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Accurate Analysis of Weighted Centroid
Localization

Kagiso Magowe, Member, IEEE, Andrea Giorgetti, Senior Member, IEEE,

Sithamparanathan Kandeepan, Senior Member, IEEE, and Xinghuo Yu, Fellow, IEEE

Abstract—Source localization of primary users (PUs) is a
spectrum awareness feature that can be very useful in enhancing
the functionality of cognitive radios (CRs). When the cooperating
CRs have limited information about the PU, weighted centroid
localization (WCL) based on received signal strength (RSS)
measurements represents an attractive low-complexity solution.
This paper proposes a new analytical framework to accurately
calculate the performance of WCL based on the statistical distri-
bution of the ratio of two quadratic forms in normal variables. In
particular, we derive an analytical expression for the root mean
square error (RMSE) and an exact expression for the cumulative
distribution function (CDF) of the two-dimensional location
estimate. The proposed framework accounts for the presence
of independent and identically distributed (i.i.d.) shadowing as
well as correlated shadowing with distance-dependent intensity.
The methodology is general enough to include the analysis of the
one-dimensional error, which leads also to the evaluation of the
bias of the position estimate. Numerical results confirm that the
analytical framework is able to predict the performance of WCL
capturing all the essential aspects of propagation as well as CR
network spatial topology.

Index Terms—Blind estimation, cognitive radio, cumulative
distribution function, weighted centroid localization, performance
analysis, root mean square error.

I. INTRODUCTION

THE reliance on wireless radio communications has grown
considerably in recent years, and the proliferation of

wireless technology devices and user expectations place a bur-
den on the already scarce radio spectrum. The radio spectrum
is a finite natural resource which is traditionally managed by
radio regulatory agencies and is allocated on a fixed spectrum
assignment policy [3]. This allocation policy exacerbates the
spectrum scarcity problem. As such, the wireless communi-
cation area has seen the introduction of new paradigms that
aim to combat the issue of radio frequency spectrum scarcity.
Cognitive radio (CR) is one of the emerging technologies
that has been developed and studied over the past decade
to enable efficient utilization of the spectrum resources [4]–
[6]. In CR networks, spectrum sensing is a key enabler in
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identifying spectrum holes and monitoring of the primary user
(PU) activity so as to avoid any potential harmful interference
[7]–[10].

However, it should be noted that sensing functionality
includes any kind of technique that allows the CRs to gather
useful radio environment information and enhance the func-
tionality of the network. Therefore, geo-location of PU is
one such spectrum awareness technique that not only plays
an important role in preventing harmful interference to the
incumbent spectrum users, but allows for better spectrum
resource allocations in the spatial domain [11]–[27]. It is worth
noting that most of the aforementioned work has predom-
inantly focused on a single PU scenario, with very limited
work investigating the multiple PU localization problem [28],
[29]. The accessibility of geo-location information is not only
crucial for CR networks but essential for other emerging
next generation wireless applications e.g, automotive radar
technology, Internet of things, in-vehicle connected devices
and MIMO radar systems [19], [30]–[38]. Since many of
these systems are usually equipped with small low-cost, low-
powered sensors, it is often of utter importance to develop
localization algorithms that are very simple and scalable e.g.,
[39], [40]. Additionally, in the presence of nodes mobility e.g.,
connected devices (sensors) in cars, it is often of interest to
keep track of those devices [33], [41]. However, the actual
position of sensors can be affected by errors due to imperfect
knowledge as well as delays in the position update. This
imperfection should be noted as it can be detrimental to the
accuracy of the localization algorithm.

Bearing in mind the challenges posed by the uncooperative
(blind) nature of the PU in CR networks, weighted centroid
localization (WCL) represents an attractive low complexity
solution which can rely only on, e.g., received signal strength
(RSS) measurements.1 It should be noted that localization of
non-cooperative PU is not limited only to RSS measurements,
but other measurements such as direction of arrival (DoA) and
time difference of arrival (TDoA) can also be adopted [42]–
[44]. However, the drawback of TDoA and DoA approaches is
that they are computationally expensive techniques [5], [45].
The WCL technique has been investigated in several papers
assuming the secondary users (SUs) have limited information
about the PU [45]–[59]. The original coarse-grained centroid

1The term blind captures the notion that location estimate is performed
without any knowledge of the PU transmitted waveform. In particular, the
cooperating receivers (SUs) have limited knowledge about the PU, and such
blind estimators determine the location of the emitter with the only available
data.



localization algorithm used to estimate the position of a
transmitter using only the coordinates of the receiving devices
in an outdoor environment was studied in [46]. An indoor
localization with a low complexity weighted centroid approach
combined with signal strength measurements was analyzed in
[47]. In [48], WCL algorithm in outdoor sensor networks was
proposed, where the link quality indicator has been used as
weight. The work in [49] extends the result presented in [48]
and the considered WCL algorithm with normalized values of
the link quality indicator. Relative span weighted localization
and relative span exponential weighted localization (REWL)
mechanisms, which assign linear weights and exponential
weights, respectively, were introduced in [50]. In [51], the
authors adopted WCL in conjunction with the estimation of
the path-loss exponent. The work in [52] characterized the
indoor propagation channel, and further analyzed the accuracy
of WCL and REWL algorithms. Several work adopted WCL
under different network scenarios including distributed imple-
mentation, node selection, geometric constraints and clustering
[45], [53]–[57].

Most of the aforementioned existing works evaluate the
WCL performance only numerically, in terms of the root mean
square error (RMSE), under varying environment conditions,
i.e., factors such as node placement, node density, shadowing
variance and node spacing. The fundamental theoretical frame-
work for WCL analysis was presented in [53], assuming that
the two-dimensional localization errors are jointly Gaussian.
In particular, the authors derived analytical expressions for
the error distribution of WCL in the presence of shadowing.
A very promising extension of WCL with the adoption of
cyclic autocorrelation of the received signals as weights to
robustify WCL under the presence of interference have been
proposed very recently in [59]. In the same work, the authors
provide the analysis of the RMSE degradation due to co-
channel interference.

In this work, we put forth a new analytical framework
to calculate the exact performance of WCL in the presence
of independent and identically distributed (i.i.d.) as well as
correlated log-normal shadowing, based on results on the ratio
of two quadratic forms in normal random variables (r.v.) [59]–
[62]. To the best of our knowledge, the characterization of the
performance of WCL in terms of the cumulative distribution
function (CDF) has not been investigated before. The main
contributions of this paper can be summarized as follows:

• We propose a general analytical expression for the RMSE
of the two-dimensional location estimation.

• We derive the expression for the CDF of the error of the
two-dimensional location estimation.

• We provide an expression for the bias of the localiza-
tion error based on the fractional moment of the one-
dimensional location estimate. Based on this, we prove
that WCL estimation is bias dominated.

• The exact expressions are based on the statistical distri-
bution of the ratio of quadratic forms in normal variables
and apply for arbitrary covariance matrices, accommo-
dating also distance-dependent shadowing intensity.

• We propose a coarse but very simple RMSE formula that
considers only the mean received signal strength which

TABLE I
NOTATIONS AND SYMBOLS

X Matrix
x Vector
E[·] Expectation operator
V[·] Variance operator
Tr(·) Trace operator
det(·) Determinant of a matrix
diag(·) Diagonal matrix
I Identity matrix
1 Matrix of ones
1̇ Column vector of ones
[·]T Transpose operator
k · kl l-th norm operator
�2(a) Noncentral chi-squared distribution with one degree of

freedom and noncentral parameter a
N (µ,⌃) Multivariate Gaussian distribution with mean µ and

covariance ⌃

provides fairly accurate performance estimation in weakly
shadowed scenarios.

The remainder of this paper is organized as follows. In
Section II we present the system model. The derivation of the
analytical expression for the RMSE is provided in Section III.
In Section IV we derive the CDF of the estimation error.
We analyze a case study to quantify the effectiveness of the
proposed approach in Section V. Section VI concludes the
paper. For the sake of conciseness, Table I summarizes the
notations and symbols used. Throughout this paper, the terms
slow-fading and shadow fading will be used interchangeably.

II. SYSTEM MODEL

We consider a CR network with N SUs at positions
`i = [xi, yi]T, with i = 1, ..., N , and a PU at position
`p = [xp, yp]T. The propagation environment is characterized
by a distance-dependent path-loss channel model and log-
normal shadowing. Thus, the RSS (in dBm) at the i-th SU
node from the PU is given by

pi = PT � PL (k`i � `pk2) + si (1)

where PT is the transmit power in dBm, PL (d) is the path-
loss (in dB) at a distance d, and si describes the random
shadowing effect. More precisely, in the general case of
correlated shadowing, s = [s1, . . . , sN ]T ⇠ N (0,⌃s) where
⌃s is the shadowing covariance matrix. In case of independent
shadowing among sensors ⌃s = diag

�
�2

s,1, . . . ,�
2
s,N
�
, which

further simplifies in the i.i.d. case, i.e., ⌃s = �2
s I.2

We begin by presenting the WCL algorithm used to estimate
the location of the PU in two dimensions [48]

b̀p =

PN
i=1 wi`iPN
i=1 wi

=

PN
i=1(pi � Pmin)`iPN
i=1(pi � Pmin)

(2)

2Note that, both the correlated shadowing case and the independent shad-
owing case, can accommodate a distance-dependent shadowing intensity, i.e.,
the diagonal elements of ⌃s can be unequal (see Section V).



                                                                                                                                  

where wi = (pi � Pmin)/(Pmax � Pmin) is the weighting
coefficient for the i-th SU node, with Pmax the maximum
received power among sensor nodes, and Pmin an arbitrary
reference power level which can be e.g., the minimum mea-
surable received power by the SU.3

The localization error is defined as ⇠ , b̀p � `p = [bxp �
xp, byp�yp]T, where bxp and byp are the one-dimensional position
estimates along the x-axis and y-axis, respectively

bxp =

PN
i=1 gixiPN
i=1 gi

byp =

PN
j=1 gjyjPN
j=1 gj

(3)

with gi = pi � Pmin. Finally, the distance error under the
l2-norm is given by

⇠ ,
q
(bxp � xp)2 + (byp � yp)2 = k⇠k2. (4)

For notational convenience we define g = [g1, . . . , gN ]T, x =
[x1, . . . , xN ]T, and y = [y1, . . . , yN ]T. Note that g ⇠
N (µ,⌃s), with µ = E[g], i.e., µ = [µ1, . . . , µN ]T with
µi = E[gi] = E[pi]� Pmin.

In the following section, the square of the distance error (4)
will be interpreted as the ratio of two quadratic forms, leading
to a new theoretical framework for the performance analysis
of WCL.

III. CALCULATION OF THE
ROOT MEAN SQUARE ERROR

In this section we derive an accurate expression of the
RMSE of the two-dimensional location estimate in the general
setting with correlated shadowing, and we then provide an
analytical expression for the RMSE in the i.i.d. case. We
analyze the bias and the one-dimensional error, and we also
propose a simplified RMSE predictor which can provide fairly
accurate results in scenarios characterized by weak shadowing.

Defining ⇠x = bxp �xp and ⇠y = byp � yp as the errors in the
x-dimension and y-dimension, respectively, the RMSE can be
written as

RMSE =

r
E
h��b̀p � `p

��2
2

i
=
q
E
⇥
⇠2x + ⇠2y

⇤
. (5)

The argument of the expectation in (5) can be rewritten as

⇠2 = ⇠2x + ⇠2y

=

 PN
i=1 gi(xi � xp)PN

i=1 gi

!2

+

 PN
j=1 gj(yj � yp)
PN

j=1 gj

!2

=

PN
i=1

PN
j=1 gigjaijPN

i=1

PN
j=1 gigj

(6)

where aij = (xi � xp)(xj � xp) + (yi � yp)(yj � yp).
Defining x0

i = xi � xp and y0i = yi � yp, the term aij
can be expressed as aij = x0

ix
0
j + y0iy

0
j , and arranged in a

matrix form A = [ai,j ]i,j=1,...,N with A = x0x0T + y0y0T,

3In general, Pmin has to be chosen such that pi � Pmin is positive with
very high probability. In fact, a negative weight, wi, is equivalent to flipping
the i-th SU position from `i to �`i, degrading estimation performance.

x0 = [x0
1, x

0
2, . . . , x

0
N ]T, and y0 = [y01, y

0
2, . . . , y

0
N ]T. It should

be noted that A is symmetric. Therefore, using matrix-vector
notation we obtain the following compact form of the squared
error

⇠2 =
gTAg

gTBg
(7)

where B = 1 is the all-ones matrix, from which the mean
square error (MSE) simply follows

MSE = E

gTAg

gTBg

�
. (8)

Note that the expression (8) is the first order moment of
the ratio of quadratic forms in normal variables, extensively
investigated in [60], [61], [63]. According to the second
condition in [61, Proposition 1], when the matrix B is not
positive definite, the first order moment of (8) does not exist.
Unfortunately, in our case the matrix 1 is positive semi-definite
and nullifies the existence of (8). To obtain a finite value of
the MSE in (8) we propose a weak perturbation of the matrix
1 which consists of adding a small constant ✏ > 0 to its
diagonal elements, i.e., we substitute B = 1 with the matrix
B = 1✏ , I · ✏ + 1. With this approach now the matrix B
is positive definite and we can proceed to calculate the first
order moment. It is important to remark that the choice of
✏ is far from being critical. In scenarios of practical interest,
values of ✏ in the range 10�5�10�1 provide almost coincident
numerical results, confirming the robustness of this approach.4
Moreover, as it will be explained in Section V, this approach
predicts the RMSE with very high accuracy matching perfectly
Monte-Carlo simulations.

In [61] it is possible to find the exact expression of expec-
tation in the form of (8) when g is a vector of i.i.d. Gaussian
r.v.’s with unit variance. More precisely,

E

gTAg

gTBg

�
=

Z 1

0
�(0,�t)

⇣
Tr(R) + µ̃TRµ̃

⌘
dt (9)

where

�(0,�t)= [det(I+ 2tB)]�1/2

⇥ exp

✓
1

2

�
µT(I+ 2tB)�1µ� µTµ

�◆
(10)

is the joint moment generating function (MGF) of the ratio
terms, t is the nuisance parameter, R = LTAL, µ̃ = LTµ,
and C(t) = LLT = (I+ 2tB)�1.

A. Non–i.i.d. shadowing: correlated and distance-dependent

slow-fading

4Regarding the choice of ✏, we performed an extensive comparison between
Monte-Carlo simulations and the analytical approach to assess the lack of any
signicant discrepancy (less than 1%) over a broad range of values of ✏ that
cover 4-order of magnitudes, i.e., from 10�5 to 10�1.



To calculate the RMSE in a general setting we first extend
(9) to encompass the non-i.i.d. case, g ⇠ N (µ,⌃s), through
the following transformation

gTAg = ğT VAV| {z }
,Ă

ğ gTBg = ğT VBV| {z }
,B̆

ğ

where V = ⌃s
1/2 and ğ ⇠ N (V�1µ, I). Therefore, the non-

i.i.d. scenario can be analyzed by applying (9) to

MSE = E
"
ğTĂğ

ğTB̆ğ

#
. (11)

In this case, C(t) = LLT = (I+2tB̆)�1 and µ̃ = LTV�1µ,
so the terms within the integral (10) becomes, respectively

Tr(R) = Tr(LTĂL) = Tr(ĂLLT) = Tr(ĂC(t))

and

µ̃TRµ̃= µTV�1LRLTV�1µ = µTV�1LLTĂLLTV�1µ

= µTV�1C(t)ĂC(t)V�1µ

leading to the expression of the form

Tr(R) + µ̃TRµ̃= Tr(ĂC(t)) + µTV�1C(t)ĂC(t)V�1µ.
(14)

Noting that in our setting

det(I+ 2tB̆) =
NY

j=1

(1 + 2tb̆j)

where b̆1, ..., b̆N are the eigenvalues of matrix B̆, the joint
MGF in (10) becomes

�(0,�t)=
NY

j=1

(1 + 2tb̆j)
�1/2

⇥ exp

 
µTV�1

�
C(t)� I

�
V�1µ

2

!
. (15)

Substituting (14) and (15) into (9) we obtain the desired
expression for the MSE (12) and consequently the RMSE
in (5). We again emphasize that in our setting, ⌃s is a
general covariance matrix i.e., it can either model correlated
shadowing or independent shadowing with distance-dependent
intensity.

B. Independent and identically distributed shadowing

The general expression (12) can be simplified in the i.i.d.
shadowing scenario, where g ⇠ N (µ,�2

s I). In particular, V =
�sI so ğ ⇠ N (µ/�s, I), Ă = �2

s A and B̆ = �2
s B = �2

s 1✏,
hence the MSE can be simplified as

MSE = E
"
ğTĂğ

ğTB̆ğ

#
= E


ğTAğ

ğT1✏ğ

�
. (16)

In this case, the matrix C(t) = LLT = (I + 2t1✏)�1

becomes

C(t) =
�
(1 + 2✏t)I+ 2t1

��1

which in turn can be expressed in the form of Sherman-
Morrison formula [64] as5

C(t) = �(t)
�
I�  (t)1

�
(17)

with

�(t)=
1

1 + 2✏t

 (t)=
2t

1 + 2(N + ✏)t
⇠=

2t

1 + 2Nt
. (18)

Note that the last term has been obtained considering that ✏ is
always negligible (at least more than one order of magnitude)
with respect to N . Furthermore, using matrix operations to
reduce (C(t))�1 into a triangular matrix, we obtain

det(I+ 2t1✏)= (1 + 2✏t)N�1
�
1 + 2(N + ✏)t

�

=
2t

�(t)N�1 (t)
. (19)

Therefore, the MGF (10) reduces to

�(0,�t) =

r
�(t)N�1 (t)

2t

⇥ exp

✓
�(t)� 1

2�2
s

µTµ� �(t) (t)

2�2
s

µT1µ

◆
. (20)

After some algebraic manipulations and considering that
µ̃ = LTµ/�s, the second term within the integral (10) can
be rewritten in an easy to handle form

Tr(R)+µ̃TRµ̃ = �(t) (Tr(A)�  (t)Tr(A1)) +
�(t)2

�2
s

⇥
�
µTAµ� 2 (t)µTA1µ+  (t)2µT1A1µ

�
.

(21)

Finally, substituting (20) and (21) into (9) we obtain a
simplified expression for the MSE (13) for the i.i.d. shadowing
case which does not require matrix inversion and eigenvalue
decomposition. Note that for convenience, in (13) we reported
the coefficients ⌥i, with i = 1, ..., 7, which are simple scalar
constants.

C. Bias and one-dimensional localization error

While the two-dimensional error represents the most impor-
tant performance metric, it is also interesting to decompose the
error along the axes to better understand the behavior of WCL.
In this case, it is possible to calculate the bias of the estimate

5The Sherman-Morrison formula states that
⇣
D+ uvT

⌘�1
=

D�1uvTD�1

1 + vTD�1u

where D is an invertible square matrix, and u, v are column vectors. In our
setting D = (1 + 2✏t)I, u = 2tv, and v = [1, 1, ..., 1]T.



                                                                                                                                                                                                                                                                                                     

MSE =

Z 1

0

NY

j=1

(1 + 2tb̆j)
�1/2 exp

 
µTV�1

�
C(t)� I

�
V�1µ

2

!
Tr(ĂC(t)) + µTV�1C(t)ĂC(t)V�1µ

�
dt

Non i.i.d. case (12)

MSE =

Z 1

0

r
�(t)N+1 (t)

2t
exp

✓
�(t)� 1

2�2
s

⌥1 �
�(t) (t)

2�2
s

⌥2

◆
⌥3 �  (t)⌥4 +

�(t)

�2
s

�
⌥5 � 2 (t)⌥6 +  2(t)⌥7

� �
dt

with
⌥1 = µTµ, ⌥2 = µT1µ, ⌥3 = Tr(A), ⌥4 = Tr(A1), ⌥5 = µTAµ, ⌥6 = µTA1µ, ⌥7 = µT1A1µ

i.i.d. case (13)

components, E[⇠x] and E[⇠y]. In particular, for the x-axis (and
similarly for the y-axis)

E[⇠x] = E
"
ğTĂx1̇

ğTB̆x1̇

#
= E

"
(ğTÃğ)1/2

(ğTB̃ğ)1/2

#
(22)

where Ăx = Vdiag(x0)V, 1̇ is a column vector of ones,
B̆x = VIV = ⌃s, Ã = Vx0x0TV, B̃ = V1✏V and ğ ⇠
N (V�1µ, I). Note that (22) is a fractional moment of the ratio
of quadratic forms in normal variables, for which recently an
efficient computational procedure readily available as Matlab
code was found [61].

Similarly, we can also investigate the MSE of ⇠x, i.e.,

E[⇠2x ] = E
"
ğTÃğ

ğTB̃ğ

#
(23)

and thereafter use (9) and (10). We remark that we can
compute (23) for non-i.i.d. as well as i.i.d. shadowing using
(12) and (13), respectively.

It is worth mentioning that knowing the bias (22) along
the two directions, it is possible to decompose the MSE (23)
into E[⇠2x ] = V[bxp] + E[⇠x]2, and also the MSE of the two-
dimensional estimate (8) in the form

MSE = E
⇥
⇠2
⇤
= V

⇥
bxp
⇤
+ V

⇥
byp
⇤

| {z }
variance

+E
⇥
⇠x
⇤2
+ E

⇥
⇠y
⇤2

| {z }
bias

. (24)

This decomposition allows to derive the variance of the
estimate and to evaluate the bias-variance tradeoff.

D. Coarse RMSE predictor in weak shadowing regime

To complete the detailed analysis which leads to a very
accurate performance assessment, it is interesting to note that
a coarse prediction of the RMSE of WCL can be obtained by
neglecting the effect of shadowing. Such rough approximation
is justified by the fact that in some scenarios the expected value
µi of the received power is usually greater than its standard
deviation, �s,i, so it is reasonable, to some extent, to ignore
the effect of slow-fading. In this case, we replace g with its
mean µ, so from (8) the RMSE can be approximated as

RMSEcoarse =

s
µTAµ

µT1µ
. (25)

The effectiveness of (25) will be assessed in Section V.

IV. CUMULATIVE DISTRIBUTION FUNCTION OF THE
LOCALIZATION ERROR

In this section we derive the CDF expression of the distance
error ⇠, and equivalently of the squared error (6), in the general
correlated shadowing setting with g ⇠ N (µ,⌃s).

The distribution function of ⇠ can be derived as follows [60]

F(q0) = Pr[⇠  q0]= Pr[⇠2  q20 ]

= Pr


gTAg

gTBg
 q20

�

= Pr[gTAg  q20g
TBg]

= Pr[gTWg  0] (26)

where W = A � q20B. The expression (26) shows that the
distribution of the ratio of quadratic forms reduces to the
distribution of an indefinite quadratic form gTWg, where W
is an indefinite matrix. Since the covariance of g is ⌃s, we
can also rewrite (26) as

F(q0)= Pr[gT⌃s
�1/2⌃s

1/2W⌃s
1/2⌃s

�1/2g  0]

= Pr[gTV�1PPTVWVPPTV�1g  0]

= Pr[zT⇤z  0] (27)

where V = ⌃s
1/2, z = PTV�1g and P is an orthog-

onal matrix formed by eigenvectors of VWV such that
⇤ = PTVWVP is a diagonal matrix whose entries are
the eigenvalues �1, ...,�N of VWV. Note that, although not
explicitly denoted, the eigenvalues �j and the eigenvectors
contained in P depend on q0.

Note now that z ⇠ N (µz, I) with µz = PTV�1µ, so (27)
is simply

F(q0) = Pr

"
NX

i=1

�iz
2
i  0

#
(28)



where z2i ⇠ �2(µ2
zi) is a noncentral chi-squared distributed r.v.

with one degree of freedom and noncentral parameter µ2
zi.6 A

numerical integration representation of (28) was presented by
Imhof [65], which is based on the Gil-Pelaez [66] inversion
formula for the indefinite quadratic form,

F(q0) =
1

2
� 1

⇡

Z 1

0
t�1={'(t)}dt (29)

where ={·} represents the imaginary part and

'(t) =

"
NY

j=1

(1� 2it�j)
�1/2

#
exp

 
i

NX

j=1

µ2
zj�jt

1� 2it�j

!

is the characteristic function (CF) of zT⇤z. Alternatively, it
has been shown in [65] that (29) can be written as

F(q0)=
1

2
� 1

⇡

Z 1

0

sin ✓(v)

v⇢(v)
dv (30)

where

✓(v)=
1

2

NX

j=1

rj tan
�1(�jv) + µ2

zj�jv(1 + �2jv
2)�1

⇢(v)=

"
NY

j=1

(1 + �2jv
2)rj/4

#
exp

 
1

2

NX

j=1

µ2
zj�

2
jv

2

1 + �2jv
2

!

and rj’s are the multiplicities of the nonzero distinct eigen-
values �j . We remark that both (29) and (30) are exact
expressions, however, the latter does not involve the use of
complex numbers.

We also remark that despite the non-existence of the mo-
ments of the two-dimensional error when B is positive semi-
definite, the CDF of ⇠2 is always well defined, so there is no
need for the perturbation of B.

V. CASE STUDY ANALYSIS

In this section, we exploit the methodology provided in
Section III and Section IV, respectively, to investigate the
performance of WCL.7 In particular we compare analytical
and Monte-Carlo simulation results of the RMSE and CDF of
location estimation in three different settings:

• RF-SU) random, but fixed, SU positions. In particular, we
consider a single snapshot (realization) of SU positions.

• R-SU) random SU positions. In particular, a semi-
analytical approach which combines our analytical ex-
pressions with Monte-Carlo simulation.

• RE-SU) random SU positions with location uncer-
tainty/error. In this case we assume that the generic i�th
SU position, `u

i , is a Gaussian distributed random vector,
i.e., `u

i ⇠ N (`i,�2
u I).

6Note that for the i.i.d shadowing case z ⇠ N (µz = PTµ/�s, I), since
V�1 = I/�s.

7Note that we do not present the analysis of communication overhead in
WCL in this work. Such analysis can be found in [53].

The case study scenario is a square area with side S =
100m. Fig. 1 depicts the considered randomly distributed
SUs and the PU located in three different positions: `A

p =
(0m, 0m), `B

p = (20m, 0m) and `C
p = (30m, 30m).

The propagation environment is characterized by a power-
law path-loss channel model and log-normal shadowing, where
the RSS at the i-th SU node is given by (1) with the path-loss
expressed as

PL(d) = p0 + 10↵ log10

✓
d

d0

◆
(31)

where PT = 20 dBW, p0 = 50 dB is the path-loss at a
reference distance d0 = 1m, ↵ is the path-loss exponent
ranging between ↵ = 3 and 4. Unless otherwise specified, the
shadowing parameter (or intensity) is �s = 4 dB, 5.5 dB and
8 dB. The considered standard deviations of the SU locations
uncertainty are �u = 10m and �u = 30m. As far as shadowing
is concerned, we investigate three different situations:

• Correlated shadowing. We consider the following spatial
correlation model [67]–[69]

⌃s = [⌃ij ]i,j=1,...,N with ⌃ij = �2
s e

��k`i�`jk2

where � = 1/Dc m�1, and Dc is the correlation distance.
• Distance-dependent shadowing. In this case,

⌃s = diag
�
�2

s,1, . . . ,�
2
s,N
�

where the different shadowing parameters depend upon
the distance according to the curve fitted model [70], i.e.,8

�s,i = �3.08 + 7.69 log10(k`i � `pk2). (32)

• I.i.d. shadowing. In this case ⌃s = �2
s I.

To validate the analytical approach we used Monte-Carlo
simulation with 106 runs. In particular, with the only exception
of Fig. 8, in all figures lines and symbols refer to analytical
and simulation results, respectively. The discussion of our
numerical results will be based on the following effects: PU
location, imperfect knowledge of SU positions, shadowing
and path-loss. For the sake of clarity and completeness we
will organize our numerical analysis as follows. The RMSE
and CDF numerical results are discussed in Section V-A
and Section V-B, respectively. Unless stated otherwise, the
case study analysis will be based on the i.i.d. shadowing
assumption.

Additionally, in the legends of figures, `A
p (�), `

B
p (�), and

`C
p (�), denote correlated shadowing results, `A

p (�s,i), `B
p (�s,i),

and `C
p (�s,i), refer to results for distance-dependent shadowing

at the i-th SU, `A
p (�u), `B

p (�u), and `C
p (�u), denote the SU

location uncertainty scenarios for a given �u, `A
p (coarse),

`B
p (coarse), and `C

p (coarse), refer to results for coarse RMSE
predictors, when the PU is located at `A

p , `B
p , and `C

p , respec-
tively.

A. RMSE Analyis

In this section, we quantify the performance of WCL
in terms of the RMSE of position estimation in different

8To ensure that �s,i > 0, we fix a minimum distance below which (32)
cannot decrease below 0 i.e., k`i � `pk2 � 2.5.
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Fig. 2. RMSE of the two-dimensional position estimation as a function of the
number of SU nodes, N , when the PU is located at `A

p , `B
p and `C

p . Dashed
curves refer to correlated shadowing with � = 1/30m�1. Lines and symbols
refer to analytical and simulation results, respectively.

scenarios by varying the PU locations, the path-loss exponent,
the shadowing standard deviation, the number of SUs and their
location. Throughout this section, unless specified otherwise,
the path-loss exponent and shadowing parameter are ↵ = 4
and �s = 8 dB, respectively.

Impact of PU location and correlated shadowing. In Fig. 2
we depict the WCL performance for the i.i.d. and correlated
shadowing scenarios using the analytical approach and Monte-
Carlo simulation results in the RF-SU case for the aforemen-
tioned PU locations. As can be noticed, there is an increase
in the RMSE as the PU moves from the center at `A

p towards
the edge of the area at `C

p . This behavior is due to the nature
of WCL which tends to be biased towards the center of the
network, as was also observed through numerical simulations
in [45], [56]. It is also evident that for the PU locations `B

p

0 50 100 150 200
0

20

40

60

N

R
M

SE
[m

]

`A
p `A

p (�u)

`B
p `B

p (�u)

`C
p `C

p (�u)

Fig. 3. RMSE of the two-dimensional position estimation as a function of the
number of SU nodes, N , when the PU is located at `A

p , `B
p and `C

p . Dashed
curves refer to the RE-SU case with �u = 30m. Lines and symbols refer to
analytical and simulation results, respectively.
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Fig. 4. RMSE of the two-dimensional position estimation as a function of
the number of SU nodes, N , when the PU is located at `A

p and `B
p , and for

two different values of the path-loss exponent. The average RMSE in the R-
SU case is denoted by ¯̀A

p and ¯̀B
p . Lines and symbols refer to analytical and

simulation results, respectively.

and `C
p , the WCL does not benefit from increasing the number

of SUs and as a result the localization performance remains
almost constant when N increases from 120 to 240. The
fluctuation in the RMSE in a relatively low number of SUs
regime is due to the specific nodes locations, chosen randomly,
in which the geometric configuration among SUs relative to
the PU impacts the RMSE. That is, the topology in Fig. 2
comprises a single realization of SU positions and in contrast
to Fig. 3 we did not average over independent realizations of
SU positions. This means that for e.g., N = 20 may result
in favorable SU positions around the PU than say N = 60,
and consequently leading to the non-monotonical behavior
depicted in Fig. 2 , Fig. 4 and Fig. 7. However, averaging.



�1 �0.33�0.67 0 0.33 0.67 1
�20

0

20

40

60

�↵/↵

�
R

M
SE

[%
]

`A
p

`B
p

Fig. 5. Relative RMSE (�RMSE) of the two-dimensional position estimation
as a function of the relative error in the path-loss exponent, �↵ = ↵0 � ↵
where ↵ is the true path-loss exponent and ↵0 2 [0, 6] is the mismatch path-
loss exponent, when the PU is located at `A

p and `B
p . Lines and symbols refer

to analytical and simulation results, respectively. The numerical analysis was
performed considering N = 10, and �s = 6 dB.

�0.5 0 0.5 1

�2

0

2

4

6

8

��s/�s
(a)

�
R

M
SE

[%
]

`A
p

`B
p
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s � �s where �s is the shadowing standard deviation
and �0

s 2 [2, 12] is the mismatch shadowing standard deviation, when
the PU is located at `A

p and `B
p . Lines and symbols refer to analytical

and simulation results, respectively. The numerical analysis was performed
considering N = 10, �s = 6 dB, and ↵ = 3 .

over SU positions results in the error scaling monotically with
N as shown in Fig. 3 and Fig. 4. It is also worth noting that
Fig. 4 demonstrates both the non-monotonical behavior (no
averaging) and the monotonical behavior (averaging).

When PU is in the center, correlation appears to degrade the
performance of WCL. However, in other locations the impact
of correlation seems to be minor mainly because the error is
dominated by the WCL bias as demonstrated in Table II.

In Fig. 3 we illustrate the WCL performance using the aver-
aged RMSE of the two-dimensional position estimation for the

R-SU and RE-SU scenarios. The results are semi-analytical in
the sense that we perform a Monte-Carlo simulation over (13)
to obtain averaged results. It is now evident that, compared to
Fig. 2 which uses only a single snapshot, the resulting Fig. 3
curves are smooth and as expected the performance improves
with increasing N when the PU is at the center.
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Fig. 7. RMSE of the two-dimensional position estimation as a function of the
number of SU nodes, N , when the PU is located at `A

p , `B
p and `C

p . Dashed
curves refer to RMSE calculated by the proposed coarse RMSE predictor.
Lines and symbols refer to analytical and simulation results, respectively.
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Fig. 8. RMSE of the two-dimensional position estimation for fixed number
of SU nodes (black triangles), N = 10, and for different positions of the PU
located within the square grid with equal spacing of 1m.

Impact of uncertainty in SU locations. For the RE-SU
scenario, we introduce uncertainty in the SU position with
�u = 30m. As shown in Fig. 3 this level of uncertainty
degrades the performance of WCL and the impact is more
noticable as the PU moves away from location `A

p . We expect
the performance gap to widen for higher values of �u.

Path-loss Analysis. In Fig. 4 we show the impact the
variation of the path-loss exponent ↵ has on the RMSE, and.



                                                                                                                                                                                                                                                                                                     

TABLE II
BIAS-VARIANCE TRADEOFF OF POSITION ESTIMATION WITH N = 100

PU # MSE [m2] Bias [m2] Variance [m2] Bias
MSE%

`A
p 15.9 9.94 5.96 62.7

`B
p 217.4 204.6 12.8 94.1

`C
p 818.7 792.8 25.9 96.8

we considered the following scenarios: PU locations `A
p and

`B
p , RF-SU and R-SU settings, ↵ = 3 and 4, �s = 5.5 dB.

Interestingly, the RMSE improves with an increase in ↵, as
was observed numerically in [45]. Basically, increasing ↵ in
a way induces a node selection strategy which effectively
reduces the impact of the SUs with low RSS on location
estimate [45], [56]. This means that only SUs closer to the
PU will contribute more in the localization and effectively
improving the RMSE, especially when the PU is away from
the center. We again remark that results in the RF-SU setting
experience fluctuation in the WCL performance due to the
impact of the specific node topology. However, in the R-SU
case curves become smooth and consequently the accuracy of
the WCL depends on the node density to some extent.

Effect of Parameter Mismatch. Fig. 5 and Fig. 6 provide re-
sults in the presence of mismatched channel model parameters
e.g., shadowing standard deviation �s and path-loss exponent
↵ between the simulation and our analytical tool. Fig. 5 depicts
the �RMSE results as a function of the relative error in the
path-loss exponent, �↵/↵, where �↵ = ↵0 �↵ and ↵0 is the
mismatched path-loss exponent. Fig. 6 depicts the �RMSE
results as a function of the relative error in the shadowing
standard deviation, ��s/�s, where ��s = �0

s � �s and �0
s

is the mismatched �s. Fig. 5 clearly depicts the implications
of overestimating (�↵ > 0) and underestimating (�↵ < 0)
the path-loss exponent when using the analytical results. As a
general rule, it is better to underestimate the path-loss exponent
so as to avoid giving misleading and overly pessimistic or
too optimistic results depending on �↵/↵, according to the
general rule that the design of the localization algorithm has
to satisfy the worst-case scenario. For example, when the PU
is in position `A

p , the role of ↵ is less critical (though slightly
optimistic for the latter) until the overestimation reaches the
67% mark above which it results in overly pessimistic RMSE
values. Regarding the impact of a mismatched �s on the
RMSE, Fig. 6 highlights the following behavior; when the
PU is in position `A

p , for �0
s > �s, the analytical approach

overestimates the RMSE by up to 8% and for �0
s < �s, the

deviation from the true RMSE is less than 3%.9 We observe a
similar behavior when the PU is in position `B

p . Based on these
observations, we can conclude that it is better to overestimate
�s than to underestimate it so as to avoid presenting optimistic
results.

Coarse RMSE predictor. The performance of the proposed
simple estimator (25) is depicted in Fig. 7. Remarkably it

9Note that since �RMSE = mismatch RMSE - true RMSE
true RMSE , �RMSE > 0 means

that we are overestimating the error, and �RMSE < 0 implies that we are
underestimating the error.

provides a very good performance estimate as the analytical
RMSE, which in a way further demonstrates the strong depen-
dence of the RMSE on the mean path-loss than �s in weak
shadowing regime.10

Bias-variance tradeoff. Table II shows the relationship be-
tween the MSE (12) and bias terms in (24) across all the
three locations of interest with N = 100. The ratio of the
bias to MSE expressed as a percentage clearly demonstrate
that the WCL estimation is bias dominated, and this is even
more apparent at locations `B

p and `C
p experiencing a position

estimation where more than 90% of the MSE is due to bias.
RMSE map. Fig. 8 depicts the WCL performance when

considering the RF-SU scenario, with N = 10, and for varying
positions of the PU on a regular grid within the area with
spacing of 1m. As expected, the WCL performance radially
deteriorates as the PU moves away from the center of the area.

B. Localization Error Probability Analysis

In this section, we describe the performance of the WCL
in terms of the CDF of the error, F(q0) = Pr[⇠  q0],
known as localization error probability (LEP). Fig. 9 – Fig. 12
summarize the CDF analysis when considering the RF-SU and
R-SU positions.

Impact of PU location and correlated shadowing. In Fig. 9
we show the CDF using the exact analytical expression (29)
and Monte-Carlo simulations, for different PU locations, N =
50 fixed SU positions, i.e., the RF-SU setting, ↵ = 4, and
correlated shadowing with �s = 8 dB and � = 1/30m�1, as
well as distance-dependent shadowing with �s,i evaluated by
(32). The curve that refers to PU position `A

p reaches a high
probability faster than the other curves, which confirms that
the PU in the center is the most favorable situation.

We also investigated the effect of correlated shadowing and
for PU at `A

p , the correlation degrades the performance (in
accordance to the increase in the RMSE in Fig. 2). For PU at
`B

p and `C
p the correlation makes the CDF less sharp. Hence,

the performance is degraded and improved for high LEP and
low LEP, respectively. It is usually interesting to look for high
values of the LEP, e.g., 0.8� 1, and in this range correlation
degrades the performance. Interestingly, for q0 = 15m and
q0 = 32m the LEP is independent of shadowing distance for
locations `B

p and `C
p , respectively. It can also be observed that

for all the three locations, distance-dependent shadowing have
negligible impact on the performance.

In Fig. 10 we provide results for a scenario similar to the
one considered in Fig. 9, except that now performances are
averaged over R-SU positions, and we also introduce results
for N = 10. The node density improves the performance of
the WCL, especially for high LEPs. However, for PU locations
`B

p and `C
p we observe a crossing point between LEP curves

for q0 = 13m and q0 = 30m, respectively.
Impact of uncertainty in SU locations. Fig. 11 depicts the

performance of WCL for the R-SU scenario, when considering

10We performed numerical analysis demonstrating the RMSE deviation
between the coarse method and the accurate method as a function of �s.
For example, when considering �s = 6 dB, the RMSE deviation between the
coarse predictor and the accurate approach is about 5% and 0.2% for `A

p and
`B

p , respectively.
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Fig. 9. CDF of the error of the two-dimensional position estimation when
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p , for N = 50. Dashed lines refer to
correlated shadowing with � = 1/30m�1, while dotted curves refer to
distance-dependent shadowing. Lines and symbols refer to analytical and
simulation results, respectively.

uncertainty in the SU position with �u = 30m and �u = 10m.
The results in Fig. 11 highlight similar performance behavior
as revealed by the analogous results in the RMSE analysis in
Section V-A. Increasing �u appears to result in performance
degradation in all PU location scenarios. Fig. 11 also demon-
strates the effect of reducing �u - the curves converge to the
case of no-uncertainty.

Path-loss Analysis. In Fig. 12 we show the impact the
variation of the path-loss exponent ↵ has on the CDF, in
the same scenarios considered for investigating the impact of
path-loss on the RMSE in Section V-A. According to Fig. 12,
the LEP improves with an increase in ↵ and this is due to
the same reasoning outlined in Section V-A, i.e., induction
of a node selection strategy. For `A

p scenario, there is lack of
dependency on ↵ as it can be observed from the tightness of
the CDF curves. However, for `B

p scenario, the impact of ↵ is
apparent and the estimation is more sensitive to this parameter.

VI. CONCLUSION

In this paper, we proposed a new analytical framework to
calculate the performance of WCL in the presence of i.i.d. and
non-i.i.d. log-normal shadowing, based on results on the statis-
tical distribution of the ratio of two quadratic forms in normal
variables. In particular, we derived an analytical expression
for the RMSE of the two-dimensional location estimation in
the presence of non-i.i.d. shadowing, accommodating also the
distance-dependent slow-fading intensity. We also provided an
analytical expression for the RMSE in the presence of i.i.d.
shadowing. The methodology is general enough to include
the analysis of the one-dimensional error, which leads also
to the calculation of the bias of the position estimate. Such
investigation unfolded some peculiarities of WCL which were
not known in the literature, e.g., leading to the proposal of a
coarse but simple RMSE predictor which only depends on the
mean received signal strength, and providing a proof that the
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Fig. 10. CDF of the error of the two-dimensional position estimation, in the
R-SU case, when the PU is located at `A
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lines) and N = 50 (dashed lines). Lines and symbols refer to analytical and
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Fig. 11. CDF of the error of the two-dimensional position estimation, in
the R-SU case for N = 50, when the PU is located at `A

p , `B
p and `C

p ,
for �u = 30m and �u = 10m. Dashed curves refer to the RE-SU case
when considering uncertainty �u. Lines and symbols refer to analytical and
simulation results, respectively.

position estimate is highly biased. To complete the analysis,
a tractable expression for the calculation of the CDF of the
localization error is also provided, giving a rather complete
statistical description of WCL. The case study analysis confirm
that the statistical framework is able to predict the performance
of WCL very accurately, capturing all the essential aspects of
propagation, SUs location and is well suited for both small
and large networks.
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