and Optimization Problem
	IV-A Spectrum Sensing and Scheduling policies
	IV-B Performance metrics and Optimization problem

	V Optimization techniques
	V-A Optimal DP algorithm: decoupling the optimization of sensing and scheduling
	V-B Partially Myopic scheduling scheme

	VI Complexity reduction
	VI-A Compact belief representation via KLD minimization
	VI-B Spectrum estimation via sparse recovery
	VI-C CBS transition probabilities

	VII Numerical Results
	VIII Conclusions
	References

