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Abstract

Reliable spectrum cartography of directive sources depends on an accurate estimation of the

direction of transmission (DoT) as well as the transmission power. Joint estimation of power and DoT

of a directive source using ML estimation techniques is considered in this paper. We further analyze the

parametric identifiability conditions of the problem, develop the estimation algorithm, and derive the

Cramer-Rao-Bound (CRB) for the two situations: a) where the source signal is known to the sensors,

and b) where the sensors are not aware of the source signal but its distribution. Particularly, we devise

a specific sensor placement/selection setup for the symmetric antenna patterned sources which leads

to identifiability of the problem. Finally, numerical results verifies the efficiency and accuracy of the

provided estimation algorithms in this paper.

Index Terms

Cooperative estimation, direction of transmission (DoT), power estimation, directive source,

spectrum cartography, cognitive radio.

I. INTRODUCTION

Database assisted dynamic resource allocation is generally considered as a technique to enable

network level deployment of cognitive radios [1]–[3]. Such a database ideally should include

all the required information of the incumbent network (e.g. power, location, radiation pattern,
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bandwidth, direction of transmission, etc.) for the cognitive system intending to share the same

spectrum as incumbent users, to be able to adapt its transmission parameters to the environment,

without hindering operation of incumbent users. Most of the databases are obtained by collecting

information from the regulatory bodies. However, such information are either not complete, or

becomes outdated after a short time. This calls for a dynamic technique in order to complete

the information of databases, update the existing information, or even produce a database where

such information can not be obtained from regulatory bodies. Spectrum cartography or radio

environment mapping is proposed as an efficient technique to produce the dynamic database of

the incumbent or primary users, [4]–[8]. However, spectrum cartography can have plethora of

other applications, e.g. network monitoring, malicious user detection, interference monitoring,

and etc. The cornerstone of any spectrum cartography technique is a collaboration of sensors

to estimate source parameters, e.g. location and power [9]–[15]. The authors of [9] employ

sparse signal processing techniques to localize and estimate the power of multiple incumbent

transmitters. In [10], quantized measurements are used to reduce the communications overhead

and overcome the hardware complexities. And, location of incumbent users are determined

in [11] assuming a fading channel model. Most of these works provide efficient tools for

spectrum cartography of omni-directional sources which can be a valid assumption for lower

parts of the frequency spectrum. However, considering the highly directive nature of wireless

communications in higher parts of spectrum (e.g. Ka band, mmWave, etc. [16]), estimation of

direction of transmission (DoT) becomes an essential component of spectrum cartography in

order to obtain accurate results. For example, terrestrial microwave links in Ka band often used

for mobile backhauling are highly directive, and thus for the cognitive systems such as fixed

satellite services to coexist with the terrestrial links, it is important to know in which directions,

the terrestrial links are operating [3], [16]. The same holds when a new terrestrial system intends

to reuse the frequency of currently in use microwave links, e.g. for smart backhauling [17]. In

such cases, the cognitive system needs to have a good estimate of the amount of power in a

specific place in order to operate properly, and determine its transmission parameters such as

carrier, power, etc., [3]. Even if the cognitive system is aware of all the underlying parameters,

e.g. source power, location, etc., but still the knowledge of DoT is essential. Otherwise, the

cognitive system is not able to obtain an accurate estimate of the power distribution in the

environment, and either may hinder the operation of incumbent users or adapt transmission
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parameters which are not efficient.

There are few works which touch the problem of DoT estimation for spectrum cartography. An

extensive set of measurements over different distances and positions is collected in [12] in order

to estimate the DoT. The authors of [13] propose exhaustive search over multiple dimensions and

large number of sensors to estimate the DoT. Further, the developed techniques only consider the

case with Gaussian shaped antenna radiation patterns. In [18], we developed a joint power and

DoT estimation for a directive source, considering the source signal to be known to the sensors.

The developed algorithm of [18] can be applied to any antenna radiation pattern with a single

main lobe. However, in most cases the source signal is not known, and further the algorithm of

[18] incurs a high complexity in terms of synchronization between the sensors and the source,

and among the sensors.

Including and in addition to the known signal model in [18], here, the joint estimation of power

and DoT is also investigated by considering the source signal to be unknown but random with

a known distribution. A number of sensors collect observations, and transmit their observations

to a fusion center (FC). Unlike the setup in [18], the sensors are not synchronized in sampling.

The FC is responsible to infer the received data and globally estimate the power and DoT.

Specifically, our main contributions in this paper are as follows:

• First we formulate and develop the required maximum likelihood (ML) estimation algo-

rithms for the joint power and DoT estimation of a single directive source with a general

single main lobe radiation pattern. On top of the known signal model considered in [18], we

consider a scenario where the exact source signals are not known, but are i.i.d. randomly

distributed modeled by a zero-mean Gaussian distribution. It is shown that for both known

and unknown signal models, both power and DoT can be determined by a bounded line-

search over DoT.

• In addition to the algorithmic developments, we investigate the identifiability of the

underlying parameter model irrespective of a specific signal model. We find a set of

sufficient conditions for the identifiability. And particularly, we devise a specific sensor

selection/placement setup which makes the model parameter identifiable for the symmetric

antenna patterned sources.

• We derive the Cramer-Rao-Bound (CRB) of the underlying algorithms for both known and

unknown signal models as the performance bounds. Further, we prove that the developed
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algorithms are unbiased and consistent, and thus converge to the true values of power and

DoT for large number of samples.

• Finally, we provide a set of numerical results which verifies the efficiency of the developed

algorithms, and the propositions of the paper.

The remainder of the paper is organized as follows. Following the introduction of the signal

model, the underlying parameter identifiability conditions of the model are derived in Section II.

Afterward, we develop the estimation algorithms by employing ML estimation techniques for

both known and unknown signal models, in Sections III, and IV. Furthermore, to achieve a

theoretical benchmark for performance comparison, we derive the Cramer-Rao-Bound (CRB) in

these section. As shall be shown in Section V, where a set of simulations results are depicted,

the developed algorithm performs close to the CRB. And finally, we draw our conclusions in

Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a source which employs a directive antenna with a known radiation pattern,

and a single main lobe (e.g. the parabolic antenna in Fig. 1). The transmission occurs in a

deterministic but unknown direction. The direction of transmission (DoT) is denoted by angle

φ towards a specific reference line and represents the direction of the main lobe. We denote Ps

as the source transmission power, and M > 1 as the number of sensors which are located at

different angles towards the reference line denoted by θi, i = 1, · · · ,M . We assume the sensors

employ omni-directional antennas for signal reception. A schematic plan for the considered

model of the source and the sensors is depicted in Fig. 2. We assume the observations are

then sent sequentially (and orthogonally) to the FC for global data fusion (however, as shall

be shown later, this can be simplified significantly by some pre-processing at the sensor level,

and transmitting e.g. the energy of samples instead of each sample individually). We consider

a scenario where the FC is aware of the sensors locations as well as the location of the source

(and thus the angles θi, i = 1, · · · ,M ). In this paper, we consider a 2 dimensional (2D) location

and radiation pattern model, nevertheless the extension to the 3D model is straightforward. The

location information can be obtained either through a database or estimated using localization

techniques, e.g. [22]–[24], a priori. However, the FC is not aware of the transmission power Ps

and DoT φ. The goal of the FC is to jointly estimate Ps and φ based on sensors’ observations.

November 24, 2016 DRAFT



5

Further, we assume that the location of sensors and the source are fixed during the estimation

period.

Fig. 1. A parabolic antenna with its radiation pattern as an

example of a directive source.
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Fig. 2. Schematic plan of the considered model for the source

and the sensors.

Denoting xi[n], i = 1, · · · ,M to be the received signal at time n and sensor i, following an

additive-white-Gaussian-noise (AWGN) channel model, we have

xi[n] =
√

PsG(φ, θi)h(di)si[n] + wi[n], (1)

where

• G(φ, θi) is the antenna gain in the direction of sensor i known a-priori,

• di is the distance between the source and the i-th sensor, and h(di) is the path-loss,

• si[n] is the source signal received at sensor i at its n-th sampling instance,

• and wi[n] is the i.i.d. additive-white-Gaussian-noise (AWGN) with zero-mean and vari-

ance σ2
w.

The path-loss is obtained by h(di) = (4πdi/λ)
−γ , di 6= 0, where λ is the source signal

wavelength, and γ is the path-loss exponent. Note, this channel model does not represent the

instantaneous channel variations in wireless communications, but provides a good approximation

of the large-scale attenuation. For the sake of simplicity, we consider real-valued signals,

si[n], n = 1, · · · , N, i = 1, · · · ,M , however as the channel gains h(di), i = 1, · · · ,M are

real, extension of the developed techniques in this paper to the case of complex signals is

straightforward. The signal si[n] is usually unknown, therefore, one way of modeling si[n] is to

model it as a random variable following a zero mean i.i.d. Gaussian distribution with variance σ2
s .

In this case, we further consider a case where the sensors observation sampling is asynchronous,
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which explains the subscript i, and this way considering enough separation between the sensors,

the sensors observations become independent from each other. However, in case the sensors are

synchronous in sampling, i.e. receiving the same signals from the source, the observations become

correlated and this needs to be taken into account in designing the algorithms. Nevertheless, in

some cases, the sensors may have knowledge about specific part of the transmitted signal, e.g.

the training sequence of the communications system. In such a case, s[n] is known and thus

can be modeled by a deterministic signal. Here, sensors need to synchronize with the source,

and further si[n] = s[n], i = 1, · · · ,M . As in the previous model, for known signal model, the

sensors observations are independent. Considering these two possible models for si[n], in this

paper we define the problem for a known signal (i.e. deterministic), and an unknown signal (i.e.

random).

We formulate the underlying estimation problem based on ML techniques, which are widely

considered as statistically efficient techniques to estimate the deterministic parameters [29].

However, before going through the detail of the estimation problem and its corresponding

algorithm, in the following theorem, we establish the sufficient conditions for the considered

model to be parametrically identifiable. In this theorem, ∀ denotes “for all”, and ∃ denotes

“there is”.

Theorem 1. The model in (1) is identifiable, if the following conditions are satisfied,

1) ∀φ 6= φt : ∃θi : G(φ, θi) 6= G(φt, θi).

2) ∀∆ 6= 1 and φ 6= φt : ∃θi : G(φ, θi) 6= 1
∆
G(φt, θi), where ∆ = Ps

P t
s
.

With φt and P t
s denoting the true DoT and Ps, respectively.

Proof. The proof is provided in Appendix A. �

From Theorem 1, we can see that the parameter identifiability of (1) depends on the proper

selection of the sensors, which in turn depends on the specific G(φ, θi) function of the source.

Below, we outline the proper selection/placement of the sensors for the specific case of symmetric

antenna patterns (e.g. Horn antennas) in order to gain additional insight into the conditions

outlined in Theorem 1.

In the symmetric antenna patterns, the gain function only depends on |φ−θi| where |·| denotes

the absolute value, and thus G(φ, θi) = G(φ−θi) = G(θi−φ) = G(φ−θi + π), 0 ≤ φ ≤ 2π. Note,

for this discussion, we consider a symmetric antenna pattern which is a one-to-one monotonically

decreasing function over |φ − θi| ∈ [0, π], e.g. Fig. 3a. Since, we are not aware of the specific
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Fig. 3. (a): A symmetric antenna pattern example, (b) and (c): a not identifiable and an identifiable setup example with φ = π
2

in both, and θ1 = 0, θ2 = π in (b), and θ1 = 0, θ2 = 2π
3
, θ3 = 4π

3
in (c). The solid blue line shows the true DoT, and the

dashed blue line in (b) depicts the ambiguity. It is clear that in (b) both φ = π
2

and φ = 3π
2

leads to the same power and gain

product, thus the problem is not identifiable. This ambiguity is resolved in (c), because of addition of one more sensor.

value of (P t
s , φ

t), we need to select the sensors such that irrespective of φt, the identifiability

conditions in Theorem 1 always hold.

For the first condition in Theorem 1, assuming P t
s to be known, it is easy to show that this

condition is satisfied, if at least three of the sensors are located on either side of φt (e.g. Fig. 3c).

Note that two sensors located on either side of φt is not sufficient for identifiability as in Fig. 3b.

Further, in order to make sure that irrespective of φt, the selected sensors (M ≥ 3) make the

problem identifiable, one of the possibilities is to choose/place the sensors at equal angular

separation to each other, e.g. θi = (i− 1)2π
M

as in Fig. 3c.

To satisfy the second condition in Theorem 1, one approach could be to select the sensors

such that ∀φt,∆ 6= 1 : ∃θi : ∂G(φt,θi)
∂φt 6= 1

∆
. Assuming a non-linear gain pattern as in Fig. 3a

(which is mostly the case), again, one approach can be to select/place the sensors such that
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θi = (i− 1)2π
M

(e.g. Fig. 3c). In this case, for all possible φt and ∆, there is always at least one

sensor i for which
∂G(φt,θi)

∂φt 6= 1
∆

. This is an important result for identifiable estimation setup

of symmetric antenna patterned sources. Hence, we highlight a generalized description of this

discussion in the following proposition.

Proposition 1: If the source is equipped with a non-linear symmetric antenna pattern which

is a one-to-one non-linear decreasing function over |φ − θi| ∈ [0, ω], the model parameters are

identifiable if θi = (i− 1)2π
M
, i = 1, · · · ,M , with M > 2π

ω
, and ω ≤ π.

Proof. The proof follows the same discussion as above and therefore is omitted. �

In the following sections, we present the likelihood function of xi[n] for both signal models,

and provide the required algorithms in the FC to estimate the power and DoT of the source

using maximum likelihood (ML) estimation technique assuming the model to be identifiable.

III. ANALYSIS AND PROBLEM FORMULATION: KNOWN SIGNAL

A. ML Estimation Problem Formulation

Assuming s[n] to be known with E

[

s2[n]
]

= 1 (where E[·] denotes the expectation), xi[n]

is an i.i.d. real-valued random Gaussian variable with mean value of
√

PsG(φ, θi)h(di)s[n] and

variance σ2
w. Therefore, the probability density function (pdf) of the received signal at sensor i

and time n denoted by P (xi[n]) becomes

P (xi[n]|Ps, φ) =
1

√

2πσ2
w

exp

{

−
(

xi[n]−
√

PsG(φ, θi)h(di)s[n]
)2

2σ2
w

}

.

As mentioned before, we consider a scenario where all the sensors send their observations

to the FC. Then the FC estimate the power and the DoT using maximum likelihood (ML)

estimation. Denoting N to be total number of samples per sensor, the joint likelihood function

denoted by L is obtained by

L(Ps, φ) =
M
∏

i=1

N
∏

n=1

P (xi[n]|Ps, φ), (2)

and thus after some simplifications, the log-likelihood (LL) function becomes

LL(Ps, φ) = MN log
1

√

2πσ2
w

− 1

2σ2
w

[ M
∑

i=1

N
∑

n=1

(

xi[n]−
√

PsG(φ, θi)h(di)s[n]
)2
]

, (3)
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where log is the natural logarithm. Since MN log 1√
2πσ2

w

and 1
2σ2

w
do not depend on Ps or φ, for

estimation purposes, we consider a reduced version of LL function in (3) as follows

LL(Ps, φ) = −
[ M
∑

i=1

N
∑

n=1

(xi[n]−
√

PsG(φ, θi)h(di)s[n])
2

]

. (4)

In order to estimate Ps and φ, we consider an ML estimation problem defined as

max
Ps,φ

LL(Ps, φ) s.t. Ps ≥ 0, 0 ≤ φ < 2π. (5)

where LL(Ps, φ) is obtained from (4).

B. Estimation Algorithm for (5)

To find a solution algorithm for (5), first we assume that the φ is given and find the optimal

Ps, and then we insert the optimal Ps in (5) to devise the required algorithm in order to estimate

φ and Ps. As shall be shown later, for a given φ denoted by φg, there is a unique Ps which

maximizes (4). For φg, (5) becomes

max
Ps

−
[ M
∑

i=1

N
∑

n=1

(

xi[n]−
√

PsG(φg, θi)h(di)s[n]
)2
]

s.t. Ps ≥ 0. (6)

Thereby, we obtain the following theorem which provides the closed form solution of (6) denoted

by P ∗
s (φg).

Theorem 2: The optimal solution of (6) is obtained by

• If
∑M

i=1 Ri

√

G(φg, θi)h(di) > 0, then

P ∗

s (φg) =

(

∑M

i=1 Ri

√

G(φg, θi)h(di)

S
∑M

i=1 G(φg, θi)h(di)

)2

, (7)

where Ri =
N
∑

n=1

xi[n]s[n], S =
N
∑

n=1

s2[n].

• If
∑M

i=1 Ri

√

G(φg, θi)h(di) ≤ 0, then

P ∗

s (φg) = 0.

Proof. The proof is provided in Appendix B.

Proposition 2: The source power estimator in Theorem 1 is unbiased and consistent for φg =

φt.

Proof. The proof is provided in Appendix C.
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Proposition 2 guarantees that the estimator in Theorem 2 converges to the true value of Ps,

if φg = φt.

We can now rewrite (5) as follows

max
φ

LL(P ∗

s (φ), φ) s.t. 0 ≤ φ < 2π, (8)

where P ∗
s (φ) is the optimal Ps coming from Theorem 2. After some simple algebraic simplifi-

cations reported in Appendix D, we obtain

max
φ

U

(

M
∑

i=1

Ri

√

G(φ, θi)h(di)

)

×

(

∑M

i=1 Ri

√

G(φ, θi)h(di)
)2

M
∑

i=1

G(φ, θi)h(di)

, (9)

where U(•) is the Heaviside function, i.e., U(x) = 1 if x ≥ 0, and U(x) = 0 otherwise. This way,

we can find the optimal φ denoted by φ∗ by an exhaustive line-search over φ, and consequently

P ∗
s from Theorem 2. The joint estimation of Ps and φ using (9) is depicted in a more clear way

in Algorithm 1.

Algorithm 1 Joint Ps and φ estimation algorithm.

Input: φ = 0, δφ as the search step size,

1: while φ ≤ 2π do

2: Step 1: Find P ∗
s for φ from Theorem 2, and store φ, P ∗

s (φ), and LL(P ∗
s , φ).

3: Step 2: φ = φ+ δφ.

4: end while

5: Find (φ, P ∗
s (φ)) which has the maximum LL(P ∗

s , φ) in storage.

6: if P ∗
s = 0 then

7: announce the transmitter is “off”.

8: else

9: Estimate Ps and φ by (φ, P ∗
s (φ)).

10: end if

Remark 1: We can see from (9) that for the known signal scenario, the sensors only need to

send Ri to FC which reduces the communications overhead significantly.

Considering the fact that the computational and communication load of the FC reduces

significantly by transmitting only Ris from the sensors, and further the fact that in each point
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of the line search over φ, the corresponding power estimate is calculated by a closed form

solution, the main computational complexity of the algorithm lies in the required resolution of

the line-search. However, this can also be relieved significantly by performing parallel computing

techniques.

Proposition 3: If the ML estimator in (9) is identifiable, the estimator in Theorem 2 is unbiased

and consistent.

Proof. The proof is provided in Appendix E.

Therefore, the estimator in (9) converges to P t
s and φt.

C. CRB for Known Signal

In order to compare the performance of the developed technique, here we obtain the

Cramer-Rao-Bound (CRB) of the estimation technique developed in this paper. The CRB

provides a lower-bound on the mean-square-error (MSE) of an unbiased estimator and thus

MSE(Ps, φ)=MSE(Ps)+MSE(φ)≥ CRB(Ps, φ) = CRB(Ps) + CRB(φ) [29].

Assuming that LL(Ps, φ) satisfies the regularity conditions, after algebraic manipulations

presented in Appendix F, we obtain the following Theorem which calculates CRB(Ps,φ) where

G
′

(φ, θi) =
∂G(φ,θi)

∂φ
.

Theorem 3: The CRB(Ps, φ) for known signal is given by

CRB(Ps, φ) =
4Psσ

2
w

N
∑M

i=1 G(φ, θi)h(di)
+

4σ2
w

NPs

∑M

i=1 h(di)
G

′2
(φ,θi)

G(φ,θi)

, (10)

with individual CRB(Ps) and CRB(φ) obtained by

CRB(Ps) =
4Psσ

2
w

N
∑M

i=1 G(φ, θi)h(di)
, (11)

CRB(φ) =
4σ2

w

NPs

∑M

i=1 h(di)
G

′2
(φ,θi)

G(φ,θi)

. (12)

Note that the calculation of individual CRBs is merely provided to gain more insights. Otherwise,

as the estimation is jointly performed over Ps and φ, the individual CRBs can not be a good

benchmark for comparison. From (10), it is clear that increasing the noise power, increases the

total CRB, but the effect of Ps on the total CRB is not exactly clear. Increasing Ps increases

the CRB(Ps) but reduces the CRB(φ). Additionally, increasing the number of samples reduces
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the total CRB linearly and thus the expected MSE. Furthermore, we can see that as the number

of sensors increases, the CRB decreases but its effect is not linearly scaled as is the case for

the number of samples N . Finally, it is clear that as the distance of the sensors to the source

increases, CRB increases.

IV. ANALYSIS AND PROBLEM FORMULATION: UNKNOWN SIGNAL

A. ML Estimation Problem Formulation

In this section, ML estimation of Ps and φ is considered for an unknown signal model si[n]

which follows a zero-mean normal distribution. Therefore, the probability distribution function

of xi[n] is obtained by

p(xi[n]|Ps, φ) =
1

√

2π[PsG(φ, θi)h(di) + σ2
w]

exp
(

− 1

2

x2
i [n]

PsG(φ, θi)h(di) + σ2
w

)

, (13)

This way, due to the temporal and spatial independence of sensors observations, the joint

likelihood of xi[n]s becomes

L(Ps, φ) =
M
∏

i=1

N
∏

n=1

p(xi[n]|Ps, φ)

=
M
∏

i=1

N
∏

n=1

(

1
√

2π[PsG(φ, θi)h(di) + σ2
w]

exp
(

− 1

2

x2
i [n]

PsG(φ, θi)h(di) + σ2
w

)

)

, (14)

To make the mathematical derivations easier, we apply the natural logarithm on both sides of

(14), and thus after some simplifications, we obtain

LL(Ps, φ) =
M
∑

i=1

−N

2
log
(

2π[PsG(φ, θi)h(di) + σ2
w]
)

− 1

2

∑N

n=1 x
2
i [n]

PsG(φ, θi)h(di) + σ2
w

. (15)

As in the previous case, here we estimate Ps and φ by maximizing the function in (15) as

follows,

max
Ps,φ

LL(Ps, φ) s.t. Ps ≥ 0, 0 ≤ φ ≤ 2π. (16)

B. Estimation Algorithm for (16)

The joint estimation of Ps and φ with the defined objective function is difficult. Therefore,

first we obtain the ML of Ps for a given φ, and then we insert the obtained result in (16) in

order to obtain the ML of φ.
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For a given φ = φg, the optimal Ps is obtained according to the following theorem.

Theorem 4. For a given φ = φg, the optimal Ps denoted by P ∗
s is obtained by

• If
∑M

i=1 G(φg, θi)h(di)(Xi −Nσ2
w) ≤ 0 then P ∗

s = 0.

• If
∑M

i=1 G(φg, θi)h(di)(Xi − Nσ2
w) > 0 then P ∗

s is the unique solution of ∂LL
∂Ps

= 0, with

∂LL
∂Ps

=
∑M

i=1 −
NG(φg ,θi)h(di)

2
(

PsG(φg ,θi)h(di)+σ2
w

) + G(φg ,θi)h(di)Xi

2
(

PsG(φg ,θi)h(di)+σ2
w

)2 , where Xi =
∑N

n=1 x
2
i [n].

Proof. The proof is provided in Appendix G.

Note that to find the solution of ∂LL
∂Ps

= 0, we can either use efficient techniques such as Newton

method, or exploit the quasi concavity of the LL function, and employ bisection techniques. In

the latter case, we should remember to put P ∗
s = 0 in case the result of bisection technique leads

to a negative power.

Proposition 4: The transmission power estimator in Theorem 4 is unbiased and consistent for

φg = φt.

Proof. The proof is provided in Appendix H.

Proposition 4 guarantees that the estimator in Theorem 4 converges to P t
s .

As in the case of known signal, here we insert P ∗
s in (15), and thus the optimal φ and

consequently optimal Ps can be estimated by solving the following line-search problem,

max
φ

M
∑

i=1

−N

2
log
(

2π[P ∗

s (φ)G(φ, θi)h(di) + σ2
w]
)

− 1

2

∑N

n=1 x
2
i [n]

P ∗
s (φ)G(φ, θi)h(di) + σ2

w

s.t. 0 ≤ φ ≤ 2π, (17)

where P ∗
s (φ) is obtained from Theorem 4. Since the LL function often does not have a unique

global maxima in φ, standard optimization algorithms such as gradient descent can lead to a

local maxima which may be far away from the true φ. The joint estimation of Ps and φ using

(17) is depicted in a more clear way in Algorithm 2.

Proposition 5: If the estimator in (16) is identifiable, then the estimator in (17) is asymptotically

unbiased and consistent.

Proof. The proof is provided in Appendix I.

Therefore, estimator in (17) converges to φt and consequently P t
s .

Remark 2: Looking at the unknown signal estimator, we can see that in this estimator, the

sensors only need to communicate the accumulated energy of the received samples to the FC.
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Algorithm 2 Joint Ps and φ estimation algorithm.

Input: φ = 0, δφ as the search step size,

1: while φ ≤ 2π do

2: Step 1: Find P ∗
s for φ from Theorem 4, and store φ, P ∗

s (φ), and LL(P ∗
s , φ).

3: Step 2: φ = φ+ δφ.

4: end while

5: Find (φ, P ∗
s (φ)) which has the maximum LL(P ∗

s , φ) in storage.

6: if P ∗
s = 0 then

7: announce the transmitter is “off”.

8: else

9: Estimate Ps and φ by (φ, P ∗
s (φ)).

10: end if

Considering the fact that the computational and communication load of the FC reduces

significantly by transmitting only the accumulated energy of samples from the sensors, the

main computational complexity of the algorithm lies in the required resolution of the line-search

as well as finding the root of ∂LL
∂Ps

. However, the computational complexity induced by the line

search can be relieved significantly by performing parallel computing techniques. As for the root-

finding, we can resort to fast techniques such as Newton method with quadratic convergence

rate, and of low complexity. Therefore, although the complexity of algorithm in case of unknown

signals may be higher than the one of known signals, but yet affordable.

C. CRB for Unknown Signal

As in Section III-C, after some algebraic calculations, we obtain Theorem 5, which derives

the CRB(Ps, φ) for the unknown signal scenario.

Theorem 5. We obtain CRB(Ps, φ) for the unknown signal as follows,

CRB(Ps, φ) =
2

N(A− B)

[ M
∑

i=1

(

Psh(di)G
′

(φ, θi)

PsG(φ, θi)h(di) + σ2
w

)2

+
M
∑

i=1

(

G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ2
w

)2]

,

(18)
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with G
′

(φ, θi) =
∂G(φ,θi)

∂φ
, and

A =
M
∑

i=1

(

Psh(di)G
′

(φ, θi)

PsG(φ, θi)h(di) + σ2
w

)2

×
M
∑

i=1

(

G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ2
w

)2

,

and

B =

( M
∑

i=1

Psh
2(di)G(φ, θi)G

′

(φ, θi)
(

PsG(φ, θi)h(di) + σ2
w

)2

)2

.

Further, the individual CRB for Ps and φ are given by

CRB(Ps) =
2

N(A− B)

[ M
∑

i=1

(

Psh(di)G
′

(φ, θi)

PsG(φ, θi)h(di) + σ2
w

)2]

, (19)

and

CRB(φ) =
2

N(A− B)

[ M
∑

i=1

(

G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ2
w

)2]

. (20)

Proof. the proof is provided in Appendix J.

We can see that as the number of sensors N increases, the nominator of CRB(Ps, φ) increases

with N and denominator with N2, and thus we can deduce that CRB decreases as N increases.

Opposite effect can be observed for σ2
w, i.e. CRB increases with σ2

w. However, the effect of the

number of sensors M , Ps and di on CRB is not straightforward.

V. SIMULATION RESULTS

In this section, our goal is to evaluate the performance of the known signal and unknown signal

algorithms using some simulations results. We particularly focus on a source with a symmetric

antenna pattern (with a shape similar to Fig. 3a) defined as

G(φ, θi) =







100 exp(−|φ− θi|) if 0 ≤ |φ− θi| ≤ 180◦;

0 else.
(21)

This definition of antenna gain pattern matches well with most of the practical symmetric antenna

patterns, e.g. Horn or parabolic antennas. Further, according to Proposition 1, we place the sensors

such that θi = (i − 1)2π
M

to make the setup identifiable, and without loss of generality, unless

it is clearly mentioned, we assume the sensors are equally distanced from the source, and thus

∀i : di = d. In all the simulations, we assume DoT to be φ = 60◦, Ps = 0 dBW, transmit

frequency denoted by f to be 18 GHz, γ = 2 (equivalent to a line-of-sight channel), and

σ2
w = −136 dBW which approximately represents the noise power of a 5 MHz bandwidth and
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noise temperature of T = 360 K receiver. Note that in practice, depending on the environment,

the value of γ is often higher than 2 which is equivalent to free space path-loss. Further, the

considered value of bandwidth and noise temperature in this paper does not necessarily represent

a particular implementation, as the specific value of these parameters may change from one sensor

technology to another, and depends on the requirement of the operators, environment and antenna

technologies. Therefore, the simulations based on the chosen parameters here are provided as

an academic exercise in order to illustrate the efficiency of the proposed algorithms as well as

validity of claims in this paper. Before going through the detailed simulations results, please note

that in all the figures, ’ks’ denotes the known signal algorithm, and ’us’ denotes the unknown

one.

Fig. 4 depicts the normalized mean square error (NMSE) of the estimated parameters Ps and

φ with the number of samples N , for the known and unknown signal algorithms. In this figure,

three sensors are considered for cooperative estimation setup, which are located at the distance

of d = 1000 m to the source. The simulation result is averaged over 1000 runs and δφ = 0.1.

It is clear that as N increases, NMSE for both parameters and both algorithms reduces. This

verifies the claims in Propositions 2 to 5. Further, in order to evaluate the performance of the

algorithm with respect to those that only estimate Ps assuming accurate φ to be known (as in

e.g. [13]), the lines titled Ps(φg = 60◦) are depicted which shows the NMSE of Ps when φ

is known for both known and unknown signal algorithms. In both cases, we can see that the

NMSE in this case is extremely close to the one with estimated φ.

In order to evaluate the sensitivity of the algorithms with respect to the line search step size,

δφ, in Figures 5 and 6, we depict the NMSE of Ps and φ versus δφ for both known and unknown

signal algorithms, respectively. In these figures, we evaluate the performance for two different

values of φ, i.e. φ = 60◦, 60.5◦. The other parameters are the same as previous scenario, with

the difference of N = 1000. An interesting trend in both figures is that for φ = 60.5◦ where

a minimum resolution of level 0.1 is required, increasing δφ generally leads to an increase in

NMSE. This is particularly evident for NMSE of φ. However, for φ = 60◦, a minimum resolution

of δφ = 1 is required. Here, we can see while NMSE for δφ = 0.1 is yet acceptable, however

for a range of δφ from 1 to 6 as well as 10, the NMSE particularly for φ is very low (in our

case for 1000 realizations, no error was observed). This trend can be because of the fact that

here a resolution of 1 is enough and further, the gain pattern in the next step becomes largely
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Fig. 4. NMSE of Ps and φ versus number of samples for known and unknown signal algorithms, with Ps = 0 dBW,

σ2
w = −136 dBW, f = 18 GHz, γ = 2, M = 3, θi = (i− 1) 360

3
for i = 1, 2, 3, and d = 1000 m.

different from the previous step (something which does not usually happen for lower resolutions

unless the pattern becomes very sharp), and thus a better NMSE in this case can be achieved.

Nevertheless, in practice, we are mostly not aware of the minimum required step size, therefore

it is more reasonable to choose a lower resolution as long as the computations are affordable.

Note that in the rest of numerical results unless it is clearly mentioned we assume δφ = 0.1.

In Fig. 7, the CRB performance of the known and unknown signal algorithms is evaluated

versus the number of samples for the same scenario as in Fig. 4, and for two values of δφ = 0.1, 1.

Here, we particularly depict the normalized total CRB (NCRB) and compared with the total

NMSE as defined in Section III-C. We can see that the unknown signal estimator performs

very close to CRB for both values of δφ. For the known estimator, once again we can observe

the importance of δφ in estimation accuracy. While for δφ = 1, the estimator achieves the CRB

after few samples, however for δφ = 0.1, due to a higher value of estimation error in φ, the

performance is further away from the CRB.

After confirming the convergence of the algorithms with the number of samples in Fig-

ures 4 and 7, in Fig. 8, we intend to evaluate the effect of the distance to the source d, and the

number of sensors M on the estimation accuracy of the known signal algorithm. In this figure,

we consider a configuration of 3 and 4 sensors, with the number of samples fixed at N = 1000.
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3
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Fig. 6. NMSE of Ps and φ versus δφ for unknown signal al-

gorithm, with Ps = 0 dBW, σ2
w = −136 dBW, f = 18 GHz,

γ = 2, M = 3, θi = (i − 1) 360
3

for i = 1, 2, 3, N = 1000,

and d = 1000 m.
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Fig. 7. NMSE and NCRB of known and unknown signal algorithms versus the number of samples, with Ps = 0 dBW,

σ2
w = −136 dBW, f = 18 GHz, γ = 2, M = 3, θi = (i− 1) 360

3
for i = 1, 2, 3, and d = 1000 m.

We can see that as d increases, the estimation accuracy decreases, and the opposite effect is seen

when M increases, which verifies the discussion provided in Section III-C.
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In Fig. 9, the evaluation of Fig. 8 is performed for the unknown signal algorithm. In this case,

the number of sensors is fixed at 3, 6 and 9, and the results are averaged over 1000 runs. It is

clear that increasing d, leads to a lower estimation accuracy for φ, and increasing the number of

sensors improves the estimation accuracy of φ. However, in case of Ps, we have not observed a

major change. Nevertheless, we have not observed the effect of number of sensors on improving

estimation accuracy for all numbers of M > 3 in our simulations. We can say if the setup with

3 sensors is spanned by the setup of higher number of sensors (e.g. 6 or 9 as in Fig. 9), the

estimation accuracy may improve, however if the new setup does not include the one of 3 sensors,

it may even lead to a lower estimation accuracy for Ps based on our observations. This indeed

verifies the discussion in Section IV-C, where we could not draw a definite conclusion about the

effect of number of sensors on the estimation accuracy of the unknown signal algorithm.
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Fig. 8. NMSE of Ps and φ versus the distance to the

source for the known signal algorithm and different number of

sensors, with Ps = 0 dBW, σ2
w = −136 dBW, f = 18 GHz,

γ = 2, M = 3, 4, θi = (i − 1) 360
M

for i = 1, · · · ,M , and

N=1000.
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Fig. 9. NMSE of Ps and φ versus the distance to the source

for the unknown signal algorithm and different number of

sensors, with Ps = 0 dBW, σ2
w = −136 dBW, f = 18 GHz,

γ = 2, M = 3, 6, 9, θi = (i− 1) 360
M

for i = 1, · · · ,M , and

N=1000.

Note that so far, we assumed that the sensors are placed at equal distance to the source.

In order to evaluate the performance of the system when the sensors are located at a random

distance to the source, in Fig. 10, NMSE of Ps and φ versus the number of samples is depicted

for the same parameters as in Fig. 4, except for d, which is chosen randomly from the set
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{100, 1000} m. As we can see the algorithms still provide a good estimation accuracy.

After verification of the provided algorithms for the assumed radiation pattern in (21), in

Fig. 11, we provide NMSE versus number of samples for the case of a more realistic antenna

pattern obtained from ITU-R S.465-6 [30]. The other parameters are the same as Fig. 4. Note that

in this case the antenna pattern is only a one to one function over [0◦, 48◦], and thus according

to Proposition 1, at least 8 sensors are required to make sure the problem is identifiable. Indeed,

during the simulations, we confirmed this fact by reducing the number of sensors to 7, and it

was observed that the algorithms can not converge in this case. From the figure, we can see

that the proposed algorithms provide a good estimation accuracy, and further as the number of

sensors increases, the estimation accuracy clearly improves in this case.
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Fig. 10. NMSE of Ps and φ versus number of samples for

known and unknown signal algorithms for random dis, with

Ps = 0 dBW, σ2
w = −136 dBW, f = 18 GHz, γ = 2,

M = 3, θi = (i− 1) 360
3

for i = 1, 2, 3.
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Fig. 11. NMSE of Ps and φ versus the number of sam-

ples for known and unknown signal algorithms, an antenna

pattern based on ITU-R S.465-6, with Ps = 0 dBW, σ2
w =

−136 dBW, f = 18 GHz, γ = 2, M = 8, 10, θi = (i−1) 360
M

for i = 1, · · · ,M , and d = 1000.

VI. CONCLUSIONS AND FUTURE WORKS

Joint estimation of transmission power and DoT for a directive source was considered in

this paper. We formulated the underlying ML estimation problems considering a known and

an unknown model. The identifiability conditions for the model parameters were derived, and

November 24, 2016 DRAFT



21

particularly we showed that for the symmetric antenna patterned sources, the sufficient conditions

include a lower-bound on the number of sensors, and sensors to be placed with equal angular

distances. This was followed by providing the algorithmic solution of the estimation problems

which rendered to be unbiased and consistent. Further, we drove the CRB for both the known

signal and unknown signal algorithms. In addition, it was shown that in case of known signal

scenario, the sensors only need to transmit the cross correlation of the observation samples with

the original signal, and in case of unknown signal scenario, the sensors only need to communicate

the energy of the received samples. This leads to a significant reduction of communication and

computation overhead.

To evaluate the performance of the developed algorithms, we performed several simulations

results. It was shown that the algorithms deliver a good estimation accuracy for Ps and φ, and

further their performance is close to CRB. As verified by simulations results, proper placement

of the sensors according to the identifiability analysis provided in the paper is a critical parameter

to consider. Another parameter which is important in obtaining accurate results is the path-loss

exponent. While in the simulations results, we assumed this to be equal to 2 as in the case of free

space path-loss, in reality depending on the environment this value is usually higher. Therefore,

proper tuning of path-loss exponent is another parameter to take into account while calibrating

the system.

In this paper, we assumed the gain pattern to be exactly known, however in practice

this knowledge might not be always available or simply the antenna is not well calibrated.

Development of the algorithms for unknown gain patterns is an idea of future work. Other

examples of ideas for future work include better path-loss modeling, particularly using advanced

wave-field estimation techniques, polarization estimation, and estimation of sources in point-to-

multi-point scenarios.

APPENDIX A

PROOF OF THEOREM 1

Parameter identifiability means that model parameters can be uniquely determined from a set

of noise and error free observations [27], [28]. Hence, in our case, we need to show that the

set of equations ∀i : si[n]
√

PsG(φ, θi)h(di) = si[n]
√

P t
sG(φt, θi)h(di) results in Ps = P t

s and

φ = φt, with P t
s and φt denoting the true Ps and φ. Therefore, the problem boils down to finding
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the conditions under which no other Ps 6= P t
s or φ 6= φt can result in PsG(φ, θi) = P t

sG(φt, θi)

∀i.
First, we start with the case where φ = φt but Ps 6= P t

s . In this case, it is clear that there is

no Ps 6= P t
s for which PsG(φ, θi) = P t

sG(φt, θi), ∀i. Therefore, if φ = φt, the problem is always

identifiable.

Now, we consider the case where Ps = P t
s , but φ 6= φt. This way, the problem is identifiable

if ∀i, φ 6= φt : G(φ 6= φt, θi) 6= G(φt, θi). This condition does not hold for a general antenna

pattern, all the time, e.g. symmetric antenna patterns as in Fig. 3a. In this case, the problem is

identifiable if the common solution of the set G(φ, θi) = G(φt, θi), i = 1, · · · ,M, is unique. It

is clear that all the equations have at least a common solution which is φ = φt, and further, the

uniqueness can be satisfied if ∀φ 6= φt : ∃θi : G(φ, θi) 6= G(φt, θi).

Finally, we look into the case where Ps 6= P t
s , and φ 6= φt. Assuming Ps = ∆P t

s , the problem

in this case is unidentifiable if ∃φ 6= φt : G(φ 6= φt, θi) =
1
∆
G(φt, θi), ∀i. Therefore, the problem

becomes identifiable if ∀∆ 6= 1, φ 6= φt : ∃θi : G(φ 6= φt, θi) 6= 1
∆
G(φt, θi). And this concludes

our proof.

APPENDIX B

PROOF OF THEOREM 2

In order to find the maximum of Ps 7→ LL(Ps, φg), we would like to analyze the shape of

the function. To do that, we will calculate its derivative function. For any Ps 6= 0, we easily get

∂LL(Ps, φg)

∂Ps

=
1√
Ps

M
∑

i=1

Ri

√

G(φg, θi)h(di)− S
M
∑

i=1

G(φg, θi)h(di).

• If
∑M

i=1 Ri

√

G(φg, θi)h(di) > 0, then the derivative function is positive as Ps → 0. And

thus the function LL(•, φg) increases with Ps until the point P ∗
s such that

1
√

P ∗
s

M
∑

i=1

Ri

√

G(φg, θi)h(di) = S

M
∑

i=1

G(φg, θi)h(di).

Beyond the point P ∗
s , the derivative function becomes negative and the function LL(•, φg)

decreases. Therefore the optimal point is P ∗
s and so we get Eq. (7).

• If
∑M

i=1 Ri

√

G(φg, θi)h(di) ≤ 0, then the derivative function is always negative and so the

function LL(•, φg) is monotonic decreasing in Ps. Therefore the optimal point is zero.
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APPENDIX C

PROOF OF PROPOSITION 2

We prove the proposition for the case P t
s > 0, the case with P t

s = 0 (i.e. the case

where the transmitter is actually “off”) can be proved in a similar way (indeed in this

case for any φg including φt, the estimated Ps tends to 0 asymptotically). Denoting the

true Ps to be estimated as P t
s , to prove the consistency of the estimator in Theorem 2,

we need to prove that limN→∞ P ∗
s from (7) is equal to P t

s . Considering the fact that

limN→∞

∑M

i=1 Ri

√

G(φt, θi)h(di) = limN→∞ S
√

P t
s

∑M

i=1

√

G(φt, θi)h(di) > 0, we have

lim
N→∞

P ∗

s = lim
N→∞

(

∑M

i=1
Ri

√

G(φt, θi)h(di)

S
∑M

i=1
G(φt, θi)h(di)

)2

= lim
N→∞

(

S
√

P t
s

∑M

i=1
G(φt, θi)h(di) +

∑M

i=1

∑N

n=1
s[n]wi[n]

√

G(φt, θi)h(di)

S
∑M

i=1
G(φt, θi)h(di)

)2

= P t
s + lim

N→∞

(

∑M

i=1

∑N

n=1
s[n]wi[n]

√

G(φt, θi)h(di)

S
∑M

i=1
G(φt, θi)h(di)

)2

+ lim
N→∞

2
√

P t
s

∑M

i=1

∑N

n=1
s[n]wi[n]

√

G(φt, θi)h(di)

S
∑M

i=1
G(φt, θi)h(di)

,

= P t
s + 0 + 0 = P t

s , (22)

where we used the fact that Ri = S
√

P t
sG(φt, θi)h(di) +

∑N

n=1 s[n]wi[n]
√

G(φt, θi)h(di), and

limN→∞

∑N

n=1 s[n]wi[n] = 0.

Further, to prove that this estimator is unbiased, we need to show that E
(

P ∗
s

)

= P t
s . Therefore

we have

E
(

P ∗

s

)

= E

[(

∑M

i=1
Ri

√

G(φt, θi)h(di)

S
∑M

i=1
G(φt, θi)h(di)

)2]

,

= E

[

P t
s +

(

∑M

i=1

∑N

n=1
s[n]wi[n]

√

G(φt, θi)h(di)

S
∑M

i=1
G(φt, θi)h(di)

)2

+

(

2
√

P t
s

∑M

i=1

∑N

n=1
s[n]wi[n]

√

G(φt, θi)h(di)

S
∑M

i=1
G(φt, θi)h(di)

)]

= P t
s + E

[(

∑M

i=1

∑N

n=1
s[n]wi[n]

√

G(φt, θi)h(di)

S
∑M

i=1
G(φt, θi)h(di)

)2]

+ E

[(

2
√

P t
s

∑M

i=1

∑N

n=1
s[n]wi[n]

√

G(φt, θi)h(di)

S
∑M

i=1
G(φt, θi)h(di)

)]

,

= P t
s + 0 + 0 = P t

s , (23)

where E

[(

∑M
i=1

∑N
n=1 s[n]wi[n]

√
G(φt,θi)h(di)

S
∑M

i=1 G(φt,θi)h(di)

)2]

and E

[(

2
√

P t
s

∑M
i=1

∑N
n=1 s[n]wi[n]

√
G(φt,θi)h(di)

S
∑M

i=1 G(φt,θi)h(di)

)]

,

are found to be zero by replacing the expectation with the sample average as n → ∞. And this

concludes our proof.
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APPENDIX D

PROOF OF EQUATION (9)

If
∑M

i=1 Ri

√

G(φ, θi)h(di) ≥ 0, we put (7) into (4), and obtain that we have to maximize

−∑M

i=1 Xi +
1
S

(

∑M
i=1 Ri

√
G(φ,θi)h(di)

)2

∑M
i=1 G(φ,θi)h(di)

with Xi =
∑N

n=1 x
2
i (n).

If
∑M

i=1 Ri

√

G(φ, θi)h(di) < 0, P ∗
s (φg) = 0, and so we trivially have to maximize −

∑M

i=1 Xi

which is actually constant. In this case any φ is optimal, which is not problematic in terms of

spectrum cartography as P ∗
s = 0 means the source is not transmitting at this moment, therefore

the direction is not important.

Consequently, we can merge both cases in a single equation as follows −∑M

i=1 Xi +

δ 1
S

(

∑M
i=1 Ri

√
G(φ,θi)h(di)

)2

∑M
i=1 G(φ,θi)h(di)

with δ equal to 1 for the first case and 0 for the second case.

Moreover as −∑M

i=1 Xi and S are independent of φ, these terms can be removed and we then

obtain the result provided in (9).

APPENDIX E

PROOF OF PROPOSITION 3

To prove that (9) is unbiased and consistent, it is easier to provide the same for (5). To

prove consistency, it is clear that limN→∞ −
[

∑M

i=1

∑N

n=1(xi[n] −
√

PsG(φ, θi)h(di)s[n])
2

]

=

limN→∞ −
[

∑M

i=1

∑N

n=1(
√

P t
sG(φt, θi)h(di)s[n] + wi[n] −

√

PsG(φ, θi)h(di)s[n])
2

]

is maxi-

mized when PsG(φ, θi) = P t
sG(φt, θi). Since the problem is assumed to be identifiable, Ps = P t

s

and φ = φt.

To prove (5) is unbiased, we need to show that E
(

max
Ps,φ

LL(Ps, φ)
)

= (P t
s , φ

t). Therefore we

have

E
(

max
Ps,φ

LL(Ps, φ)
)

= E

[

N
∑

n=1

max
Ps,φ

[

−
M
∑

i=1

N
∑

n=1

(xi[n]−
√

PsG(φ, θi)h(di)s[n])
2

]

]

,

= E

[

N
∑

n=1

min
Ps,φ

[ M
∑

i=1

N
∑

n=1

(xi[n]−
√

PsG(φ, θi)h(di)s[n])
2

]

]

, (24)

where minPs,φ

[

∑M

i=1

∑N

n=1(xi[n] −
√

PsG(φ, θi)h(di)s[n])
2

]

=

∑M

i=1

∑N

n=1 minPs,φ

[

((
√

P t
sG(φt, θi)h(di) −

√

PsG(φ, θi)h(di))s[n] + wi[n])
2

]

is similar

to minimizing variance of a non-central chi-squared distributed random variable. The
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variance of a chi-squared random variable is minimized when the non-centrality parameter

becomes zero. Therefore, we obtain PsG(φ, θi) = P t
sG(φt, θi), and again as the problem

is assumed to be identifiable Ps = P t
s and φ = φt. Replacing this in (24), we obtain

E
[

max
Ps,φ

LL(Ps, φ)
]

= E
[

(P t
s , φ

t)
]

= (P t
s , φ

t). And this concludes our proof.

APPENDIX F

PROOF OF THEOREM 3

We recall that the CRB for parameters [Ps, φ] is the trace of the inverse of the Fisher

Information Matrix F ( [29]) defined as

F = E





∂LL
∂Ps

∂LL
∂Ps

∂LL
∂Ps

∂LL
∂φ

∂LL
∂φ

∂LL
∂Ps

∂LL
∂φ

∂LL
∂φ



 , (25)

where LL(Ps, φ) is given by (3). After some calculations we can derive each term of the F matrix

by E

(

∂LL
∂Ps

∂LL
∂Ps

)

=
N

∑M
i=1 G(φ,θi)h(di)

4Psσ2
w

, E

(

∂LL
∂φ

∂LL
∂φ

)

=
NPs

∑M
i=1 h(di)

G
′2

(φ,θi)

G(φ,θi)

4σ2
w

, with G
′

(φ, θi) =

∂G(φ,θi)
∂φ

, and E

(

∂LL
∂Ps

∂LL
∂φ

)

= E

(

∂LL
∂φ

∂LL
∂Ps

)

= 0. This way, the inverse of F denoted by F
−1

becomes

F
−1 =







4Psσ
2
w

N
∑M

i=1 G(φ,θi)h(di)
0

0 4σ2
w

NPs

∑M
i=1 h(di)

G
′2

(φ,θi)

G(φ,θi)






, (26)

and thus we obtain

CRB(Ps, φ) = trace(F−1) =
4Psσ

2
w

N
∑M

i=1 G(φ, θi)h(di)
+

4σ2
w

NPs

∑M

i=1 h(di)
G

′2
(φ,θi)

G(φ,θi)

, (27)

and CRB(Ps) =
4Psσ

2
w

N
∑M

i=1 G(φ,θi)h(di)
, CRB(φ) = 4σ2

w

NPs

∑M
i=1 h(di)

G
′2

(φ,θi)

G(φ,θi)

, which concludes our proof.

APPENDIX G

PROOF OF THEOREM 4

In order to prove Theorem 4, first we calculate
∂LL(Ps,φg)

∂Ps
, and we obtain

∂LL(Ps, φg)

∂Ps

=
M
∑

i=1

− NG(φ, θi)h(di)

2
(

PsG(φ, θi)h(di) + σ2
w

) +
G(φ, θi)h(di)Xi

2
(

PsG(φ, θi)h(di) + σ2
w

)2 . (28)

It is clear the the negative term in (28), i.e. − NG(φ,θi)h(di)

2
(

PsG(φ,θi)h(di)+σ2
w

) is increasing in Ps, while the

positive term, i.e.
G(φ,θi)h(di)Xi

2
(

PsG(φ,θi)h(di)+σ2
w

)2 is decreasing in Ps. Further, it is clear that the speed of

November 24, 2016 DRAFT



26

the negative term growth is slower that the speed of the positive term reduction. This shows that

the negative term of (28) can cut the positive term only once. For Ps = 0,
∂LL(Ps,φg)

∂Ps
has two

possibilities as follows.

• If
∂LL(Ps,φg)

∂Ps

∣

∣

∣

∣

Ps=0

≤ 0 and thus
∑M

i=1 G(φg, θi)h(di)(Xi − Nσ2
w) ≤ 0, with increasing Ps,

the positive term reduces while the negative term increases, and hence
∂LL(Ps,φg)

∂Ps
remains

not positive. Therefore the optimal Ps in this case is P ∗
s = 0.

• If
∂LL(Ps,φg)

∂Ps

∣

∣

∣

∣

Ps=0

> 0 and thus
∑M

i=1 G(φg, θi)h(di)(Xi −Nσ2
w) > 0, then the positive and

negative terms will cut each other at P ∗
s > 0, and after that

∂LL(Ps,φg)

∂Ps
becomes negative.

Therefore, the optimal Ps in this case the root of ∂LL
∂Ps

=
∑M

i=1 −
NG(φ,θi)h(di)

2
(

PsG(φ,θi)h(di)+σ2
w

) +

G(φ,θi)h(di)Xi

2
(

PsG(φ,θi)h(di)+σ2
w

)2 .

This concludes the proof, and further we can deduce that LL(Ps, φg) is a quasi-concave

function in Ps.

APPENDIX H

PROOF OF PROPOSITION 4

As in Appendix C, first we prove Proposition 4 for P t
s > 0, the proof for P t

s = 0 is then

straightforward. It is easy to show that limN→∞

∑M

i=1 G(φg, θi)h(di)(Xi−Nσw) > 0 for P t
s > 0.

Then, in order to prove the consistency of the estimator in Proposition 4, we need to show that the

root of
∑M

i=1 −
NG(φg ,θi)h(di)

2
(

PsG(φg ,θi)h(di)+σ2
w

) + G(φg ,θi)h(di)Xi

2
(

PsG(φg ,θi)h(di)+σ2
w

)2 as N → ∞ is equal to P t
s . Therefore,

we have

lim
N→∞

M
∑

i=1

NG(φg, θi)h(di)

2
(

PsG(φg, θi)h(di) + σ2
w

) = lim
N→∞

G(φg, θi)h(di)Xi

2
(

PsG(φg, θi)h(di) + σ2
w

)2

= lim
N→∞

G(φg, θi)h(di)
(

P t
sG(φg, θi)h(di)

∑N

n=1
s2[n] +

∑N

n=1
w2[n] +

∑N

n=1

√

P t
sG(φg, θi)h(di)φ

tw[n]
)

2
(

PsG(φg, θi)h(di) + σ2
w

)2

= lim
N→∞

NG(φg, θi)h(di)
(

P t
sG(φg, θi)h(di) + σ2

w

)

2
(

PsG(φg, θi)h(di) + σ2
w

)2
+ lim

N→∞

G(φg, θi)h(di)
(

∑N

n=1

√

P t
sG(φg, θi)h(di)φ

tw[n]
)

2
(

PsG(φg, θi)h(di) + σ2
w

)2

= lim
N→∞

NG(φg, θi)h(di)
(

P t
sG(φg, θi)h(di) + σ2

w

)

2
(

PsG(φg, θi)h(di) + σ2
w

)2
. (29)

We can see that by Ps = P t
s , the above equality is valid, and as this equation has a unique root,

therefore, Ps = P t
s .

In the same way as in the case of consistency, it is easy to show that

E

(

∑M

i=1 G(φg, θi)h(di)(Xi−Nσw)

)

> 0 for P t
s . Hence, to prove that on top of consistency, the
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estimator is also unbiased, we need to show that the root of E

(

∑M

i=1 −
NG(φg ,θi)h(di)

2
(

PsG(φg ,θi)h(di)+σ2
w

) +

G(φg ,θi)h(di)Xi

2
(

PsG(φg ,θi)h(di)+σ2
w

)2

)

is P t
s . Considering the fact that E

(

Xi

)

= N
(

P t
sG(φg, θi)h(di) + σ2

w

)

, we

need to find the root of the following equation

E

( M
∑

i=1

− NG(φg, θi)h(di)

2
(

PsG(φg, θi)h(di) + σ2
w

) +
NG(φg, θi)h(di)

(

P t
sG(φg, θi)h(di) + σ2

w

)

2
(

PsG(φg, θi)h(di) + σ2
w

)2

)

, (30)

which is clearly Ps = P t
s , and this concludes our proof.

APPENDIX I

PROOF OF PROPOSITION 5

To prove consistency, first we try to simplify limN→∞ LL(Ps, φ). This way, we obtain

lim
N→∞

LL(Ps, φ) = lim
N→∞

M
∑

i=1

−N

2
log
(

2π[PsG(φ, θi)h(di) + σ2
w]
)

− 1

2

∑N

n=1 x
2
i [n]

PsG(φ, θi)h(di) + σ2
w

= lim
N→∞

M
∑

i=1

−N

2
log
(

2π[PsG(φ, θi)h(di) + σ2
w]
)

− 1

2

N(P t
sG(φt, θi))h(di) + σ2

w

PsG(φ, θi)h(di) + σ2
w

,(31)

where we used the fact that limN→∞
1
N

∑N

n=1 x
2
i [n] = P t

sG(φt, θi)h(di) + σ2
w. Our goal is to

maximize (31). Defining Ai = PsG(φ, θi)h(di) + σ2
w and At

i = P t
sG(φt, θi)h(di) + σ2

w, the

underlying problem becomes

max
Ai

i=1,··· ,M

M
∑

i=1

(

− N

2

(

2πAi

)

− N

2

At
i

Ai

)

. (32)

It is easy to show that the solution of this equation is ∀i : Ai = At
i, which in turn means

∀i : PsG(φ, θi) = P t
sG(φt, θi). Since the problem is assumed to be identifiable, we obtain

Ps = P t
s and φ = φt.

As in the case of consistency, to prove that the estimator is unbiased, first we obtain

E
(

LL(Ps, φ)
)

as follows,

E
(

LL(Ps, φ)
)

= E

( M
∑

i=1

−N

2
log
(

2π[PsG(φ, θi)h(di) + σ2
w]
)

− 1

2

∑N

n=1 x
2
i [n]

PsG(φ, θi)h(di) + σ2
w

)

= E

( M
∑

i=1

−N

2
log
(

2π[PsG(φ, θi)h(di) + σ2
w]
)

− N

2

P t
sG(φt, θi)h(di) + σ2

w

PsG(φ, θi)h(di) + σ2
w

)

.(33)

Again with changing the variables to Ai = PsG(φ, θi)h(di)+σ2
w and At

i = P t
sG(φt, θi)h(di)+σ2

w,

we can easily show that ∀i : Ai = At
i maximizes E

(

LL(Ai)
)

, which in the same way as

consistency, we can deduce Ps = P t
s and φ = φt. And this concludes our proof.
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APPENDIX J

PROOF OF THEOREM 5

As in the case of Theorem 3, here again we need to calculate the Fisher Information Matrix,

F. After some calculations, each elements of F can be obtained as follows,

E

(

∂LL

∂Ps

∂LL

∂Ps

)

=
N

2

M
∑

i=1

(

G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ2
w

)2

, (34)

E

(

∂LL

∂φ

∂LL

∂φ

)

=
N

2

M
∑

i=1

(

Psh(di)G
′

(φ, θi)

PsG(φ, θi)h(di) + σ2
w

)2

, (35)

E

(

∂LL

∂Ps

∂LL

∂φ

)

= E

(

∂LL

∂φ

∂LL

∂Ps

)

=
N

2

( M
∑

i=1

Psh
2(di)G(φ, θi)G

′

(φ, θi)
(

PsG(φ, θi)h(di) + σ2
w

)2

)

. (36)

Calculating F
−1, we obtain

F
−1 =

1

A− B











N
2

∑M

i=1

(

Psh(di)G
′

(φ,θi)
PsG(φ,θi)h(di)+σ2

w

)2

−N
2

∑M

i=1
Psh

2(di)G(φ,θi)G
′

(φ,θi)
(

PsG(φ,θi)h(di)+σ2
w

)2

−N
2

∑M

i=1
Psh

2(di)G(φ,θi)G
′

(φ,θi)
(

PsG(φ,θi)h(di)+σ2
w

)2
N
2

∑M

i=1

(

G(φ,θi)h(di)
PsG(φ,θi)h(di)+σ2

w

)2











, (37)

with

A =
N

2

M
∑

i=1

(

Psh(di)G
′

(φ, θi)

PsG(φ, θi)h(di) + σ2
w

)2

× N

2

M
∑

i=1

(

G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ2
w

)2

,

and

B =
N2

4

( M
∑

i=1

Psh
2(di)G(φ, θi)G

′

(φ, θi)
(

PsG(φ, θi)h(di) + σ2
w

)2

)2

.

By deriving the trace of F−1, we can easily obtain CRB(Ps, φ) for the unknown signal by

CRB(Ps, φ) =
1

A− B

[

N

2

M
∑

i=1

(

Psh(di)G
′

(φ, θi)

PsG(φ, θi)h(di) + σ2
w

)2

+
N

2

M
∑

i=1

(

G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ2
w

)2]

,

(38)

The individual CRB for Ps and φ are then given by CRB(Ps) =

1
A−B

[

N
2

∑M

i=1

(

Psh(di)G
′

(φ,θi)
PsG(φ,θi)h(di)+σ2

w

)]

, and CRB(φ) = 1
A−B

[

N
2

∑M

i=1

(

G(φ,θi)h(di)
PsG(φ,θi)h(di)+σ2

w

)2]

,

which concludes our proof.
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