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Cooperative Prediction-and-Sensing Based

Spectrum Sharing in Cognitive Radio Networks
Van-Dinh Nguyen and Oh-Soon Shin

Abstract—This paper proposes prediction-and-sensing-
based spectrum sharing, a new spectrum-sharing model for
cognitive radio networks, with a time structure for each
resource block divided into a spectrum prediction-and-sensing
phase and a data transmission phase. Cooperative spectrum
prediction is incorporated as a sub-phase of spectrum sensing
in the first phase. We investigate a joint design of transmit
beamforming at the secondary base station (BS) and sensing
time. The primary design goal is to maximize the sum rate
of all secondary users (SUs) subject to the minimum rate
requirement for all SUs, the transmit power constraint at the
secondary BS, and the interference power constraints at all
primary users. The original problem is difficult to solve since
it is highly nonconvex. We first convert the problem into a
more tractable form, then arrive at a convex program based
on an inner approximation framework, and finally propose
a new algorithm to successively solve this convex program.
We prove that the proposed algorithm iteratively improves
the objective while guaranteeing convergence at least to local
optima. Simulation results demonstrate that the proposed
algorithm reaches a stationary point after only a few iterations
with a substantial performance improvement over existing
approaches.

Index Terms—Cognitive radio, nonconvex programming,
sum rate, transmit beamforming, opportunistic spectrum
access, prediction accuracy, spectrum sensing, spectrum shar-
ing, spectrum underlay.

I. INTRODUCTION

The ever-growing demand for mobile traffic requires

new technologies to increase the data rate and enhance

connectivity using finite radio resources [1]. However,

conventional static spectrum allocation policies can no

longer provide substantial improvements since these are

subjected to an inefficient use of the wireless spectrum

[2]. Nonetheless, the Federal Communications Commission

(FCC) [3] reported that the majority of primary users (PUs,

licensed users) under-utilize their allocated resources at any

given time and location. Therefore, cognitive radio (CR)

networks, also known as dynamic spectrum access (DSA)

networks [4], [5], have been proposed as a powerful means

to better utilize spectrum resources over conventional static

spectrum allocation policies [6].

In general, CR models can be further divided into two

categories: opportunistic spectrum access and spectrum

underlay [7]. In the former case, secondary users (SUs,
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unlicensed users) access the frequency bands only when

the PUs are not transmitting [7]–[12], and interference

constraints are not imposed on SUs’ transmission. Instead,

the SUs need to detect the licensed frequency bands to

avoid interfering with the PUs. In the latter case, the

SUs use the frequency bands even when the PUs are

transmitting. However, they do so with restricted access

and need to avoid causing detrimental interference to the

PUs [13]–[19]. In addition, sensing-based spectrum sharing

was proposed in [20], using a hybrid model of both

opportunistic spectrum access and spectrum underlay to

exploit the spectrum resource more efficiently.

A. Related Works

In CR networks, spectrum sensing is a basic function

and core step to enable secondary systems to detect the

spectrum holes and states of the PUs [11]. However, the

results of the spectrum sensing are unstable and unreliable

due to the effects of multipath fading and path loss.

Recently, spectrum prediction, which is based on the means

of the historical spectrum sensing statistic, was proposed

to combat the bottlenecks of spectrum sensing [21]. Two

widely used prediction methods among such are hidden

Markov models and neural networks (e.g., [22] and the

references therein). Yang et al. [23] proposed a redesigned

frame structure-incorporated spectrum prediction to select

channels for sensing only from channels predicted to be

inactive. Besides, long term information based on prioriti-

zation of channels was proposed in [24] to guide sensing,

which helps save computational resources, and an exten-

sion using both long- and short-term history information

was also considered in [25]. In [26], the authors proposed

traffic classification algorithms to estimate the PU traffic

periods and PU traffic parameters. The fundamental limits

of predictability in radio spectrum state was studied in [27]

to obtain spectrum awareness, which is the prerequisite

to allow a SU to opportunistically access the licensed

frequency bands. In fact, an accurate result for the spectrum

prediction is impossible to obtain due to the time-varying

nature of the spectrum environment. Thus, a new spectrum

prediction protocol to improve the prediction accuracy

remains as an open problem.

Multi-antenna transmissions already play a key role in

current-generation wireless communications and will be

even more important to 5G systems and beyond. Transmit

http://arxiv.org/abs/1707.07429v1
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beamforming improves the capacity and extends coverage

for wireless communication systems without the need for

additional bandwidth and/or transmit power. For transmit

beamforming, the secondary base station (BS) requires

knowledge of the channels to the SUs and the PUs,

which can be obtained via channel estimation. In practice,

the secondary BS cannot expect to have perfect channel

knowledge due to errors in the estimation or other factors,

such as quantization, thus requiring a robust beamforming

design in the presence of channel uncertainty [28], [29].

In addition, the perfect channel state information (CSI)

of the PUs’ channels is even more difficult to obtain at

the secondary BS since two systems operate independently

[16]. The works in [28] and [29] applied semi-definite pro-

gramming (SDP) method to find the optimal solutions for

complex matrices, where rank-one constraints are omitted.

Then, a randomized approximate solution is employed to

recover rank-one solutions. However, as noted in [30], such

randomization techniques are inefficient.

The spectral efficiency maximization, also known as sum

rate maximization, has been a classical problem in CR net-

works and has been extensively studied recently [13]–[19],

[28]. Depending on the power usage, the spectral efficiency

problem has been studied with a sum power constraint

[14], [17], [19] and per-antenna power constraints [15],

[16]. However, the minimum rate requirements for all SUs

were not addressed in [13]–[16], [18], [19], [28], although

such rate constraints are crucial to resolving the so-called

user fairness. Without the minimum rate requirement for

each SU, the secondary BS will favor SUs with good

channel gains by allocating a large amount of power to

them. Consequently, the spectral efficiency of CR networks

is mostly contributed by SUs with good channel gains,

and thus, the remaining SUs may achieve a very low

throughput. Moreover, finding a feasible point of involved

optimization variables to meet the throughput constraints

is also difficult since the feasible set is nonconvex and

nonsmooth.

B. Motivation and Contributions

In this paper, we propose prediction-and-sensing-based

spectrum sharing (PSBSS), a new spectrum-sharing model

for a secondary system consisting of a multi-antenna BS

transmitting data to multiple SUs in the presence of mul-

tiple PUs. The two systems operate in the same frequency

band to exploit the available spectrum more effectively.

This is different from both opportunistic spectrum access

and spectrum underlay in that if the PUs are detected to

be idle, the secondary system will transmit power as long

as the performance improves without any restricted power

at the secondary BS, and vice versa when the PUs are

detected to be active. To improve the prediction accuracy,

we redesign the time structure for each resource block with

cooperative spectrum prediction between the secondary BS

and all SUs. We restrict ourselves to linear beamforming

strategies and consider the sum rate maximization prob-

lem subject to the minimum rate requirements for each

SU, transmit power constraints at the secondary BS, and

interference power constraints at all PUs. In addition, the

channel vectors of all SUs and PUs are imperfectly known

at the secondary BS, where the CSI errors are norm-

bounded.

In fact, the optimization problem under consideration

is highly nonconvex, and thus, the optimal solutions are

computationally difficult to find. Nevertheless, we propose

a new iterative algorithm to directly handle such a highly

nonconvex problem that does not follow the SDP method

due to the inefficiency mentioned above. We also discuss

its practical implementation to ensure that the proposed

algorithm can be successfully solved in the first iteration.

Our main contributions are summarized as follows:

• We propose cooperative spectrum prediction between

all SUs and the secondary BS, which helps reduce the

detection error and improve the detection accuracy.

• We propose a new iterative low-complexity algorithm

to obtain the computational solution of the optimiza-

tion problem. Here the proposed design is based on

an inner approximation algorithm, and we completely

avoid rank-one constraints, which is different from

covariance matrices [28], [29]. Thus, the proposed al-

gorithm requires the minimum number of optimization

variables and has a moderate dimension.

• The obtained solutions are guaranteed to locate the

Karush-Kuhn-Tucker (KKT) solution to the original

nonconvex program. Numerical results are also pro-

vided to demonstrate the effectiveness of the pro-

posed algorithm, showing quite fast computation with

converging in a few iterations. These results show

that the system performance of the proposed PSBSS

outperforms both opportunistic spectrum access and

spectrum underlay.

C. Paper Organization and Notation

The rest of the paper is organized as follows. System

model is described in Section II. In Section III, we present

the prediction-and-sensing analysis and optimization prob-

lem formulation. We devise the optimal solution to the

sum rate maximization problem in Section IV. Numerical

results are provided in Section V, and Section VI concludes

the paper.

Notation: xH , xT , and tr(x) are the Hermitian trans-

pose, normal transpose, and trace of a vector x, respec-

tively. ‖ · ‖ and | · | denote the Euclidean norm of vector

and the absolute value of a complex scalar, respectively.

x ∼ CN (η,Z) means that x is a random vector following

a complex circularly-symmetric Gaussian distribution with

mean vector η and covariance matrix Z. E[·] denotes

the statistical expectation. ℜ{·} represents the real part

of the argument. The inner product 〈x,y〉 is defined as

trace(xHy). ∇ denotes the first-order differential operator.
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SBS: secondary BS
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Fig. 1. A CR network model with multiple SUs and PUs.

II. SYSTEM MODEL

A. Signal Model

We consider a cognitive transmission scenario where a

secondary BS equipped with Nt transmit antennas serves

K single-antenna SUs in the presence of M single-antenna

PUs, as shown Fig. 1. We assume that two systems operate

in the same frequency band. The channel vectors from the

secondary BS to the k-th SU and the m-th PU are rep-

resented by hk ∈ CNt×1 and gm ∈ CNt×1, respectively,

which include the effects of the large-scale path loss and

small-scale fading. We assume that hk ∈ CNt×1, k ∈
K , {1, 2, · · · ,K} and gm ∈ CNt×1, m ∈ M ,

{1, 2, · · · ,M} remain unchanged during a transmission

block and change independently from one block to another.

In the secondary system, linear beamforming is em-

ployed at the secondary BS to transmit information signals

to the SUs. Specifically, the information intended for the

k-th SU, denoted by xk ∈ C with E{|xk|2} = 1, is

multiplied by the beamformer wk,i ∈ CNt×1, i = {0, 1}.

If the PUs are detected to be active (i = 1), the secondary

BS transmits with beamformer wk,1, ∀k. If the PUs are

detected to be absent (i = 0), the secondary BS transmits

with beamformer wk,0, ∀k. Then, the received signal at the

k-th SU depending on the PUs’ channel states is given as

y
(i)
k = hH

k wk,ixk +
∑

j∈K\{k}

hH
k wj,ixj + β(i)

p Ip + nk,

i = {0, 1} (1)

where β
(1)
p = 1 if the PUs are active and β

(0)
p = 0 if the

PUs are absent. Ip is referred to as the summed interference

caused by the primary BS, which is assumed to be equal

at all K SUs. Without loss of generality, we assume the

averaged interference received by each SU is E{|Ip|2} = Īp

since the transmit strategies of the two systems are in-

dependent. nk ∼ CN (0, σ2
k) is the zero-mean circularly

symmetric complex Gaussian noise with variance σ2
k. For

Time slot

tp tr1 tr2 trK ts T − tp −
∑K

k=1
trk − tFC − ts

Prediction and spectrum
sensing phase

Data transmission phase

tp: prediction time at SUs and SBS

trk : time for SUk to report to FC

tFC

tFC: time for FC to make a decision

ts: spectrum sensing time

T : slot length

Fig. 2. Time slot structure of the proposed prediction-and-sensing-based
spectrum sharing in CR networks.

simplicity, let us define w0 , [wT
1,0,w

T
2,0, · · · ,wT

K,0]
T and

w1 , [wT
1,1,w

T
2,1, · · · ,wT

K,1]
T .

Channel state information: In the previous works [13]–

[16], [18], [19], the CSIs of the channel vectors hk, ∀k
and gm, ∀m are assumed to be perfectly known at the

secondary BS. To ensure a practical consideration, we

assume that the channel vectors hk and gm are imperfectly

known at the secondary BS as [31], [32]

f
(
hkh

H
k − h̃kh̃

H
k

)
≤ δk, ∀k, (2)

f
(
gmgH

m − g̃mg̃H
m

)
≤ δ̂m, ∀m (3)

where h̃k and g̃m are the channel estimates for the k-th

SU and the m-th PU available at the secondary BS, respec-

tively. f(X) is the so-called spectral radius of matrix X,
i.e., f(X) = maxi |λi(X)| with its eigenvalues λi(X).
δk and δ̂m represent the associated CSI errors, which are

assumed to be deterministic and bounded. Therefore, δk
(δ̂m, resp.) is the size of the uncertainty region of the

estimated CSI for the k-th SU (m-th PU, resp.). In addition,

the channel uncertainties can be reformulated as [31]
{

δk = ǫs‖h̃k‖2, ∀k,
δ̂m = ǫp‖g̃m‖2, ∀m (4)

where ǫs and ǫp are the normalized uncertainty levels

associated with the k-th SU and m-th PU, respectively.

In fact, ǫs is much smaller than ǫp since the SUs are active

users in the considered system.

B. Prediction-and-Sensing Based Spectrum Sharing Model

In our model, the secondary system first listens to the

spectrum allocated to the PUs to detect their states. Then,

the secondary BS decides the transmission strategies based

on the detection results. Specifically, if the PUs are inactive,

the SUs will transmit over the band without any restrictions

in transmit power to achieve higher system performance.

If the PUs are active, the SUs have restricted access

and need to avoid causing detrimental interference to the

PUs. Consequently, the secondary system can exploit the

radio frequency spectrum more efficiently than when using

spectrum underlay [13]–[16], [18], [19] and opportunistic

spectrum access [7]–[11].
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Fig. 2 depicts the time slot structure of the system,

consisting of a prediction and spectrum sensing phase

and a data transmission phase in a communication time

block, T . In the prediction and spectrum sensing phase,

K SUs and the secondary BS independently perform local

spectrum prediction on the PUs’ channel within the time

duration tp. To ensure low computational complexity of

the end devices, the K SUs report their local spectrum

prediction results to the fusion center (FC) during K mini-

slots tr1 , tr2 , · · · , trK using a dedicated control channel

[33]. The FC combines the prediction results of both

SUs and the secondary BS, and then makes a decision

regarding the PUs’ channel state within the time duration

tFC. With the prediction results determined previously, only

the secondary BS listens to the signals sent by the PUs

and performs spectrum sensing within the time duration

ts, which helps facilitate global resource allocation. During

the data transmission phase, as mentioned earlier, the sec-

ondary BS will transmit the data in the remaining fraction

T − tpr− ts where tpr , tp+
∑K

k=1 trk + tFC for whatever

PUs’ state.

III. PREDICTION-AND-SENSING ANALYSIS AND

OPTIMIZATION PROBLEM FORMULATION

A. Prediction-and-Sensing Analysis

1) Spectrum Prediction: Inspired by the work in [11],

the PUs’ signal is modeled as a binary stochastic process,

i.e., busy (H1) and idle (H0). In addition, the PUs’ arrival

time is modeled as a Poisson distribution of parameter λ,

and the holding time is modeled as a binomial distribution

of parameter µ [34]. Thus, the PUs’ channel is predicted

to be busy with a probability of Pr(H1) = µ/λ and to be

idle with a probability of Pr(H0) = 1− µ/λ.

This paper considers an imperfect spectrum prediction

[21]–[23], i.e., the PUs’ channel can be predicted to be

idle when it is actually busy. The artificial neural network

(ANN) for spectrum prediction in [21] is adopted thanks

to low energy consumption of SUs. In particular, each

SU predicts the PUs’ channel state by using a multilayer

perceptron (MLP) predictor, where the input data is the

history observations and the output is the prediction of

the future channel states.1 We assume that the wrong

prediction probability of the true state of the PUs’ channel

is equivalent for all K SUs and the secondary BS, denoted

by Pw
p . Similarly, Ps

p is assumed to be the probability of

a successful prediction of the true state of the PUs. After

conducting the prediction for the local spectrum, all K SUs

report their results to the FC, and then the FC combines

all (K + 1) results from the K SUs and the secondary

BS to make a decision. We assume k-out-of-(K + 1)
rule at the FC since it requires the least communication

1The MLP predictor requires less history observations than the hidden
Markov model (HMM) predictor to predict the future channel states. With
sufficient hidden layers, a better performance can be achieved by the MLP
predictor with only one training process [21].

TABLE I
THE PROBABILITIES OF THE TRUE CHANNEL STATE AND ITS

PREDICTION RESULT

PUs’ State Prediction Probability Composite Probability

Idle: Pr(H0) Idle 1−Qw
p (1−Qw

p )Pr(H0)
Idle: Pr(H0) Busy Qw

p Qw
p Pr(H0)

Busy: Pr(H1) Idle 1−Qs
p (1−Qs

p)Pr(H1)
Busy: Pr(H1) Busy Qs

p Qs
pPr(H1)

overhead [35]. The majority-rule is chosen as a fusion

rule in this paper since it is a trade-off for two widely

used fusion rules, namely the OR-rule and AND-rule [11].

More specifically, the FC with the OR-rule and AND-rule

will result in more miss prediction of active PUs and

more loss of SUs’ transmission opportunities, respectively.

On the other hand, the FC with the majority-rule can

improve the probability of successful prediction and reduce

the probability of wrong prediction simultaneously. In

particular, the probability of successful prediction is close

to 1 and that of wrong prediction is close to 0 for a

sufficiently large K , which is suitable for a hyper-dense

small cell deployment in 5G. Based on the majority-rule,

the FC makes the decision according to the following test:

dFC =

{
1 (busy), if

∑K+1
i=1 αi ≥

⌈
K+1
2

⌉

0 (idle), otherwise
(5)

where αi is a binary hypothesis test reported by the K
SUs and the secondary BS with αi ∈ {0, 1}, and ⌈·⌉
denotes the ceiling function. In (5), the PUs’ channel is

predicted to be busy if at least half of (K + 1) local

prediction results vote the channel as occupied. Thus, the

probabilities of wrong prediction, denoted by Qw
p , and

successful prediction, denoted by Qs
p, at the FC are given

by

Qw
p =

K+1∑

i=
⌈

K+1
2

⌉

(
K+1
i
)
(Pw

p )i(1 − Pw
p )K+1−i, (6a)

Qs
p =

K+1∑

i=
⌈

K+1
2

⌉

(
K+1
i
)
(Ps

p)
i(1− Ps

p)
K+1−i. (6b)

We summarize the resulting probabilities collected for the

prediction at the FC in Table I. From Table I, the overall

probabilities of predicting the PUs’ channel to be idle P0
p

or busy P1
p can be calculated as

P0
p = (1−Qw

p )Pr(H0) + (1−Qs
p)Pr(H1), (7a)

P1
p = Qw

p Pr(H0) +Qs
pPr(H1) (7b)

where P0
p and P1

p satisfy P0
p = 1− P1

p .

2) Prediction-and-Sensing: After the spectrum predic-

tion, the secondary BS performs spectrum sensing to

determine the busy/idle state of the PUs’s channel based

on two hypotheses regarding whether the PUs are active

or absent [11]. Thus, after spectrum sensing, the following

four cases can happen:
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TABLE II
THE PROBABILITIES OF THE TRUE CHANNEL STATE,

PREDICTION-AND-SENSING RESULT, AND RELATED RATE OF SUS

PUs’ State
Prediction-
and-Sensing Probability

Composite
Probability Related Rate

Idle: Pr(H0) Idle P00 Pr(H0)P00 R00

k
(w0)

Idle: Pr(H0) Busy 1−P00 Pr(H0)(1 − P00) R01

k
(w1)

Busy: Pr(H1) Idle P10 Pr(H1)P10 R10

k
(w0)

Busy: Pr(H1) Busy 1−P10 Pr(H1)(1 − P10) R11

k
(w1)

• Case 1: the PUs are absent and the sensing result is

idle. The corresponding probability of the prediction-

and-sensing is

P00 =
(1−Qw

p )Pr(H0)(1 − Pf )

(1 −Qw
p )Pr(H0) + (1−Qs

p)Pr(H1)
(8)

where Pf is referred to as the false-alarm probability

of the test statistic by using an energy detector [11]:

Pf = Q

(( ǫ̃

σ̃2
n

− 1
)√

tsfs

)
(9)

with Q(·) being the complementary distribution

function of the standard Gaussian, i.e., Q(x) ,

(1/
√
2π)

∫∞

x
exp(−t2/2)dt. ǫ̃, σ̃2

n, and fs are the

detection threshold, variance of the noise at the sec-

ondary BS, and the sampling frequency, respectively.

Then, the number of samples is defined as N = tsfs.

• Case 2: the PUs are absent but the sensing result is

busy. The corresponding false-alarm probability of the

prediction-and-sensing is

P01 = 1− P00. (10)

• Case 3: the PUs are active but the sensing result is

idle. The corresponding probability for miss-detection

during prediction-and-sensing is

P10 =
(1 −Qs

p)Pr(H1)(1 − Pd)

Qw
p Pr(H0) +Qs

pPr(H1)
(11)

where Pd is referred to as the detection probability of

the test statistic, i.e.,

Pd = Q
(( ǫ̃

σ̃2
n

− γ − 1
)√

tsfs/(2γ + 1)
)

(12)

with γ being the received signal-to-noise ratio (SNR)

at the secondary BS.

• Case 4: the PUs are active and the sensing result

is busy. The corresponding detection probability for

prediction-and-sensing is

P11 = 1− P10. (13)

With the above results, we summarize the prediction-

and-sensing results and related rate of the SUs in Table II.

By incorporating the channel uncertainties in (1), the worst-

case information rates in nat/sec/Hz for the k-th SU listed

in Table II are given as

R00
k (w0) = ln

(
1 +

|h̃H
k wk,0|2 − δk‖wk,0‖2

χ00
k (w0)

)
, (14)

R01
k (w1) = ln

(
1 +

|h̃H
k wk,1|2 − δk‖wk,1‖2

χ01
k (w1)

)
, (15)

R10
k (w0) = ln

(
1 +

|h̃H
k wk,0|2 − δk‖wk,0‖2

χ10
k (w0)

)
, (16)

R11
k (w1) = ln

(
1 +

|h̃H
k wk,1|2 − δk‖wk,1‖2

χ11
k (w1)

)
(17)

where χ00
k (w0), χ

01
k (w1), χ

10
k (w0), and χ11

k (w1) are de-

fined as

χ00
k (w0) ,

∑

j∈K\{k}

|h̃H
k wj,0|2 +

∑

j∈K\{k}

δk‖wj,0‖2 + σ2
k,

χ01
k (w1) ,

∑

j∈K\{k}

|h̃H
k wj,1|2 +

∑

j∈K\{k}

δk‖wj,1‖2 + σ2
k,

χ10
k (w0) ,

∑

j∈K\{k}

|h̃H
k wj,0|2 +

∑

j∈K\{k}

δk‖wj,0‖2

+ Īp + σ2
k,

χ11
k (w1) ,

∑

j∈K\{k}

|h̃H
k wj,1|2 +

∑

j∈K\{k}

δk‖wj,1‖2

+ Īp + σ2
k.

B. Optimization Problem Formulation

After the prediction and spectrum sensing phase, the

secondary BS will determine the transmission strategy

according to the prediction-and-sensing results. From Ta-

ble II, the effective rate of the k-th SU for prediction-and-

sensing based spectrum sharing is given by

Rk(w0,w1, ts) =

(
1− tpr + ts

T

)[
P̃00R

00
k (w0)

+ P̃01R
01
k (w1) + P̃10R

10
k (w0) + P̃11R

11
k (w1)

]
. (18)

where P̃00 = Pr(H0)P00, P̃01 = Pr(H0)(1 − P00),
P̃10 = Pr(H1)P10, and P̃11 = Pr(H1)(1−P10). Moreover,

the performance measure of interest is the sum rate of all

SUs. Thus, the objective function can be mathematically

expressed as

R(w0,w1, ts) ,

K∑

k=1

Rk(w0,w1, ts). (19)

As observed in [11], the sensing time ts is also incorporated

as an optimization variable. In particular, for a given target

detection probability Pd = P̄d, the false-alarm probability

Pf is calculated as [11]

Pf = Q
(√

2γ + 1Q−1(P̄d) +
√
tsfsγ

)
, (20)
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which readily shows that a higher ts leads to a lower Pf

and a higher Pd, and thus improving the system perfor-

mance. However, increasing ts also negatively impacts the

system performance by reducing the time fraction for the

data transmission. Consequently, from (9) and (12), the

following constraint is considered:

ts ≥
1

γ2fs

[
Q−1(Pf )−Q−1(Pd)

√
2γ + 1

]2
. (21)

In this paper, the aim is to maximize the sum rate of

all SUs by jointly deriving the beamforming vectors and

sensing time under the minimum rate requirements for each

SU, the transmit power constraints at the secondary BS, and

the interference power constraints at the PUs. In particular,

we consider the following optimization problem:

maximize
w0,w1,ts

R(w0,w1, ts) (22a)

subject to Rk(w0,w1, ts) ≥ R̄k, ∀k ∈ K, (22b)

(
1− tpr + ts

T

) K∑

k=1

(
P̂0‖wk,0‖2 + P̂1‖wk,1‖2

)
≤ Psbs,(22c)

(
1− tpr + ts

T

) K∑

k=1

(
P10

(
‖g̃H

mwk,0‖2 + δ̂m‖wk,0‖2
)

+(1− P10)
(
‖g̃H

mwk,1‖2 + δ̂m‖wk,1‖2
))

≤ Im, ∀m, (22d)

ts ≥
1

γ2fs

[
Q−1(Pf )−Q−1(Pd)

√
2γ + 1

]2
. (22e)

Constraint (22b) requires that the minimum rate achieved

by the k-th SU be greater than the target threshold R̄k.

Constraint (22c) caps the total transmit power of the sec-

ondary BS at a predefined value Psbs with P̂0 = P̃00+P̃10

and P̂1 = P̃01+ P̃11. The last constraint (22d) imposes the

interference power caused by the secondary BS at the m-

th PU incorporating the channel uncertainties as less than

a predefined threshold Im only when the PUs are active

within the time duration 1− tpr+ts
T

.

IV. PROPOSED OPTIMAL SOLUTION

Note that problem (22) is highly nonconvex, with an

objective function (22a) that is non-concave and the con-

straints (22b), (22c), and (22d) that are nonconvex due

to coupling between the beamforming vectors (w0,w1)
and sensing time ts. In this section, we solve (22) by

developing an efficient iterative algorithm based on an inner

approximation framework.

Let us start by introducing a new variable τ and making

the following change of variable:

1− tpr + ts
T

=
1

τ
, (23)

with an additional linear constraint

τ > 1. (24)

We now equivalently express (22) as

maximize
w0,w1,τ

∑K

k=1

[
P̃00

R00
k (w0)

τ
+ P̃01

R01
k (w1)

τ

+ P̃10
R10

k (w0)

τ
+ P̃11

R11
k (w1)

τ

]
(25a)

subject to P̃00
R00

k (w0)

τ
+ P̃01

R01
k (w1)

τ

+ P̃10
R10

k (w0)

τ
+ P̃11

R11
k (w1)

τ
≥ R̄k, ∀k ∈ K, (25b)

∑K

k=1

(
P̂0‖wk,0‖2 + P̂0‖wk,1‖2

)
≤ τPsbs, (25c)

∑K

k=1

(
P10

(
‖g̃H

mwk,0‖2 + δ̂m‖wk,0‖2
)
+ (1 − P10)

×
(
‖g̃H

mwk,1‖2 + δ̂m‖wk,1‖2
))

≤ τIm, ∀m ∈ M, (25d)

τ ≥ T

T − tpr − Ω(Pf ,Pd, γ)
(25e)

where Ω(Pf ,Pd, γ) , 1
γ2fs

[
Q−1(Pf ) − Q−1(Pd)√

2γ + 1
]2

. Note that (25e) also admits the linear con-

straint (24). Interestingly, the constraints (25c) and (25d)

become convex with these transformations. Thus, from now

on, we will consider the equivalent problem (25) instead

of (22) in the original form. Now, we only deal with the

non-concave objective (25a) and the nonconvex constraint

(25b).

Concave approximation of the objective (25a): Let us

treat the term R00
k (w0)/τ first. Here we need to find a

concave lower bound approximation of R00
k (w0)/τ at the

n-th iteration in the proposed algorithm presented shortly.

Thus, we develop a lower bounding concave function

for R00
k (w0)/τ . To start with, (14) can be equivalently

replaced by [36]

R00
k (w0) = ln

(
1 +

(
ℜ{h̃H

k wk,0}
)2 − δk‖wk,0‖2

χ00
k (w0)

)
. (26)

Let ϕ00
k (w0) ,

χ00
k (w0)(

ℜ{h̃H
k
wk,0}

)2
−δk‖wk,0‖2

. Then, (26) be-

comes R00
k (w0) = ln

(
1 + 1/ϕ00

k (w0)
)
. R00

k (w0)/τ =
ln
(
1+1/ϕ00

k (w0)
)
/τ is convex in the domain (ϕ00

k (w0) >
0, τ > 1) [37], which can be verified by examining its

Hessian. Consequently, it is useful to develop an inner

approximation of R00
k (w0)/τ . Specifically, at the feasible

point (w
(n)
0 , τ (n)), a global lower bound of R00

k (w0)/τ
can be found as [38]

ln
(
1 + 1

ϕ00
k

(w0)

)

τ
≥ R00

k

(
w

(n)
0

)

τ (n)
+

〈
∇
ln
(
1 + 1

ϕ00
k

(w
(n)
0 )

)

τ (n)
,

(
ϕ00
k (w0), τ

)
−
(
ϕ00
k (w

(n)
0 ), τ (n)

)
〉

= A
(
ϕ00
k (w

(n)
0 )
)
− B

(
ϕ00
k (w

(n)
0 )
)
ϕ00
k (w0)

− C
(
ϕ00
k (w

(n)
0 )
)
τ (27)
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where A
(
ϕ00
k (w

(n)
0 )
)
, B
(
ϕ00
k (w

(n)
0 )
)
, and C

(
ϕ00
k (w

(n)
0 )
)

are defined as

A
(
ϕ00
k (w

(n)
0 )
)
, 2

ln
(
1 + 1/ϕ00

k (w
(n)
0 )
)

τ (n)

+
1

τ (n)
(
1 + ϕ00

k (w
(n)
0 )
) > 0,

B
(
ϕ00
k (w

(n)
0 )
)
,

1

τ (n)ϕ00
k (w

(n)
0 )
(
1 + ϕ00

k (w
(n)
0 )
) > 0,

C
(
ϕ00
k (w

(n)
0 )
)
,

ln
(
1 + 1/ϕ00

k (w
(n)
0 )
)

(
τ (n)

)2 > 0. (28)

Due to the convexity of
(
ℜ{h̃H

k wk,0}
)2

, the first-order

approximation of
(
ℜ{h̃H

k wk,0}
)2

at a feasible point w
(n)
k,0

is 2ℜ{h̃H
k w

(n)
k,0}ℜ{h̃H

k wk,0}−
(
ℜ{h̃H

k w
(n)
k,0}

)2
. Then, (27)

can be re-expressed as

ln
(
1 + 1/ϕ00

k (w0)
)

τ
≥ A

(
ϕ00
k (w

(n)
0 )
)
− B

(
ϕ00
k (w

(n)
0 )
)
×

χ00
k (w0)

2ℜ{h̃H
k w

(n)
k,0}ℜ{h̃H

k wk,0}−
(
ℜ{h̃H

k w
(n)
k,0}

)2 − δk‖wk,0‖2

− C
(
ϕ00
k (w

(n)
0 )
)
τ

:= R00,(n)
k (w0, τ) (29)

over the trust regions

2ℜ{h̃H
k wk,0} − ℜ{h̃H

k w
(n)
k,0} > 0, ∀k ∈ K, (30a)

2ℜ{h̃H
k w

(n)
k,0}ℜ{h̃H

k wk,0}−
(
ℜ{h̃H

k w
(n)
k,0}

)2

− δk‖wk,0‖2 > 0, ∀k ∈ K. (30b)

Note that the inequality in (29) becomes the equality at

optimum, i.e.,

ln
(
1 + 1/ϕ00

k

(
w

(n)
0

))

τ (n)
= R00,(n)

k

(
w

(n)
0 , τ (n)

)
. (31)

In order to solve R00,(n)
k (w0, τ) by existing solvers, we

further transform (29) to the following concave function

ln
(
1 + 1

ϕ00
k

(w0)

)

τ
≥ A

(
ϕ00
k (w

(n)
0 )
)
− B

(
ϕ00
k (w

(n)
0 )
)
ϑ00
k

− C
(
ϕ00
k (w

(n)
0 )
)
τ

:= R̃00,(n)
k (τ, ϑ00

k ) (32)

with additional convex quadratic constraints

δk‖wk,0‖2 ≤ 2ℜ{h̃H
k w

(n)
k,0}ℜ{h̃H

k wk,0}
−
(
ℜ{h̃H

k w
(n)
k,0}

)2 − ω0
k, ∀k, (33a)

( ∑

j∈K\{k}

|h̃H
k wj,0|2 +

∑

j∈K\{k}

δk‖wj,0‖2

+ σ2
k

)
/ω0

k ≤ ϑ00
k , ∀k (33b)

where ω0
k and ϑ00

k are newly introduced variables. The

equivalence between (29) and (32) can be readily verified

from the fact that the constraints (33a) and (33b) hold

with equality at optimum. Thus, we can iteratively replace

R00
k (w0)/τ by R̃00,(n)

k (τ, ϑ00
k ) to achieve a concave ap-

proximation at the n-th iteration.

Let us define the following functions:

ϕ01
k (w1) ,

χ01
k (w1)

|h̃H
k wk,1|2 − δk‖wk,1‖2

,

ϕ10
k (w0) ,

χ10
k (w0)

|h̃H
k wk,0|2 − δk‖wk,0‖2

,

ϕ11
k (w1) ,

χ11
k (w1)

|h̃H
k wk,1|2 − δk‖wk,1‖2

.

By following similar steps from (26) to (33), the

non-concave functions R01
k (w1)/τ , R10

k (w0)/τ , and

R11
k (w1)/τ can be iteratively replaced, respectively, by

R̃01,(n)
k (τ, ϑ01

k ) := A
(
ϕ01
k (w

(n)
1 )
)
− B

(
ϕ01
k (w

(n)
1 )
)
ϑ01
k

− C
(
ϕ01
k (w

(n)
1 )
)
τ, (34)

R̃10,(n)
k (τ, ϑ10

k ) := A
(
ϕ10
k (w

(n)
0 )
)
− B

(
ϕ10
k (w

(n)
0 )
)
ϑ10
k

− C
(
ϕ10
k (w

(n)
0 )
)
τ, (35)

R̃11,(n)
k (τ, ϑ11

k ) := A
(
ϕ11
k (w

(n)
1 )
)
− B

(
ϕ11
k (w

(n)
1 )
)
ϑ11
k

− C
(
ϕ11
k (w

(n)
1 )
)
τ (36)

over the trust regions

2ℜ{h̃H
k wk,1} − ℜ{h̃H

k w
(n)
k,1} > 0, ∀k ∈ K, (37a)

2ℜ{h̃H
k w

(n)
k,1}ℜ{h̃H

k wk,1} − (ℜ{h̃H
k w

(n)
k,1})2

− δk‖wk,1‖2 > 0, ∀k ∈ K, (37b)

with additional convex quadratic constraints

δk‖wk,1‖2 ≤ 2ℜ{h̃H
k w

(n)
k,1}ℜ{h̃H

k wk,1}
−
(
ℜ{h̃H

k w
(n)
k,1}

)2 − ω1
k, ∀k, (38a)

( ∑

j∈K\{k}

|h̃H
k wj,1|2 +

∑

j∈K\{k}

δk‖wj,1‖2

+ σ2
k

)
/ω1

k ≤ ϑ01
k , ∀k, (38b)

( ∑

j∈K\{k}

|h̃H
k wj,0|2 +

∑

j∈K\{k}

δk‖wj,0‖2

+ Īp + σ2
k

)
/ω0

k ≤ ϑ10
k , ∀k, (38c)

( ∑

j∈K\{k}

|h̃H
k wj,1|2 +

∑

j∈K\{k}

δk‖wj,1‖2

+ Īp + σ2
k

)
/ω1

k ≤ ϑ11
k , ∀k (38d)

where ω1
k, ϑ01

k , ϑ10
k , and ϑ11

k are newly introduced vari-

ables.

From (32) and (34)-(36), the objective (25a) is trans-

formed to the following concave function:

R(n)
(
τ,ϑ

)
=

K∑

k=1

R(n)
k

(
τ, ϑ00

k , ϑ01
k , ϑ10

k , ϑ11
k

)
(39)
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Algorithm 1 Proposed iterative algorithm to solve (25)

Initialization: Set n := 0 and solve (43) to generate an

initial feasible point
(
w

(0)
0 ,w

(0)
1 , τ (0)

)
.

1: repeat

2: Solve (42) to obtain the optimal solution:

(w∗
0,w

∗
1 , τ

∗,ω∗,ϑ∗).

3: Update w
(n+1)
0 := w∗

0, w
(n+1)
1 := w∗

1, τ (n+1) :=
τ∗.

4: Set n := n+ 1.
5: until Convergence

where ϑ ,
[
ϑ00
k , ϑ01

k , ϑ10
k , ϑ11

k

]T
k∈K

, and

R(n)
k

(
τ, ϑ00

k , ϑ01
k , ϑ10

k , ϑ11
k

)
= P̃00R̃00,(n)

k (τ, ϑ00
k )

+ P̃01R̃01,(n)
k (τ, ϑ01

k ) + P̃10R̃10,(n)
k (τ, ϑ10

k )

+P̃11R̃11,(n)
k (τ, ϑ11

k ). (40)

Convex approximation of the nonconvex constraint

(25b): We now turn our attention to (25b). As a result

for (40), the constraint (25b) is inner approximated by the

following linear constraint:

R(n)
k

(
τ, ϑ00

k , ϑ01
k , ϑ10

k , ϑ11
k

)
≥ R̄k, ∀k. (41)

Thus, the convex program provides minorant maximization

solved at the (n+1)-th iteration for the nonconvex program

(25), as given by

maximize
w0,w1,τ,ω,ϑ

R(n)
(
τ,ϑ

)
(42a)

subject to R(n)
k

(
τ, ϑ00

k , ϑ01
k , ϑ10

k , ϑ11
k

)
≥ R̄k, ∀k ∈ K,(42b)

(25c), (25d), (25e), (30), (33), (37), (38) (42c)

where ω ,
[
ω0
k, ω

1
k

]T
k∈K

. Note that the feasible set of (42)

is also feasible for (25). We outline the proposed method

in Algorithm 1. After finding the optimal solution (step 2),

we update the involved variables (step 3) and repeatedly

solve (42) until convergence.

Generation of initial points: In fact, Algorithm 1 requires

a feasible point of (25) to meet the nonconvex through-

put constraints, which is difficult to find in general. To

overcome this issue, we successively solve the following

problem:

maximize
w0,w1,τ,ω,ϑ

min
k∈K

{
R(n)

k

(
τ, ϑ00

k , ϑ01
k , ϑ10

k , ϑ11
k

)
− R̄k

}
(43a)

subject to (25c), (25d), (25e), (30), (33), (37), (38) (43b)

which is initialized by any feasible point
(
w

(0)
0 ,w

(0)
1 , τ (0)

)
.

We solve (43) until reaching

min
k∈K

{
R(n)

k

(
τ, ϑ00

k , ϑ01
k , ϑ10

k , ϑ11
k

)
− R̄k

}
≥ 0.

Proposition 1: Algorithm 1 returns a better point(
w

(n)
0 ,w

(n)
1 , τ (n)

)
of (25) and (42) after every iteration.

Hence, Algorithm 1 generates a non-decreasing sequence

of objective values and also converges to a KKT point of

(25) after a finite number of iterations.

Proof: Here we provide a sketch of the proof to verify

the statement. For ease of reference, let us define the objec-

tives of (25) and (42) w.r.t. the updated optimization vari-

ables as O
(
w0,w1, τ

)
and O(n)

(
w0,w1, τ

)
, respectively.

We know that O
(
w0,w1, τ

)
≥ O(n)

(
w0,w1, τ

)
(due to

(27)) and O
(
w

(n)
0 ,w

(n)
1 , τ (n)

)
= O(n)

(
w

(n)
0 ,w

(n)
1 , τ (n)

)

(due to (31)). Therefore, we have

O
(
w

(n+1)
0 ,w

(n+1)
1 , τ (n+1)

)
≥

O(n)
(
w

(n+1)
0 ,w

(n+1)
1 , τ (n+1)

)
≥

O(n)
(
w

(n)
0 ,w

(n)
1 , τ (n)

)
= O

(
w

(n)
0 ,w

(n)
1 , τ (n)

)
.

This implies that
(
w

(n+1)
0 ,w

(n+1)
1 , τ (n+1)

)
is a bet-

ter point for (25) than
(
w

(n)
0 ,w

(n)
1 , τ (n)

)
. Hence,

{O
(
w

(n)
0 ,w

(n)
1 , τ (n)

)
}n≥1 is a non-decreasing sequence

and possibly converges to positive infinity. However, this

sequence is bounded above due to the power constraint

(25c). As n tends to infinity, Algorithm 1 converges to an

accumulation point
(
w̄0, w̄1, τ̄

)
, i.e., lim

n→+∞
O
(
w

(n)
0 ,w

(n)
1 ,

τ (n)
)
= O

(
w̄0, w̄1, τ̄

)
. Thus, we can prove that Algo-

rithm 1 converges to a KKT point of (25) according to

[39, Theorem 1]. Furthermore, Algorithm 1 will terminate

after a finite number of iterations when it satisfies
∣∣∣∣∣
O
(
w

(n+1)
0 ,w

(n+1)
1 , τ (n+1)

)
−O

(
w

(n)
0 ,w

(n)
1 , τ (n)

)

O
(
w

(n)
0 ,w

(n)
1 , τ (n)

)

∣∣∣∣∣ ≤ ǫerr

where ǫerr > 0 is a given tolerance. Proposition 1 is thus

proved.

Complexity Analysis: The computational complexity of

solving convex problem (42) is owing to only simple

convex quadratic and linear constraints at each iteration

of Algorithm 1. To be specific, the convex problem (42)

has (2Nt + 6)K + 1 real-valued scalar decision vari-

ables, a linear objective, 3K + 1 linear constraints, and

8K+M+1 quadratic constraints. Then, the computational

complexity per iteration to solve (42) is O
((

(2Nt+6)K+

1
)2√

11K +M + 2(2NtK + 17K +M + 3)
)

[40].

V. NUMERICAL RESULTS

We now evaluate the performance of the proposed design

using computer simulations. The entries of hk, ∀k ∈ K and

gm, ∀m ∈ M are assumed to undergo the effects of large-

scale path loss and small-scale fading. Specifically, we set

the path loss exponent as PL = 3. Small-scale fading is then

generated as Rician fading with the Rician factor KR = 10
dB [41]. The maximum interference power constraints at

all PUs and minimum rate constraints for all SUs are set

to be equal, i.e., Im = I, ∀m ∈ M and R̄k = R̄, ∀k ∈ K.

For the results of a local prediction, the probabilities for a

wrong prediction and successful prediction for the true state

of PUs are set to Pw
p = 0.25 and Ps

p = 0.7, respectively

[21]. For spectrum sensing, the target detection probability

is set to Pd = P̄d = 0.9, which meets the requirements
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TABLE III
SIMULATION PARAMETERS

Parameter Value

Radius of considered cell, r 100 m

Distance between the SBS and the nearest user ≥ 10 m

Noise variances, σ2

k
-90 dBm

Predetermined rate threshold, R̄ 0.5 bps/Hz

Predetermined interference power constraint, I -5 dBm

Averaged interference at the SUs, Īp 5 dBm

Number of antennas at the SBS, Nt 8

Normalized uncertainties of SUs’ channel, ǫs 10−3

Normalized uncertainties of PUs’ channel, ǫp 10−2

Slot length, T 100 ms

Prediction time at SUs and SBS, tp 5 ms

Time for SUk to report to FC, trk ∀k 0.2 ms

Time for FC to make a decision, tFC 1 ms

for IEEE 802.22 with a low SNR of γ = −15 dB and

fs = 1500 samples/s [42]. Unless stated otherwise, the

other parameters given in Table III follow those obtained

from [11], [20], [21], [33]. In Table III, we assume that

the secondary BS can achieve better channel estimates for

their serving users (SUs) compared to the PUs. The error

tolerance between two consecutive iterations in Algorithm

1 is set to ǫerr = 10−3. We divide the achieved sum rate by

ln(2) to arrive at a unit of bps/channel-use over an average

of 10,000 simulated slots.

We evaluate the probabilities of miss-detection P̃10 in

Fig. 3(a) and detection P̃11 in Fig. 3(b) versus the traffic

intensity. We also compare the corresponding probabilities

to spectrum sensing only [11]. For spectrum sensing only,

the probabilities of miss-detection and detection are cal-

culated as P̃10 = Pr(H1)(1 − Pd) and P̃11 = Pr(H1)Pd,

respectively. The proposed prediction-and-sensing scheme

achieves better performance than sensing only in all cases,

and its gain is even deeper when the intensity of the traffic

increases. In addition, increasing the number of SUs leads

to a reduction in P̃10 and increase in P̃11. Specifically, the

probability of miss-detection P̃10 is always less than 5%,

and the probability of detection P̃11 is very close to the

value corresponding to the true channel state when K =

24.

We will use the simulation setup illustrated in Fig. 4 to

evaluate the system performance in terms of the sum rate.

We also compare the sum rate of the proposed PSBSS

to that of spectrum underlay [13]–[16], [18], [19] and

opportunistic spectrum access [7]–[11]. In particular, we
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(b) Probability of detection versus traffic intensity.

Fig. 3. Probabilities of (a) miss-detection and (b) detection versus traffic
intensity.

consider the following optimization problems:

maximize
w0, ts

(
1− tpr + ts

T

)∑K

k=1

[
P̃00R

00
k (w0)

+ P̃10R
10
k (w0)

]
(44a)

subject to
(
1− tpr + ts

T

)[
P̃00R

00
k (w0)

+ P̃10R
10
k (w0)

]
≥ R̄k, ∀k ∈ K, (44b)

(
1− tpr + ts

T

)∑K

k=1
P̂0‖wk,0‖2 ≤ Psbs, (44c)

(22e) (44d)

for the opportunistic spectrum access model and

maximize
w1

∑K

k=1
R11

k (w1) (45a)

subject to R11
k (w1) ≥ R̄k, ∀k ∈ K, (45b)

∑K

k=1
‖wk,1‖2 ≤ Psbs, (45c)

K∑

k=1

(
‖g̃H

mwk,1‖2 + δ̂m‖wk,1‖2
)
≤ Im, ∀m ∈ M (45d)
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Fig. 5. Convergence behavior of Algorithm 1 with Pr(H0) = 0.6 and
Psbs = 20 dBm.

for the spectrum underlay model. It is obvious that the

problems (44) and (45) can also be solved using Algo-

rithm 1. In what follows, the probability when the PUs’

channel is idle Pr(H0) is set to Pr(H0) = 0.6, following

the guidelines provided by the FCC [3], unless specified

otherwise.

In Fig. 5, we illustrate the convergence behavior of

Algorithm 1 with different numbers of transmit antennas,

Nt ∈ {8, 16} for one random channel realization. We can

see that Algorithm 1 with joint optimization converges very

fast to reach its optimal solution. Specifically, it converges

within 8 iterations and is insensitive to an increase in

Nt. We also observe that if the sensing time is fixed

to ts = 5 ms, Algorithm 1 converges more quickly in

about 5 iterations, but the corresponding sum rates are

worse than with joint optimization. The slower convergence
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Fig. 6. Average sum rate of SUs versus traffic intensity with Psbs = 20
dBm.

for joint optimization in Algorithm 1 is probably due

to coupling between the beamforming vectors and ts in

both the objective and the constraints. As expected, we

obtain a higher sum rate with a larger number of transmit

antennas. On the average, Algorithm 1 requires about 8.3

iterations with Nt = 8 and 8.7 iterations with Nt = 16 for

convergence.

Fig. 6 depicts the effect of the traffic intensity, µ/λ, on

the system performance. An increase in traffic intensity

leads to a decrease in the sum rate of the opportunistic

spectrum access model since the opportunity for SUs

to access spectrum resources is accordingly reduced. In

contrast, the sum rate of the spectrum underlay model is

independent of the traffic intensity, which can be easily

verified from (45). When µ/λ < 0.9, the proposed PSBSS

model outperforms the others in terms of the sum rate

because it exploits the advantages of both models. Note that

for µ/λ ≥ 0.9, the sum rate of the proposed PSBSS model

tends to be worse than the spectrum underlay one. In this

case, the proposed PSBSS actually becomes the spectrum

underlay, but it still needs to expend time resources to

detect the channels.

We plot the sum rate of the secondary system versus

the transmit power constraint, Psbs, in Fig. 7(a) and the

interference power constraint, I, in Fig. 7(b). In general,

the sum rates of all models increase with higher Psbs and

I, except the opportunistic spectrum access in Fig. 7(b)

because this model transmits without the effect of the

interference power constraint and is limited only by the

transmit power given in (44). The sum rate of the spectrum

underlay can be very close to that of the proposed PSBSS

at the peaks Psbs = 30 dBm and I = 10 dBm. As

shown in both Fig. 7(a) and Fig. 7(b), the transmit power

has greater influence on the sum rates of all models than

the interference power. Moreover, the sum rates of the

proposed PSBSS are always larger than those of the others,
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Fig. 7. Average sum rate of SUs (a) versus the transmit power constraint
at the secondary BS and (b) versus the interference power constraint at
the PUs with Pr(H0) = 0.6.

which further confirms the superiority of the proposed

method.

The sum rate versus the predetermined rate threshold R̄

bps/Hz is shown in Fig. 8. Certainly, the sum rates of all

models monotonically decrease for R̄ ∈ [0.2, 1.4] bps/Hz

due to the secondary BS paying more attention to serving

SUs with poor channel conditions by transferring more

power to them and scaling down the power transmitted

to SUs with good channel conditions. Again, the proposed

PSBSS outperforms the others in terms of the sum rate

for all ranges of R̄. Another interesting observation is that

the spectrum underlay and opportunistic spectrum access

are infeasible for R̄ > 1 bps/Hz, i.e., these models cannot

offer such high rate threshold to all SUs. In contrast, the

proposed model is still feasible at R̄ = 1.4 bps/Hz and

achieves less degradation than the others, which indicates

the robustness of our proposed Algorithm 1.

In Fig. 9, we examine the effect of the interference Īp
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Fig. 8. Average sum rate of SUs versus R̄ with Pr(H0) = 0.6 and
Psbs = 20 dBm.
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Fig. 9. Average sum rate of SUs versus Īp with Pr(H0) = 0.6 and
Psbs = 30 dBm.

caused by the primary system. As can be seen, an increase

in Īp results in a dramatic degradation of the sum rate of the

spectrum underlay. We should emphasize that though the

opportunistic spectrum access model depends on Īp (i.e.,

R10
k (w0) given in (44)), the resulting sum rate is nearly

unchanged, even for a high Īp, because the probability of

transmission for R10
k (w0) is negligible as P̃10 ≈ 0.6%. For

whatever level of Īp, the proposed PSBSS still achieves a

better sum rate than the others.

Next, we plot the sum rate against the channel uncer-

tainty of the PUs in Fig. 10(a) and the channel uncertainty

of the SUs in Fig. 10(b). In Fig. 10(a), the secondary

system for fixed ǫs = 10−3 for all models has a very

minimal loss on the sum rates achieved when ǫp increases.

In Fig. 10(b), the channel uncertainty of SUs ǫs for fixed

ǫp = 10−2 has a visible effect on the achieved sum rates,

especially for a higher ǫs. Herein, an important engineering

insight is that the sum rate of the secondary system is more
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Fig. 10. Average sum rate of SUs (a) versus the normalized uncertainty
level associated to the PUs and (b) versus the normalized uncertainty level
associated to the SUs with Pr(H0) = 0.6 and Psbs = 20 dBm.

sensitive to the estimation errors for the SUs’ channels than

for those of the PUs’ channels.

Finally, Fig. 11 compares the sum rate performance of

the proposed PSBSS to that of the spectrum underlay,

opportunistic spectrum access, and spectrum underlay with

zero-forcing beammforming (ZFBF) [15]. For the spectrum

underlay with ZFBF in [15], the secondary BS places

null spaces at the beamforming vector of each SU to

cancel co-channel interference. Since a perfect CSI has

been assumed in [15], thus to ensure a fair comparison

between those models, we solve the proposed Algorithm 1

by assuming no channel uncertainty (i.e., ǫs = ǫp = 0). In

Fig. 11, we plot the sum rate versus the number of antennas

Nt ∈ {8, 16} for fixed Pr(H0) = 0.6 and Psbs = 20
dBm. For Nt = 12, we can clearly observe the gains about

0.71 bps/Hz, 1.64 bps/Hz, and 4.68 bps/Hz in the achieved

sum rate of the proposed PSBSS compared to that of the
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Fig. 11. Average sum rate of SUs versus the number of transmit antennas
at the secondary BS for perfect channel estimation (ǫs = ǫp = 0) with
Pr(H0) = 0.6 and Psbs = 20 dBm.

spectrum underlay, spectrum underlay with ZFBF [15], and

opportunistic spectrum access, respectively. In addition, the

spectrum underlay with ZFBF is infeasible when Nt < 9
due to a lack of degrees of freedom to leverage multiuser

diversity. However, it yields a good sum rate performance

for a large number of transmit antennas.

VI. CONCLUSIONS

In this paper, we proposed a prediction-and-sensing-

based spectrum sharing model for cognitive radio networks.

In this model, the time structure of each resource block

was redesigned to incorporate both spectrum prediction and

spectrum sensing phases. Specifically, simple cooperative

spectrum prediction between all SUs and the secondary

BS was proposed to help reduce the detection errors as

well as improve the detection accuracy. We studied the

sum rate maximization problem considering the minimum

rate requirements for each SU in the case where linear

beamforming is adopted. To solve the original nonconvex

optimization problem, we first transformed it into a more

tractable form and then proposed a new iterative algorithm

to maximize the sum rate of the secondary system. The

proposed design captured all important factors in cognitive

radio networks using a low-complexity algorithm. The pro-

posed algorithm with realistic parameters was numerically

shown to have fast convergence almost independently of

the problem size. The sum rate of the proposed model

was thus shown to be remarkably larger than that of

conventional models. We also discussed the effect of the

channel uncertainties for the SUs’ and PUs’ channels. We

concluded that the estimation error of the SUs’ channels

has a larger effect on the achievable sum rate of the

secondary system than that of the PUs’ channels.
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