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Abstract—In the present contribution, we propose a novel
opportunistic ambient backscatter communication (ABC) frame-
work for radio frequency (RF)-powered cognitive radio (CR)
networks. This framework considers opportunistic spectrum
sensing integrated with ABC and harvest-then-transmit (HTT)
operation strategies. Novel analytic expressions are derived for
the average throughput, the average energy consumption and
the energy efficiency in the considered set up. These expressions
are represented in closed-form and have a tractable algebraic
representation which renders them convenient to handle both
analytically and numerically. In addition, we formulate an
optimization problem to maximize the energy efficiency of the
CR system operating in mixed ABC − and HTT − modes,
for a given set of constraints including primary interference
and imperfect spectrum sensing constraints. Capitalizing on this,
we determine the optimal set of parameters which in turn
comprise the optimal detection threshold, the optimal degree
of trade-off between the CR system operating in the ABC −

and HTT − modes and the optimal data transmission time.
Extensive results from respective computer simulations are also
presented for corroborating the corresponding analytic results
and to demonstrate the performance gain of the proposed model
in terms of energy efficiency.

Index Terms—Ambient backscatter communication, cognitive
radio networks, energy detection, energy efficiency, wireless
power transfer.

I. INTRODUCTION

The need for efficient utilization of spectrum resources

has become a fundamental requirement in modern wireless

networks due to the witnessed spectrum scarcity and the

ever-increasing demand for higher data rate applications and

internet services. In this context, an interesting proposal has

been the development of cognitive radio (CR) networks [2],

which can adapt their transmission parameters according to the
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characteristics of the communication environment. Cognitive

radios have been shown to be efficient in increasing spec-

trum utilization due to their inherent spectrum sensing (SS)

capability [3]. In this regard, dynamic spectrum access (DSA),

where the secondary users (SU) can opportunistically access

the underutilized frequency bands, is the standard solution

for the realization of DSA [4], which is envisioned to be

an integral part of future communication systems [5]. In

order to realize DSA, three strategies have been proposed,

namely the underlay, the overlay and the interweave. In the

underlay technique, the SUs coexist with a PU provided that

the interference level at the PU remains below a certain

threshold [6]. In the overlay paradigm, the SUs would be

allowed to share the band with PU by exploiting the knowledge

of its message and codebook in order to reduce interference.

Finally, in the interweave technique, the SU can only access

the licensed spectrum of the PU when it is idle [7].

Recently, energy efficiency (EE) has emerged as a major

design and performance criterion for the current and forth-

coming wireless systems [8]–[12], mainly driven by the ever

increasing operating expenditure of communication networks.

In this context, it has been shown that combining effective en-

ergy harvesting (EH) techniques with CR can simultaneously

improve the spectrum efficiency and the energy efficiency

[13], [14]. Furthermore, powering mobile devices by harvested

energy from ambient sources and/or external transmission

activities enables wireless networks to achieve an increased

degree of self-sustainability for a longer period of time [15].

More recently, the integration of RF energy harvesting tech-

niques with CR networks has lead to the development of

a new communication paradigm, known as RF-powered CR

networks [16]. In such networks, a CR transmitter harvests

RF energy when a primary user is present and utilizes it for

data transmission when the spectrum is vacant. This protocol

is referred to as harvest-then-transmit (HTT) [16], [17].

However, a major challenge associated with this method

is the reduction of the throughput of the secondary network

when the harvested energy is low and/or when the data

transmission time is shorter. To overcome this shortcoming,

the concept of simultaneous wireless information and power

transfer (SWIPT) was introduced [18], which has attracted

significant research attention [19], [20]. In addition, in 5G

communication systems and beyond, as well is in the context

of the Internet of Things (IoT) applications, the SWIPT

technology can be fundamentally important for energy and

information transmission across different wireless systems and

http://arxiv.org/abs/1902.00332v1
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network architectures, including CR-based networks [21]–

[23].

A. Ambient Backscatter Communication (ABC)

Ambient backscatter communication (ABC) has recently

emerged as a new communication paradigm that is character-

ized by low power and low cost requirements, which renders it

a strong candidate for several IoT based applications [24], [25].

In an ABC system, there are typically two main components,

namely, an RF source which acts as a carrier emitter and a

backscatter receiver. The ambient RF sources, e.g., TV towers,

cellular base stations, and WiFi APs act as carrier emitters.

Therefore, the deployment of dedicated RF sources is not

required as opposed to the case of conventional backscattering

communication systems. As a result, this reduces the power

consumption and overall cost. Secondly, by utilizing existing

ambient RF signals, there is no need to allocate new frequency

spectrum for ABC, and hence the spectrum utility is improved

[26]. In the context of CR, the secondary transmitter (ST) can

communicate with a secondary receiver (SR) by backscattering

the primary user (PU) signal, whenever the PU is active. In

other words, instead of initiating a CR transmission only when

the PU is inactive, the ST can backscatter the PU signal

to SR, even when the PU is active. For example, ST can

employ the ON-OFF keying strategy to indicate bit 1 or bit 0

by switching its antenna between reflecting or non-reflecting

states, respectively.

Based on the above, it is evident that the performance

of ABC-based CR networks depends considerably on the

availability of PU signals, which represents a major challenge

for CR networks particularly during the long idle period.

Therefore, this requires a paradigm shift towards the de-

velopment of key enabling techniques for next generation

CR networks, such as the hybrid ABC-HTT schemes, which

were recently proposed in [17]. However, a common and

major drawback in the proposed models is the assumption

of perfect knowledge of PU activities, which is unrealistic in

practical CR based communication scenarios. To this effect,

we propose a novel opportunistic hybrid ABC-HTT model

for CR networks, coined as ABC-HTT-based CR networks.

The proposed framework exploits the potentials of both ABC

and RF-powered CRNs; hence, in the context of the proposed

framework, we further evaluate and quantify the performance

of CR networks by taking into account the incurred sensing

errors under different realistic communication scenarios.

B. Related Work and Motivation

1) RF Powered Cognitive Radio Networks: RF-based en-

ergy harvesting for CR networks is an energy efficient ap-

proach to harvest energy from PU activity in order to max-

imize the network capacity [27], [28]. In [29], the authors

investigated SWIPT for spectrum sharing in CR networks,

where a CR receiver harvests energy from primary and sec-

ondary transmissions using antenna switching. In this work,

antennas were selected based on two schemes, namely, the

prioritizing data selection (PDS) scheme and the prioritizing

energy selection (PES) scheme. Then, a solution was proposed

for the optimal energy-data trade-off study for both PDS

and PES schemes under different fading conditions. In [30],

Wang et al. introduced a channel access strategy to maximize

the sum throughput of secondary users by jointly optimizing

the energy harvesting time, resource allocation, and transmit

power. Closed-form expressions for the optimal transmit power

and channel allocation were also derived, whilst it was shown

that there exists a tradeoff between the sum throughput of CR

network and harvested energy.

2) Ambient Backscatter Communication: Recently, Hoang

et al. [17] demonstrated that incorporating ABC with RF-

powered CR networks improves significantly the secondary

network throughput. This is because when the primary trans-

mitter is active, the CR transmitter can utilize ABC to transmit

its own data to the intended CR receiver. Also, the authors

explored a tradeoff between CR transmission in the ABC

and HTT modes, and provided insights on the optimal time

duration in these two modes. In [16], a hybrid backscatter

communication for a wireless powered heterogeneous network

was introduced, where the HTT protocol may not be optimal

due to the strict energy constraint for active RF communica-

tion. In addition to HTT, as the primary access protocol, long-

range bi-static scatter and short-range ambient backscatter

were adopted in order to increase the transmission range and

provide uniform rate distribution. Likewise, the authors in

[31], [32] focused on the tradeoff between energy harvesting,

active transmission and ambient backscatter communication

and demonstrated the superiority of the hybrid scheme in

terms of achieved throughput. Also, the effect of physical

parameters on the capacity of both legacy and backscatter

channels were analyzed in [33] by considering different re-

ceiver architectures. Assuming practical operating conditions,

it was shown that a legacy system employing an orthogonal

frequency division multiplexing (OFDM) modulation can turn

the RF interference arising from the backscatter process into a

form of multipath diversity that can be exploited for enhancing

its performance.

Nevertheless, despite the usefulness of relevant existing

contributions, the focus has been largely on the performance

enhancement in terms of achievable throughput, and not in

terms of energy efficiency and/or minimization of energy

consumption, which is a vital metric in the context of the

considered system. It is recalled here that energy efficiency

(EE) is an important performance evaluation metric for a CRN.

It is defined as the ratio of the average achievable throughput

to the average energy consumption, measured in bits/Hz/J

[34]. It can be noted that the detection accuracy in spectrum

sensing affects both the average network throughput and the

average energy consumption. However, there exists a tradeoff

in optimizing the two metrics, since an increase (or decrease)

in average achievable throughput results in an increase (or

decrease, respectively) in the average energy consumption.

The energy efficiency combines both these metrics, and hence

it is capable of accounting more effectively for the overall

performance of a CR system, as a function of the detection

accuracy.
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C. Contributions

Motivated by the above, in the present study we analyze

the energy efficiency (EE) performance of an ABC-HTT-based

CR network in the presence of sensing errors and without

assuming knowledge of the PU activity. For simplicity, we

consider energy detection-based spectrum sensing, which has

widely known advantageous characteristics. In this context, we

derive analytic expressions for the average achievable through-

put and average energy consumption followed by a detailed

formulation of an optimization problem that maximizes the

energy efficiency subjected to several constraints, including

the interference constraint on PU. Based on this, we then

derive the expressions for the optimal detection threshold,

optimal harvesting time and optimal data transmission time,

and quantify the tradeoff between the ABC and HTT modes,

all in terms of energy efficiency.

Specifically, the main contributions of the present work are

listed below:

• We propose a novel opportunistic ABC framework for

RF-powered CR networks in the presence of sensing

errors, which operates in combination with the existing

HTT mode. We call the proposed network model as ABC-

HTT-based CR network.

• We derive novel analytic expressions for the average

achievable throughput, the average energy consumption

and the energy efficiency of the proposed ABC-HTT-

based CR network.

• We formulate an optimization problem that maximizes

the energy efficiency of the considered network, and

evaluate the optimal detection threshold, the optimal

energy harvesting time and the optimal data transmission

time, subject to PU interference and energy harvesting

constraints. Also, we quantify the requirements on the

backscattering data rate and transmit power of the CR

network as well as their impact on finding the optimal

energy harvesting time and data transmission time.

• We present detailed numerical results, which validate our

analysis and evaluate the energy efficiency performance

of the CR network in the proposed realistic platform

which includes the sensing errors. Furthermore, we quan-

tify the trade-off between ABC and HTT modes in terms

of energy efficiency. It is shown that operating the CR

network in a combination of these two modes improves

the overall energy efficiency. In addition, the impact

of sensing errors on the overall system performance is

addressed.

To the best of the authors’ knowledge, no analysis on the

energy efficiency in the presence of sensing errors in the

context of ABC-HTT-based CR networks has been reported

in the open technical literature.

D. Organization

The remainder of this paper is organized as follows: Sec. II

describes the proposed network model and summarizes the

performance of energy-based spectrum sensing. The energy

efficiency expression is derived in Sec. III and the optimization

problem is formulated in Sec. III-B. The corresponding analy-

sis and related insights are provided in Sec. IV, followed by the

corresponding validation through comparisons with numerical

results in Sec. V. Finally, conclusions are drawn in Sec. VI.

II. NETWORK MODEL

Consider an ABC-HTT-based cognitive radio network as

shown in Fig. 1, which consists of a secondary user transceiver

pair, denoted by (ST, SR), and a primary transceiver pair,

denoted by (PT, PR). We model the CR network in the

opportunistic spectrum access (OSA) paradigm, in which the

PU channels are accessed opportunistically using SS to detect

spectrum holes. The ST is equipped with an energy-based SS

unit, an RF energy harvesting unit and an ABC unit. Also,

we consider a typical coarse sensing framework, where SS is

carried out followed by data transmission over a time frame

of Tfr seconds, which is normalized such that Tfr = 1. The

time diagram for the proposed model is shown in Fig. 1;

based on this, when the PT is declared present, the ST can

harvest energy and store it in a battery, or perform ABC for

data transmission, as shown in Fig. 1(a). In this case, the

network is in the ambient backscatter communication (ABC)

mode, where τ denotes the normalized data transmission

period, and (1 − τ) denotes the normalized sensing duration

of the secondary user transceiver pair. Furthermore, we let ατ
represent the time fraction utilized for energy harvesting and

(1−α)τ represent the time fraction for ABC, when the PT-PR

channel is declared occupied. The harvested energy during the

time ατ will be stored in the ST battery, and is used for data

transmission over the ST-SR link, when the PT-PR channel is

idle. On the contrary, when the PT is declared absent, the ST

uses the harvested energy to transmit data to SR during the

data transmission period. In this case, the network is said to

be in the harvest-then-transmit (HTT) mode, which is shown

in Fig. 1(b). In this case, µ ∈ (0, 1) denotes the fraction of

τ which is used for data transmission, the choice of which

depends on the amount of harvested energy.

It is recalled that in the present set up, we consider energy

detection-based SS, given its numerous advantages such as

simple realization and moderate computational complexity

[35]. Based on this, the probabilities of false-alarm and signal

detection at the ST are given by [36]

Pf = Q
[( ε

σ2
− 1
)

√

(1 − τ)Ns

]

, (1)

and

Pd = Q

[

( ε

σ2
− γ − 1

)

√

(1− τ)Ns

2γ + 1

]

, (2)

respectively, where Ns = fsTt denotes the number of obser-

vations, fs is the sampling frequency, Tt is the duration of the

entire frame, σ2 is the noise variance, ε is the detection thresh-

old, and γ denotes the received SNR at ST. Furthermore, Q(·)
denotes the complementary cumulative distribution function of

a standard Gaussian random variable.

When the PT is declared to be occupied, the ST employs

ABC to transmit its own data to the SR, such that a certain

quality of service is guaranteed to the primary system. On
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Fig. 1. Time slot structure when: (a) the PU is declared to be present; (b) when the PU is declared to be absent.

the contrary, when the PT is declared to be inactive, the ST

operates in the HTT mode using conventional RF transmission.

It is noted here that it was recently shown that switching be-

tween these two modes improves the overall throughput of the

secondary system [17]. A similar idea is adopted in the present

work with the difference that our analysis concerns the study

of a CR network operating in ABC-HTT framework, using the

OSA paradigm in the presence of the sensing errors in terms of

Pf and Pd, as opposed to the analysis in [17] which considers

CR operation in the opportunistic communication mode. In

addition, we quantify the performance of the proposed model

in terms of energy efficiency of the CR network in the presence

of sensing errors, unlike [17] that analyzes the throughput

performance in the simplistic case of no sensing errors.

III. ENERGY EFFICIENCY AND PROBLEM FORMULATION

A. Average Achievable Throughput and Energy Consumption

It is recalled that the energy efficiency of the CR network

is a defined as the ratio of its average achievable throughput

to its average energy consumption [37], [38]. In what follows,

we calculate the energy efficiency of the proposed model

and then formulate an optimization problem that enables

the calculation of the optimal values of ε, µ, α and τ
that maximize the energy efficiency, under PU interference

and energy harvesting constraints. It is noted that due

to the presence of the sensing mechanism, the average

achievable throughput depends on the sensing accuracy and

the communication link between PT and ST. This can be

categorized into the following four scenarios, which are

summarized in Table I. Here, P (H0) and P (H1) denote

the prior probabilities of the PT being inactive and active,

respectively.

S1: In this scenario, the ST correctly declares the presence

of the PT with probability P (H1)Pd. Since the licensed

band is occupied and the primary transmission is active, the

throughput in this case is achieved due to ST using only the

ABC mode, and is given by [17]

Rb,S1
= (1− α)τBb, (3)

where Bb is the achievable backscatter rate in the ABC mode.

It is worth noting that in this scenario, the SR should

be able to decode the data without using power-demanding

components such as analog to digital converter (ADC) and

oscillators. An ultra low power receiver should be utilized to

decode the modulated signal [39]. The receiver strategy pro-

posed in [39], namely the averaging mechanism, requires only

an envelope average and threshold calculator. The envelope

circuit first smoothes the average of the received signals, and

then a threshold value based on two signal levels is calculated.

Finally, the smoothened signal strengths are compared with

this selected threshold to detect bits 1 and 0, followed by

decoding.

S2: In this scenario, the ST incorrectly declares the PT to

be active with probability P (H0)Pf . This results to a lack

of throughput since the CR network achieves no throughput

by operating in the ABC mode. Furthermore, ST misses a

transmission opportunity.

S3: In this scenario, the ST incorrectly declares the PT to be

absent, with probability P (H1)(1−Pd); as a consequence, the

ST misses an opportunity to use the ABC mode. Moreover, the

ST transmits to SR in the HTT mode and creates interference

to PT. In the presence of the interference from PT, the CR

network achieves a partial throughput of

Rh,S3
= µτκW log2

(

1 +
Ptr

ZIPT,PU + P0

)

, (4)

with a partial throughput factor κ ∈ (0, 1), which quantifies

the partial throughput achievable in this scenario, where W is

the bandwidth of the primary link, P0 is the ratio between the

noise power N0 and gc, the channel gain coefficient between

ST and SR, that is P0 = N0

gc
, Ptr denotes the transmit power of

the ST in the data transmission period µτ ∈ (0, τ), as shown

in Fig. 1(b), ZI denotes the ratio of the channel gain between

the PT and the ST to gc, and PT,PU denotes the transmission

power of the PU.
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TABLE I
AVERAGE ACHIEVABLE THROUGHPUT AND THE AVERAGE ENERGY CONSUMPTION FOR DIFFERENT COMMUNICATION SCENARIOS IN ABC-HTT-BASED

CR NETWORK.

Scenarios Harvested Energy Consumed Energy Throughput
P (H1)Pd α τ PR Ps(1− τ) Rb = (1− α)τBb

P (H0)Pf 0 Ps(1− τ) 0

P (H1)(1 − Pd) 0 Ps(1 − τ) + Ptrµτ Rh = κµτW log2(1 + Ptr
ZIPT,PU+P0

), κ ∈ (0, 1)

P (H0)(1 − Pf ) 0 Ps(1 − τ) + Ptrµτ Rh = µτW log2(1 + Ptr

P0
)

Next, Ptr can be expressed as

Ptr =
Eh − Es − Ec

µτ
, (5)

where Es = Ps(1−τ) is the energy consumed during sensing,

Ec = µτPc is the energy consumption of the circuitry in

the transmission time µτ , Eh = ατPR is the total harvested

energy, and PR is the harvested RF power obtained from

the PT signal at the ST, which is determined from the Friis’

equation as follows [40] :

PR = δPT,PU

GTGRλ
2

(4πd)2
, (6)

where δ ∈ [0, 1] is the energy harvesting efficiency, GT is

the PT antenna gain, GR is the ST antenna gain, λ is the

wavelength of the emitted wave, and d is the distance between

the PT and ST. Based on the above, it follows that

Rh,S3
= µτκW log2

(

1 +
ατPR − µτPc − Ps(1− τ)

[ZIPT,PU + P0] τµ

)

.

(7)

S4: In this scenario, the ST correctly declares the PT to be

inactive with probability P (H0)(1 − Pf ), and hence the CR

network achieves the maximum achievable throughput in the

HTT mode, namely

Rh,S4
= µτW log2

(

1 +
Ptr

P0

)

. (8)

Hence, substituting (5) into (8) yields

Rh,S4
= µτW log2

(

1 +
ατPR − µτPc − Ps(1− τ)

P0

)

.

(9)

Considering the above four scenarios, the average through-

put of the ABC-HTT-based CR network is given by

R(τ, α, µ, ε) = P (H1)Pd(1−α)τBb+κP (H1)(1− Pd)

µτW log2

(

1+
Ptr

ZIPT,PU + P0

)

+ P (H0)(1− Pf )µτW log2

(

1+
Ptr

P0

)

, (10)

which can be equivalently expressed as

R(τ, α, µ, ε) = Rb(τ, α, µ, ε) +Rh(τ, α, µ, ε), (11)

where Rb(τ, α, µ, ε) denotes the average achievable through-

put of the CR network in the ABC mode, given by

Rb(τ, α, µ, ε) , P (H1)Pd(1 − α)τBb, (12)

and Rh(τ, α, µ, ε) denotes the average achievable throughput

of the CR network in the HTT mode, given by

Rh(τ, α, µ, ε) , κP (H1)(1− Pd)

µτW log2

(

1+
Ptr

ZIPT,PU + P0

)

+ P (H0)(1 − Pf )µτW log2

(

1+
Ptr

P0

)

. (13)

It is noted that in order for the throughput to be non-

negative, the harvested energy should be greater than the con-

sumed energy. Thus, this requirement imposes the following

constraint

Eh = ατPR ≥ Ec + Es, (14)

which implies that

α ≥ Ec + Es

τ PR

. (15)

Denoting α† , (Ec + Es)/(τ PR) as the minimum energy

harvesting time to obtain enough energy for the ST to operate

in the HTT mode, we have the constraint that α ∈ [α†, 1].
In other words, Rh(τ, α, µ, ε) > 0, only when α ∈ [α†, 1];
otherwise, Rh(τ, α, µ, ε) = 0, that is

Rh(τ, α, µ, ε)

=















κP (H1)(1− Pd)µτW log2

(

1+ Ptr

ZIPT,PU+P0

)

+ P (H0)(1 − Pf )µτW log2

(

1+Ptr

P0

)

, if α† ≤ α ≤ 1,

0, otherwise.

(16)

By recalling that Ps denotes the power required by ST to

perform sensing, the average energy consumption in the CR

network, from Table I, is given by

E(τ, α, µ, ε) = Eb(τ, α, µ, ε) + Eh(τ, α, µ, ε) (17)

= Ps(1− τ) + µτPtr{P (H1)(1− Pd)

+ P (H0)(1 − Pf )}, (18)

where Eb(τ, α, µ, ε) and Eh(τ, α, µ, ε) denote the energy

consumed by the CR network, while operating in the ABC

mode and HTT mode, respectively.

In the same context, the energy efficiency of the CR

network, in bits/Hz/J, is defined as

EE(τ, α, µ, ε) ,
R(τ, α, µ, ε)

E(τ, α, µ, ε)
,

= EEb(τ, α, µ, ε) + EEh(τ, α, µ, ε), (19)
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where

EEb(τ, α, µ, ε) ,
Rb(τ, α, µ, ε)

E(τ, α, µ, ε)
(20)

and

EEh(τ, α, µ, ε) ,
Rh(τ, α, µ, ε)

E(τ, α, µ, ε)
, (21)

denote the energy efficiency values due to the ST operating

in ABC and HTT modes, respectively. Furthermore, the con-

straint α ∈ [α†, 1] yields the following condition on the overall

energy efficiency.

EE(τ, α, µ, ε)

=

{

EEb(τ, α, µ, ε) + EEh(τ, α, µ, ε), if α† ≤ α ≤ 1,

EEb(τ, α, µ, ε), otherwise.

(22)

B. Problem Formulation: Energy Efficiency Maximization

In what follows, we describe an optimization problem

in order to determine the optimal values of the parameters

ε, µ, α and τ , such that the energy efficiency of the CR

network is maximized. To this end, we formulate the following

maximization problem, subject to the interference constraint

on the primary network and energy harvesting constraint.

OP : max
τ,µ,α,ε

EE(τ, α, µ, ε)

s.t. Pf ≤ P f , for some P f ∈ (0, 1)

Pd ≥ P d, for some P d ∈ (0, 1)

α† ≤ α ≤ 1,

0 ≤ µ ≤ 1,

0 ≤ τ ≤ 1. (23)

In the next section, we provide the detailed solution of the

above optimization problem.

IV. PERFORMANCE AND ENERGY EFFICIENCY

OPTIMIZATION

In the following theorem, we derive the optimal value of the

detection threshold, ε∗, that satisfies the primary interference

constraint given in problem OP .

Theorem 1. The optimal threshold ε∗ for the problem in OP
is obtained when the constraint Pd ≥ P d is satisfied with

equality, namely

ε∗=σ2

[

(γ+1) +

√

2γ + 1

(1− τ)Ns

Q−1
[

P d

]

]

. (24)

Proof. The proof is provided in Appendix A.

In what follows, Theorem 2 shows that when the spectrum

is sensed to be idle, the energy efficiency is maximized when

the ST transmits for the entire data transmission period, that

is, when µ = 1.1

1It is worth noting that in the energy efficiency equation, only
EEh(τ, α, µ, ε

∗) depends on µ.

Theorem 2. When α† ≤ 1 and α ≥ α†, the energy efficiency

due to the harvest-and-transmit mode, i.e., EEh(τ, α, µ, ε
∗) is

maximum for µ∗ = 1.

Proof. The proof is provided in Appendix B.

In the same context, Theorem 3 allows the determination of

the conditions on the backscattering communication rate, such

that an optimal value of α, denoted by α∗, exists between α†

and 1, and provides an analytic expression for α∗, when the

interference from the PU is neglected. The existence of α∗

can be determined similarly for the case that includes the

interference term, but it yields intractable results since the

derivation of a closed form solution is infeasible.

Theorem 3. When α† ≤ α ≤ 1 and the backscatter

transmission rate Bb ∈ (Bb,LB, Bb,UB), where

Bb,LB ,

(

P (H0)

P (H1)

)(

(1 − Pf )

Pd ln 2

)

×
(

µτWτPR

(P0 − Pc)µτ + Ps(1− τ) + τPR

)

, (25)

and

Bb,UB ,

(

P (H0)

P (H1)

)(

(1 − Pf )

Pd ln 2

)

×
(

µτWτPR

(P0 − Pc)µτ + Ps(1− τ) + α†τPR

)

, (26)

and the interference from the PU is neglected, then, there exists

an optimal solution α∗ ∈ [α†, 1], given by

α∗ =

(

P (H0)

P (H1)

)(

(1− Pf )

Pd

)(

µτW

ln 2

)

−
(

(P0 + Pc)τµ+ Ps(1− τ)

τPR

)

. (27)

Proof. The proof is provided in Appendix C.

Once the optimal values ε∗, µ∗ and α∗ are determined, we

need to determine the optimal value of τ , denoted by τ∗, which

accounts for the data transmission duration. In the following

theorem, we show that the function EE(τ, α∗, µ∗, ε∗) is

concave in τ , and therefore, τ∗ can be determined by standard

methods, such as steepest gradient techniques.

Theorem 4. The function EE(τ, α∗, µ∗, ǫ∗) is concave in τ .

Proof. The proof is provided in Appendix D.

Finally, the maximum energy efficiency can be evaluated as

follows:

EEmax(τ
∗, α∗, µ∗, ε∗)

=



















max [EEb(τ
∗, 0, µ∗, ε∗),

EEb(τ
∗, α∗, µ∗, ε∗) + EEh(τ

∗, α∗, µ∗, ε∗)] ,

if α† ≤ α∗ ≤ 1,

EEb(τ
∗, 0, µ∗, ε∗), otherwise.

(28)
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Fig. 2. Variation of energy efficiency with α and τ , for µ∗ = 1 and ε∗ in
(24). Energy efficiency is concave in both α and τ .
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Fig. 3. Variation of the energy efficiency EE(τ, α∗, µ∗, ε∗) with the data
transmission time, τ , for different SNR values.

V. NUMERICAL RESULTS

In this section, we present the numerical results on the

performance of the ABC-HTT-based CR network. To this end,

we consider the following parameters: the target probability of

detection, P d, and false-alarm probability, P f , are set to be

0.9 and 0.1, respectively [36], whereas the prior probabilities

P (H0) and P (H1) are set to 0.75 and 0.25, respectively.

The signal bandwidth and the transmitted power are set to

be 6 MHz, and 17 kW, respectively [17]. Also, without a

loss of generality and unless stated otherwise, we assume

the following values: The number of observations is 2000,

Bb = 50 × 103 bps, SNR = −10 dB, κ = 1, Ps = 1 mW,

Pc = 0.1 mW, δ = 0.6, d = 2.475 km, GT = GR = 6
dBi in the Friis’ equation, such that PR = 0.25 W, and the

path loss and other impairments due to primary interference

Xl = 0.5× 10−3.

Figure 2 shows the variation of the energy efficiency with

respect to the parameters α and τ , with µ∗ = 1 and ε∗ chosen

according to (24). The sampling frequency is chosen such that
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Fig. 4. Variation of the energy efficiency EE(τ, α∗, µ∗, ε∗) with α, for
different values of τ .
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Fig. 5. Variation of the optimal energy efficiency EE(τ∗, α∗, µ∗, ε∗) with
SNR, for different values of number of samples Ns. An increase in the
sampling frequency for a fixed τ increases the number of samples.

the number of samples is 1000, and the sensing power Ps =
0.3 mW. Also, we set the partial throughput factor, κ = 0.6,

and the energy harvesting efficiency, δ = 0.6. It is evident that

the energy efficiency is concave with respect to both α and

τ . Also, for a small value of α, the energy efficiency is small

since the throughput decreases due to little energy harvesting.

However, if ST spends more time on energy harvesting, i.e., if

α increases, the energy efficiency decreases further since the

backscattering communication is not efficiently utilized.

Figure 3 illustrates the variation of the value of

EE(τ, α∗, µ∗, ε∗) with τ for different SNR values. As ex-

pected, the energy efficiency increases with SNR. Moreover,

the value of optimum τ also increases with SNR, since a

larger SNR results in lower sensing time required to satisfy

the primary interference constraints and thus, to a higher

data transmission time. Similarly, Figure 4 demonstrates the

variation of the value of EE(τ, α, µ∗, ε∗) for different values

of τ . It is evident that the optimal α∗ exists for each τ , and

it decreases with an increase in τ , which is clear from (27).

Moreover, it is intuitive to note that as τ increases, the energy
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Fig. 6. Variation of the optimal energy efficiency EE(τ∗, α∗, µ∗, ε∗) with

SNR, for different values of Pd .
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Fig. 7. Variation of the optimal achievable throughput and optimal average
energy consumption with SNR, for different values of Pd. Although a relaxed
constraint with Pd improves the achievable throughput, it also allows an
increase in the energy consumption due to more transmission opportunities,
which is significant at low SNR values.

efficiency increases.

Figure 5 illustrates the variation of the optimal energy

efficiency for different values of the received SNR at ST, for a

number of samples Ns= 500, Ns = 1000 and Ns = 2000. It is

shown that as the number of samples increases, the detection

accuracy increases, which improves the secondary throughput

and the energy efficiency. Likewise, Figure 6 presents the

variation of the optimal energy efficiency with respect to SNR

for different target probability of detection values, P d. It is

noted here that the performance is expected to increase with a

decrease in P d, since a lower tolerance on the probability

of detection improves the average throughput and energy

consumption. However, the plots exhibit a different trend. For

example, Figure 7 reveals that a lower value of P d implies

that the PU interference constraint is more relaxed, which in

turn yields a better throughput. However, since a lower value of

P d also results in more transmission opportunities, the average

energy consumption also increases, which is significant at the
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Fig. 8. Variation of the optimal energy efficiency EE(τ∗, α∗, µ∗, ε∗) with
different values of ABC rates, Bb. Using only the HTT mode yields better
performance for small values of Bb. Conversely, using only the ABC mode
performs better for larger values of Bb. Therefore, combining the ABC and
HTT modes yields an overall better performance in terms of energy efficiency,
across all values of Bb.
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Fig. 9. Effect of sensing errors on the optimal energy efficiency. Combining
ABC and HTT modes yields a higher overall energy efficiency.

low SNR regime. Therefore, the trend on variation of EE

with P d depends largely on the choice of system parameters,

which explains the trend observed in Figure 6. Also, the

optimal energy efficiency saturates after a certain SNR, since

a further improvement in SNR will only improve the detection

performance by a small margin, resulting in little improvement

in the overall energy efficiency.

Figure 8 demonstrates the variation of the optimal en-

ergy efficiency EE(τ∗, α∗, µ∗, ε∗) with different values of

backscattering communication rates, Bb for the indicative

values of Ns = 1000, and PR = 1 W. It is evident that the

achievable rate due to energy harvesting is not dependent upon

Bb. Also, for lower values of Bb, using the HTT mode alone

yields a better energy efficiency, whereas for larger values of

Bb, the ABC mode exhibits a better performance. Therefore,
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operating the CR network in a combination of the ABC and

HTT modes yields an improvement in the overall performance

in terms of energy efficiency, across all values of Bb.

Finally, Figure 9 illustrates the effect of sensing errors on the

performance of the ABC-HTT-based CR network. In order to

calculate the performance of the system without sensing errors,

we follow the procedure described in [17], which considers the

simplistic case of no sensing errors. By choosing the indicative

values Ns = 2000, and PR = 1 W, it is shown that the

optimal energy efficiency achieved with no sensing errors is,

as expected, higher than the realistic case with present sensing

errors. Additionally, we observe that the energy efficiency

increases in both cases, due to the use of both ABC and HTT

modes. That is, as expected, the energy efficiency achieved due

to only ABC or HTT mode is lower than that obtained by com-

bining the two modes, in the presence and absence of sensing

errors. Moreover, it is recalled that we have set κ = 1. In terms

of energy efficiency, this corresponds to the best possible case

from the CR network point of view. In our formulation, the

choice of κ only affects the average achievable throughput, and

not the energy consumption. Therefore, the energy efficiency

performance deviation in Fig. 9 – between the ABC and HTT

modes with and without sensing errors – constitutes a lower

bound. In fact, choosing any other value of κ will result in a

larger performance deviation.

VI. CONCLUSION

We investigated the performance of ABC-HTT-based cog-

nitive radio networks in terms of energy efficiency in the

presence of sensing errors as they are encountered in realistic

wireless communication scenarios. In this context, we derived

novel analytic expressions for the average achievable through-

put, average energy consumption and energy efficiency of

the considered network. Then, we formulated an optimization

problem that maximizes the energy efficiency of the CR net-

work operating in ABC and HTT modes, for a given set of con-

straints including the primary interference constraint. Finally,

we derived the optimal set of parameters that maximize the

energy efficiency of the CR system. Capitalizing on the offered

results, we quantified the performance of the CR network

under the considered setup and demonstrated the performance

improvement achieved in the CR network when incorporating

a combination of ABC and HTT modes. The offered results

provided interesting theoretical and technical insights on the

behavior of backscatter systems that are expected to be useful

in the design and deployment of future systems in the context

of various wireless applications of interest.

APPENDIX A

PROOF OF THEOREM 1

In order to establish that the constraint Pd ≥ P d

is satisfied with equality, it is sufficient to show that

∂EE(τ, α, µ, ε)/∂ε ≥ 0, for all ε. To this end, we observe

that

∂EE(τ, α, µ, ε)

∂ε
=

∂R(τ,α,µ,ε)
∂ε

E(τ, α, µ, ε)

[E(τ, α, µ, ε)]2

− R(τ, α, µ, ε)∂E(τ,α,µ,ε)
∂ε

[E(τ, α, µ, ε)]2
. (29)

Furthermore, taking the first derivative of (10) with respect to

ǫ, namely

R(τ, α, µ, ε) = P (H1)Pd(1−α)τBb+κP (H1)(1− Pd)

µτW log2

(

1+
Ptr

ZIPT,PU + P0

)

+ P (H0)(1− Pf )µτW log2

(

1+
Ptr

P0

)

, (30)

yields

∂R(τ, α, µ, ε)

∂ε
= P (H1)(1 − α)τBb

∂Pd

∂ε
− κµτWP (H1)

log2

(

1+
Ptr

ZIPT,PU + P0

)

∂Pd

∂ε

− µτWP (H0) log2

(

1+
Ptr

P0

)

∂Pf

∂ε
, (31)

and

∂E(τ, α, µ, ε)

∂ε
= −µτPtr

[

P (H1)
∂Pd

∂ǫ
+ P (H0)

∂Pf

∂ǫ

]

.

(32)

Using the above, and substituting (31) and (32) in (29), and

carrying out some algebraic manipulations, one obtains

∂EE(τ, α, µ, ε)

∂ε
=

∂Pd

∂ε

P (H1)(1 − α)τBb

E(τ, α, µ, ε)

− ∂Pd

∂ε
P (H1)κµτW log2

(

1 +
Ptr

ZIPT,PU + P0

)

+
∂Pd

∂ε
µτPtrP (H1)

R(τ, α, µ, ε)

E(τ, α, µ, ε)2

− ∂Pf

∂ε

[

P (H0)µτW log2

(

1 +
Ptr

P0

)

+ µτPtrP (H0)

]

[

R(τ, α, µ, ε)

E(τ, α, µ, ε)2

]

. (33)

In addition, it is noted that

∂Pf

∂ε
= − exp

[

− (1− τ)Ns(
ǫ
σ2 − 1)2

2

]

√

Ns(1− τ)√
2πσ2

≤ 0,

(34)

and

∂Pd

∂ε
= − exp

[

− (1− τ)Ns(
ǫ
σ2 − γ − 1)2

2(1 + 2γ)

]

√

Ns(1−τ)
1+2γ√
2πσ2

≤ 0,

(35)

with ∂Pd/∂ε ≥ ∂Pf/∂ε. Following these results, (33) can be

further simplified and shown to be non-negative if

P (H1)κµτW log2

(

1 +
Ptr

ZIPT,PU + P0

)

− 1

E
P (H1)(1− α)τBb − µτPtrP (H1)

R

E2
> 0. (36)
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It is easy to verify that the above requirement holds when W
and Ptr are selected such that

Wκ log

(

1 +
Ptr

P0

)

≥ 1

Eµ
(1− α)Bb + Ptr

R

E2
, (37)

in which case, ∂EE/∂ε ≥ 0, for all ε. Based on this result,

it is sufficient to choose the value of ε when Pd = P d is

satisfied.

APPENDIX B

PROOF OF THEOREM 2

As mentioned earlier, we consider only the term

EEh(τ, α, µ, ε
∗), since EEb(τ, α, µ, ε

∗) is independent of µ.

Next, it is noted that which upon substituting the expression

for Ptr from (5) yields (39). Compactly, (39) can be re-written

as

EEh(τ, α, µ, ε
∗) =

X1µ log2

[

B+A
µ

]

+X2µ log2

[

D+C
µ

]

X3 +X4µ
,

(40)

where

X1 , κP (H1)(1−Pd)τW, (41)

X2 , P (H0)(1−Pf )τW, (42)

X3 , Ps(1 − τ), (43)

X4 , τPtr{P (H1)(1 − Pd) + P (H0)(1 − Pf )}, (44)

A ,
αPR − Ps(1−τ)
[ZIPT,PU + P0]τ

, (45)

B , 1− Pc

[ZIPT,PU + P0]
, (46)

C ,
ατPR − Ps(1− τ)

P0τ
, (47)

and

D , 1− Pc

P0
, (48)

such that X1, X2, X3, X4, A, B, C and D are posi-

tive constants. Next, by evaluating the first derivative of

EEh(τ, α, µ, ε
∗) with respect to µ it follows that

∂EEh(τ, α, µ, ε
∗)

∂µ
=

∂Rh(τ,α,µ,ε
∗)

∂µ
Eh(τ, α, µ, ε

∗)

[Eh(τ, α, µ, ε∗)]2

−
Rh(τ, α, µ, ε

∗)∂Eh(τ,α,µ,ε
∗)

∂µ

[Eh(τ, α, µ, ε∗)]2
, (49)

where

∂Rh(τ, α, µ, ε
∗)

∂µ
=X1

{

−A

µ(B + A
µ
) ln(2)

+log2

(

B+
A

µ

)

}

+X2

{

−C

µ(D + C
µ
) ln(2)

+log2

(

D+
C

µ

)

}

, (50)

and

∂Eh(τ, α, µ, ε
∗)

∂µ
=τPt

{

1− P (H1)P d − P (H0)Pf

}

. (51)

Substituting (50) and (51) in (49), we get

∂EEh(τ, α, µ, ε
∗)

∂µ
=

X1

{

−A

µ(B+A
µ
) ln(2)

+log2

(

B+A
µ

)

}

(X3 +X4µ)
2

+

X2

{

−C

µ(D+C
µ
) ln(2)

+log2

(

D+C
µ

)

}

(X3 +X4µ)
2 . (52)

Based on this, we observe that

lim
µ→+∞

∂EEh(τ, α, µ, ε
∗)

∂µ

= lim
µ→+∞

(X1+X2)X3

µ
+X4(X1 +X2) +X1 +X2

µ
(

Ps(1−τ)
µ

+X4µ
)2 = 0.

(53)

Moreover, the second derivative of EEh(τ, α, µ, ε
∗) with

respect to µ can be expressed as follows:

∂2EEh(τ, α, µ, ε
∗)

∂µ2

= − x1A

E(A+Bµ) ln 2
+

x1τW log2

(

A
µ
+B

)

E

− x2C

E(C +Dµ) ln 2
+

x2τW log2

(

C
µ
+D

)

E

−
x4

{

x1µ log(A
µ
+B) + x2µ log(C

µ
+D)

}

[x3 + µx4]
2 . (54)

Carrying out some long but straightforward algebraic manip-

ulations, it can be shown that
∂2EEh(τ,α,µ,ε

∗)
∂µ2 ≤ 0. Hence,

EEh(τ, α, µ, ε
∗) is an increasing function of µ, which implies

that µ∗ = 1.

APPENDIX C

PROOF OF THEOREM 3

Let us define

y1 , 1− Pcµτ

[ZIPT,PU + P0] τµ
, (55)

y2 ,
τPR − Ps(1 − τ)

[ZIPT,PU + P0] τµ
, (56)

y3 , 1− Pc

P0
− Ps(1 − τ)

P0τµ
, (57)

and

y4 ,
τPR

P0τµ
, (58)
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EEh(τ, α, µ, ε
∗) =

κP (H1)(1 − Pd)µτW log2

(

1+ Ptr

ZIPT,PU+P0

)

Ps(1−τ)+µτPt {1−P (H1)Pd−P (H0)Pf}

+
P (H0)(1 − Pf )µτW log2

(

1+Ptr

P0

)

Ps(1−τ)+µτPt {1−P (H1)Pd−P (H0)Pf}
. (38)

EEh(τ, α, µ, ε
∗) =

κP (H1)(1 − Pd)µτW log2

(

1 + ατPR−µτPc−Ps(1−τ)
[ZIPT,PU+P0]τµ

)

Ps(1−τ)+µτPt {1−P (H1)Pd−P (H0)Pf}

+
P (H0)(1 − Pf )µτW log2

(

1 + ατPR−µτPc−Ps(1−τ)
[P0]τµ

)

Ps(1−τ)+µτPt {1−P (H1)Pd−P (H0)Pf}
. (39)

such that y1, y2, y3, and y4 are positive constants. Then, the

expression for energy efficiency is expressed as

EE(τ, α, µ∗, ε∗) =EEb(τ, α, µ
∗, ε∗)+EEh(τ, α, µ

∗, ε∗),

=
Rb(τ, α, µ

∗, ε∗)

E(τ, α, µ∗, ε∗)
+

Rh(τ, α, µ
∗, ε∗)

E(τ, α, µ∗, ε∗)

=
P (H1)Pd(1− α)τBb

E(τ, α, µ∗, ε∗)

+
P (H1)(1 − Pd)κµτW log2 [y1 + αy2]

E(τ, α, µ∗, ε∗)

+
P (H0)(1 − Pf )µτW log2 [y3 + αy4]

E(τ, α, µ∗, ε∗)
. (59)

Now, consider the first derivative of EE(τ, α, µ∗, ε∗) with

respect to α, that is, ∂EE(τ, α, µ∗, ε∗)/∂α, which is given

by

∂EE(τ, α, µ∗, ε∗)

∂α
=

P (H1)(1 − Pd)κ
µτW
ln 2

y2

y1+αy2

E(τ, α, µ∗, ε∗)

− P (H1)PdτBb

E(τ, α, µ∗, ε∗)
+

P (H0)(1 − Pf )
µτW
ln 2

y3

y1+αy4

E(τ, α, µ∗, ε∗)
. (60)

Likewise, the second derivative of EE(τ, α, µ∗, ε∗) is given

by

∂2EE(τ, α, µ∗, ε∗)

∂α2
=

∂2EEh(τ, α, µ
∗, ε∗)

∂α2
,

= −P (H1(1− Pd)κ

E

µτW

ln 2

y22
(y1 + αy2)2

− P (H0)(1 − Pf )

E

µτW

ln 2

y24
(y1 + αy2)2

< 0 (61)

From (60) and (61), we can infer that ∂EE(τ, α, µ∗, ε∗)/∂α
is a decreasing function of α. Furthermore, to guaran-

tee that there exist a value of α ∈ [α†, 1] such that

EE
′

ABC(τ, α, µ
∗, ε∗) = 0, we calculate the following bound-

ary values. To this effect, observing that when α = α†, it

follows that

∂EE(τ, α†, µ∗, ε∗)

∂α
=

P (H1)(1− Pd)κ
µτW
ln 2

y2

y1+α†y2

E(τ, α, µ∗, ε∗)

− P (H1)PdτBb

E(τ, α, µ∗, ε∗)
+

P (H0)(1− Pf )
µτW
ln 2

y3

y1+α†y4

E(τ, α, µ∗, ε∗)
≥ 0,

(62)

whereas when α = 1, we get

∂EE(τ, 1, µ∗, ε∗)

∂α
=

P (H1)(1− Pd)κ
µτW
ln 2

y2

y1+y2

E(τ, α, µ∗, ε∗)

− P (H1)PdτBb

E(τ, α, µ∗, ε∗)
+

P (H0)(1 − Pf )
µτW
ln 2

y3

y1+y4

E(τ, α, µ∗, ε∗)
≤ 0.

(63)

Therefore, there exists an α∗ ∈ [α†, 1] where the derivative
∂EE(τ, α†, µ∗, ε∗)

∂α
is exactly 0. Thus, the bounds on Bb

are obtained by equating the expression in (60) to zero,

and rearranging accordingly, yielding Eq.(64). If the effective

interference from the PU is neglected, then

Bb =
P (H0)

P (H1)

(1− Pf )

Pd

µτW

ln 2

× τPR

(P0 − Pc)µτ + Ps(1− τ) + ατPR

. (65)

Now, the upper and lower bounds on Bb, namely, Bb,LB and

Bb,UB can be obtained by substituting for the value of α
corresponding to the two extreme cases 1 and α†, respectively.

These bounds are given by

Bb,LB ,
P (H0)

P (H1)

(1− Pf )

Pd

µτW

ln 2
(66)

× τPR

(P0 − Pc)µτ + Ps(1 − τ) + τPR

,

Bb,UB ,
P (H0)

P (H1)

(1− Pf )

Pd

µτW

ln 2

× τPR

(P0 − Pc)µτ + Ps(1 − τ) + α†τPR

. (67)

Therefore, when Bb ∈ (Bb,LB , Bb,UB), EE(τ, α, µ∗, ε∗) is

concave in α. Finally, the optimal α∗ ∈ [α†, 1], can be obtained
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Bb =
1− Pd

Pd

κµτW

ln 2

τPR − Ps(1− τ)

[ZIPT,PU + P0 − Pc] τµ+ α(τPR − Ps(1 − τ))

+
P (H0)

P (H1)

(1− Pf )

Pd

µτW

ln 2

τPR

(P0 − Pc)µτ + Ps(1− τ) + ατPR

. (64)

∂EEb(τ, α
∗, µ∗, ε∗)

∂τ
=
P (H1)PdBb

{

1− α− τ ∂α∗

∂τ

}

[E(τ, α∗, µ∗, ε∗)]

+

{

P (H1)Pd(1− α)τBb

}

{

−Ps + µPtr

[

P (H1)(1 − Pd)κ− P (H0)τ
∂Pf

∂τ
+ P (H0)(1 − Pf )

]}

[E(τ, α∗, µ∗, ε∗)]
2 . (82)

∂EEh(τ, α
∗, µ∗, ε∗)

∂τ
=

{

1

E(τ, α∗, µ∗, ε∗)

}

P (H1)(1 − Pd)κµW

{

w2
2

τw1 − w2
+ log(w1 −

w2

τ
)

}

−
{

1

E(τ, α∗, µ∗, ε∗)

}

(1− Pf )w4w3

ln 2(τw3 − w4)2
−
{

1

E(τ, α∗, µ∗, ε∗

} ∂Pf

∂τ
w4

ln 2(τw3 − w4)

−
{

1

E(τ, α∗, µ∗, ε∗)

}

∂Pf

∂τ
log(w3 −

w4

τ
) +

{

1

E(τ, α∗, µ∗, ε∗)

}

(1− Pf )w4

τ(τw3 − w4)τ ln 2

− 1

E(τ, α∗, µ∗, ε∗)2

{

−Ps + µPtr

[

P (H1)(1 − Pd)κ− P (H0)τ
∂Pf

∂τ
+ P (H0)(1− Pf )

]}

{

P (H1)(1 − Pd)κµτW log2

[

w1 −
w2

τ

]

+ P (H0)(1− Pf )µτW log2

[

w3 −
w4

τ

]}

. (83)

by neglecting the interference term and equating the first

derivative to zero, which is expressed as

α∗ =
P (H0)

P (H1)

(1− Pf )

Pd

µτW

ln 2
− y3

y4
, (68)

for Bb ∈ (Bb,LB , Bb,UB). Based on this, by substituting for y3
and y4, we obtain

α∗ =
P (H0)

P (H1)

(1− Pf )

Pd

µτW

ln 2

− (P0 + Pc)τµ+ Ps(1− τ)

τPR

. (69)

APPENDIX D

PROOF OF THEOREM 4

Let us define

w1 , 1 +
αPR − µPc + Ps

[ZIPT,PU + P0]µ
, (70)

w2 ,
Ps

[ZIPT,PU + P0]µ
, (71)

w3 , 1 +
αPR − µPc + Ps

P0µ
, (72)

and

w4 ,
Ps

P0µ
, (73)

such that w1, w2, w3, and w4 are positive constants. Then, the

expression for energy efficiency can be simplified as

EE(τ, α∗, µ∗, ε∗) =
P (H1)Pd(1 − α∗)τBb

E(τ, α, µ∗, ε∗)

+
P (H1)(1− Pd)κµτW log2

[

w1 − w2

τ

]

E(τ, α, µ∗, ε∗)

+
P (H0)(1− Pf )µτW log2

[

w3 − w4

τ

]

E(τ, α, µ∗, ε∗)
.

(74)

Next, we determine the first derivative of EE(τ, α∗, µ∗, ε∗))
with respect to τ i.e. ∂EE(τ, α∗, µ∗, ε∗)/∂τ , upon which it

is clear that

∂EE(τ, α∗, µ∗, ε∗)

∂τ
=

∂EEb(τ, α
∗, µ∗, ε∗)

∂τ

+
∂EEh(τ, α

∗, µ∗, ε∗)

∂τ
. (75)

By rewriting α∗ in (27) in terms of τ as

α∗ = L1
(1− Pf )

Pd

τ − L2 − L3

(

1

τ
− 1

)

, (76)

where

L1 ,
P (H0)

P (H1)

µW

ln2
≥ 0, (77)

L2 ,
(P0 + Pc)µ

PR

≥ 0, (78)

and

L3 ,
Ps

PR

≥ 0, (79)
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the derivative of α∗ can be calculated as

∂α∗

∂τ
= −

L1P
′
f

Pd

− L1(1 − Pf )P
′
d

P 2
d

+
L3

τ2
. (80)

Substituting (76) and (80) in (75), and observing that

Pd = Pd at ε = ε∗,we obtain ∂EEb(τ, α
∗, µ∗, ε∗)/∂τ and

∂EEh(τ, α
∗, µ∗, ε∗)/∂τ , as given in (82) and (83), respec-

tively. In addition, it is straightforward to calculate the first

derivative of Pf with respect to τ as

∂Pf

∂τ
=

(

ε∗

σ2−1
)

√

8π2Ns(1−τ)
exp

(

−Ns(1−τ)
2

[

ε∗

σ2
−1
]2
)

,

(81)

and it is intuitive that the second derivative of Pf with respect

to τ would be negative, since Pf is concave in τ . Utilizing

this result, the rest of the proof involves calculation of the sec-

ond derivatives of EEb(τ, α
∗, µ∗, ε∗) and EEh(τ, α

∗, µ∗, ε∗),
and showing them to be negative. Therefore, the second

derivative of EE(τ, α∗, µ∗, ε∗) is also negative, and hence

EE(τ, α∗, µ∗, ε∗) is concave in τ . The corresponding details

lead to expressions that are rather lengthy, which are omitted

for brevity.
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