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Abstract—In this paper, we present a novel approach for robust
optimal resource allocation with joint carrier aggregation to
allocate multiple carriers resources optimally among users with
elastic and inelastic traffic in cellular networks. We use utility
proportional fairness allocation policy, where the fairness among
users is in utility percentage of the application running on the
user equipment (UE). Each UE is assigned an application utility
function based on the type of its application. Our objectiveis
to allocate multiple carriers resources optimally among users
subscribing for mobile services. In addition, each user is guar-
anteed a minimum quality of service (QoS) that varies based
on the user’s application type. We present a robust algorithm
that solves the drawback in the algorithm presented in [1] by
preventing the fluctuations in the resource allocation process, in
the case of scarce resources, and allocates optimal rates for both
high-traffic and low-traffic situations. Our distributed re source
allocation algorithm allocates an optimal rate to each userfrom
all carriers in its range while providing the minimum price
for the allocated rate. In addition, we analyze the convergence
of the algorithm with different network traffic densities an d
show that our algorithm provides traffic dependent pricing for
network providers. Finally, we present simulation resultsfor the
performance of our resource allocation algorithm.

Index Terms—Optimal Resource Allocation; Joint Carrier Ag-
gregation; Utility Proportional Fairness; Elastic Traffic , Inelastic
Traffic

I. I NTRODUCTION

In recent years, the number of mobile subscribers and their
traffic have increased rapidly. Mobile subscribers are currently
running multiple applications, simultaneously, on their smart
phones that require a higher bandwidth and make users so
limited to the carrier resources. Network providers are now
offering multiple services such as multimedia telephony and
mobile-TV [2]. More spectrum is required to meet these
demands [3]. However, it is difficult to provide the required
resources with a single frequency band due to the scarcity of
the available radio spectrum. Therefore, aggregating different
carriers’ frequency bands is needed to utilize the radio re-
sources across multiple carriers and allow a scalable expansion
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of the effective bandwidth delivered to the user terminal,
leading to interband non-contiguous carrier aggregation [4].

Carrier aggregation (CA) is one of the most distinct features
of 4G systems including Long Term Evolution Advanced (LTE
Advanced). Given the fact that LTE requires wide carrier
bandwidths to utilize such as10 and 20 MHz, CA needs
to be taken into consideration when designing the system
to overcome the spectrum scarcity challenges. With the CA
being defined in [5], two or more component carriers (CCs)
of the same or different bandwidths can be aggregated to
achieve wider transmission bandwidths between the evolve
node B (eNodeB) and the UE. An overview of CA framework
and cases is presented in [6]. Many operators are willing
to add the CA feature to their plans across a mixture of
macro cells and small cells. This will provide capacity and
performance benefits in areas where small cell coverage is
available while enabling network operators to provide robust
mobility management on their macro cell networks.

Increasing the utilization of the existing spectrum can
significantly improve network capacity, data rates and user
experience. Some spectrum holders such as government users
do not use their entire allocated spectrum in every part of
their geographic boundaries most of the time. Therefore,
the National Broadband Plan (NBP) and the findings of the
President’s Council of Advisors on Science and Technology
(PCAST) spectrum study have recommended making the
under-utilized federal spectrum available for secondary use [7].
Spectrum sharing enables wireless systems to harvest under-
utilized swathes of spectrum, which would vastly increase the
efficiency of spectrum usage. Making more spectrum available
can provide significant gain in mobile broadband capacity
only if those resources can be aggregated efficiently with the
existing commercial mobile system resources.

This non-contiguous carrier aggregation task is a challeng-
ing. The challenges are both in hardware implementation and
joint optimal resource allocation. Hardware implementation
challenges are in the need for multiple oscillators, multiple
RF chains, more powerful signal processing, and longer bat-
tery life [8]. In order to allocate different carriers resources
optimally among mobile users in their coverage areas, a
distributed resource allocation algorithm between the UEsand
the eNodeBs is needed.

A multi-stage resource allocation (RA) with carrier aggre-
gation algorithms are presented in [9]–[11]. The algorithmin
[9] uses utility proportional fairness approach to allocate the
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primary and the secondary carriers resources optimally among
mobile users in their coverage area. The primary carrier first
allocates its resources optimally among users in its coverage
area. The secondary carrier then starts allocating optimalrates
to users in its coverage area based on the users applications
and the rates allocated to them by the primary carrier. A RA
with CA optimization problem is presented in [10] to allocate
resources from the LTE Advanced carrier and the MIMO radar
carrier to each UE, in a LTE Advanced cell based on the
application running on the UE. A price selective centralized
RA with CA algorithm is presented in [11] to allocate multiple
carriers resources optimally among users while giving the user
the ability to select one of the carriers to be its primary carrier
and the others to be its secondary carriers. The UE’s decision
is based on the carrier price per unit bandwidth. However,
the multi-stage RA with CA algorithms presented in [9]–[11]
guarantee optimal rate allocation but not optimal pricing.

In this paper, we focus on solving the problem of utility
proportional fairness optimal RA with joint CA for multi-
carrier cellular networks. The RA with joint CA algorithm
presented in [1] fails to converge for high-traffic situations
due to the fluctuation in the RA process. In this paper, we
present a robust algorithm that solves the drawbacks in [1]
and allocates multiple carriers resources optimally amongUEs
in their coverage area for both high-traffic and low-traffic
situations. Additionally, our proposed distributed algorithm
outperforms the multi-stage RA with CA algorithms presented
in [9]–[11] as it guarantees that mobile users are assigned
optimal (minimum) price for resources. We formulate the
multi-carrier RA with CA optimization problem into a convex
optimization framework. We use logarithmic and sigmoidal-
like utility functions to represent delay-tolerant and real-time
applications, respectively, running on the mobile users’ smart
phones [12]. Our model supports both contiguous and non-
contiguous carrier aggregation from one or more network
providers. During the resource allocation process, our dis-
tributed algorithm allocates optimal resources from one or
more carriers to provide the lowest resource price for the
mobile users. In addition, we use a utility proportional fairness
approach that ensures non-zero resource allocation for allusers
and gives real-time applications priority over delay-tolerant
applications due to the nature of their applications that require
minimum encoding rates.

A. Related Work

There has been several works in the area of resource
allocation optimization to utilize the scarce radio spectrum
efficiently. The authors in [13]–[16] have used a strictly
concave utility function to represent each user’s elastic traffic
and proposed distributed algorithms at the sources and the
links to interpret the congestion control of communication
networks. Their work have only focussed on elastic traffic
and did not consider real-time applications as it have non-
concave utility functions as shown in [17]. The authors in
[18] and [19] have argued that the utility function, which
represents the user application performance, is the one that
needs to be shared fairly rather than the bandwidth. In this

paper, we consider using resource allocation to achieve a utility
proportional fairness that maximizes the user satisfaction. If a
bandwidth proportional fairness is applied through a max-min
bandwidth allocation, users running delay-tolerant applications
receive larger utilities than users running real-time applications
as real-time applications require minimum encoding rates and
their utilities are equal to zero if they do not receive their
minimum encoding rates.

The proportional fairness framework of Kelly introduced
in [13] does not guarantee a minimum QoS for each user
application. To overcome this issue, a resource allocation
algorithm that uses utility proportional fairness policy is
introduced in [12]. We believe that this approach is more
appropriate as it respects the inelastic behavior of real-time
applications. The utility proportional fairness approachin
[12] gives real-time applications priority over delay tolerant
applications when allocating resources and guarantees that
no user is allocated zero rate. In [12], [20] and [21], the
authors have presented optimal resource allocation algorithms
to allocate single carrier resources optimally among mobile
users. However, their algorithms do not support multi-carrier
resource allocation. To incorporate the carrier aggregation
feature, we have introduced a multi-stage resource allocation
using carrier aggregation in [9]. In [22] and [23], we present
resource allocation with users discrimination algorithmsto
allocate the eNodeB resources optimally among mobile users
with elastic and inelastic traffic. In [24], the authors havepre-
sented a radio resource block allocation optimization problem
using a utility proportional fairness approach. The authors
in [25] have presented an application-aware resource block
scheduling approach for elastic and inelastic adaptive real-time
traffic where users are assigned to resource blocks.

On the other hand, resource allocation for single cell multi-
carrier systems have been given extensive attention in recent
years [26]–[28]. In [29]–[32], the authors have represented
this challenge in optimization problems. Their objective is to
maximize the overall cell throughput with some constraints
such as fairness and transmission power. However, transform-
ing the problem into a utility maximization framework can
achieve better users satisfaction rather than better system-
centric throughput. Also, in practical systems, the challenge is
to perform multi-carrier radio resource allocation for multiple
cells. The authors in [33], [34] suggested using a distributed
resource allocation rather than a centralized one to reduce
the implementation complexity. In [35], the authors propose
a collaborative scheme in a multiple base stations (BSs)
environment, where each user is served by the BS that has
the best channel gain with that user. The authors in [36]
have addressed the problem of spectrum resource allocation
in carrier aggregation based LTE Advanced systems, with the
consideration of UEs MIMO capability and the modulation
and coding schemes (MCSs) selection.

B. Our Contributions

Our contributions in this paper are summarized as:

• We consider the RA optimization problem with joint CA
presented in [1] that uses utility proportional fairness
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approach and solves for logarithmic and sigmoidal-like
utility functions representing delay-tolerant and real-time
applications, respectively.

• We prove that the optimization problem is convex and
therefore the global optimal solution is tractable. In ad-
dition, we present a robust distributed resource allocation
algorithm to solve the optimization problem and provide
optimal rates in high-traffic and low-traffic situations.

• Our proposed algorithm outperforms that presented in [1]
by preventing the fluctuations in the RA process when the
resources are scarce with respect to the number of users.
It also outperforms the algorithms presented in [9]–[11]
as it guarantees that mobile users receive optimal price
for resources.

• We present simulation results for the performance of our
RA algorithm and compare it with the performance of
the multi-stage RA algorithm presented in [9]–[11].

The remainder of this paper is organized as follows. Section
II presents the problem formulation. Section III proves that the
global optimal solution exists and is tractable. In SectionIV,
we discuss the conversion of the primal optimization prob-
lem into a dual problem. Section V presents our distributed
resource allocation algorithm with joint carrier aggregation
for the utility proportional fairness optimization problem. In
Section VI, we present convergence analysis for the allocation
algorithm and a modification for robustness at peak-traffic
hours. In section VII, we discuss simulation setup, provide
quantitative results along with discussion and compare the
performance of the proposed algorithm with the one presented
in [9]–[11]. Section VIII concludes the paper.

II. PROBLEM FORMULATION

We consider LTE mobile system consisting ofK carriers
eNodeBs withK cells andM UEs distributed in these cells.
The rate allocated by thelth carrier eNodeB toith UE is
given by rli where l = {1, 2, ...,K} and i = {1, 2, ...,M}.
Each UE has its own utility functionUi(r1i + r2i + ...+ rKi)
that corresponds to the type of traffic being handled by the
ith UE. Our objective is to determine the optimal rates that
the lth carrier eNodeB should allocate to the nearby UEs. We
express the user satisfaction with its provided service using
utility functions that represent the degree of satisfaction of the
user function with the rate allocated by the cellular network
[37] [17] [38]. We assume the utility functionsUi(r1i + r2i+
...+rKi) to be a strictly concave or a sigmoidal-like functions.
The utility functions have the following properties:

• Ui(0) = 0 andUi(r1i + r2i + ...+ rKi) is an increasing
function of rli for l.

• Ui(r1i+r2i+...+rKi) is twice continuously differentiable
in rli for all l.

In our model, we use the normalized sigmoidal-like utility
function, as in [37], that can be expressed as

Ui(r1i+r2i+...+rKi) = ci

( 1

1 + e−ai(
∑

K

l=1 rli−bi)
−di

)

(1)

whereci = 1+eaibi

eaibi
anddi = 1

1+eaibi
. So, it satisfiesUi(0) =

0 andUi(∞) = 1. We use the normalized logarithmic utility

function, as in [38], that can be expressed as

Ui(r1i + r2i + ...+ rKi) =
log(1 + ki

∑K

l=1 rli)

log(1 + kirmax)
(2)

wherermax is the required rate for the user to achieve 100%
utility percentage andki is the rate of increase of utility
percentage with allocated rates. So, it satisfiesUi(0) = 0 and
Ui(rmax) = 1. We consider the utility proportional fairness
objective function that is given by

max
r

M
∏

i=1

Ui(r1i + r2i + ...+ rKi) (3)

where r = {r1, r2, ..., rM} and r i = {r1i, r2i, ..., rKi}.
The goal of this resource allocation objective function is to
maximize the total system utility while ensuring proportional
fairness between utilities (i.e., the product of the utilities of
all UEs). This resource allocation objective function inherently
guarantees:

• non-zero resource allocation for all users. Therefore, the
corresponding resource allocation optimization problem
provides a minimum QoS for all users.

• priority to users with real-time applications. Therefore,
the corresponding resource allocation optimization prob-
lem improves the overall QoS for LTE system.

The basic formulation of the utility proportional fairness
resource allocation problem is given by the following opti-
mization problem:

max
r

M
∏

i=1

Ui(r1i + r2i + ...+ rKi)

subject to
M
∑

i=1

r1i ≤ R1,
M
∑

i=1

r2i ≤ R2, ...

... ,
M
∑

i=1

rKi ≤ RK ,

rli ≥ 0, l = 1, 2, ...,K, i = 1, 2, ...,M

(4)

whereRl is the total available rate at thelth carrier eNodeB.
We prove in Section III that the solution of the optimization

problem (4) is the global optimal solution.

III. T HE GLOBAL OPTIMAL SOLUTION

In the optimization problem (4), since the objective func-
tion argmax

r

∏M

i=1 Ui(r1i + r2i + ... + rKi) is equivalent to

argmax
r

∑M

i=1 log(Ui(r1i+r2i+ ...+rKi)), then optimization
problem (4) can be written as:

max
r

M
∑

i=1

log
(

Ui(r1i + r2i + ...+ rKi)
)

subject to
M
∑

i=1

r1i ≤ R1,

M
∑

i=1

r2i ≤ R2, ...

... ,

M
∑

i=1

rKi ≤ RK ,

rli ≥ 0, l = 1, 2, ...,K, i = 1, 2, ...,M.

(5)
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Lemma III.1. The utility functionslog(Ui(r1i+ ...+ rKi)) in
the optimization problem (5) are strictly concave functions.

Proof: In Section II, we assume that all the utility
functions of the UEs are strictly concave or sigmoidal-like
functions.

In the strictly concave utility function case, recall the utility
function properties in Section II, the utility function is positive
Ui(r1i + ... + rKi) > 0, increasing and twice differentiable
with respect torli. Then, it follows that∂Ui(r1i+...+rKi)

∂rli
> 0

and ∂2Ui(r1i+...+rKi)
∂r2

li

< 0. It follows that, the utility function
log(Ui(r1i + r2i + ...+ rKi)) in the optimization problem (5)
have

∂ log(Ui(r1i + ...+ rKi))

∂rli
=

∂Ui

∂rli

Ui

> 0 (6)

and

∂2 log(Ui(r1i + ...+ rKi))

∂r2li
=

∂2Ui

∂r2
li

Ui − ( ∂Ui

∂rli
)2

U2
i

< 0. (7)

Therefore, the strictly concave utility functionUi(r1i + r2i +
... + rKi) natural logarithmlog(Ui(r1i + r2i + ... + rKi))
is also strictly concave. It follows that the natural logarithm
of the logarithmic utility function in equation (2) is strictly
concave.

In the sigmoidal-like utility function case, the util-
ity function of the normalized sigmoidal-like function is
given by equation (1) asUi(r1i + r2i + ... + rKi) =

ci

(

1

1+e
−ai(

∑
K
l=1

r
li

−bi)
− di

)

. For 0 <
∑K

l=1 rli <
∑K

l=1 Rl,

we have

0 < ci

( 1

1 + e−ai(
∑

K

l=1 rli−bi)
− di

)

< 1

di <
1

1 + e−ai(
∑

K

l=1 rli−bi)
<

1 + cidi
ci

1

di
> 1 + e−ai(

∑
K

l=1 rli−bi) >
ci

1 + cidi

0 < 1− di(1 + e−ai(
∑

K

l=1 rli−bi)) <
1

1 + cidi

It follows that for0 <
∑K

l=1 rli <
∑K

l=1 Rl, we have the first
and second derivative as

∂

∂rli
logUi(r1i + ...+ rKi) =

aidie
−ai(

∑
K

l=1 rli−bi)

1− di(1 + e−ai(
∑

K

l=1 rli−bi))

+
aie

−ai(
∑

K

l=1 rli−bi)

(1 + e−ai(
∑

K

l=1 rli−bi))
> 0

∂2

∂r2li
logUi(r1i + ...+ rKi) =

−a2i die
−ai(

∑
K

l=1 rli−bi)

ci

(

1− di(1 + e−a(
∑

K

l=1 rli−bi))
)2

+
−a2i e

−ai(
∑

K

l=1 rli−bi)

(1 + e−ai(
∑

K

l=1 rli−bi))2
< 0

Therefore, the sigmoidal-like utility functionUi(r1i+...+rKi)
natural logarithmlog(Ui(r1i + ... + rKi)) is strictly concave
function. Therefore, all the utility functions in our modelhave
strictly concave natural logarithm.

Theorem III.2. The optimization problem (4) is a convex
optimization problem and there exists a unique tractable
global optimal solution.

Proof: It follows from Lemma III.1 that for all UEs utility
functions are strictly concave. Therefore, the optimization
problem (5) is a convex optimization problem [39]. The
optimization problem (5) is equivalent to optimization problem
(4), therefore it is a convex optimization problem. For a convex
optimization problem, there exists a unique tractable global
optimal solution [39].

IV. T HE DUAL PROBLEM

The key to a distributed and decentralized optimal solution
of the primal problem in (5) is to convert it to the dual problem
similar to [12], [13] and [40]. The optimization problem (5)
can be divided into two simpler problems by using the dual
problem. We define the Lagrangian

L(r , p) =
M
∑

i=1

log
(

Ui(r1i + r2i + ...+ rKi)
)

− p1(
M
∑

i=1

r1i + z1 −R1)− ...

− pK(
M
∑

i=1

rKi + zK −RK)

=

M
∑

i=1

(

log(Ui(r1i + r2i + ...+ rKi))−

K
∑

l=1

plrli

)

+

K
∑

l=1

pl(Rl − zl)

=

M
∑

i=1

Li(r i, p) +
K
∑

l=1

pl(Rl − zl)

(8)
where zl ≥ 0 is the lth slack variable andpl is Lagrange
multiplier or the shadow price of thelth carrier eNodeB (i.e.
the total price per unit rate for all the users in the coveragearea
of thelth carrier eNodeB) andp = {p1, p2, ..., pK}. Therefore,
the ith UE bid for rate from thelth carrier eNodeB can be
written aswli = plrli and we have

∑M
i=1 wli = pl

∑M
i=1 rli.

The first term in equation (8) is separable inr i. So we have
max

r

∑M

i=1(log(Ui(r1i + r2i + ...+ rKi))−
∑K

l=1 plrli) =
∑M

i=1 max
r i

(

log(Ui(r1i + r2i + ...+ rKi))−
∑K

l=1 plrli
)

.

The dual problem objective function can be written as

D(p) =max
r

L(r , p)

=

M
∑

i=1

max
r i

(Li(r i, p)) +
K
∑

l=1

pl(Rl − zl)
(9)

The dual problem is given by

min
p

D(p)

subject to pl ≥ 0, l = 1, 2, ...,K.
(10)
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So we have

∂D(p)
∂pl

= Rl −

M
∑

i=1

rli − zl = 0 (11)

substituting by
∑M

i=1 wli = pl
∑M

i=1 rli we have

pl =

∑M

i=1 wli

Rl − zl
. (12)

Now, we divide the primal problem (5) into two simpler
optimization problems in the UEs and the eNodeBs. Theith

UE optimization problem is given by:

max
ri

log(Ui(r1i + r2i + ...+ rKi))−

K
∑

l=1

plrli

subject to pl ≥ 0

rli ≥ 0, i = 1, 2, ...,M, l = 1, 2, ...,K.

(13)

The second problem is thelth eNodeB optimization problem
for rate proportional fairness that is given by:

min
pl

D(p)

subject to pl ≥ 0.
(14)

The minimization of shadow pricepl is achieved by the
minimization of the slack variablezl ≥ 0 from equation
(12). Therefore, the maximum utility percentage of thelth

eNodeB rateRl is achieved by setting the slack variable
zl = 0. In this case, we replace the inequality in primal
problem (5) constraints by equality constraints and so we have
∑M

i=1 wli = plRl. Therefore, we havepl =
∑

M

i=1 wli

Rl

where
wli = plrli is transmitted by theith UE to lth eNodeB. The
utility proportional fairness in the objective function ofthe
optimization problem (4) is guaranteed in the solution of the
optimization problems (13) and (14).

V. D ISTRIBUTED OPTIMIZATION ALGORITHM

The distributed resource allocation algorithm, in [1], for
optimization problems (13) and (14) is a modified version
of the distributed algorithms in [12], [20], [21], [13] and
[40], which is an iterative solution for allocating the network
resources for a single carrier. The algorithm in [1] allocates
resources from multiple carriers simultaneously with utility
proportional fairness policy. The algorithm is divided into the
ith UE algorithm as shown in Algorithm 1 [1] and thelth

eNodeB carrier algorithm as shown in Algorithm 2 [1]. In Al-
gorithm 1 and 2 [1], theith UE starts with an initial bidwli(1)
which is transmitted to thelth carrier eNodeB. Thelth eNodeB
calculates the difference between the received bidwli(n) and
the previously received bidwli(n − 1) and exits if it is less
than a pre-specified thresholdδ. We setwli(0) = 0. If the
value is greater than the threshold, thelth eNodeB calculates

the shadow pricepl(n) =
∑

M

i=1 wli(n)

Rl

and sends that value to
all UEs in its coverage area. Theith UE receives the shadow
prices pl from all in range carriers eNodeBs and compares
them to find the first minimum shadow pricep1min(n) and the
corresponding carrier indexl1 ∈ L whereL = {1, 2, ...,K}.
Theith UE solves for thel1 carrier raterl1i(n) that maximizes

Fig. 1. Flow Diagram with the assumption that the shadow price from the
first carrier eNodeBp1 is less before then1th iteration so rater1i of the ith

user is allocated. After then1th iteration, the shadow price from the second
carrier eNodeBp2 is less so rater2i is allocated.

logUi(r1i + ... + rKi) −
∑K

l=1 pl(n)rli with respect torl1i.
The rater1i (n) = rl1i(n) is used to calculate the new bid
wl1i(n) = p1min(n)r

1
i (n). The ith UE sends the value of its

new bidwl1i(n) to the l1 carrier eNodeB. Then, theith UE
selects the second minimum shadow pricep2min(n) and the
corresponding carrier indexl2 ∈ L. The ith UE solves for
the l2 carrier raterl2i(n) that maximizeslogUi(r1i + ... +
rKi) −

∑K

l=1 pl(n)rli with respect torl2i. The raterl2i(n)
subtracted by the rate froml1 carrierr2i (n) = rl2i(n)− r1i (n)
is used to calculate the new bidwl2i(n) = p2min(n)r

2
i (n)

which is sent tol2 carrier eNodeB. In general, theith UE
selects themth minimum shadow pricepmmin(n) with carrier
index lm ∈ L and solves for thelm carrier raterlmi(n) that
maximizeslogUi(r1i+ ...+rKi)−

∑K

l=1 pl(n)rli with respect
to rlmi. The raterlmi(n) subtracted byl1, l2, ..., lm−1 carriers
ratesrmi (n) = rlmi(n) − (r1i (n) + r2i (n) + ... + rm−1

i (n))
is used to calculate the new bidwlmi(n) = pmmin(n)r

m
i (n)

which is sent tolm carrier eNodeB. This process is repeated
until |wli(n)−wli(n− 1)| is less than the thresholdδ for all
l carriers.

The distributed algorithm in [1] is set to avoid the situation
of allocating zero rate to any user (i.e. no user is dropped).
This is inherited from the utility proportional fairness policy
in the optimization problem, similar to [12], [20] and [21].In
addition, the UE chooses from the nearby carriers eNodeBs
the one with the lowest shadow price and starts requesting
bandwidth from that carrier eNodeB. If the allocated rate is
not enough or the price of the resources increases due to high
demand on that carrier eNodeB resources from other UEs, the
UE switches to another nearby eNodeB carrier with a lower
resource price to be allocated the rest of the required resources.
This is done iteratively until an equilibrium between demand
and supply of resources is achieved and the optimal rates are
allocated in the LTE mobile network. Figure 1 shows a block
diagram that represents the distributed RA algorithm.
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VI. CONVERGENCEANALYSIS

In this section, we present the convergence analysis of
Algorithm 1 and 2 in [1] for different values of carriers
eNodeBs ratesRl. This analysis is equivalent to low and
high-traffic hours analysis in cellular systems (e.g. change in
the number of active usersM and their traffic in the cellular
system [20]).

A. Drawback in Algorithm 1 and 2 in [1]

Lemma VI.1. For sigmoidal-like utility functionUi(r1i+r2i+

...+rKi), the slope curvature function∂ logUi(r1i+r2i+...+rKi)
∂rli

has an inflection point at
∑K

l=1 rli = rsi ≈ bi and is convex
for

∑K

l=1 rli > rsi .

Proof: For the sigmoidal-like functionUi(r1i + r2i +

... + rKi) = ci

(

1

1+e
−ai(

∑
K

l=1
r
li

−bi)
− di

)

, let Si(rli) =

∂ logUi(r1i+r2i+...+rKi)
∂rli

be the slope curvature function. Then,
we have that

∂Si

∂rli
=

−a2i die
−ai(

∑
K

l=1 rli−bi)

ci

(

1− di(1 + e−ai(
∑

K

l=1 rli−bi))
)2

−
a2i e

−ai(
∑

K

l=1 rli−bi)

(

1 + e−ai(
∑

K

l=1 rli−bi)
)2

and

∂2Si

∂r2li
=

a3i die
−ai(

∑
K

l=1 rli−bi)(1 − di(1 − e−ai(
∑

K

l=1 rli−bi)))

ci

(

1− di(1 + e−ai(
∑

K

l=1 rli−bi))
)3

+
a3i e

−ai(
∑

K

l=1 rli−bi)(1− e−ai(
∑

K

l=1 rli−bi))
(

1 + e−ai(
∑

K

l=1 rli−bi)
)3 .

(15)
We analyze the curvature of the slope of the natural logarithm
of sigmoidal-like utility function. For the first derivative, we
have ∂Si

∂rli
< 0 ∀ rli. The first termS1

i of ∂2Si

∂r2
li

in equation
(15) can be written as

S1
i =

a3i e
aibi(eaibi + e−ai(

∑
K

l=1 rli−bi))

(eaibi − e−ai(
∑

K

l=1 rli−bi))3
(16)

and we have the following properties:
{

lim∑
K

l=1 rli→0 S
1
i = ∞,

lim∑
K

l=1 rli→bi
S1
i = 0 for bi ≫

1
ai
.

(17)

For second termS2
i of ∂2Si

∂r2
i

in equation (15), we have the
following properties:







S2
i (rli = bi −

∑

j 6=l rji) = 0,

S2
i (rli > bi −

∑

j 6=l rji) > 0,

S2
i (rli < bi −

∑

j 6=l rji) < 0.
(18)

From equation (17) and (18),Si has an inflection point at
∑K

l=1 rli = rsi ≈ bi. In addition, we have the curvature ofSi

changes from a convex function close to origin to a concave
function before the inflection point

∑K
l=1 rli = rsi then to a

convex function after the inflection point.

Our rate allocation approach guarantees non-zero rate allo-
cation for all active users in the coverage area of a specific
carrier eNodeB. We define the setMl := {i : rli 6= 0} to be
the set of active users covered by thelth eNodeB. Then, we
have the following Corollary.

Corollary VI.2. If
∑

i∈Ml r
inf
i ≪ Rl ∀ l ∈ L then Algo-

rithm 1 and 2 in [1] converge to the global optimal rates
which correspond to the steady state shadow pricepss <
aimaxdimax

1−dimax
+

aimax

2 whereimax = argmaxi∈Ml bi.

Proof: For the sigmoidal-like functionUi(r1i + r2i +

... + rKi) = ci

(

1

1+e
−ai(

∑
K

l=1
r
li

−bi)
− di

)

, the optimal so-

lution is achieved by solving the optimization problem (5).
In Algorithm 1 [1], an important step to reach to the opti-
mal solution is to solve the optimization problemrli(n) =

argmax
rli

(

logUi(r1i + r2i + ... + rKi) − pl(n)rli

)

for every

UE in the lth eNodeB coverage area. The solution of this
problem can be written, using Lagrange multipliers method,
in the form

∂ logUi(r1i + r2i + ...+ rKi)

∂rli
−pl = Si(rli)−pl = 0. (19)

From equation (17) and (18) in Lemma VI.1, we have the
curvature ofSi(rli) is convex for

∑K

l=1 rli > rsi ≈ bi. The
algorithm in [1] is guaranteed to converge to the global optimal
solution when the slopeSi(rli) of all the utility functions
natural logarithmlogUi(r1i+r2i+ ...+rKi) are in the convex
region of the functions, similar to analysis of logarithmic
functions in [13] and [40]. Therefore, the natural logarithm of
sigmoidal-like functionslogUi(r1i+ r2i+ ...+ rKi) converge
to the global optimal solution for

∑K

l=1 rli > rsi ≈ bi.
The inflection point of sigmoidal-like functionUi(r1i + r2i +
... + rKi) is at rinf

i = bi. For
∑

i∈Ml rinf
i ≪ Rl, the

algorithm in [1] allocates rates
∑K

l=1 rli > bi for all users.
Since Si(rli) is convex for

∑K

l=1 rli > rsi ≈ bi then the
optimal solution can be achieved by Algorithm 1 and 2 in
[1]. We have from equation (19) and asSi(rli) is convex for
∑K

l=1 rli > rsi ≈ bi, that pss < Si(
∑K

l=1 rli = maxi∈Ml bi)

whereSi(
∑K

l=1 rli = maxi∈Ml bi) =
aimaxdimax

1−dimax
+

aimax

2 and
imax = argmaxi∈Ml bi.

We define the setML := {i : rli 6= 0 ∀ l ∈ L, rli = 0 ∀ l /∈
L} to be the set of active users covered exclusively by the
set of carriers eNodeBsL ⊆ L. Then, we have the following
Corollary.

Corollary VI.3. For
∑

i∈ML rinf
i >

∑

l∈L Rl and the global

optimal shadow pricepss ≈
aidie

aibi
2

1−di(1+e
aibi

2 )
+ aie

aibi
2

(1+e
aibi
2 )

where

i ∈ ML, then the solution given by Algorithm 1 and 2 in [1]
fluctuates about the global optimal rates.

Proof: For the sigmoidal-like functionUi(r1i + r2i +

... + rKi) = ci

(

1

1+e
−ai(

∑
K

l=1
r
li

−bi)
− di

)

, it follows from

lemma VI.1 that for
∑

i∈ML rinf
i >

∑

l∈L Rl ∃ i ∈ ML

such that the optimal rates
∑K

l=1 r
opt
li < bi. Therefore, if

pss ≈ aidie
aibi
2

1−di(1+e
aibi
2 )

+ aie
aibi
2

(1+e
aibi
2 )

is the optimal shadow price
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Algorithm VI.1 The ith UE Algorithm

Send initial bidwli(1) to lth carrier eNodeB (wherel ∈
L = {1, 2, ...,K})
loop

Receive shadow pricespl∈L(n) from all in range carriers
eNodeBs
if STOP from all in range carriers eNodeBsthen

Calculate allocated ratesropt
li = wli(n)

pl(n)
STOP

else
Setp0min = {} andr0i = 0
for m = 1 → K do
pmmin(n) = min(p \ {p0min, p

1
min, ..., p

m−1
min })

lm = {l ∈ L : pl = min(p \
{p0min, p

1
min, ..., p

m−1
min })} {lm is the index of the

corresponding carrier}

Solverlmi(n) = argmax
rlmi

(

logUi(r1i + ...+ rKi)−

∑K

l=1 pl(n)rli

)

for the lm carrier eNodeB

rmi (n) = rlmi(n)−
∑m−1

j=0 rji (n)
if rmi (n) < 0 then

Setrmi (n) = 0
end if
Calculate new bidwlmi(n) = pmmin(n)r

m
i (n)

if |wlmi(n)− wlmi(n− 1)| > ∆w(n) then
wlmi(n) = wi(n− 1)+ sign(wlmi(n)−wlmi(n−
1))∆w(n) {∆w = h1e

− n

h2 or ∆w = h3

n
}

end if
Send new bidwlmi(n) to lm carrier eNodeB

end for
end if

end loop

for optimization problem (5). Then, a small change in the
shadow pricepl(n) in thenth iteration can lead the raterli(n)
(root of Si(rli)− pl(n) = 0) to fluctuate between the concave
and convex curvature of the slope curveSi(rli) for the ith

user. Therefore, it causes fluctuation in the bidwli(n) sent to
the eNodeB and fluctuation in the shadow pricepl(n) set by
eNodeB. Therefore, the iterative solution of Algorithm 1 and
2 in [1] fluctuates about the global optimal rates

∑K
l=1 r

opt
li .

Theorem VI.4. Algorithm 1 and 2 in [1] does not converge
to the global optimal rates for all values ofRl.

Proof: It follows from Corollary VI.2 and VI.3 that
Algorithm 1 and 2 in [1] does not converge to the global
optimal rates for all values ofRl.

B. Solution using Algorithm VI.1 and VI.2

For a robust algorithm, we add a fluctuation decay function
to the algorithm presented in [1] as shown in Algorithm VI.1.
Our robust algorithm ensures convergence for all values of
the carriers eNodeBs maximum rateRl for all l. Algorithm
VI.1 and VI.2 allocated rates coincide with Algorithm 1 and
2 in [1] for

∑

i∈Ml rinf
i ≪ Rl ∀ l ∈ L. For

∑

i∈ML rinf
i >

Algorithm VI.2 The lth eNodeB Algorithm
loop

Receive bidswli(n) from UEs{Let wli(0) = 0 ∀i}
if |wli(n)− wli(n− 1)| < δ ∀i then

Allocate rates,ropt
li = wli(n)

pl(n)
to ith UE

STOP
else

Calculatepl(n) =
∑

M

i=1 wli(n)

Rl

Send new shadow pricepl(n) to all UEs
end if

end loop

∑

l∈L Rl, robust algorithm avoids the fluctuation in the non-
convergent region discussed in the previous section. This
is achieved by adding a convergence measure∆w(n) that
senses the fluctuation in the bidswli. In case of fluctuation, it
decreases the step size between the current and the previous
bid wli(n) − wli(n − 1) for every useri using fluctuation
decay function. The fluctuation decay function could be in the
following forms:

• Exponential function: It takes the form ∆w(n) =
h1e

− n

h2 .
• Rational function: It takes the form∆w(n) = h3

n
.

whereh1, h2, h3 can be adjusted to change the rate of decay
of the bidswli.

Remark VI.5. The fluctuation decay function can be included
in the UE or the eNodeB Algorithm.

In our model, we add the decay part to the UE Algorithm
as shown in Algorithm VI.1.

VII. S IMULATION RESULTS

Algorithm VI.1 and VI.2 were applied to various logarith-
mic and sigmoidal-like utility functions with different parame-
ters in MATLAB. The simulation results showed convergence
to the global optimal rates. In this section, we present the
simulation results for two carriers in a heterogeneous network
(HetNet) that consists of one macro cell, one small cell and
12 active UEs as shown in Figure 2. The UEs are divided into
two groups. The1st group of UEs (indexi = {1, 2, 3, 4, 5, 6})
is located in the macro cell under the coverage area of
both the1st carrier (C1) and the2nd carrier (C2) eNodeBs.
We use three normalized sigmoidal-like functions that are
expressed by equation (1) with different parameters. The used
parameters area = 5, b = 10 corresponding to a sigmoidal-
like function that is an approximation to a step function at
rater = 10 (e.g. VoIP) and is the utility of UEs with indexes
i = {1, 7}, a = 3, b = 20 corresponding to a sigmoidal-
like function that is an approximation of an adaptive real-
time application with inflection point at rater = 20 (e.g.
standard definition video streaming) and is the utility of UEs
with indexesi = {2, 8}, and a = 1, b = 30 corresponding
to a sigmoidal-like function that is also an approximation of
an adaptive real-time application with inflection point at rate
r = 30 (e.g. high definition video streaming) and is the utility
of UEs with indexesi = {3, 9}, as shown in Figure 3. We
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Fig. 2. System model with two groups of users. The1st group with
UE indexes i = {1, 2, 3, 4, 5, 6}, 2nd group with UE indexesi =
{7, 8, 9, 10, 11, 12}.
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Fig. 3. The users utility functionsUi(r1i + r2i) used in the simulation
(three sigmoidal-like functions and three logarithmic functions).

use three logarithmic functions that are expressed by equation
(2) with rmax = 100 and differentki parameters which are
approximations for delay-tolerant applications (e.g. FTP). We
usek = 15 for UEs with indexesi = {4, 10}, k = 3 for UEs
with indexesi = {5, 11}, andk = 0.5 for UEs with indexes
i = {6, 12}, as shown in Figure 3. A summary is shown in
table I. A three dimensional view of the sigmoidal-like utility
functionUi(r1i + r2i) is show in Figure 4.

A. Allocated Rates for30 ≤ R1 ≤ 200 andR2 = 70

In the following simulations, we setδ = 10−3, the 1st

carrier eNodeB rateR1 takes values between30 and200 with
step of10, and the2nd carrier eNodeB rate is fixed atR2 = 70.
In Figure 5, we show the final allocated optimal ratesri =
r1i + r2i of different users with different1st carrier eNodeB
total rateR1 and observe how the proposed rate allocation
algorithm converges when the eNodeBs available resources are

Fig. 4. The sigmoidal-like utilityUi(r1i+r2i) = ci(
1

1+e
−ai(r1i+r2i−bi)

−

di) of the ith user, wherer1i is the rate allocated by1st carrier eNodeB
andr2i is the rate allocated by2nd carrier eNodeB.

TABLE I
USERS AND THEIR APPLICATIONS UTILITIES

Applications Utilities Parameters Users Indexes

Sig1 Sig a = 5, b = 10 i = {1, 7}

Sig2 Sig a = 3, b = 20 i = {2, 8}

Sig3 Sig a = 1, b = 30 i = {3, 9}

Log1 Log k = 15, rmax = 100 i = {4, 10}

Log2 Log k = 3, rmax = 100 i = {5, 11}

Log3 Log k = 0.5, rmax = 100 i = {6, 12}

abundant or scarce. In Figure 5(a), we show the rates allocated
to the1st group of UEs by only C1 eNodeB since C2 eNodeB
is not within these users range, we observe the increase in the
rate allocated to these users with the increase inR1. Figure
5(b) shows the final allocated rates to the2nd group of UEs
by both C1 and C2 eNodeBs. Since these users located under
the coverage area of both the macro cell and the small cell,
they are allocated rates jointly using the proposed RA with
joint CA approach. Figure 5(a) and 5(b) show that by using
the RA with joint CA algorithm, no user is allocated zero
rate (i.e. no user is dropped). However, the majority of the
eNodeBs resources are allocated to the UEs running adaptive
real-time applications until they reach their inflection rates
the eNodeBs then allocate more resources to the UEs with
delay-tolerant applications, as real-time application users bid
higher than delay-tolerant application users by using the utility
proportional fairness policy.

In Figure 6, we show the rates allocated to the2nd group
users, located under the coverage area of both the macro cell
and small cell eNodeBs, by each of the two carriers’ eNodeBs
with the increase in the1st carrier eNodeB resources. In Figure
6(a) and 6(b), when the resources available at C2 eNodeB (i.e.
R2) is more than that at C1 eNodeB, we observe that most of
the2nd group rates are allocated by C2 eNodeB. However, the
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(a) The rates allocatedr1i from the 1st carrier eNodeB (i.e. the macro cell
eNodeB) to users of the1st group (i.e.i = 1, 2, 3, 4, 5, 6).
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(b) The ratesr1i + r2i allocated from1st and 2nd carriers eNodeBs (i.e.
the macro cell and the small cell eNodeBs) to users of the2nd group (i.e.
i = 7, 8, 9, 10, 11, 12).

Fig. 5. The allocated rates
∑

K

l=1 rli of the two groups of users verses1st

carrier rate30 < R1 < 200 with 2nd carrier rate fixed atR2 = 70.

delay tolerant applications are not allocated much resources
since most ofR2 is allocated to the real-time applications.
With the increase in C1 eNodeB resourcesR1, we observe a
gradual increase in the2nd group rates allocated to real-time
applications from C1 eNodeB and a gradual decrease from
C2 eNodeB resources allocated to real-time-applications.This
shift in the resource allocation increases the available resources
in C2 eNodeB to be allocated to2nd group delay tolerant
applications by C2 eNodeB.

B. Pricing Analysis and Comparison for30 ≤ R1 ≤ 200 and
R2 = 70

In the following simulations, we setδ = 10−3 and the1st

carrier eNodeB rateR1 takes values between30 and200 with
step of10, and C2 eNodeB total rate is fixed atR2 = 70. As
discussed before, the users’ allocated rates are proportional
to the users’ bids. Real-time application users bid higher than
delay-tolerant application users due to their applications nature
and the utility proportional fairness policy. Therefore, the
pricing which is proportional to the bids is traffic-dependent,
i.e. when the demand by users increases, as a result the price
increases and vice versa.

40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

R1

r
1
i

 

 
i = 7

i = 8

i = 9

i = 10

i = 11

i = 12

(a) The allocated ratesr1i from the 1st carrier eNodeB to the2nd group of
users.

40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

R1

r
2
i

 

 
i = 7

i = 8

i = 9

i = 10

i = 11

i = 12

(b) The allocated ratesr2i from the 2nd carrier eNodeB to the2nd group of
users.

Fig. 6. The allocated rates from C1 and C2 eNodeBs to the2nd group of
users with1st carrier eNodeB rate30 < R1 < 200 and2nd carrier eNodeB
rate fixed atR2 = 70.

In Figure 7, we compare between the shadow price of C1
and C2 eNodeBs when using the proposed RA with joint CA
approach with their shadow prices obtained when using the
multi-stage RA with CA approach in [9]–[11]. For the RA
with joint CA case, we observe that the shadow price of C1
eNodeB is higher than that of C2 eNodeB forR1 < 80
and approximately equal for80 ≤ R1 ≤ 200 which shows
how it is very efficient to use the joint CA approach for the
pricing of the user. We also show how the prices decrease
with the increase in the eNodeBs total rate. By using this
traffic-dependent pricing, the network providers can flatten the
traffic specially during peak hours by setting traffic-dependent
resource price, which gives an incentive for users to use the
network during less traffic hours. On the other hand, for the
multi-stage RA with CA approach, we show in Figure 7 the
changes in C1 and C2 eNodeBs shadow prices withR1. When
using the multi-stage RA with CA approach, all users are first
allocated rates by the macro cell eNodeB, once C1 eNodeB is
done allocating its resources C2 eNodeB starts allocating its
resources only to the2nd group users as they are located within
its coverage area. Since the pricing method in multi-stage
RA with CA approach is not optimal, this explains why the
shadow prices of C1 and C2 eNodeBs, in Figure 7, when using
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Fig. 7. The1st carrier shadow pricep1 and 2nd carrier shadow pricep2
for both multi-stage RA with CA and joint RA methods with C1 eNodeB rate
30 < R1 < 200 and C2 eNodeB rateR2 = 70.

the proposed RA with joint CA approach are less than their
corresponding prices when using the multi-stage RA with CA
approach. This shows how the proposed algorithm outperforms
the algorithms presented in [9]–[11] as it guarantees that
mobile users receive optimal price (minimum) for resources.

VIII. C ONCLUSION

In this paper, we introduced a novel resource allocation
optimization problem with joint carrier aggregation in cellular
networks. We considered mobile users running real-time and
delay-tolerant applications with utility proportional fairness
allocation policy. We proved that the global optimal solution
exists and is tractable for mobile stations with logarithmic and
sigmoidal-like utility functions. We presented a novel robust
distributed algorithm for allocating resources from different
carriers optimally among the mobile users. Our algorithm
ensures fairness in the utility percentage achieved by the
allocated resources for all users. Therefore, the algorithm gives
priority to users with adaptive real-time applications while
providing a minimum QoS for all users. In addition, the
proposed RA with joint CA algorithm guarantees allocating
resources from different carriers with the lowest resourceprice
for the user. We analyzed the convergence of the algorithm
with different network traffic densities and presented a robust
algorithm that overcomes the fluctuation in allocation during
peak traffic hours. We showed through simulations that our
algorithm converges to the optimal resource allocation and
that the proposed algorithm outperforms the multi-stage RA
with CA algorithms presented in [9]–[11] as it guarantees that
mobile users receive optimal price for the allocated resources.
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