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Abstract—Machine learning will play a major role in handling1

the complexity of future mobile wireless networks by improving2

network management and orchestration capabilities. Due to the3

large number of parameters that can be monitored and config-4

ured in the network, collecting and processing high volumes of5

data is often unfeasible or too expensive at network runtime,6

which calls for taking resource management and service orches-7

tration decisions with only a partial view of the network status.8

Motivated by this fact, this paper proposes a transfer learning9

framework for reconstructing the radio map corresponding to a10

target antenna tilt configuration by transferring the knowledge11

acquired from another tilt configuration of the same antenna,12

when no or very limited measurements are available from the13

target. The performance of the framework is validated against14

standard machine learning techniques on a data set collected15

from a 4G commercial base stations. In most of the tested scenar-16

ios, the proposed framework achieves notable prediction accuracy17

with respect to classical machine learning approaches, with a18

mean absolute percentage error below 8%.19

Index Terms—Radio map prediction, antenna tilt, transfer20

learning.21

I. INTRODUCTION22

F IFTH generation wireless networks (5G) are expected to23

improve the performance of cellular systems, achieving24

higher data rates, reduced latency, higher reliability and sup-25

port for greater numbers of users. To achieve this, 5G resorts26

to dense and heterogeneous deployments, coupled with higher27

flexibility in the network access and core domains, which can28

be dynamically managed in either a centralized or distributed29

manner. To cope with such a complex scenario, it is foreseen30

that machine learning tools will play a major role in enabling31
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the transition from current mobile networks to future 5G archi- 32

tectures [2]. By exploiting the increased availability of data in 33

5G coming from network devices and user terminals, machine 34

learning tools will be able to assist network operators in deal- 35

ing with the increasing complexity of configuring parameters 36

for network optimization. Thus, machine learning tools will 37

form the basis for automated and smart network management 38

techniques. 39

Among the manifold parameters that can be configured at 40

the base station (BS), one of the most important is the antenna 41

tilt, which is the angle formed by the vertical direction which 42

the antenna is facing and the horizon. Antenna tilt can be con- 43

trolled either mechanically (by physically tilting the antenna 44

up or down) or electronically (relying on beam-forming tech- 45

niques that steer the main beam of the antenna towards a 46

desired vertical direction), or by a combination of the two. 47

The antenna tilt directly impacts the performance of the cell 48

served by the BS in terms of network coverage, signal strength 49

and inter-cell interference, and therefore determines the qual- 50

ity of service experienced by end users. In particular, when the 51

antenna tilt is changed in the BS, its effect on the antenna gain 52

over distance also changes, which further leads to a change 53

of the Reference Signals Received Power (RSRP) values [3]. 54

Therefore, different radio maps can be generated as a func- 55

tion of the selected tilt configuration. We refer to these as 56

tilt-dependent radio maps. 57

From an operator’s perspective being able to predict cell 58

performance without carrying out extensive trials or mea- 59

surement campaigns is of key importance for two reasons: 60

firstly, extensive measurement campaigns, such as test driving, 61

are time consuming and costly. Secondly, even if measure- 62

ments were obtained inexpensively (e.g., directly from user 63

terminals through crowd-sourcing), testing all possible antenna 64

configurations might still be impractical at network runtime. 65

Given such difficulties, a solution which is particularly 66

appealing to network operators is transferring the knowl- 67

edge acquired from a single measurement campaign (for a 68

given antenna tilt setting) to a new domain (a new tilt set- 69

ting) without needing to acquire a complete set of additional 70

measurements. In this case, the data distributions of the train- 71

ing (source) and testing (target) sets are different. Therefore, 72

we formalize and solve this problem via transfer learning, a 73

paradigm that has received increasing attention in the last few 74

years [4]. 75

In this paper, we study the possibility of performing transfer 76

learning for the task of predicting the radio signal strength 77
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map of a particular BS. We start from a dataset of sig-78

nal strength measurements collected from commercial, Long79

Term Evolution (LTE) BSs and analyze the performance of a80

transfer learning approach based on a deep neural network,81

where a domain is defined as the knowledge acquired for82

a particular antenna tilt setting. This is then transferred to83

a different domain, i.e., a different tilt configuration of the84

same antenna. As a benchmark, we compare the performance85

of our proposed method against the performance of stan-86

dard machine learning techniques when applied to the same87

problem. The performance evaluation is carried out in two88

different scenarios: firstly, we use a single tilt configura-89

tion as the source domain. Secondly, we augment the source90

domain by adding data available from other tilt configura-91

tions of the same antenna. We study the behavior of the92

proposed transfer learning approach when the data available93

from the target tilt configuration is limited, and further ana-94

lyze different strategies to select the limited points of the target95

domain.96

In summary, the main contributions of this paper are as97

follows:98

• We propose a transfer learning framework based on99

deep neural networks, i.e., Feed-Forward Neural networks100

(FFNs), for tilt-dependent radio map prediction. Contrary101

to work in the area of deep and transfer learning for com-102

puter vision and natural language processing, where more103

complex architectures (Convolutional Neural Networks104

(CNNs), BERT [5] and ULMFit [6]) are used, we eval-105

uate the joint use of a simpler FFN architecture and106

transfer learning for a different kind of data, namely, radio107

access network data.108

• We describe the optimization of the reference architec-109

ture, as well as of the parameters for both source and110

target domains. The system is trained exclusively on data111

coming from an existing network deployment.112

• Through numerical experiments, we evaluate prediction113

performance against standard machine learning114

approaches. The proposed approach is shown to115

achieve notable prediction accuracy, specifically when116

the amount of data available from the target domain117

is limited. Moreover, under realistic assumptions on118

the data availability, we show the scenarios where119

transfer learning leads to performance improvements.120

Finally, we show how data augmentation leads to further121

performance improvement.122

The rest of this paper is organized as follows: Section II123

reviews related works in the area of radio map prediction,124

with a particular focus on those works dealing with antenna125

tilt. It further reviews the state of the art of transfer learn-126

ing and its applications in the area of network planning and127

optimization. Section III describes in detail the scenario out-128

lined above, as well as preliminary data collection and data129

pre-processing steps. Section IV focuses on the machine learn-130

ing tools used for this work. Experiments and discussion of131

the obtained results, with special emphasis on the use cases132

where transfer learning outperforms traditional machine learn-133

ing approaches, are reported in Section V. Finally, Section VI134

concludes the paper.135

II. BACKGROUND AND RELATED WORK 136

In this section, we briefly review the works on antenna 137

tilt-dependent radio map prediction, introduce background 138

information on transfer learning, and comment on related 139

applications of transfer learning techniques to wireless 140

networks. 141

A. Tilt-Dependent Radio Map Prediction 142

Tilt-dependent radio map prediction plays a crucial role 143

in the context of network planning and proactive network 144

optimization [7]. The predicted propagation condition can be 145

exploited for a reliable decision making process to dynami- 146

cally optimize antenna tilts in a time-varying network envi- 147

ronment [7], [8]. Although radio map prediction has been 148

extensively studied [9], its dependency on antenna tilt has been 149

investigated only in few works. The authors in [10] propose a 150

geometrical-based extension to various traditional log-distance 151

path loss models (Okumura-Hata, Walfisch-Ikegami) to take 152

into account the antenna tilt during the prediction of the sig- 153

nal strength at a given distance from the BS. The proposed 154

extension, named vertical gain correction (VGC), is calculated 155

directly from the antenna patterns provided by the manufac- 156

turer and is added to the signal strength estimated by the path 157

loss models to compensate for the antenna tilt. Experimental 158

results on data collected from LTE BSs show that VGC 159

improves the performance of signal strength prediction when 160

compared to traditional models. Similarly, the work in [11] 161

investigates the effect of antenna tilt on radio maps, com- 162

paring the path loss models developed by the 3rd generation 163

partnership project (3GPP) [12] for different propagation envi- 164

ronments. The results were obtained using a ray tracing tool 165

able to take into account antenna tilts and demonstrate that 166

changing antenna tilt has a significant impact on the shad- 167

owing map. This calls for a rethinking of currently available 168

3GPP propagation models and assumptions, which apply an 169

identical shadowing map independently from the antenna tilt. 170

B. Overview of Transfer Learning 171

Traditional machine learning algorithms work under the 172

assumptions that training and testing data are taken from the 173

same distribution and have the same feature space. However, 174

in real world applications these assumptions do not always 175

hold. Firstly, the data distribution may not be static, but vary 176

over time, making it difficult to apply a trained model to a 177

new scenario at a different time period. Secondly, training and 178

testing data could also differ in terms of geographic location, 179

or the equipment used for recording the measurements (e.g., 180

a different mobile device). In such cases, transfer learning is 181

a promising approach for exploiting and sharing knowledge 182

among different domains. 183

In this paper, a domain D := {X ,P(X )} consists of a fea- 184

ture space X and its probability distribution P(X ), X ∈ X . 185

A task T := {Y, f (·)} consists of a label space Y and a 186

predictive function f (·), where f (·) can be written as P(Y |X), 187

Y ∈ Y and X ∈ X . Formally, the definition of transfer 188

learning is given as follows. 189
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Definition 1 (Transfer Learning [4]): Given a source190

domain DS and learning task TS , a target domain DT and191

learning task TT , transfer learning aims to improve the learn-192

ing of the target predictive function fT (·) in DT using the193

knowledge in DS and TS , where DS �= DT , or TS �= TT .194

Three seminal papers [4], [13], [14] review the state of the195

art of transfer learning in classification, regression, unsuper-196

vised and reinforcement learning. When dealing with a transfer197

learning problem, the main research questions are: what to198

transfer, how to transfer and when to transfer. When to trans-199

fer is mainly related to the issue of avoiding negative transfer,200

which happens when transfer learning has a negative impact201

on the performance of target learning. The literature is pri-202

marily focused on the first two questions. For the purpose of203

studying what to transfer, we will use the categorization found204

in [4], where transfer learning can be divided into:205

• Inductive transfer: Different source and target tasks and206

same or different source and target domains.207

• Transductive transfer: Same source and target tasks but208

different source and target domains.209

• Unsupervised transfer: Similar to inductive transfer, with210

different but related source and target tasks. The focus211

is solving an unsupervised learning task on the target212

domain. There is no labeled data available from source213

and target domains during training.214

To answer the question how to transfer, the most common215

transfer learning approaches are:216

• Instance transfer: Labeled samples in the source domain217

are reweighted and used in the target domain; it218

can be applied to inductive and transductive learning219

[15], [16], [17].220

• Feature transfer: Aims at finding a ‘good’ feature rep-221

resentation that can minimize the domain difference, as222

proposed in [18], [19]; it is applied to inductive and223

transductive learning.224

• Parameter transfer: Works under the assumption that225

individual models for related tasks share parameters or226

a combination of hyperparameters [20], [21]; it is mostly227

applied to inductive and transductive transfer learning.228

• Relational knowledge transfer: Is applied to problems229

where there is some kind of relation in the data (e.g.,230

network or social network data) [22], [23]; it is mostly231

applied to inductive transfer learning.232

C. Applications of Transfer Learning233

Some of the areas where transfer learning has been success-234

fully applied are computer vision, natural language processing235

and speech recognition [4]. Due to recent advances in the field236

of deep learning, recent approaches combine deep and transfer237

learning. For instance, in [24] mid-level image representations238

learned with a CNN are transferred to other visual recogni-239

tion tasks. The same idea is followed in [25] for character240

recognition from Latin to Chinese. However, the applica-241

tions of transfer learning in the field of wireless and mobile242

networks are still limited [26]. Work has been done for local-243

ization by transferring knowledge across devices, time and244

space in [27], [28], [29], [30]. More recently, transfer learning245

has been applied to caching [31], resources optimization [32], 246

fault classification [33] and resource management in Wireless 247

Virtual Reality [34]. 248

D. Motivation of Our Study 249

Our work shares the same research objectives as the work 250

on tilt-dependent radio map prediction (Section II-A), but with 251

one fundamental difference: in all the aforementioned works 252

the source domain for predicting the signal strength is similar 253

to, or the same as, the target domain. For example, the signal 254

strength radio map of an antenna under a given tilting con- 255

figuration is predicted using available signal strength samples 256

collected for the same antenna in the same tilt configuration. 257

Instead, we analyze the case where the performance of the 258

target antenna configuration is predicted using training data 259

from a different tilt configuration. In our previous work [1], 260

we investigated the dependency between the transferability of 261

the knowledge and the domain difference, when considering 262

the task of tilt-dependent radio map prediction and by using 263

standard machine learning tools. In this work, we aim to solve 264

a similar problem, with improved performance, by applying 265

transfer learning and exploiting different data sources as source 266

and target domains. 267

Our work mainly falls into the category of transductive 268

learning (TS = TT and DS �= DT ). Furthermore, our solu- 269

tion is inspired by the feature transfer and parameter transfer 270

approaches introduced in [24], where the authors propose to 271

extract some internal layers from a CNN, trained with suf- 272

ficient data collected from the source domain. They add an 273

adaptation layer to correct the difference between distribu- 274

tions in the source and target domain. The resulting network is 275

trained with a limited amount of data from the target domain. 276

However, unlike the approach proposed in [24], we do not 277

use CNNs, due to the format, scarcity and small feature space 278

dimension (i.e., geospatial information and Reference Signal 279

Received Power (RSRP) values) of the collected data. For the 280

same reasons, we do not consider recurrent architectures such 281

as Long Short-Term Memory (LSTM) networks, which have 282

been adopted successfully for problems where data, unlike 283

the current radio maps, has a strong temporal structure (e.g., 284

time series prediction or speech recognition) [35]. Instead, we 285

take the internal layers of a fully connected FFN, trained in a 286

given tilt configuration (source domain), and add a new layer. 287

Then, we retrain the final network on a new tilt configura- 288

tion (target domain). To exploit parameter transfer, we assume 289

that different domains share the same combination of hyper- 290

parameters (same neural network architecture). In addition, 291

we quantify the minimum amount of labeled data required 292

from the target domain to carry out predictions. We showcase 293

real world scenarios where a transfer learning solution out- 294

performs traditional machine learning algorithms. Finally, we 295

show how augmenting the source domain by adding data from 296

other available tilt configurations of the same antenna helps to 297

improve the performance of our transfer learning approach. To 298

the best of our knowledge, this is the first work transferring 299

knowledge across different network configurations by partially 300
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retraining deep neural networks, in the area of wireless and301

mobile networks.302

III. PROBLEM STATEMENT AND DATASET303

We address the following problem: “how to predict the304

performance of a given network configuration by leverag-305

ing information from different network configurations”. The306

performance measure that we target is the received signal307

strength in the downlink. The network configuration domains308

include the tilting configurations of the transmitting BSs.309

We consider a BS that can work in H different tilt configu-310

rations, indexed by h = 1, . . . ,H . Let sh(xi ) be the measured311

signal strength received at location xi = {yi , zi} when the h-th312

tilt configuration is selected at the BS, where yi and zi indicate313

the latitude and the longitude of the i-th location, respectively.314

Let Mh be the set of location indexes where measurements315

have been taken with configuration h.316

The problem at hand can be defined as follows: given317

{sh(xi ) : i ∈ Mh}, estimate the unknown signal strength318

ŝn(xj ) at the same or different locations, xj , with j ∈ Mn ,319

under different network configuration domains, n �= h .320

A. Data Collection321

The dataset used in this work is composed of RSRP out-322

door measurements collected in Espoo, Finland, in November323

2016 from two commercial LTE BSs with three different 120◦324

sectors each and operating at 2.6 GHz. Figure 1 shows the325

positions of the two antennas and the representation of the326

target area. The measurements were collected from three dif-327

ferent Physical Cell Identifiers (PCIs), which will be referred328

to as PCI 1, 2 and 3. PCIs 1 and 2 refer to two different329

sectors of the same BSs, whereas PCI 3 is a sector of a dif-330

ferent BS. The RSRP measurements were collected using an331

Android device equipped with an application capable of stor-332

ing the RSRP from all the received cells, the cell identifier,333

the Global Positioning System (GPS) position of the device334

and the timestamp. Such measurements were carried out at335

a frequency of 1 Hz while walking along routes of 8 km336

within each cell coverage area, with a minimum and maxi-337

mum distance from the BS of 30 m and 900 m, respectively.338

By design, the testing paths were planned to include different339

propagation conditions: university campus with two or three-340

story buildings, residential areas, parking lots, lower density341

rural and open areas with different types of roads (e.g., pedes-342

trian, cycling and main roads). Each testing path was walked343

once for each electronic tilt setting. The available tilt settings344

are 2, 3 and 6 degrees for each PCI, respectively. The receiver345

was placed at the height of 1.5 m and always kept at the same346

orientation. The weather conditions were stable and cloudy,347

and the route was covered by snow for most of the mea-348

surement campaign. The RSRP values were collected from349

an operating mobile network. According to [36], these values350

include the power from co-channel serving and non-serving351

cells as well as adjacent channel interference, but only on352

the resource elements that carry reference signals. Since these353

values are measured only in the symbols carrying the refer-354

ence signal, they exclude most of the wide band noise and355

Fig. 1. Map showing the BS positions and the PCIs in the reference dataset.

interference from other cells. Overall, they are proportional 356

to the SNR on average [37]. Therefore, they are still a good 357

indicator to be used in radio map reconstruction, reflecting the 358

channel propagation conditions. 359

B. Data Preprocessing 360

In total, about 3 · 105 RSRP measurements were obtained. 361

Each observation contains the following fields: 362

• Measurement position (latitude and longitude coordi- 363

nates) 364

• RSRP value (downlink signal strength) 365

• PCI (physical cell identifier) 366

The raw dataset was preprocessed to remove corrupted sam- 367

ples: for example, at the beginning of each experiment the 368

GPS receiver requires some initialization time during which 369

position is recorded incorrectly. Moreover, we overlaid the 370

considered area with a grid. For each grid element of size 371

20 m × 20 m, we replaced the RSRP values with their aver- 372

age to reduce noise. After the preprocessing steps, the reduced 373

dataset consisted of ∼ 600 observations per PCI and per tilt 374

configuration, for a total of ∼ 5.8 · 103 measurements. Before 375

training, the data is scaled between 0 and 1 by using a Min- 376

Max scaler, which is fitted to the training set and applied to 377

the cross validation and test sets. The scaling transformation is 378

then reversed before evaluating the algorithm performance. In 379

our previous work [1], we analyze the transferability across 380

different tilt settings of the same PCI as well as the trans- 381

ferability across different PCIs. In particular, we show that 382

the transferability within the same PCI is much higher than 383

the transferability across different PCIs. Therefore, we focus 384

hereafter on the task of transferring the knowledge from one 385

tilt configuration to another within the same PCI. Unlike our 386

previous work, in which the standard machine learning tools 387

are used, we apply transfer learning with deep neural networks. 388

Figure 2 shows a representation of the data collected for 389

different tilt configurations of PCI 1. Figures 2(a), 2(c), 2(e) 390

show RSRP values (in dBm) over the considered geographic 391

area, when the antenna was tilted at 2, 3 and 6 degrees, 392

respectively. It can be observed that the spatial distribution 393

of the data follows a similar pattern for different tilt config- 394

urations of PCI 1. For example, points located in the main 395

direction of the antenna have higher signal strength values 396

than the rest of the points. In addition, points closer to the 397
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Fig. 2. Tilt-dependent radio maps, normalized histograms and Probability Density Functions (PDFs) for three metrics RSRP, azimuth and distance, PCI 1.

antenna also follow a similar pattern, while points which are398

far apart have lower RSRP values. To give an idea of the399

domain differences, in Figures 2(b), 2(d), 2(f) we show the400

normalized histograms, and the continuous approximations of401

the PDFs of the azimuth, distance and RSRP for the different402

tilt configurations of PCI 1.403

Even if some similarities can be observed between the sta-404

tistical characteristics of the data collected under different405

tilt configurations, the data does not come from the same406

distributions. For example, the azimuth distribution for a 407

greater tilt value (Figure 2(f)) has a lower standard devia- 408

tion than the distributions for lower tilt values (Figures 2(b) 409

and 2(d)). 410

IV. PREDICTION APPROACHES 411

Given the base station location xA, let x and h be the tar- 412

get position and the configured antenna tilt, respectively. The 413
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Fig. 3. Relative angles on the vertical (left) and horizontal (right) planes
between the antenna pointing direction and the direction towards the test
position x.

following set of features, derived from (x, h) and shown in414

Figure 3, is considered for the prediction task:415

• the physical distance between the antenna and the mea-416

surement position, d(x) := d(x, xA)417

• the relative elevation angle between the down-tilt of418

the antenna and the vertical direction from the antenna419

emitting element to the measurement position, defined as:420

δ1(h, x) = 90◦ − (αA + αE (x, xA))421

= 90◦ − (h + αE (x, xA)), (1)422

where αA := h is the antenna down-tilt (mechanical plus423

electrical) and αE is the angle at which the antenna ‘sees’424

the target position depending on the antenna position xA425

and the target location x426

• the relative azimuth between the horizontal orientation of427

the antenna and the horizontal direction to the measure-428

ment position defined as:429

δ2(x) = βA − βE (x, xA), (2)430

where βA denotes the horizontal orientation of the431

antenna and βE is the horizontal orientation of the target432

position with respect to the antenna position433

Each sample in the training dataset is, therefore, associated434

with a tuple of values (d , δ1, δ2). The logarithmic transfor-435

mation is applied to d since the RSRP values are measured436

in dBm. Finally the feature vector [d(x), δ1(x, h), δ2(x)]T is437

obtained and used as input to our models.438

A. Transfer Learning Approach439

The proposed transfer learning approach has been inspired440

by the fields of computer vision and natural language pro-441

cessing [24], [25], where deep neural networks constitute the442

state of the art for classification and prediction tasks. The core443

idea of our approach is to train a neural network for the sig-444

nal strength prediction task in a source domain (reference tilt445

configuration) and then ‘wisely’ build a new neural network446

to obtain fine-grained predictions in the target domain (tar-447

get tilt configuration). The neural network architectures used448

in our approach are FFNs, which are well-known for being449

powerful nonlinear function approximators [38]. We opt for450

FFNs instead of more complex network architectures, such as451

CNNs or recurrent neural networkss (RNNs) for two main452

reasons. Firstly, from preliminary experimental results (see453

Figure 6), we observed that the achieved training and cross454

validation losses are already very low and close to each other455

for the problem at hand. Therefore, using a more complex456

architecture with the same limited amount of data available 457

for training could lead to a bigger gap between training and 458

cross validation, causing overfitting and thus worsening the 459

performance. Secondly, more complex architectures would 460

require more parameters and hyperparameters to be found, 461

causing an increased training time. 462

We use the Mean Square Error (MSE) as loss function, 463

which is the standard metric used in regression tasks. Here 464

the goal is to minimize the difference between the real and 465

predicted RSRP values. It is worth noting that the MSE is 466

well known for being sensitive to outliers, however this is 467

not a concern in this case since outliers have been removed 468

in previous preprocessing steps (see Section III-B). By using 469

FFNs as the basic building blocks of our architecture, the 470

flow of information only travels forward, and the layers of the 471

network are fully connected. Formally, FFNs learns a combi- 472

nation of parameters to find the best function approximation. 473

In our case, we aim at finding a set of parameters θ for the 474

hidden layers and a set of parameters w for the output layer 475

to estimate ŝ(x) ∈ R
q for x ∈ R

p , as shown in Eq. (3): 476

ŝ(x) = f (x; θ ,w) = φ(x, θ)Tw (3) 477

where φ : R
p → R

q , is a nonlinear transformation defining 478

the hidden layers, and parameters w ∈ R
q map from φ to the 479

desired output. Each input is represented by a tuple containing 480

distance, relative azimuth and relative angle (i.e., (d , δ1, δ2)) 481

and each output is the RSRP value ŝ(x) associated to a given 482

input. Therefore, p = 3 and q = 1 are the input and output 483

dimensions, respectively. 484

The proposed transfer learning approach is composed of the 485

following: 486

• DS : source domain which consists of the feature space 487

of the reference tilt configuration and its marginal prob- 488

ability distribution 489

• DT : target domain which consists of the feature space of 490

the target tilt configuration and its marginal probability 491

distribution 492

• MS = f̂S (·): an FFN with n layers approximating the 493

predictive function in the source domain fS (·) 494

• MT = f̂T (·): an FFN with m layers approximating the 495

predictive function in the target domain fT (·) 496

• {p1, . . . , pK }: the best combination of hyperparameters 497

shared by both FFNs associated with the source and target 498

domains respectively.1 499

The steps of our transfer learning algorithm are defined as 500

follows: 501

1) We select the source domain DS and train MS on 502

DS , finding the best combination of hyperparameters 503

{p1, . . . , pK }. We use Bayesian optimization [39] since 504

it is an effective way of finding a suboptimal solution 505

in less time, when compared to random search [40], for 506

example. The problem of choosing the hyperparameters 507

is modeled as a sample of a Gaussian process (GP). We 508

start with an initial combination of hyperparameters and 509

dynamically update the searching space based on the 510

1For parameter transfer we assume that the models for source and target
domains share a combination of hyperparameters.
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Fig. 4. Transfer learning model.

built surrogate probability model mapping from hyper-511

parameters to the probability of a score on the objective512

function (see Section V-B1 for numerical results). It is513

worth noting that the optimization process has been car-514

ried out on DS since we assume we do not have enough515

data available from DT to find a model that perform516

well on DT . Moreover, the main goal of our approach517

is learning the best model possible on DS by using suffi-518

cient data and transferring this knowledge to DT which519

has limited data. After the Bayesian optimization step,520

MS is trained on DS .521

2) Once we have obtained MS , we model MT by tak-522

ing the first i ≤ m layers of MS with the associated523

weights and adding new j ≤ n layers that are initial-524

ized with random weights. The reason for this is that525

the first layers of the network can capture more general526

characteristics about the feature space, while the latter527

ones capture more specific behaviors. For choosing the528

best values of i and j, we tried all possible combina-529

tions of values such that 0 ≤ i ≤ m and j = m − i and530

selected the one that led to the best accuracy (details are531

provided in Section V-B2). Figure 4 shows a graphical532

representation of MS and MT , where MT contains the533

first three layers of MS and two new layers.534

3) Finally, we train MT on the few data available from DT535

using the hyperparameters {p1, . . . , pK }. We freeze the536

first i layers and retrain only the last j layers of MT537

with data from DT . We refer to this approach as DNN538

T. It is worth observing that MS and MT have the same539

complexity (i.e., number of layers and hidden units) in540

order to ensure fairness when comparing MS and MT .541

In addition, using a much more complex architecture542

with a limited amount of data on DT is more likely to543

increase overfitting and worsen the performance, while544

using a much simpler architecture does not improve545

performance (see DNN T 2F 1R on Figure 7).546

We use the Keras framework [41] on top of TensorFlow [42]547

due to its flexibility for implementing this transfer learning548

approach and performing hyperparameters search. In total, the549

training and testing phases of the two models do not last more550

than two minutes. We use a laptop with 16 GB of RAM and551

a 7th generation, Intel Core i7 processor.552

B. Baseline Methods553

In this section, we describe the baseline methods used to554

benchmark our work: Heuristic (H) using data provided by555

antenna manufacturer as well as k-Nearest Neighbors (k-NN)556

and Random Forest (RF), which performed the best for the557

task at hand in our previous work [1].558

1) Heuristic: This is the simplest baseline method, where 559

the predicted values are extracted from the data sheets pro- 560

vided by the antenna manufacturer. Given a set of locations at 561

a given tilt configuration, for each sample we create the fea- 562

ture vector by calculating distance, relative angle and relative 563

azimuth (Section IV). In a second step, we use the data sheets 564

provided by the antenna manufacturer to extract the antenna 565

gain on the vertical and horizontal planes. Finally, we apply 566

the path loss model to calculate the predicted values. Formally, 567

the process is defined as follows: 568

1. Given Mh as the set of location indexes where measure- 569

ments for the considered base station running configu- 570

ration h have been taken, we calculate for each location 571

x ∈ Mh a tuple of values (d , δ1, δ2). Then we create 572

the feature vector z := [d(x), δ1(x, h), δ2(x)]T as shown 573

in Section IV. 574

2. Let η(x) and γ(x) be the horizontal and vertical gain 575

of the antenna in dB, respectively, as taken from the 576

manufacturer antenna sheets. Given the known position 577

x, we formally define Δ(x) as: 578

Δ(x) = η(x) + γ(x) (4) 579

3. Given Δ(x), we use the path loss model to generate the 580

labels, ŝ(x), by applying the following: 581

ŝ(x) = φ0 + φ110 log(d(x)) − Δ(x), (5) 582

where φ0 and φ1, similar to [10], are the linear regres- 583

sion coefficients calculated for the reference dataset. 584

2) k-Nearest Neighbors With Inverse Distance Weighting: 585

This technique is one of the simplest multivariate interpo- 586

lation methods which extends the classical nearest neighbor 587

approach [43]. We apply the technique on the same feature 588

vector z(x) := [d(x), δ1(x), δ2(x)]T as defined in the above- 589

mentioned Heuristic approach. It predicts the signal at an 590

unknown target location x (corresponding to a feature vector 591

z(x)) as a weighted average of the signals at the k locations 592

with the closest distances calculated based on feature vectors. 593

ŝ(z) =
∑

i∈M(z)

ωi s(zi ) (6) 594

The set M(z) includes the feature vectors which are the clos- 595

est to the unknown target vector z, with cardinality |M| = k . 596

Weights ωi are chosen to be inversely proportional to the dis- 597

tance d(zi , z) and their sum is normalized to one, using the 598

equation below: 599

ωi =
d(zi , z)

−1

∑
j∈M(z) d

(
zj , z

)−1
. (7) 600

3) Random Forest: Is one of the ensemble methods used 601

for classification and regression purposes. The algorithm was 602

introduced by Ho [44] in 1995, and later extended by Breiman 603

and Cutler [45], it uses the idea of bagging to perform 604

predictions. During the process several trees are grown inde- 605

pendently using different bootstrapped samples of the data and 606

majority voting or averaging is used for the final prediction. 607

In contrast to traditional trees, the variable used to perform 608

the split in each node is chosen randomly from a set of pre- 609

dictors [45]. RF is known to sometimes outperform other 610
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machine learning techniques, such as neural networks, due to611

its resistance to overfitting [46].612

V. EXPERIMENTS613

In this section, we describe the set of experiments carried614

out. We compare the prediction error of our transfer learning615

method (i.e., DNN T in Section IV-A) against the baseline616

methods (i.e., H, k-NN, RF in Section IV-B). In the following,617

the suffix T is used to denote the transfer learning approach618

(i.e., DNN T). Similarly, the suffix S is used to denote the619

methods that do not use transfer learning (i.e., H S, k-NN S,620

RF S and DNN S). It is worth noting that DNN T is trained621

on data from a different tilt configuration (source domain)622

whereas H S, k-NN S, RF S and DNN S are trained on data623

from the same tilt configuration (target domain). In this way,624

we compare the performance of the proposed transfer learning625

solution against the performance of traditional machine learn-626

ing solutions to reveal the scenarios where a transfer learning627

solution is preferred. We also train a model on the source628

domain and apply it to the target domain without the retrain-629

ing and fine tuning step. This last approach is referred as DNN630

BS. It does not require data from the target domain since no631

retraining is performed. In this case, the purpose is carrying out632

comparisons against the transfer learning solution to evaluate633

the real need for the retraining and fine tuning step.634

We carry out two different sets of experiments that differ in635

the way the source domain is built. In Section V-C, the source636

domain consists of measurements from a single tilt config-637

uration, which differs to the one used for target domain. In638

Section V-D we augment the source domain by adding mea-639

surements from other available tilt configurations of the same640

PCI. In both cases, we analyze the impact on the performance641

when a limited amount of data from the target domain is avail-642

able in the training phase. We study two strategies to select643

data from the target domain: (i) uniformly distributed in the644

reference area or ii) non-uniformly distributed according to645

a predefined sampling strategy (i.e., different distance ranges646

from the antenna location).647

For each tilt configuration the amount of data available is648

about 600 measurements. In all the experiments, the data is649

divided into training, cross validation and test sets. We use650

80% of samples for training, 10% for cross validation and651

10% for testing. We vary the quantity of data taken from the652

target domain for training or fine tuning. For the DNN T, this653

is the number of samples used to train and fine tune MT . For654

the k-NN S, RF S and DNN S this is the quantity of data avail-655

able for training a model on the target domain using data from656

the same target domain. In contrast, H S does not need train-657

ing data. One of the main objectives is to map the amount658

of labeled data required from the target domain and corre-659

sponding performance, assessed in terms of Mean Absolute660

Percentage Error (MAPE), which is defined as:661

MAPE =
100
k

k−1∑

i=0

∣∣∣∣
si − ŝi

si

∣∣∣∣, (8)662

where k is the number of target positions in the testing dataset.663

A. Domain Distance 664

Since the performance of the transfer learning approach 665

depends on the similarity between the training and testing sets 666

on the target domain, we introduce a measure of the degree of 667

similarity between datasets which is then used throughout this 668

section. We quantify similarity in terms of Kullback-Leibler 669

(KL) divergence index [47], which measures the relative 670

entropy of a given probability distribution with respect to 671

another one. Given two reference datasets, one used for train- 672

ing and one used for testing (both in the target domain), we 673

derive the KL divergence indexes of the probability distribu- 674

tions of the logarithm of the distance (d), relative angle (δ1) 675

and relative azimuth (δ2) of the two datasets. Formally, the 676

symmetric KL divergence index of the distance probability 677

distributions is given by: 678

SDKL(d) =
k∑

i=1

P (tr)
d (i) log

P (tr)
d (i)

P (te)
d (i)

679

+
k∑

i=1

P (te)
d (i) log

P (te)
d (i)

P (tr)
d (i)

, (9) 680

where P (tr)
d (i) and P (te)

d (i) with i = 1 . . . k define the dis- 681

crete probability distributions of the distance in the training 682

and testing sets of the target domain, respectively and k is 683

the amount of bins used to estimate either P (tr)
d or P (te)

d . 684

Similar definitions hold for the KL divergence indexes related 685

to the relative angle δ1 and relative azimuth δ2. Finally, to 686

give a more succinct representation of domain similarity, we 687

introduce the Domain Distance (DD) measure by summing the 688

three indexes together: 689

DD = SDKL(d) + SDKL(δ1) + SDKL(δ2). (10) 690

Figure 5 shows the average DD across PCIs for all the pos- 691

sible combinations of training and testing sets on the target 692

domains and the amount of points from the target domain used 693

for training. The solid curve in Figure 5 shows the DD when 694

the available samples taken from the target domain for training 695

or fine tuning are uniformly sampled in the reference area. The 696

dashed curve in Figure 5 shows the DD when the samples are 697

taken between 300 m and 600 m of distance from the antenna 698

location. Smaller DD values indicate higher domain similarity 699

and vice versa. For instance, when the samples are uniformly 700

distributed the similarity between training and testing sets in 701

the target domain is higher, which makes the DD values lower, 702

i.e., they range from 0.8 to 1.3 (see Figure 5 solid curve). In 703

contrast, when the available measurements are located at a 704

certain distance range from the antenna (i.e., 300 to 600 m), 705

similarity is lower, meaning the DD values are higher ranging 706

from 1.5 to more that 2 (see Figure 5 dashed curve). 707

B. Hyperparameter Search 708

Hyperparameters are chosen in a hybrid manner by using a 709

mixture of Bayesian optimization and manual fine tuning. 710

1) Hyperparameter Search on DS : Bayesian optimization 711

requires, as starting point, a network architecture that con- 712

verges. It also requires that the hyperparameters search space 713
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Fig. 5. Domain distance.

TABLE I
MAPE FOR VARIATIONS IN THE AMOUNT OF LAYERS AND HIDDEN

UNITS FOR PCI 1, TILT 2, 3 AND 6

is specified. We begin with an architecture that contains 4 lay-714

ers with 4, 10, 4 and 1 hidden units, respectively, 1e − 3 as the715

initial learning rate and ReLu as the initial activation function.716

The activation function search space contains Sigmoid and717

ReLu, and the learning rate search space goes from 1e − 7 to718

1e − 1. After 50 iterations the process converges and we find719

out that for all the tilt configurations and PCIs the best learn-720

ing rate is approximately 0.099, and the choice of activation721

function that leads to the minimal error is Sigmoid. During this722

process, the model is shown to achieve good performance in723

the source domain. Figure 6 shows the training and cross vali-724

dation errors for PCI 1 and tilts 2, 3 and 6. Comparable results725

are achieved for the rest of the PCIs and tested tilt combina-726

tions. It can be observed that the training and cross validation727

errors decrease dramatically during the first 150 epochs for tilts728

2 and 3 and the first 20 epochs for tilt 6. After this they keep729

decreasing steadily, becoming very close to 0, which means730

the chosen architecture fits the data coming from DS . We731

note that both errors are close to each other, meaning that our732

model is not overfitting. Once the learning rate and activa-733

tion functions are chosen, we carry out experiments on DS ,734

increasing and decreasing the model complexity by adding and735

removing layers and hidden units, respectively. Table I shows736

the MAPE obtained leveraging the tested architectures. The737

reported MAPE is an average across all the available PCIs738

and all the available combinations of tilt configurations as739

source and target domain. It can be observed that increasing or740

decreasing complexity worsens the performance for all the tilt741

configurations on average, therefore the initial combination of742

4 layers containing 4, 10, 4 and 1 hidden units respectively is743

the one that leads to the best performance. Table II summarizes744

the best combination of hyperparameters found by a mixture745

of Bayesian and manual optimization.746

TABLE II
HYPERPARAMETERS FOUND BY BAYESIAN AND MANUAL OPTIMIZATION

2) Frozen and Re-Trainable Layers: As explained in 747

Section IV-A, the amount of layers to freeze and retrain is 748

chosen through an empirical approach, trying all possible com- 749

binations and choosing the best one. Figure 7 reports the 750

MAPE averaged across all the PCIs and all the possible com- 751

binations of tilt configurations as source and target domain 752

when using different numbers of layers to freeze, i and the 753

number of retrainable layers, j. DNN T method indicates that 754

the weights in the retrainable layers of MT are randomly 755

initialized, whereas the DNN T W indicates that the weights 756

in the retrainable layers are initialized with the weights from 757

MS after training. We use F and R to denote the number of 758

layers to freeze and retrain on MT , respectively. We select 759

i = 2 and j = 2 (i.e., DNN T 2F 2R), since it is the combination 760

of values that leads to the best MAPE on DT . 761

C. Single Tilt Transfer 762

We use a dataset obtained under a given tilt setting (source 763

domain) to predict the performance of the same antenna under 764

a different tilt configuration (target domain). In particular, 765

we consider two different scenarios: when the data available 766

from the target domain is limited and sampled uniformly (see 767

Section V-C1) and when the data is still limited but sampled 768

according certain criteria, for instance at a given range of the 769

antenna location (see Section V-C2). 770

1) Limited and Uniformly Sampled Measurements: In this 771

case measurements represent a wide range of relative dis- 772

tances, azimuth and RSRP values. The amount of instances 773

taken for training or fine tuning varies between 0 to 100. 774

Figure 8 shows the average MAPE across all the PCIs and pos- 775

sible pairs of training and testing tilt combinations, obtained 776

by the different prediction approaches described in Section IV. 777

We can draw the following conclusions: 778

• All the machine learning methods (i.e., k-NN S, RF S, 779

DNN S, DNN T) outperform the heuristic approach (i.e., 780

H S) for any number of instances taken from the target 781

domain for training or fine tuning. Therefore, the machine 782

learning algorithms trained on real data are more effec- 783

tive at capturing the non linearity of RSRP values than 784

the heuristic approach which uses the path loss model 785

to extract RSRP values from the sheets provided by the 786

antenna manufacturer. 787

• The prediction error is impacted by the amount of sam- 788

ples taken from the target domain. In particular, the 789

amount of data taken from the target domain can be 790

decreased by up to 90%, if we consider an initial amount 791

of 590 instances taken for training or fine tuning, with 792
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Fig. 6. Training curves and Bayesian convergence on the source domain, PCI 1.

Fig. 7. MAPE for the different values of frozen (F) and retrainable (R) layers
using random or source domain weights initialization.

a maximum increase in error rate of 2% for the trans-793

fer learning approach. It is worth noting that if no data794

is taken from the target domain, the transfer learning795

approaches must be used under the assumptions of tradi-796

tional machine learning, where source and target domain797

are similar. As this is not the case, DNN T outperforms798

DNN BS when the amount of instances taken for train-799

ing is more than 20. This justifies the need to model our800

problem under the framework of transfer learning in order801

to decrease the prediction error.802

• The transfer learning approach (i.e., DNN T) outperforms803

the methods that use data from the same tilt configu-804

ration (k-NN S, RF S and DNN S) for training, when805

Fig. 8. MAPE when training or fine tuning on uniformly sampled
measurements.

the amount of samples taken from the testing set is less 806

than 40 instances out of 590. This is because, transfer 807

learning approaches better capture the physical properties 808

of antenna propagation. Thus, being more robust when 809

information is missing from the cross-domain. 810

• When the number of data samples is larger than 60, 811

transfer learning performs worse than the non-transfer 812

methods. This indicates, more than 60 points chosen uni- 813

formly for training a model are enough to capture all 814

the possible patterns (different RSRP values) in a given 815

radio map while achieving good prediction error (see DD 816

values uniformly sampled curve in Figure 5 for more 817

than 60 measurements). In contrast, if less than 60 points 818
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Fig. 9. MAPE when training or fine tuning on non-uniformly sampled measurements.

are taken, which accounts for 12% of the total amount819

of points initially used for training, there are too few820

points to capture all the possible patterns. Therefore,821

using data from DS and retraining via transfer learning822

leads to performance improvement when the number of823

data samples is less than 12%.824

2) Limited and Non-Uniformly Sampled Measurements:825

We define different antenna distance ranges since we assume826

to have available only measurements collected in one of those827

locations. Figure 9 shows the obtained average MAPE across828

all PCIs and all possible combinations of training and test-829

ing tilts. Figures 9(a), 9(b) and 9(c) show the average MAPE830

for measurements collected between 0 to 300, 300 to 600,831

and more than 600 m from the antenna location, respectively.832

In addition, we consider in Figure 9(d), the case where we833

take points from all of the three ranges with probability 0.1,834

0.1 and 0.8, respectively. This set of experiments, is moti-835

vated by the fact that in a realistic scenario points at a given836

distance range might be the only ones available to carry out837

predictions. For instance, in some areas it might not be possi-838

ble to take measurements due to the existence of obstacles or839

private properties. In other cases there might be budget con-840

straints (both in terms of resources and time) which do not841

allow for an extensive measurement campaign of the whole842

area. These scenarios are particularly challenging, because tra-843

ditional methods do not work at their best. Therefore we focus844

on these to highlight the benefits of transfer learning. To study 845

these cases, we consider two possible options: (i) we use the 846

available points as the training set to carry out predictions 847

under the same tilt configuration (i.e., H S, k-NN S, RF S, 848

DNN S) or (ii) we use the available points as part of the 849

retraining step in the transfer learning pipeline (i.e., DNN T). 850

In both cases, the model output is the predicted radio map for 851

the whole area. 852

We can draw the following conclusions: 853

• As before, all the machine learning methods (i.e., H S, 854

k-NN S, RF S, DNN S and DNN T) outperform the 855

heuristic approach (i.e., H S) and are impacted by the 856

amount of instances taken from the target domain for 857

training or fine tuning the models. 858

• The prediction error is never more than 2% higher than 859

when using uniformly sampled data. An increase in error 860

is expected since training and testing sets in the target 861

domain are more dissimilar than when samples are taken 862

uniformly (see DD values in Figure 5). However, depend- 863

ing on the application and data restriction when collecting 864

samples, non-uniformly distributed data could still be 865

used to carry out predictions when uniformly sampled 866

data is not available. 867

• The transfer learning approach (i.e., DNN T) outperforms 868

the methods that use data from the same tilt configuration 869

(i.e., k-NN S, RF S and DNN S) to carry out predictions 870
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TABLE III
DD VALUES BEFORE AND AFTER DATA AUGMENTATION

by a larger margin than with uniformly sampled data. This871

method is proven to be robust against the bias introduced872

between training and test sets in the target domain. As873

such, it performs extremely well when there is a large874

different between the training and testing sets in the target875

domain.876

• In Figure 9(d), where points are taken with different877

probabilities over all distance ranges, the gains of using878

transfer learning are higher than in the case where the879

data is uniformly sampled (see Figure 8).880

In conclusion, the proposed transfer learning approach is881

able to outperform other methods when using real measure-882

ments for both uniformly and non-uniformly sampled data. It883

has benefits compared to the benchmark methods in both of884

the following situations: (1) when the available samples of the885

target domain data are sampled uniformly, but the number of886

the samples is limited, and (2) when the available measure-887

ments used for training or fine tuning on the target domain888

are non-uniformly sampled. Moreover, considerable accuracy889

gains are achieved when augmenting the source domain with890

data coming from other available tilt configurations of the891

same antenna. This is discussed in the next section.892

D. Tilt Augmentation Transfer893

Data augmentation has been shown to be successful in the894

area of computer vision. By augmenting an existing dataset895

with new data that follows the same distribution as the data896

used for training, overfitting can be reduced [48]. In our case,897

we take inspiration from this idea and we augment the source898

domain by adding data from other available tilt configurations899

within the same PCI (i.e., suffix A SP on the graphs below) and900

from different PCIs (i.e., suffix A OP). We map the obtained901

MAPE to the DD to analyze the cases where data augmenta-902

tion improves performance. Table III shows the DD between903

the training set in DS and the test set in DT both before904

data augmentation and after data augmentation. Data augmen-905

tation is performed by either adding data from the same PCI906

or adding data from the same and different PCIs. Table III907

also shows the total amount of training samples used in each908

case in DS . It can be noted that, DD values are much higher909

when using data from different PCIs than in the rest of the910

cases. This is because adding data from a different PCI will911

increase the difference between the training set in DS and the912

test set in DT , therefore overfitting will be increased in DT .913

However, the degree of similarity between radio maps coming914

from the same PCI is higher, thus adding data with a greater915

similarity to the training set in DS and test set in DT can help916

to reduce overfitting and improve accuracy. We evaluate the917

gains of performing transfer learning from a bigger and more918

diverse source domain.919

Fig. 10. MAPE with and without data augmentation.

Figure 10 shows the average MAPE across all the PCIs 920

and pairs of training and testing tilt combinations possible 921

when performing data augmentation on the source domain. 922

Figure 10(a) shows the average MAPE when the instances 923

taken from the target domain for training or fine tuning are 924

limited and sampled uniformly. In contrast, Figure 10(b) shows 925

the average MAPE for cases when the measurements taken 926

from the target domain were collected at a distance range 927

from the antenna between 300 and 600 m. We can draw the 928

following conclusions: 929

• When using data augmentation on the source domain, the 930

prediction error decreases by more than a 1% when the 931

amount of instances taken from the target domain varies 932

between 10 and 40 (see Figure 10(a)). 933

• In Figure 10(b) we can also observe a performance 934

improvement when compared to the performance 935

achieved without augmenting the source domain. 936

• In both cases, the performance improvement can be 937

explained by the fact that data augmentation reduces over- 938

fitting. Figure 11 shows the training and cross validation 939

curves for PCI 1 when Tilts 6 and 2 are used as source 940

and target domains, respectively. Figures 11(a) and 11(b) 941

illustrate the training and cross validation losses without 942
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Fig. 11. Training curves on the target domain, PCI 1 and Tilts 6 and 2: (a), (b) Limited uniformly sampled data, (c), (d) Limited non-uniformly sampled
data.

and with data augmentation, respectively, when a limited943

number of samples are taken uniformly. Figures 11(c)944

and 11(d) show the training and cross validation losses945

without and with data augmentation, respectively, when946

samples are taken at a distance between 300 and 600 m947

from the antenna location. In both cases, the gap between948

training and cross validation errors decreases when the949

source domain is augmented by adding data available from950

other tilt configurations, from the same PCI. This ensures951

the transfer learning model is less prone to overfitting.952

• Adding data from different tilt configurations from dif-953

ferent PCIs (i.e., DNN T A OP) does not lead to954

performance improvements. This is expected since the955

DD between the training set in DS and the test set in956

DT is much higher (see Table III, DD = 3.53) than in957

the rest of the cases (see Table III, DD = 1.39), therefore958

overfitting is more likely to happen.959

VI. CONCLUSION960

In this paper, we addressed the problem of predicting the961

signal strength in the downlink of a real LTE network, where962

the antennas can be tuned to operate with different antenna tilt963

configurations. Different approaches were considered as candi-964

dates for predicting the signal strength. All of them were based965

on refined features related to propagation and antenna config-966

uration. As opposed to other works in the field of radio map967

inference, we studied the quality of prediction of the afore-968

mentioned approaches when the datasets used for training and969

testing are related, but not sampled from the same distribution.970

We observed that the performance of the predictive models is971

dependent on the amount of data taken from the testing domain 972

for training or fine tuning. Furthermore, the proposed transfer 973

learning algorithms are shown to be more efficient in cases 974

where the amount of data available from the target tilt config- 975

uration is very limited, or available at different distance ranges 976

from the antenna location. Finally, we have shown how aug- 977

menting data from the source domain by adding data available 978

from other tilts configurations of the same antenna improves 979

the performance of the proposed transfer learning approaches. 980

Augmenting the source domain decreases the prediction error 981

by 1% when the data available from the target domain for 982

training or fine tuning is limited, or at a distance range between 983

300 and 600 m from the antenna location. 984
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