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Abstract—The autonomous placement of Virtual Network
Functions (VNFs) is a key aspect of Zero-touch network
and Service Management (ZSM) in Fifth Generation (5G)
networking. Therefore, current orchestration frameworks need
to be enhanced, accordingly. To address this need, this work
presents an Adapted REinforcement Learning VNF Performance
Prediction module for Autonomous VNF Placement, namely
AREL3P. Our solution design bears a dual novelty. First, it lever-
ages end-to-end service-level performance predictions for placing
VNFs. Second, whereas the majority of other Machine Learning
efforts in the literature use Supervised Learning (SL) tech-
niques, AREL3P is based on a particular form of Reinforcement
Learning adapted to predictions. This makes placement decisions
more resilient to dynamic conditions, as well as portable to other
network nodes, and able to generalize in heterogeneous network
environments. Backed by a meticulous performance evaluation
over a real 5G end-to-end testbed, we verify the above prop-
erties after integrating AREL3P to Open Source Management
and Orchestration (OSM MANO) decisions. Among other high-
lights, we show increased VNF performance predictions accuracy
by 40–45%, and an overall improved VNF placement efficiency
against other SL benchmarks reflected by near-optimal decision
scores in 23 out of a total of 27 investigated scenarios.

Index Terms—Machine learning, network function virtualiza-
tion, end-to-end communication, zero-touch management, cloud
and edge computing.

I. INTRODUCTION

CONTEMPORARY networks are becoming increasingly
programmable based on two key concepts: (i) Software-

Defined Networking (SDN) and (ii) Network Function
Virtualization (NFV). SDN facilitates network management
and network configuration by enabling networks to be directly
programmable, whereas NFV decouples Network Functions
(NFs) from special-purpose dedicated hardware by virtualiz-
ing them into software building blocks. Building on top of
SDN and NFV, fifth generation networks (5G) and, in par-
ticular, their network and service management, are envisioned
to be fully autonomous based on the Zero-touch network and
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Service Management (ZSM) concept, as the next-generation
management and operation model defined by ETSI [1]. At the
same time, recent advances in Machine Learning (ML) have
enhanced the performance of corresponding ML techniques as
well as their applicability in real-life problems, thus enabling
intelligent and autonomously operated systems such as in the
case of autonomous vehicles.

As we approach closer to the 5G era, the combination of
network programmability and enhanced ML models opens a
promising and wide spectrum of ML in Networking (MLN)
applications against emerging issues like ZSM and more tra-
ditional –yet challenging– ones such as traffic prediction,
dynamic traffic steering, and dynamic resource manage-
ment after Quality-of-Service (QoS) or Quality-of-Experience
(QoE) requirements.

Currently proposed MLN applications face two big con-
cerns, namely, (i) the lack of model adaptability and the
related (ii) (in)feasibility to apply in practice due to the high
costs implied for training and maintain the models. To under-
stand these concerns, we need to focus on two aspects. First
off, large 5G networks such as the 5GinFIRE1 and 5GCity2

testbeds are usually custom-made in order to achieve enhanced
performance levels. Due to being custom-made and config-
ured, the corresponding Supervised Learning (SL) models can
not generalize sufficiently and their performance is signifi-
cantly degraded when applied to other networks or even to
other parts of the same network.3 Second, the inborn dynam-
icity and natural evolution of all networks (particularly, 5G)
forces SL models to become quickly outdated even for the
networks that they were trained for. Due to this lack of adapt-
ability in both points above, many models need to be not only
specially trained, but also specially maintained, in some cases
even per deployed model instance3. This implies a very high
cost, challenging the feasibility of applying such solutions in
practice.

The above concerns raise the following important ques-
tion: “How can we train MLN models that can be (i)
adoptable (i.e., able to generalize and to tolerate network
dynamics), (ii) feasible (i.e., cost-efficient w.r.t. training and

1https://5ginfire.eu
2https://www.5gcity.eu
3For instance, our comparative evaluation study in the context of our Smart

City Safety (SCS) use case shows that SL-based benchmark models fail com-
pletely to adopt to other VNF hosting nodes of the same network. This means
that they need to be not only trained per node, but also maintained per node
to capture local network conditions and dynamics.
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maintaining the models), and (iii) sufficiently accurate for the
purposes of ZSM in 5G?” Motivated by this question, the
current work proposes an Adapted REinforcement Learning
VNF Performance Prediction module for Autonomous VNF
Placement (AREL3P). The purpose of this module is to
enhance network orchestrator systems based on online learn-
ing. As we discuss in Section II, both the problem of
autonomous Virtual Network Function (VNF) placement
and the adopted approach of Q-learning are contemporary,
interesting and challenging. Most existing approaches are SL-
based and focus mainly on local system-level monitoring
information and performance predictions. Unlike that, ours
sees the “greater view” by providing accurate end-to-end
(e2e) service-level performance predictions to orchestrators
like the Open Source MANagement and Orchestration frame-
work (OSM MANO)4 or Openstack.5 To the best of our
knowledge, well-established orchestrators possess solid VNF
placement mechanisms, yet most of them without any native
support for ML modules including Reinforcement Learning
(RL). AREL3P covers this gap by serving as an extension
module to orchestrators, being embedded with its own e2e
service-level monitoring and corresponding intelligent VNF
performance prediction mechanism at candidate VNF hosting
nodes.

A. Contribution

The main contributions of this article can be summarized as:
1) A novel, adoptable, feasible and accurate RL-based

approach to VNF placement: Despite the increasing
interest of the networking community on ML, only a
few efforts focus on RL for autonomous VNF placement,
such as in [2], [3], [4], [5], (see discussion in Section V).
Most solutions use SL for resource allocation such in
[6], [7]. As verified by our evaluation results, this leads
to costly models that can not generalize without signif-
icant performance degradation, nor can keep up-to-date
with network dynamics. To cover this gap, we adopted a
Q-learning scheme in our novel AREL3P solution. This
particular type of RL exhibits good resilience to network
dynamics over a realistic testbed environment and use
case setup. Moreover, our real-testbed evaluation results
show that AREL3P can also generalize well, hence it
can address adaptability concerns. Last, our approach
is feasible in practice due to achieving a good trade-
off between the predictions accuracy and the costs for
model training and maintenance.

2) A novel approach to autonomous VNF placement based
on e2e service-level predictions: Most works in the lit-
erature, including ML-based ones, narrow their focus
on low/system-level monitoring and predictions, thus
missing a holistic, e2e, service-level point of view. To
cover this gap, our approach monitors and forecasts e2e
service-level performance across system layers spanning
from the network layer up until the application layer.

4https://osm.etsi.org/
5https://www.openstack.org/

3) Real testbed and use case-based evaluation & vali-
dation: Unlike most past studies on VNF placement
that use simulation environments, we present real-life
experimental results with all performance evaluation
and validation experiments conducted over 5GinFIRE
testbed at the University of Bristol (UNIVBRIS) [8].
We use the OSM MANO and take a use case-driven
approach by adopting the dynamic environment scenario
defined in the SCS [9] use case, which involves an
e2e application running VNF video transcoding. Note
though, that the applicability of our solution extends to
all e2e services beyond this use case and scenario, and
to other orchestrators apart from OSM MANO.

4) Meticulous performance evaluation study including SL-
based models, and compliance to ZSM: We engage
into different scenarios and show that the integration
of AREL3P to OSM MANO improves the efficiency of
its VNF placement decisions while complying to the
ZSM concept in terms of self-healing. Besides our own
model, we trained and deployed five well-known SL-
based models, which we studied both separately as well
as in a head-to-head comparison against AREL3P. Our
findings denote both a better ability to generalize and
a higher resilience of AREL3P under dynamic network
conditions where nodes can be added or depart at any
time (a.k.a. high node churn).
Regarding static network circumstances, the custom-
trained SL-based benchmark models exhibited a higher
predictions accuracy compared to AREL3P. This is
largely due to the non-realistic assumption of candi-
date hosting nodes (physical or Virtual Machines (VMs))
and resource demand levels remaining static over time.
Even more importantly, the higher accuracy achieved by
the SL models did not translate to more efficient VNF
placement decisions by OSM MANO compared to using
AREL3P. In further, AREL3P exceeds the performance
of both (i) a traditional and (ii) a random VNF place-
ment method used also as benchmarks, due to combining
resource availability and a good accuracy level of VNF
performance predictions.

B. Outline

The remainder of this paper is organized as follows.
Section II discusses the background and motivation. Section III
describes the system model. Section IV provides a meticulous
discussion of our system evaluation and validation. Section V
is dedicated to the state of the art. Finally, we conclude this
paper and refer to our future work goals in Section VI.

II. BACKGROUND AND MOTIVATION

VNFs are in essence VMs that work as NFs. Their place-
ment is on its own one of the most challenging problems
that emerged with modern programmable networks, hence the
significant amount of work in the literature (see Section V).
Although the efficiency of VNF placement depends on pro-
cessing power and network performance, most existing place-
ment algorithms merely consider resource availability for
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selecting a VNF host. In practice though, this approach does
not provide any performance guarantee for the VNFs for a
number of reasons including the dynamic nature of network
demand. Another aspect which hinders ZSM, regards the
engagement of human decisions in the loop. Despite their
powerful VNF placement systems, today’s well-established
orchestrators still call for human interaction.

This reality calls for exploring VNF placement from a
different perspective: an (i) autonomous and intelligent one
that (ii) learns in operation in order to adapt to network
dynamics and (iii) leverages accurate service-level end-to-end
performance predictions. This combination of intelligence and
resilience to dynamics results in autonomous VNF placement
in accordance to ZSM, thus increasing the level of interest and
motivation for exploring the potential of an appropriate ML
technique.

Networks are typically composed of a variety of servers,
client nodes, switches and routers. Some of them are static,
whereas a continuously increasing number of them in 5G are
virtual and/or mobile. Particularly the latter two types of nodes
can be added, depart or fail at any time (a.k.a. “node churn”).
Not only that, but also each node possesses different hardware
and software capabilities. Therefore, VNF placement is diffi-
cult to address and beyond just considering the capabilities of
VNF hosting nodes. Moreover, predicting VNF performance
using the same ML model for all nodes is inaccurate. Most
network nodes need a ML model trained (tailored) for them to
achieve a high level of prediction accuracy. Nevertheless, this
is not cost-inefficient because data need to be sufficiently large
and comprehensive to allow the algorithm to learn individually
for every candidate hosting node. The problem is even harder
for dynamic nodes whose status change with time due to churn
or other changes happening to their connected devices. This
so-called “Concept Drift” affects the prediction model over
time in an unpredictable way [10].

A. Why Adopting Reinforcement Learning

Despite the increased interest of the research community on
applied ML for networking, only a limited amount of effort
such as in [2], [3] has been put on using RL for managing VNF
resources; and even in these works, without any consideration
to end-to-end service performance. This gap is largely due to
the fact that applying RL in networking constitutes a non-
trivial task. It carries diversity and the complexity of both the
concept of RL and the networking problems it tries to address.
The greatest challenges refer to the creation of the RL model
itself, on how to monitor the necessary input parameters, and
on how to feed these parameter values to the RL model.

Our approach adopts a particular form of RL, Q-learning.
Q-learning is an off-policy RL algorithm that seeks to learn a
placement policy that maximizes a target reward while min-
imizing the end-to-end service delay by being continuously
updated in operation. This makes AREL3P fundamentally dif-
ferent than most ML-based solutions in the literature, which
are SL-based, thus they are tightly coupled to their training
nodes. As a result, these models can not generalize to other
nodes, they raise both feasibility and adaptability concerns (as

discussed in the introduction), and in general show limited or
no resilience to new/dynamic network conditions.

Regarding the limited number of past work in the literature
that uses RL [2], [3], these works focus on classification or on
policy selection. Unlike that, our approach lies in the fact that
we employ Q-learning to solve a regression problem. What is
more, AREL3P can take advantage of end-to-end service-level
information and other metrics, which are generally neglected
by both ML and non-ML based frameworks when forecast-
ing VNF performance on the basis of its placement. As we
show in our realistic evaluation, this enhances the efficiency
of placement decisions made by the OSM MANO.

Finally, our approach can work as a cross-platform
prediction model for end-to-end VNF communication
performance, exactly because it uses end-to-end service-level
information, rather than system-level information. Note that
using service-level information helps further to generalize to
different hosts other than the ones the model was trained. All
above mark the use of Q-learning as both interesting and chal-
lenging, not only due to its advantages over both traditional
and SL-based models, but also due to applying Q-learning in
networking itself.

B. Q-Learning

RL is one of the main types of ML alongside SL and
Unsupervised Learning (UL) It uses online data to train a
model that learns (i) to achieve a certain goal based on the
cumulative positive outcome of a series of actions and (ii) to
avoid mistakes stemming from negative action results. This
capability allows trained RL models to be updated in opera-
tion, which can help to maintain accuracy levels despite the
changes that take place in the network environment, e.g., in a
network node.

Q-learning, in particular, is an off-policy RL algorithm that
seeks for the best next action given the current state. This
is done with the use of the Q-learning function, which is
designed to maximize a reward. More specifically, the applied
model explores an unknown environment by executing an
action and then learning from feedback regarding the state
change stored in a table, namely, the Q-table. Q-Table con-
tains the states after actions and the implied action rewards for
the action. Consequent actions are taken based on current state
and the current knowledge, while the environment is (usually)
modeled as Markov Decision Process (MDP) defined by the
following five tuples:

M = (S ,A,Pa ,Ra , γ), (1)

where:
• S is a finite set of states;
• A is a finite set of actions;
• Pa is the transition probability from state s at time t to

state s′ at time t + 1 after action a (see formula (2));
• Ra is the immediate reward after moving from state s to

s′ after action a (see formula (3));
• γ is a discount factor 0 ≤ γ ≤ 1 that describes the

importance of future rewards on the current decision.

Pa
(
s , s ′

)
= P

(
st+1 = s ′|st = s , at = a

)
(2)
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Ra
(
s , s ′

)
= E

(
sr+1|st = s , at = a, st+1 = s ′

)
(3)

The optimal decision policy for the next steps, namely π(s),
used for the selection of action a at state s is calculated after
the expected return of the following value function:

Vπ(s) = maxπE

( ∞∑

t=0

γtRt
(
s , s ′

)
)

(4)

In dynamic network environments, the entire domain is not
known and keeps changing over time. Therefore, the MDP
problem cannot be solved with dynamic programming meth-
ods. However, Q-learning is model-free RL and can be used
to identify the optimal policy at any time t because it does not
require the entire knowledge of the environment. A Q-learning
agent constantly takes an action a in a state s for each time
t, observes the rewards Ra and the state transitions s′ and,
finally, updates the Q value using the weighted average of the
old and the new Q values. Formula (5) below shows how Q
values get updated:

Qupt (st , at ) ← (1− α) ·Q(st , at )

+ α ·
(
rt + γ ·max

a
Q(st+1, a)

)
, (5)

where:
• Q(st , at ) is the old Q value and Qupt (st , at the updated

one,
• α is the learning rate ranged as 0 < α ≤ 1;
• rt is a reward received from action at ;
• γ is the discount factor defined above (see formula (1));
• max

a
Q(st+1, at+1) is an estimation of the optimal future

value, which means that rt + γ · max
a

Q(st+1, a) as a
whole denotes the learned value.

Last, we note that if γ < 1, then the action values are finite
even for problems that contain infinite loops.

We return and discuss how we adopt Q-learning in
our solution in Section III-B including action selection
strategies.

C. The Smart City Safety Use Case

As stated earlier, we take a use case-driven approach to
study and exhibit the performance merits of AREL3P. Smart
City Safety (SCS) [9] is defined in the context of the EU
research project 5GinFIRE, which enhances public safety by
providing mobility and flexibility to surveillance systems. It
uses VNF and ML to enable the dynamic allocation of pro-
cessing units for live stream 360o video. SCS is latency
sensitive and requires optimal VNF placement to ensure
QoS.

Our corresponding system is composed of three node types,
namely: a Source Node (SN), i.e., a 360 degrees camera and
a Raspberry Pi (Raspi); a Processing Node (PN), i.e., a VNF
video transcoder running at a server in the cloud/edge; and an
End-user Node (EN), i.e., a generic computer such as laptop
or tablet. All components are connected to an access point
wirelessly. The workflow starts from the camera recording the
video and streaming it to the Raspi. The Raspi converts the
proprietary format video to standard format video allowing

Fig. 1. Smart City Safety architecture and Workflow.

Fig. 2. Generic workflow of End-to-End services.

the video to be processed afterward and transmits it to the
VNF. Then, the VNF splits this video into frames, executes
face detection and face recognition, assembles these frames
into a video. Finally, the processed video is transmitted and
displayed at the EN.

III. SYSTEM MODEL

Figure 2 portrays a generic end-to-end workflow, which
we adopt here for our SCS use case described earlier. As
shown in the figure, a camera SN sends raw video data to
some PN which in turn processes the data and transmits the
output to a service end-user device such as laptop, namely,
the EN.

In essence, the PN is the middle point that holds suf-
ficient processing capabilities compared to the SN and the
EN. Therefore, it is selected to place a VNF for perform-
ing, e.g., transcoding or image processing based on some
policy.

We return and explain Q-learning in further in the context
of our proposed adopted RL scheme in Section III-B.

Given this context, VNF performance is defined after the
total response time of the end-to-end service Ttot. This
embodies the overall time needed to complete every task in
the end-to-end workflow of Figure 2 from the moment that
SN starts to transmit raw data up until the EN has received
the result of the VNF processing, i.e.,

Ttot = Trcv + Tp + Treq (6)

where Trcv is the time spent during data generation
(phase m1); Tp is the time spent during data processing
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Fig. 3. High-level architecture of AREL3P.

(phase m2); and Treq is the time spent for receiving the
processed results from the VNF (phase m3).

A. Architecture Overview

Figure 3 presents an overview of the AREL3P architec-
ture, which comprises of three layers, namely: (i) Devices,
(ii) Network Function Virtualization Infrastructure (NFVI) and
(iii) OSM MANO. The devices layer lies at the low level
of this architecture where end-point devices are located. The
NFVI holds the role of the middle layer between Devices and
OSM MANO where the cloud/edge components are installed.
OSM MANO lies at the top layer as the high-level orches-
tration framework. Devices and NFVI are connected through
the provider network. From a user’s perspective, this is the
main network that provides connectivity to every compo-
nent of the whole end-to-end service, including devices and
cloud/edge resources. In contrast, OSM MANO plays a differ-
ent, crucial role from an administrator’s side by interlinking
the NFVI and OSM MANO layers, thus allowing management
and orchestration of NFVI resources through the Virtualized
Infrastructure Manager (VIM) or the OSM MANO.

In further, AREL3P applies four different agents in order
to improve VNF placement at the OSM MANO: an appli-
cation monitoring agent (m), a node monitoring agent (M),
a prediction agent (P) and a placement agent (Pl). In more
detail, agent (m) is collocated with the VNF to keep track of
all information regarding application performance by gather-
ing the performance values from the SNs, the PNs where the
VNF and m itself actually reside, and the ENs. Agent (M), on
the other hand, periodically monitors the resource utilization
of a compute node and saves it for further use (see Table I).
Agent m feeds this information to agent P, based on which P
predicts the VNF performance and sends it to OSM MANO.
Finally, the placement agent (Pl) puts the VNF to the best
location.

In this work, we adapt the generic workflow of Figure 2
to the SCS use case that involves an end-to-end application
running VNF video transcoding. Accordingly, we (re)define
the following times per service phase:

TABLE I
NOTATIONS. INCLUDES MONITORED PARAMETERS

• Ttrans : This is the time that is used to transform the
video of the camera from proprietary format to a standard
format.

• Trcv : This is the time that a frame is transmitted from
a Raspberry Pi (Raspi) node to the VNF located in the
cloud/edge.

• Tp : This is the time that it takes for face recognition VNF
to detect and recognize faces in a frame.

• Treq : This is the time need to live stream the video or
the response to the User Equipment (UE) after the face
processing at the VNF has ended.

The performance metrics of SCS indicate the efficiency of
the system to deliver the service through above processes.
Therefore, generic metrics described above have been deter-
mined to facilitate the calculations and the Ttot is computed
by formula (7).

Ttot = Ttrans + Trcv + Tp + Treq. (7)

B. Adapted Q-Learning

AREL3P is based on adaptive Q-learning to predict Ttot

for assessing the expected VNF performance of an end-to-end
service. The Ttot reflects the efficiency of the transmission
between nodes and the processing power of the VNF. The
data time series

D = {d1, d2, . . . , dn} (8)

used for training AREL3P come from monitoring the service
during execution time by agent m, where each monitoring sam-
ple di refers to the executed total response recorded at time i.
Therefore, and according to the definition provided in (6), each
di is a tuple of the three time samples: {(T i

rcv ,T
i
p ,T

i
req ))}.

As we discussed in Section II-B, Q-learning has three key
elements reflected in the Q value update formula (5), namely:
State, Action and Reward.

1) State: The State space (S) comprises all the possible
performance prediction states of Ttot . The current state of
performance s ∈ S provides the basis of information (real
current value of Ttot ) for each possible next performance state.
The possible next states s′ for predicting of the prediction are:

• Less than: is a state where the Predicted Value (PV) is
less than the Real Value (RV).

• Equal: is a state where the PV is equal to the RV.
• More than: is a state where the PV is more than the RV.
2) Action: The actions set A(s) in AREL3P contains actions

a with the increment or the decrement of the prediction of
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Ttot by a step of 0.01. According to the SCS use case, the
minimum-maximum value we can predict for Ttot is 0-2 s.6

3) Reward: Rewards Ra(s , s
′) are immediately obtained

after executing an action that changes the state from s to
s′, reflecting the quality of the prediction in the new state.
AREL3P gives immediate rewards in the range of [0, 1]. For
that, we define an acceptable error margin, hence AREL3P
adapts the epsilon intensive band (ε). This ε serves as a toler-
ance margin7 constructed by boundary lines at distance ε from
a hyperplane that separates rewards in two regions. First, a
region of values in (0, 1], which is given when the prediction
error falls within a distance ε from the RV. Note that the max-
imum reward, i.e., 1, value is given when the PV is equal to
the RV. Second, a zero reward “region” for all the remaining
prediction states. What follows is that the less the predicted
error is, the closer the reward approaches to 1. Having that
said, we define the reward function as shown in formula (9).

4) Action Selection, Q-Table Update and State Transition:
There are two strategies for the selection of actions, namely,
exploration and exploitation. Exploration is the strategy used
to collect more information of the environment, while exploita-
tion is applied to make the best decision based on the available
information. Exploration usually selects an action in random,
whereas the exploitation applies a greedy policy towards an
optimal choice. Even though the random policy is evidently
suboptimal, still it enables to update the learning experience
and adjust the Q-value to any changes in the environment.

In order to achieve a desired trade-off between the two
strategies, we implement an ε-greedy policy and take each
consequent action based on formula (10). The formula implies
the generation of a pseudo-random number 0 ≤ n ≤ 1 that
is compared to the ε-greedy value. The latter is originally set
to 0.5 and it gets decreased with a decay factor of 0.9 for
each consequent action. This way, AREL3P starts with apply-
ing either of the two strategies with an equal probability, but
then gradually increases (resp., decreases) the chances of tak-
ing experienced-based (resp., random-based) actions due to the
ε-greedy policy.

The reward function (9) is used to yield an immediate
reward and the Q-table gets updated according to formula (5).
Finally, the state st changes to a new state st+1 with the new
coming data dn+1.

Ra
(
s , s ′

)
=

{
1− |PV−RV

0.1·RV |, if |PV − RV | ≤ 0.1 · RV ;
0, otherwise.

(9)

a =

{
rand A(s), if n < ε− greedy;
arg max

a
Q(st , a), otherwise. (10)

5) Prediction Algorithm: AREL3P’s prediction algorithm
(see Algorithm (1)) starts by creating a new Q-table and
an initial state. Then, it takes the input data D (see for-
mula (8)) along with the initial system parameters, and

6Note that this is four times higher than the average recorded Ttot (0.5
second) in all of the scenarios we run in our testbed.

7The notion of ε is used in several SL regressors such as Support Vector
Regression (SVR) to predict continuous variables. The default value for these
regressors is equal to 10% [11].

Algorithm 1 Prediction Algorithm of AREL3P
1: if Initialization then
2: if not exist Q-table Q(s, a) then
3: Create Q-table Q(s, a)
4: Initialize state to s0
5: Initialize parameters ε, α, γ and decay

6: while True do
7: //Training or predicting process
8: if dt is not null or VNF request then
9: Take dt

10: //Choose an action using ε−greedy
11: if rand(0, 1) < ε−greedy then
12: at = rand A(s)
13: else
14: at = arg max

a
Q(st , a)

15: //Calculate the reward from the action applying
16: ε intensive band
17: if |PV − RV | ≤ 0.1 · RV then
18: Ra(s , s

′) = 1− |PV−RV
0.1·RV |

19: else
20: Ra(s , s

′) = 0

21: //Update Q-table
22: Q(st , at ) = Q(st , at )+
23: α[rt+1 + γmax

a
Q(st+1, at+1)−Q(st , at )]

24: //Use the value of the selected action
25: Tpredicted = at

26: end while

performs predictions based on the ε-greedy policy. In order to
maintain the prediction accuracy in the dynamic environment,
Q-learning keeps updating its knowledge from the previous
experience in the changing states, actions and rewards.

IV. SYSTEM EVALUATION AND VALIDATION

A. Testbed Architecture

Our testbed, illustrated in Figure 4, is deployed at the
University of Bristol UK site of the 5GinFIRE8 infrastructure.
It is a multi-site 5G VNF ecosystem located at the UK, Spain,
Portugal, Poland and Greece. The NFVI is composed of one
controller/Compute Node (CN) and three CNs connected via
Ethernet, following the equipment specifications summarized
below:

• Sensor: 360◦camera model Ricoh Theta V.
• Source Node: Raspi model 3B running Raspbian Jessi.
• Compute/Controller Node 1: CORSAIR ONE PRO,

INTEL I7-7700K, 8-core processor, 16 GB RAM, 800 GB
HD, running Ubuntu 16.04, KVM, Openstack Queen
(Controller and Compute), OSM MANO release 4.

• CN 2: Same as Node 1, except from: 80 GB HD,
Openstack Queen (Compute).

• CN 3 & CN 4: IBM x3455, AMD Opteron, 4-core pro-
cessor, 8 GB RAM, 70 GB HD, running Ubuntu 16.04,
KVM, Openstack Queen (Compute).

8https://5ginfire.eu/university-of-bristol-5g-testbed/
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TABLE II
OPENSTACK NOVA [12]: DEFAULT FILTER SCHEDULER

TABLE III
DATASET FOR BENCHMARK SCHEMES

Fig. 4. Testbed of the experiment.

• End-user Node: Laptop model Acer Aspire VX15, run-
ning Ubuntu 16.04.

• VNF video transcoder: Virtual Display Unit (VDU) of a
2-core processor, 3 GB RAM, 4 GB HD, running Ubuntu
16.04.

B. Models for VNF Placement

Regarding our scheme, OSM MANO uses selects the host
with the minimum predicted Ttot value by AREL3P. In addi-
tion, AREL3P applies a “no overload” mechanism that prevent
a CN from overloading after placing the VNF. Using for-
mula (11) below, it calculates the future load of the candidate
CN after placing the VNF and rejects the node in case that its
future load is above a threshold:

Loadpredict =
(LoadVNF + Loadnode)

Corenum
× 100, (11)

where Loadpredict is the predicted load percentage of a node
after placing the VNF, LoadVNF is the current load of the
VNF, Loadnode is the current load of the node, and Corenum
is the number of the CPU cores of the node.

In what follows, we explain in detail the benchmark models
we used for our evaluation purposes.

1) Non ML-Based Benchmarks: We use two different
non ML-based benchmark orchestration schemes, namely (i)
“Traditional” and (ii) “Random”, against OSM MANO pow-
ered by AREL3P. While Random simply selects one of the

three CNs at random, Traditional is more complex by adapt-
ing the existing VNF placement approach of the NOVA filter
scheduler [12]. The filter scheduler uses two strategies: “fil-
tering” and “weighting”, respectively. Filters are essentially
sets of rules, as briefly described in Table II, which define the
resources and capabilities of a CN for hosting a VNF. The
weighting strategy, on the other hand, applies weight to all
filters to define their degree of influence to the final placement
decision.

2) ML-Based Benchmark Models: We developed and
trained five SL model algorithms. The purpose of these
models is dual: first, to study their ability to generalize,
as discussed in Section II. The five SL model algorithms
are: Decision Tree (DT) [13], Random Forest (RF) [14],
Linear Regression (LR) [15], SVR [16], K-Nearest Neighbors
Regression (KNNR) [17].

To predict Ttot, the SL models take eight input param-
eters (namely, IDs 1-8 in Table III) and predict the time
spent in each process separately. Predictions are computed
using the general equations for SL algorithms shown in
formulas (12) to (15):

Ttrans = f
{
(Lo,Mm)Rp, (Bw ,Nt ,Lt ,Ls, Jt)Rp−PN,LoPN

}

(12)

Trcv = f
{
(Lo,Mm,Vcpu)PN, (Bw ,Nt ,Lt ,Ls, Jt)Rp−PN

}

(13)

Tp = f
{
(Lo,Mm,Vcpu)PN, (Bw ,Nt ,Lt ,Ls, Jt)EN−PN

}

(14)

Treq = f
{
(Lo,Mm)EN, (Bw ,Nt ,Lt ,Ls, Jt)EN−PN,LoPN

}

(15)

where: f {x1, . . . , xn} is the function of corresponding SL
model with the input parameters x1 to xn .

Then, the best SL model for VNF placement is used as
benchmarks against AREL3P
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3) Training and Testing Setup: For the sake of a proper
validation of our solution, we evaluate and compare AREL3P
against the five SL benchmarks introduced in Section IV-B2
based on (i) the accuracy of Ttot predictions and (ii) the
respective efficiency of OSM MANO placement decisions
under dynamic network conditions in two corresponding sce-
narios listed below. Note, that we adapt a high node churn
scenario where nodes can arbitrarily join and depart at any
time. This means that newly-joined CNs are deployed with
(i) an RL model that is not yet trained or (ii) an SL model
trained for another previously existing CN.

a) Scenario 1 (accuracy): The objective of this scenario
is to evaluate the accuracy of predictions for Ttot by AREL3P
against those by the SL models running at the nodes they
were trained for as well as the newly-joined nodes that they
were not trained for. We use the same dataset for training both
AREL3P and the five benchmarks, which comprises of over
300K instances collected from low, medium and high Key
Performance Indicators (KPIs) (load, latency, packet loss and
bandwidth) at all servers. Regarding the SL banchmarks, in
particular, we use grid search for selecting the set of optimal
hyperparameters.

We deploy different AREL3P instances in each node irre-
spective of their specifications presented in Section IV-A. The
model goes through an exhaustive training phase that involves
a 100 iterations with the initial Q-learning parameters set to:
< ε = 0.1;α = 0.1; γ = 0.9; ε−greedy = 0.5; decay = 0.9 >.
Note that we repeat the training and evaluation of our model
x30 in order to increase confidence to our recorded results.

Finally, to train, test and validate the benchmark models we
use 10-fold cross-validation.

b) Scenario 2 (VNF placement efficiency): This scenario
is designed to assess the quality of VNF placements after
Ttot predictions, thus providing a more holistic approach to
validating AREL3P than simply focusing on the (raw) accu-
racy of Ttot predictions. We set CN 4 as “overloaded” and
have it to trigger a VNF request message upon its CPU load
reaching to 80% of its maximum capacity. We choose this
threshold value after [18], which shows that response times
of running processes start to increase exponentially when the
load exceeds 70% and become critical when the load reaches
to 80%. The rest of the CNs are considered as candidates
for placing the VNFs irrespective of their different specifica-
tions and current statuses. Furthermore, we engage into 27
different scenario repeats (see Table IV) with varying load
profiles in candidate nodes. We define as “Low” load that
status of using 0-30% of the node’s maximum CPU capac-
ity, a “Medium” load for using 30-70% and a “High” load
for exceeding 70% of the node’s capacity. To demonstrate
the adaptability of AREL3P, each instance in each scenario
updates its model from the first test by using 10%9 of total
samples (30000:300000). Then the VNF placement test is per-
formed using these different approaches: a Traditional and a
Random one, as well as AREL3P in the dynamic environment.

9SQL Server updates a large database using sample sizes between 10-
30% [19]. As fast deployment is preferable in a dynamic network, we select
the minimum possible value (10%) for model training, which accounts for 8
hours extracted out of our data collection.

TABLE IV
TESTING SCENARIOS

Finally, the results from all approaches are compared with one
another and Benchmark.10

C. Evaluation Results

The evaluation results refer to accuracy scores with val-
ues denoting the average score out of all iterations. These
scores show the percentage of the prediction data that match
the real data. Regarding the adaptability and native run sce-
nario of Section IV-C1, in particular, the results are compared
with R-squared (R2) scores. R2 is a statistical tool that mea-
sures “Goodness-of-Fit”, the efficiency of the prediction of a
regression model to the real data points. The R2 formula is
defined as:

1− SSreg
SStot

, (16)

where SSreg is the regression sum of squares and SStot is
the total sum of squares. R2 values range between 0 and 1,
with 1 denoting the best score. It can become negative if the
regression model does not fit the data at all. Note that we
convert R2 scores to percent to simplify the analysis.

1) Scenario 1 (Accuracy): The SL models were trained and
evaluated based on real 60-hour data collected from our testbed
over a period of one week and in two scenarios; namely,
“Native run” and “Adaptability”. Note that the data came from
a variety of processing and network statuses, as shown in
Table III. For the case of the “Native run” scenario, all the
models were deployed to the nodes that they where trained
for, while for the “Adaptability” scenario the trained models
were deployed to nodes with different specifications.

Figure 5 portrays our relevant evaluation results, show-
ing that SL models can be highly accurate for “Native run”.

10The optimal placement results from Supervised Learning model in static
environment.



542 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

Fig. 5. Accuracy scores for Ttot and its details components Ttrans, Trcv , Tp, Treq for AREL3P and all SL models in both the “Native run” and
“Adaptability” scenarios.

But on the very contrary, the same models exhibit a com-
plete lack of adaptability. This is a major drawback caused
by the fact that the SL models are tailored to specific nodes
with given specifications (e.g., CPU capacity, demand pat-
tern or network delay). The overall resilience superiority of
AREL3P is verified by the accuracy score for Ttot during the
“Adaptability” scenario, which is approximately equal to 45%
contrary to the zero accuracy of the SL models. AREL3P can
dynamically adopt to network conditions irrespective of node
specifications due to the continuous online training nature of
RL even after deployment. This is not the case for the offline
trained SL models, which remain static after deployment and
lack resilience to “dataset shifting” [20]. For completeness,
the graph also shows the accuracy scores of AREL3P in the
“Adaptability” scenario per individual components of Ttot ,
namely: 78% regarding Ttrans; 75% regarding Trcv; 82%
regarding Tp; and 58% regarding Treq. As it can be easily
observed, the corresponding “Native run” accuracy scores for
AREL3P Ttot and its components exhibit little differences
compared to their “Adaptability” scenario counterparts. This
reveals a solid performance behaviour.

In further, the graphs of Figure 6 portray the prediction
accuracy scores achieved by AREL3P for each task during an
exhaustive test of over 100 iterations. Notice that all minimum
values that we refer to next, correspond to accuracy scores per
task after iteration 1 (resp., maximum after approximately 30
iterations). Specifically, Graph 6(a) shows that the minimum
prediction accuracy score for Ttrans is 10% (resp., maximum is
approximately 85%). Regarding Trcv in Graph 6(b), the mini-
mum value is 7% (resp., maximum is 82%). Graph 6(c) denotes
that the minimum prediction accuracy for Tp is 10% (resp.,
maximum is 90%). Last, the minimum prediction accuracy for
Treq in Graph 6(d) is 7% (resp., maximum is 65%).

Commenting more on these results, we see that AREL3P’s
accuracy performance under dynamic conditions is quite sim-
ilar in all graphs during iterations 1 to 20, where we observe
a large increase in accuracy scores for all tasks. During
iterations 20 to 30, AREL3P’s accuracy performance continues
to increase in all graphs, albeit at a slower rate, and remains

at a maximum score between approximately iterations 30-40
(30-33 only for Treq in Graph 6(d)). This means that the model
stabilizes during these iterations due to the suitable ε-greedy
values. Finally, for the rest of the iterations after iteration 40,
we observe a high performance fluctuation and gradual decline
in all graphs, as well as an increase of confidence intervals.
This implies that AREL3P’s accuracy declines after approx-
imately iterations 30 to 40. We elaborate on the underlying
reasons for that decline when analyzing the results of Figure 7
next.

The results of Graph 7(a) demonstrate the prediction accu-
racy of our model for Ttot after each iteration. The highest
accuracy score achieved by AREL3P is approximately 43%
after iteration 29. Note that this score is less compared to
the scores in the graphs of Figure 6, which is due to the
fact that Ttot corresponds to predictions made for all end-
to-end devices of our setup in the context of the SCS use
case by using formula (7) to estimate the corresponding Ttot

predictions. These added number of predictions causes to
accumulate prediction errors for Ttot .

Commenting more on the exhibited performance pattern,
we observe a significant accuracy decrease after iteration
29. This pattern can be better understood by the illustrated
exploration-exploitation Graph 7(b). The Y-axis values corre-
spond to the gradually changing probability ratio ((see details
in Section III-B4)) between using exploration or exploitation
(ε−greedy with decay factor) in our underlying Q-learning
model. Notice that the optimal scores concentrate around iter-
ations 15-30. During a first phase (iterations 1 to 20) where
accuracy scores raise rapidly in Graph 7(a), the probability of
the exploration strategy drops from 45% to 8% (resp., it grows
from 55% to 92% for the exploitation strategy). Evidently,
a higher exploration probability has a negative impact on
AREL3P’s prediction accuracy, as this strategy picks actions
randomly. On the contrary, a higher exploitation probability
improves accuracy since predictions are made after the trained
Q-learning model.

Nevertheless, if exploitation probability reaches too high
(i.e., 96% - 100%), this does not improve the AREL3P
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Fig. 6. Accuracy scores against testing iterations for (a) Ttrans, (b) Trcv , (c) Tp and (d) Treq.

Fig. 7. (a) Accuracy scores of Ttot and (b) Exploration-Exploitation ratio.

prediction accuracy as demonstrated in a second phase of iter-
ations (iterations 20 to 40). Having a correspondingly very low
exploration ratio (i.e., 4% - 0%, particularly during iterations
35 to 40), leads to AREL3P being unable to adopt sufficiently
to new samples, hence impacting our model’s adaptability and
resilience to changes in the network environment. The lat-
ter provides also an explanation on why the accuracy scores
remain steady at the beginning of phase two and then decrease
gradually up until the end of this phase.

Finally, our model uses only the exploitation strategy during
a third and last phase (iterations 40 to 100). Without explo-
ration, all accuracy score results inevitably drop and exhibit a
decreased confidence due to a high statistical deviation. This
proves that the AREL3P prediction model needs to be updated
at a certain level to maintain its good prediction accuracy.
In conclusion, the optimal results w.r.t. Ttot accuracy are
observed during iterations 25 to 33, corresponding to a proba-
bility of 94-96% for using the exploitation strategy (i.e., 6-4%
for using exploration, respectively).

As an overall conclusion out of all the result in “Scenario 1
(Accuracy)”, AREL3P predictions of Ttot are resilient to

dynamic environment conditions, hence achieving accuracy
levels between 40-45%, unlike the zero accuracy and corre-
sponding lack of resilience of SL models. Also, we can con-
clude that AREL3P requires both exploitation and exploration,
with the optimum ratio between the two being approximately
94-96%:6-4%.

2) Scenario 2 (VNF Placement Efficiency): The results
presented below denote that AREL3P leads to good place-
ment decisions, nearly as good as the ones made by the best
benchmark predictions out of all SL model options (therefore,
notated as “Best Benchmark”). Placement decisions after input
from AREL3P may not always lead to an optimal VNF place-
ment, however the selected locations are shown to yield a VNF
performance that is very close to optimal.

Figure 8 depicts the performance of a new VNF after its
placement. Recall that lower Ttot values indicate a better
performance. As seen, AREL3P and benchmark results are
very similar. This figure also shows that the AREL3P outper-
forms both the Traditional method and the Random method for
placing VNFs in many scenarios on the X-axis. This is because
the two latter strategies do not consider the VNF performance.
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Fig. 8. Ttot of the new VNF after instantiation.

Fig. 9. Node selection from Traditional, Random, Benchmark and AREL3P
approaches.

As for the Traditional placement method achieving optimal
results in some scenarios (25 - 27), the latter comes at the
(undesired) cost of overloading the placement node afterward
(see Figure 10).

Moving forward to the results of Figure 9, the graph demon-
strates the placement performance of all four VNF placement
algorithms in a total of 27 scenarios. Notice that the Traditional
approach always places a new VNF at the CN 1. This is
because its decisions are based on the filters scheduler, where
the resources such as memory (RamFilter) and disk space
(DiskFilter) pose the highest influence among filters. In this
testbed, CN 1 has always the most resources because we only
change the load during the test. Considering the RamFilter,
the memories of CN 1 and CN 2 are the same or greater size
than CN 3. Furthermore, regarding the DiskFilter, the CN 1
possesses the largest disk capacity, followed by CN 2 and CN 3
respectively.

The results from Best Benchmark and AREL3P are alike.
Both models mostly select CN 2 to place a new VNF, followed
by choosing CN 1 and CN 3, but none of them selects any CN
for a new VNF in the scenario 27. The placement decisions
of both models differ in the scenarios 1 - 6. The Benchmark
model selects CN 2 during scenarios 1-3 and CN 1 during
scenarios 4-6 because VNFs’ performances are best in those
nodes with their given loads. In contrast, AREL3P chooses
CN 2 in scenarios 1, 6 and CN 1 in scenarios 2-5. AREL3P’s
placement performance is poorer in these scenarios because
the AREL3P prediction model has around 50% accuracy (see
Figure 7) causing errors on AREL3P’s predictions and, eventu-
ally, leading to non-optimal VNF placements. However, these
errors are “acceptable” since the difference of Ttot between

Fig. 10. Load in the overloaded node and winner node after the instantiation.

CN 1 (running at a low load) and CN 2 (running at low/medium
load) are negligible, as illustrated in Figure 8.

In scenarios 7-9, the load for CN 2 is high, whereas the load
remains low for CN 1. Consequently, the Ttot predictions for
CN 2 are greater than those for CN 1. Both models select CN
1 for a new VNF.

In scenarios 10-15, the load of CN 1 is medium, while the
load for CN 2 is either low or medium. As a result, predictions
for CN 2 are lower than those for CN 1. Both models choose
CN 2 to place the new VNF.

In the scenarios 16-18, the load of CN 2 raises to high,
while for CN 1 it remains at a medium level. As a result,
predictions for CN 1 are lower than those from for CN 2,
causing to instantiate the new VNFs at CN 1 by both models.

In further, the load of CN 1 rises to high for scenarios 19-27.
CN 2 gets selected by both the Best Benchmark and AREL3P
for placing a new VNF during scenarios 19-24 because the
predicted values are the lowest. However, in scenarios 25 and
26, both models lead to selecting CN 3 for placing the VNFs.
This is due to the fact that CN 1 and CN 2 get rejected due to
the “no overload” check mechanism (see Section IV-B).

Last, the loads in all nodes are high for scenario 27. In this
case, no node passes the “no overload” check and the VNF
placement does not occur at all.

Analyzing the impact of load further, Figure 10 portrays the
loads in the overloaded node and the winner node that gets the
placement decision. In the overloaded node, its load after the
placement decreases to below the threshold (80%) in all sce-
narios. However, the load of the winner nodes’ remain under
the threshold for Best Benchmark and AREL3P, whereas when
these winner nodes apply Traditional or Random they become
overloaded in many scenarios. The latter indicates that Best
Benchmark and AREL3P can better handle the impact on
(over)load at nodes after placement decisions.

Finally, we compare the Quality of Decision (QoD) of all
four methods. QoD ranges from 0 to 3 based on two cri-
teria: “Best Ttot (Bt)” and “Not overloaded (No)”. For the
first assessment, the Bt will give one point to any placements
at the node with the least Ttot . For the second assessment,
as overloading a node is undesirable, No gives a reward of
two points when the winner nodes do not become overloaded
after the placement. The other results of the decision are not
be rewarded. Figure 11 depicts QoD of Traditional, Random,
Benchmark and AREL3P approaches. The Benchmark model
receives the best QoD scores in 26 out of 27 scenarios. The last
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Fig. 11. QoD scores of Traditional, Random, Benchmark and AREL3P
approaches.

scenario is not evaluated because no placement occurs. The
AREL3P approach is a runner-up with the best QoD scores
in 23 of 27 scenarios. Finally, the Random method and the
Traditional method prove to be the worst strategies with the
best QoD scores in 10 and 9 out of 27 scenarios, respectively.
From the results above, it is proved that the AREL3P can
achieve a performance that is near to the one by the Best
Benchmark. Therefore, AREL3P performs well w.r.t. VNF
placements for latency-sensitive and/or e2e applications.

V. STATE OF THE ART

A. Non ML-Based Approaches

In the context of Linear Programming (LP),
Cohen et al. [21] use LP-relaxation for VNF chain placement
in inter-Data Center Network (DSN) environments with bicri-
teria approximation factors. This solution, however, violates
size constraints by a constant factor. Bhamare et al. [22]
propose an Integer Linear Programming (ILP) model that
minimizes both traffic and total response time between in
multi-cloud environment. Their model also considers other
constrains such as total deployment costs and Service Level
Agreements (SLAs). Using ILP again, Bari et al. [23] apply
a model that minimizes the operational costs and increases
utilization by determining the number of necessary VNFs and
their locations.

Focusing on Mixed Integer Linear Programming (MILP),
Rocha and Verdi [24] present a traffic-aware model for VM
placement in DSNs, which places VMs w.r.t. traffic patterns.
Unlike that, Zhao et al. [25] combine a MILP model to
an efficient heuristic that is based on Lagrange’s relaxation
decomposition to optimize VMs placement and the overall
topology considering the dynamic traffic conditions of DSNs.
Taking a different approach, Mehraghdam et al. [26] propose
a context-free language for specifying VNF chains and then
provide a Mixed Integer Quadratically Constrained Program
(MIQCP) formulation for VNF chain placement.

There is, also, substantial work in the literature outside the
context of LP based on a variety of different algorithmic and
heuristic approaches. Even et al. [27] propose a randomized
approximation algorithm for path computation and function
placement. Their solution uses two optimization problems: (i)
“path computation”, which focuses on packet forwarding; and
(ii) “function mapping”, which focuses on load balancing.

The work of Xu et al. [28] proposes an algorithm for the
VNF placement that leverages the trade-off between energy
consumption and the probability of SLA violation.

Tajiki et al. [29] apply a mathematical approach to predict
traffic and, correspondingly, reallocate resources in SDN
networks in an effort to reduce the total packet loss while
increasing network throughput. The works of [30], [31] use
dynamic congestion pricing models for distributed resource
allocation. Both dynamic prices and dynamic user mobil-
ity prediction information per node are used to trade the
cost of a local resource for reduced e2e data transfer delay.
Lange et al. [32] apply Pareto-based heuristic approaches to
optimize VNF placement according to various metrics includ-
ing the latency of all devices, their resilience against both node
and link failures, and load balancing.

Regarding edge computing solutions, Aral and
Ovatman [33] design and present a replica placement
algorithm that targets latency improvement and cost reduction
w.r.t. the geographical locality of data during the dissemi-
nation process. Unlike that, the work of Yang et al. [34]
proposes a dynamic resource allocation framework based
on a fast incremental allocation heuristic that dynamically
performs resource allocation and a periodic re-optimization
algorithm that adjusts resources to maintain a near-optimal
edge operational cost.

Last, Clayman et al. [35] introduce three simple placement
algorithms based on different criteria, namely, (i) “Least Used
Host”, (ii) “N at a Time in a Host”, and (iii) “Least Busy
Host”. The first algorithm selects the host that has the least
number of virtual routers. The second algorithm allocates N
routers to a single host at once. Last, the third algorithm
chooses the host with the least virtual network traffic.

As an overall remark, the majority of non ML-based
approaches in the literature do not considered e2e delay.
Instead, they focus on resource allocation and/or VNF place-
ment after local-host system measurements. Therefore, they
can not address requests sensitive to e2e delay.

B. ML-Based Approaches

MLN has been studied in various aspects such as prediction,
classification or policy selection. However, none of them
consider the e2e delay.

The work of [36] by Jmila et al. adapts SVR to estimate
VNF resource requirements by predicting the CPU demand of
incoming traffic. The authors compare their results against those
of an Artificial Neural Network (ANN) and shown that SVR
outperformes ANN in terms of both accuracy and stability.

Shi et al. [37] proposed a MDP method to dynamically allo-
cate cloud resources for VNFs, followed by applying Bayesian
learning to predict the probability of resource reliability.

Rankothge et al. [6] propose a genetic algorithm for VNF
chain placement comprising of two modules: New function
provisioning and Scaling out/in. The earlier is responsible for
the resource allocation while the latter assigns a new set of
NFs and paths to satisfy the current networking demand.

The work of [38] studies a proactive ML-based approach
for VNF auto-scaling in response to dynamic traffic changes.
The authors evaluate seven different SL models for classifying
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“Positive” and “Negative” samples of traffic-load measurement
data, showing that ML improves QoS while saving significant
cost for both network owners and leasers over a time-series
moving average prediction approach. Also, Xu et al. [7]
implement a combination of MDP and learning algorithms to
optimize the policy of dynamic workload offloading in both
cloud and edge servers.

Finally, there are only a few pieces of (recent) work [2],
[3], [5] in the literature that use RL. Unlike these works, ours
uses specifically Q-Learning with certain advantages discussed
in Section II-A, focusing on end-to-end application level
performance predictions that are passed to well-established
orchestrators for taking efficient VNF placement decisions.
Tang et al. [2] tackle the auto-scaling problem by combining
MDP and RL. They apply MDP to find a tradeoff between
the achieved level of QoS and the VNF resource consump-
tion. Then, they use RL to define a threshold based policy.
Their results illustrate that this approach outperforms both a
static threshold and a voting policy methods. Chen et al. [3]
optimize two Deep RL Agents (RLAs), namely, a Short flow
RLA (sRLA) and a Long flow RLA (lRLA). The sRLA
optimizes the threshold for Multi-Level Feedback Queueing
(MLFQ) by applying Deep Deterministic Policy Gradient
(DDPG), while the lRLA determines the rates, the routes
and the priorities for long flows by implementing a flow
scheduler. Mijumbi et al. [4] propose a multi-agent learning
algorithm for virtual network resource management. These
agents learn an optimal policy from online feedback and
dynamically allocate network resources to virtual nodes and
links. Xiao et al. [5] propose NFVdeep to automatically deploy
Service Function Chaining (SFC)s for requests with different
QoS requirements. This work applies an adaptive, online, deep
reinforcement learning approach along with a serialization-
and-backtracking method and a policy gradient based method
to handle SFCs deployment in the real-time network with
variations and various service requests.

VI. CONCLUSION AND FUTURE WORK

This article presents an Adapted REinforcement Learning
VNF Performance Prediction module for Autonomous
VNF Placement (AREL3P) to enhance MANagement and
Orchestration (MANO) systems. Taking a different approach
from other solutions in the literature based on Supervised
Learning (SL), AREL3P adapts a particular type of RL,
namely Q-learning. To the best of our knowledge, our effort
is the first one in the literature to leverage RL predictions
for the purposes of ZSM. As validated by our meticulous
performance evaluation over a realistic testbed environment
and use case setup, our adapted Q-learning scheme exhibits
a better tolerance to network dynamics than SL-based mod-
els. This is due to the fact that Q-learning is an online
learning technique that allows to update the learning model
in operation, thus overcoming most of the raised feasibil-
ity and adaptability concerns faced by SL-based models. In
general, our results show that AREL3P yields more accurate
VNF performance predictions using end-to-end service level
information. The latter constitutes another novelty compared to

most existing works in the literature on VNF placement includ-
ing non ML-based ones. Specifically, AREL3P can predict
end-to-end service level VNF performance with a 40-45%
higher accuracy compared to SL models. We also conclude
that the optimal exploration-exploitation ratio for training our
Q-learning model is approximately 6-4%:94-96%. In addition,
our VNF placement tests prove that AREL3P receives the best
Quality of-Decision scores in 23 of 26 investigated scenarios
w.r.t. to our adapted SCS use case.

For future work, we will focus on applying ML at the level
of management and orchestration such as for the purposes of
scheduling or profiling. We also plan to study and to inte-
grate multiple levels of ML models. We believe that this can
play a key role in improving the efficiency of VNF placement
decisions, especially for end-to-end or delay-sensitive VNFs.
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