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Abstract—Due to imperfections in transmitters’ hardware,
wireless signals can be used to verify their identity in an
authorization system. While deep learning was proposed for
transmitter identification, the majority of the work has focused on
classification among a closed set of transmitters. Malicious trans-
mitters outside this closed set will be misclassified, jeopardizing
the authorization system. In this paper, we consider the problem
of recognizing authorized transmitters and rejecting new trans-
mitters. To address this problem, we adapt the most prominent
approaches from the open set recognition and anomaly detection
literature to the problem. We study how these approaches scale
with the required number of authorized transmitters. We propose
using a known set of unauthorized transmitters to assist the
training and study its impact. The evaluation procedure takes
into consideration that some transmitters might be more similar
than others and nuances these effects. The robustness of the RF
authorization with respect to temporal changes in fingerprints
is also considered in the evaluation. When using 10 authorized
and 50 known unauthorized WiFi transmitters from a publicly
accessible testbed, we were able to achieve an outlier detection
accuracy of 98% on the same day test set and 80% on the
different day test set.

Index Terms—Transmitter Identification, Deep Learning, Open
set recognition, authorization, physical layer authentication, RF
Fingerprint

I. INTRODUCTION

With the growth in the number of wireless connected
devices, securing them has become more challenging. Unlike
wired communications, a wireless network is accessible by
any device with sufficient transmit power. This makes au-
thentication, the process of verifying the identity of devices,
challenging. After authentication, devices are granted access,
the process known a authorization. While cryptographic meth-
ods are used for authentication, many devices like Internet-of-
Things (IoT) devices don’t possess the energy nor computa-
tional power to run them, leading to many authentication based
attacks [1].

Physical Layer Authentication (PLA) leverages the dynam-
ics of physical layer attributes to address these challenges and
to enhance wireless security [2]. While active PLA typically
require changes in transmitters, passive PLA is performed on
the receiver side, making it more practical. Passive PLA uses
RF fingerprints; combining channel state information (CSI)
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and transmitter hardware fingerprints to authenticate devices.
Transmitter fingerprints result from the imperfections in their
RF chain components like ADCs, power amplifiers, etc. The
interaction between these non-idealities makes signals from
identical transmitters exhibit unique characteristics typically
modeled as carrier frequency offset, IQ imbalance, among
others [3].

While there has been many approaches for using RF
fingerprints based on handcrafted features [4]–[14], it was
shown to be highly dependent on the quality of the receiver
hardware [15] and requires manual feature engineering which
are protocol dependent. For these reasons, recently, there has
been wide interest is using deep learning approaches to address
this problem [16]–[26]. Deep learning has the ability to learn a
richer set of features from raw IQ samples leading to improved
performance over manually selected features, as has been
demonstrated in [16].

While previous deep learning work in this area has ad-
dressed many of the challenges of RF fingerprinting, this body
of work has posed the problem as a closed set classification
which assumes a known set of transmitters, except for [25]
and our prior work [26]. No matter how large the set is, if any
new unseen transmitter gets within communication range, its
signal will get misclassified leading to security vulnerabilities.
This calls for open set approaches which are capable of
rejecting signals from unseen transmitters. While [25] pro-
posed their own approach to address this problem, rejecting
samples from a new distribution is not a novel problem for
the machine learning community. A plethora of approaches
have already been proposed for similar problems in computer
vision, natural language processing, intrusion detection, etc.
Two problems are most relevant; openset classification [27]:
classifying among known classes and rejecting unseen classes,
and [28]: identifying abnormal samples. Instead of reinventing
the wheel, we aim to adapt the most prominent approaches for
these problems and evaluate their performance. Unlike other
domains, transmitter authorization has its own challenges and
requirements: (1) RF fingerprints arise from random channel
and hardware variations, hence, generalizable conclusions can
not be derived from single point evaluations (2) the number
of authorized transmitters is a system requirement that can
vary significantly (3) the ease of collecting data (compared
to image classification, for instance) raises questions about
how to construct a training dataset, and (4) the robustness
of the approach against time varying fingerprints needs to be
evaluated.

In our previous work [26], which we extend in this work,
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we started investigating a few approaches from the existing
openset recognition literature. In this work, our contributions
can be summarized as follows:
• We formulate the problem of rejecting signals from

unseen transmitters as both an openset recognition prob-
lem and an anomaly detection problem. Then we adapt
and evaluate several well-established approaches to our
problem.

• We discuss several considerations for network architec-
ture design for transmitter authorization. We show that
making minor changes to the neural network architecture
and data labeling strategy yields a conceptually different
approach with different performance. We show that clas-
sification within a closed set is not always an indicator
for performance in an open set.

• We compare the performance of different approaches
with respect to the number of authorized transmitters
required by the system. We propose using a set of known
unauthorized transmitters and show its benefits.

• We show that the results obtained are dependent on the
choice of transmitters and time of evaluation. Then we
address this by showing results in terms of statistics of
multiple transmitter choices using data captures on same
day as training and different day.

II. RELATED WORK

Physical Layer Authentication (PLA) can be classified as
active or passive. Active PLA typically overlays a tag over
the message used for authentication, thus requiring changes
to the physical layer of the transmitters [29], [30]. Passive
PLA on the other hand uses the channel state information and
the RF fingerprint due to hardware imperfections to identify
transmitters [3], requiring no change to transmitter signals, and
hence is easier to apply. Approaches for passive PLA either
use a set of handcrafted features or use deep learning directly
on IQ signals.

1) Handcrafted Feature PLA: Feature based PLA has either
considered transmitter fingerprints or channel state information
to distinguish between transmitters. A variety of features were
considered as transmitter fingerprints in the literature [31].
These features include transient ones like the patterns at
the start of packets [6], and steady-state ones like carrier
frequency offset [4], IQ imbalance, sampling frequency offset
or a combination of these features [5], [7]–[11].

Other works have based their features on channel state
information (CSI). This kind of approach has been considered
for SISO [12], [13] and massive MIMO [14] communications.
Combining CSI with transmitter fingerprints has also been
proposed [32]. Gaussian Mixture Models [12], [33], [34] and
statistical hypothesis testing [35] were proposed for transmitter
authorization using a set of manually designed features.

2) Deep Learning Based PLA: In contrast to handcrafted
features, deep learning approaches are able to extract better
features from the high dimensional signals, thus leading to
higher accuracy compared to feature-based approaches [16],
gaining widespread interest recently [16]–[24]. Some of these
works fall under the category of active PLA, requiring changes
in the signal, while others are passive.

In active approaches, modifications are intentionally added
to the signal to improve classification. A protocol inserting
IQ imbalance and DC offset impairments to improve the RF
fingerprints was proposed in [36], [37]. FIR filtering was also
considered in [38] to optimize RF fingerprints. The majority
of the work falls under the passive category and has focused
on the data representation, the network type, or a specific
transmitter characteristic.

a) Data representation: The work in [19] has compared
different data representations like wavelet transform and Short
Time Fourier transform while in [39], the authors considered
recurrence plots. Applying the Hilbert-Huang transform to the
signal and deep residual networks were proposed in [40].
Higher order statistics like bispectrum were proposed in [41].

b) Network Architecture: In [24], authors compared dif-
ferent types of neural networks and machine learning tech-
niques. CNNs and RNNs to classify IoT devices over a wide
range of SNR in [42]. In [22], multiple CNN architectures
were tested on indoor and outdoor data with a focus on
cognitive radio applications. Complex neural networks were
proposed in [20] using convolutional and recurrent architec-
tures. The effect of a dynamic channel on deep learning RF
fingerprinting along with the type of data was the focus of
the work in [43]. In [17], the authors have considered a
multisampling neural network using LOS and NLOS datasets.
Denoising autoencoders were also proposed for the same
problem [44].

c) Transmitter Characteristic: Some works used deep
learning while focusing on a specific type of impairment.
The effect of power amplifier nonlinearity and signal type on
classification performance was studied in [23]. In [45], CNNs
were used to learn IQ imbalance as a modulation-independent
way of transmitter identification.

The main limitation of this body of work is that it focuses on
classification among a closed set of known transmitters. To the
best of the authors’ knowledge, two works have considered the
problem of using deep learning for transmitter authorization
that generalizes to unseen transmitters. The first work has
proposed a novel approach for outlier detection that works
on a per-packet basis [25]. The classifying neural network
is applied to slices of the packet and statistics of the slices
predictions are compared to a threshold. This approach is
discussed further later in this work in Section V-4. In their
work, several datasets using WiFi and ADS-B were considered
using 50, 250, and 500 devices. The data is said to have been
captured "in the wild" with no further details provided. We
only mention their results most similar to our work; using 50
authorized WiFi devices, they were able to detect new devices
with an accuracy of 73% at the cost of a drop in classification
accuracy from 63% to 43%.

The second work that has considered this problem was
our previous work [26], which is extended in this work.
In [26], three approaches based on open set recognition were
contrasted using a dataset consisting of WiFi preambles cap-
tured in a publicly accessible wireless testbed [46]. We have
considered the effects of the number of authorized transmitters
and demonstrated the benefit of using known outliers in
training. Using 40 authorized transmitters, we were able to
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identify new devices from authorized devices with an accuracy
of 84%. The improved results obtained in our work can be
partially attributed to the way the training and testing samples
were generated, as discussed in Section VI.

Compared to [26], in this work, we consider more ap-
proaches that help to improve transmitter authorization with
fewer transmitters. More analysis and insight is provided
for the results. We further explore considerations for neural
network architecture design with regard to outlier detection
and how it differs from classification. The dataset used is
expanded to include more transmitters, captured over a period
of five days, increasing the confidence of our results and
exploring temporal generalization.

III. CLASSIFICATION, OPENSET RECOGNITION, AND
ANOMALY DETECTION

In this section, we highlight the difference between classifi-
cation, openset recognition, and anomaly detection. A closed
set classifier determines boundaries that separate a pre-defined
finite set of classes, shown as colored circles in Fig. 1a. As
such, for samples from new classes (shown as squares in
Fig. 1a) the classifier will predict the nearest class. This poses a
grave security risk for a wireless authentication system. Since,
it is impossible to train a classifier on all the transmitters in
the world, an approach that generalizes to signals from new
unseen transmitters is needed.

We consider two formulations to address this limitation.
The first one is posing the problem as an anomaly detec-
tion [28]. Anomaly detection aims to identify instances which
are different from the normal. Hence, it finds boundaries
around the seen classes (considered as normal cases), as
shown in Fig. 1b. The limitation, however, is that it treats all
authorized transmitters as a single class. An overestimation
of the determined boundaries could lead to errors in outlier
detection as illustrated for outlier 2 in Fig. 1b. Open set
classification [27] takes an approach similar to anomaly detec-
tion while additionally classifying among the known samples.
Hence, it isolates each class on its own as shown in Fig. 1c.

Classifying among transmitters using only received signals
in a robust manner is a challenging problem on its own.
Extending it to open set poses even more challenges. Unlike
approaches using handcrafted features [12], [31], [33], [34],
which use well separated features like CSI, in order to leverage
the power of deep learning, we use raw IQ samples. The
challenge for the deep neural networks is to learn features
which separate the known classes from the unknown classes,
for which no training samples are available.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a finite set of authorized transmitters given
by A = {A1, A2, · · · , A |A |} that are allowed to send data
to a receiver R, where |A| is the size of the set A. When
some transmitter T sends a set of symbols x, the signal
received by R is fT (x, t). The function fT represents the time
variant RF fingerprint, which captures the transmitter hardware
fingerprints and wireless channel effects. Since the channel

depends on the environment surrounding the transmitters, it is
more prone to temporal variation.

The authorization problem can be formulated as shown in
Fig. 2: receiver R receives a signal y from some transmitter
T and wants to determine whether the transmitter T belongs
to the authorized set or not without decoding y. This can be
formulated as the following hypothesis test:

H0 : y = fT (x, t),T ∈ A
H1 : y = fT (x, t),T < A

∀ t (1)

Here, H0 corresponds to an authorized transmitter and H1
corresponds to an outlier.

Additionally, in cases where each authorized transmitter has
different privileges, we might be interested in classifying it
within the authorized set, which can be formulated as finding
Â that is most likely to have generated y, defined as

Â = argmax
T

Pr( fT (x, t) = y|y), T ∈ A, ∀ t (2)

While the anomaly detection problem addresses only prob-
lem (1), the open set problem addreesse both (1) and (2). Since
classification has been studied extensively in the literature, our
main focus in this work is on the results of outlier detection
when using either formulation.

To improve outlier detection, we propose using an additional
class of known outlier transmitters K = {K1,K2, · · · ,K |K |},
where K 1 A. Samples from transmitters in K will be used
during training to assist the outlier detector to differentiate
between authorized and non-authorized transmitters. But still,
the evaluation of any outlier detector is done using a set of
unknown outliers O such that O∩K = ∅. In practice, samples
from the set K can be obtained by capturing data from a finite
number of non-authorized transmitters.

V. MACHINE LEARNING APPROACHES

In this section, we discuss machine learning approaches to
address this problem. An approach consists of a neural network
architecture, followed by an output processing stage to decide
whether a signal is an outlier or not. For some approaches, the
sensitivity to outliers can be changed by modifying a threshold.

1) Discriminator (Disc): The most intuitive approach for
outlier detection is to train a classifier that outputs a binary
decision on whether the signal is an outlier or not. The
main limitation of this method is its complete reliance on
the known outlier set for training. In terms of architecture,
the discriminator has as single scalar output z as shown in
Fig. 3a. z is generated by a sigmoid and takes a value between
0 and 1. The labels for authorized transmitters and outliers are
l = 0 and l = 1, respectively. A threshold γ is used to make a
decision with H1 declared if z > γ; H0 is declared otherwise.

2) Discriminating Classifier (DClass): To detect outliers
and to classify among the authorized set, the most straightfor-
ward approach is to train a network with |A|+1 outputs, where
the additional class corresponds to outliers. This classifier is
expected to perform better than Disc, as individually labelling
transmitters should help it extract better features. To train
this network, we also need known outliers similar to Disc.
A signal is classified as an outlier if the maximum activation
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Class 1

Class 2

Class 3

Class 4
Out.1

Out.2

(a) Classification

Class 1

Class 2

Class 3

Class 4
Out.1

Out.2

(b) Anomaly Detection

Class 1

Class 2

Class 3

Class 4
Out.1

Out.2

(c) Openset Recognition

Fig. 1. Known classes are depicted as circles and outlier classes as squares. Classifiers would mistakenly label oultiers. Anomaly detector rejects outliers but
cannot distinguish among the known classes. Openset classification classifies among known classes and rejects outliers.

...

Authorized

Open Set

Receiver

Fig. 2. Signal y is received by receiver R. We want to determine if it was
sent by an authorized transmitter in the set A or a new unseen transmitter.

corresponds to the last class; it is considered authorized
otherwise. For this architecture, it is not straightforward to
design an adjustable threshold as in Disc.

3) One Vs All (OvA): A simple way to generalize Disc to
perform multi-class classification is to train one discriminator
network for each of the |A| authorized transmitters. However,
this needs |A| networks the size Disc each with a feature
extractor network. A better way to scale the discriminator is
shown in Fig. 3c. In this approach, all |A| binary classifiers
share the same feature extractor similar to what was proposed
in [47]. Unlike Disc, OvA does not require a known set of
outliers as long as |A| ≥ 2, since for binary classifier i, signals
from all transmitters j , i are considered outliers. The output
of this network will be a vector z of |A| real numbers such
that 0 ≤ z ≤ 1, where 0 and 1 are the vectors of all-zeros
and all-ones, respectively. Following the notation in [47], the
labels for a sample from authorized transmitter Ai will have
li = 1 and lj = 0 ∀ j , i and a known outlier, if used, will
have l = 0.

The decision is based on |A| thresholds given by γγγ, where
element γi is the threshold for zi . Each binary classifier i
declares a sample to belong to its class if zi > γi . A signal
is declared to be an outlier (corresponding to H1), if all
discriminators declare the signal to be not within their class
(z ≤ γγγ), and to be within the authorized set (corresponding to
H0) otherwise.

4) OpenMax (OpMx): OpenMax is a popular approach for
openset recognition [48]. It consists of modifying a trained
classifier with |A| softmax outputs using statistical analysis
of activations to detect outliers. The output activation vector
v, obtained prior to softmax, is processed to generate a
modified activations vector v′ having |A| + 1 outputs, with
the additional output corresponding to outliers. The modified
activation vector is given by

v′i =

{
viωi, i ∈ {1, · · · , |A|}∑ |A |

i=1 vi(1 − ωi) i = |A| + 1
(3)

where ωi represents our confidence in the membership of the
given sample to class i. The concept behind calculating the
vector ω is that the activation vectors of samples belonging
to the same class are similar, while those belonging to unseen
classes are different from all classes. This is implemented by
calculating the mean activation vector v̄i for each class i using
the training set. The distance di(v) = ‖v̄i − v‖ represents the
similarity of the sample generating vector v to class i. On the
training set, for the correctly classified samples, the distance of
each sample belonging to a class i is calculated. Using extreme
value theorem [49], the tail of the distribution is calculated
by fitting the τ samples with the largest di to a Weibull
distribution having parameters (mi, ηi). Then, for the α classes
having the highest activations, ωi is calculated by evaluating
the probability of belonging to the tail of distribution of class i
using

ωi = 1 − Rα(i) ×WeibullCDF(di(v), (mi, ηi)) (4)

where Rα(i) = α−i
α is a calibrator with parameter α and

WeibullCDF(x, (m, η)) = exp (− (x/η)m), as explained in [48],
[50]. After calculating the modified activation vector v′, un-
certain outputs are rejected if the confidence is below some
threshold ε . This is done by applying the softmax function to
v′ to obtain the vector z. Then we calculate i = argmax(z);
the sample is considered an outlier if i = |A| + 1 or zi < ε .
Since OpenMax is based on a classifier, it does not benefit
from known outliers in training.

The approach proposed for transmitter authorization in [25]
consists of modifying a classifier similar to OpenMax. How-
ever, their approach only uses the maximum value of the
softmax output, while OpenMax uses the entire activation
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Output

(b) DClass

Binary 
Class. 1

2...

Input
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Feat.
Extr.

Output

(c) OvA

Input

Bottleneck

Encod.

Output

Decod.

(d) AutoEnc

Class.

Input
Features

Feat.
Extr.

Output

(e) OpenMax

Fig. 3. High level architecture of the proposed methods. Autoencoder consists of an encoder and a decoder. The remaining ones consists of a feature extractor
followed by one or more classifiers.

vector. Hence, it uses more information from the neural
network output.

5) AutoEncoder (AutoEnc): Autoencoders are commonly
used for anomaly detection [28]. They consist of an encoder
mapping the data into a smaller dimension, the bottleneck,
followed by a decoder trying to reconstruct the original input.
During training, autoencoders learn the distribution of the
training data. When the autoencoder processes anomalous
data, it generates a higher reconstruction error, which can
be used to detect anomalies. During training, the objective
of the autoencoder is to reduce the mean squared error,
MSE = ‖y − ŷ‖ where y is the input and ŷ is the output
of the autoencoder. A signal is considered an outlier if this
error is bigger than some threshold γ.

To summarize, the proposed approaches are either based
on classifiers (Disc, DClass, OvA, OpMx) or uses signal re-
construction (AutoEnc). The classifier-based approaches share
a neural network-based feature extractor and differ only in
the output labels and the last layers activation function. Some
of the classifier-based approaches, beside outlier detection,
classify the authorized signal among the set A. As for the
known outlier set K, it is necessary for the training of some
approaches, improves the performance of others, and cannot
be used in some other approaches. Table I provides a high
level comparison of approaches.

For the approaches which have an adjustable threshold, a
tight threshold would lead to signals from authorized trans-
mitters being mistakenly rejected (high probability of false
alarm PFA) and a loose threshold would fail to recognize many
outlier signals (low probability of detection PD). The method
of setting the thresholds along with any hyperparameters is
discussed in Appendix A.

TABLE I
FEATURES OF APPROACHES

Approach Works with K? Adjustable Threshold Classifies A
Disc Necessary Yes No

DClass Necessary No Yes

OvA Yes Yes Yes

OpMx No No Yes

AutoEnc No Yes No

VI. DATASET

The dataset was captured using off-the-shelf WiFi modules
(Atheros 5212, 9220, and 9280) as transmitters and a software

defined radio (USRP N210) as a receiver. The capture was
performed in the Orbit testbed grid [46]. Orbit testbed grid
consists of 400 nodes arranged in a 20×20 grid with a
separation of one meter. The receiver was chosen near the
center of the grid and 163 nodes surrounding it were used as
transmitters.

The capture was done over Channel 11 which has a center
frequency of 2462 MHz and a bandwidth of 20 MHz. Captures
were taken at a rate of 25 Msps, over a duration of one second.
After the IQ capture was complete, the packets were extracted
using energy detection. The number of packets captured during
this period for each transmitter varied according to the WiFi
rate control and their total number is over 300,000.

While it is possible to use the entire packet payload for
training, this would make the data contained in each slice
different. In our previous work [23], we have shown that using
the slices with the same data leads to a better performance than
using slices containing random data. This was also verified in
[43]. Hence, from each captured WiFi packet, we used the first
256 IQ samples containing the preamble. The IQ samples were
normalized to have a unity average magnitude without any
further preprocessing. For transmitter authorization in [25], the
entire packet payload was used for training and inference was
done on slices of a packet, which are combined to obtain one
decision per packet. While this method leads to having more
data, it makes the learning task of the neural network harder,
as was previously demonstrated in [23], [43]. Since in this
work we only consider preambles and due to the similarity of
their approach to OpenMax, we don’t consider their approach
in our evaluation.

As was pointed out in recent works [51], [52], the fin-
gerprints learned by neural networks can be dependent on
the channel and not the transmitter. This causes significant
degradation in the recognition performance if the testing data
was captured on a different day than the training capture. To
this end, using the previous setup, we made five data captures
over 5 different days. The data from the first capture is the
one used in our previous work [26], and contained data from
less transmitters. Also, it was made two months earlier than
the remaining captures. The data from the last day was kept
exclusively for testing.

VII. NETWORK ARCHITECTURES

In this section, we describe the architecture of the proposed
networks. Since the feature extractor is an essential component
for Disc, DClass, OvA, and OpMx, we consider several
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Fig. 4. The residual, feature processing, and decision blocks used as building
blocks for the neural networks considered in this work.

Input 256×2

Resid. f=16

MaxPool (2,1)

Resid. f=32

Conv 16 (1,1)

Feat. 64×16

MaxPool (2,1)

Feature
Extractor 2

Input 256×2

Resid. 16

Resid. 32

MaxPool (2,1)

Resid. 64

Conv 16 (1,1)

Feat. 64×16

MaxPool (2,1)

Feature
Extractor 1

Input 256×2

Conv 16 (3,2)

MaxPool (2,1)

Conv 8 (1,1)

Feat. 64×16

MaxPool (2,1)

Feature
Extractor 3

Conv 16 (3,2)

ReLU

ReLU

Fig. 5. The three different architectures compared in this work. Feature
extractor 2 was eventually selected.

alternatives for it and compare to the architecture used in our
previous work [26]. All the architectures in this work are built
using the blocks shown in Fig. 4; the residual block which has
f filters [53], the feature processing block, and the decision
block using activation function Z to generate a given number
x outputs.

A. Architecture Comparison

For choosing the best architecture and contrasting to the
architectures in our previous work, we use OvA as a bench-
mark using data from 10 authorized transmitters (|A| = 10)
collected on the same 4 days and no known outliers. Details
for the network training is deferred for later in the paper.

We consider 4 architectures of OvA. OvA 1 (from [26])
which has |A| feature processing block and OvA 2, which
uses the same feature extractor 1 with a common feature
processing blocks as shown in Fig. 6. Moving from OvA 2 to
OvA 3 and OvA 4, we use smaller feature extractors 1,2, and
3 respectively which are described in Fig. 5. The summary of
each architecture and the number of trainable parameters are
shown in Table II from which we see that from OvA 1 to OvA
4 the network gets smaller.

Input

 256×2

Feature 
Extractor

 1

Feature 
Processing

Decision 1 op
Sigmoid Activ.

...

Feature 
Processing

Decision 1 op
Sigmoid Activ.

Feature 
Processing

Decision 1 op
Sigmoid Activ.

(a) OvA used in our prior work [26] with a feature processing block per
output.

Input

 256×2

Feature 
Extractor

 

Feature 
Processing

Decision 1 op
Sigmoid Activ.

...

Decision 1 op
Sigmoid Activ.

Decision 1 op
Sigmoid Activ.

(b) OvA used in this work having a shared feature processing block. Several
feature extractors were compared and eventually Feature Extractor 2 was used.

Fig. 6. We considered two OvA architectures, the first having a feature
processing block for each output, and the second using a common one.

TABLE II
OVA NETWORK SIZES

OvA Description # of params.

1 Feat. Ext. 1 + 10 Feat. Process. 890,170

2 Feat. Ext. 1 + Common Feat. Process. 152,170

3 Feat. Ext. 2 + Common Feat. Process. 99,754

4 Feat. Ext. 3 + Common Feat. Process. 46,226

Due to the random initialization of the weights, along
with randomness in batch division during training, the same
network trained using the same data can give different results.
To have confidence on the significance of our results, each
network is trained from scratch using the same data for ten
repetitions and the statistics of the results are shown. Fig 7a
shows the classification results of the authorized nodes. The
larger networks perform better, as expected; by having more
learning capacity, the networks are better at distinguishing
between transmitters. But looking at the accuracy of outlier
detection in Fig. 7b for OvA 1 and 2, we see a rather surprising
result; the largest network actually performs worse than some
of the smaller networks. Since we want the network to
generalize to new transmitters, we want each binary classifier
of OvA to learn only the characteristics of its designated
transmitter, while rejecting any other transmitter. But once
the learning capacity of the per transmitter branches increases
beyond a certain point, it starts to learn the characteristics of
the remaining transmitters. Although this improves classifica-
tion and minimizes training and validation loss, it does not
generalize well to outlier detection.

As we decrease the capacity of the common feature ex-
tractor in OvA 2 to 4, the performance of both classification
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Fig. 7. Average performance of different architectures of OvA shown as a
blue solid line. Box plots represent the variation due to training 10 repetitions
of the same network using the same data. Improvement in classification is not
necessarily correlated with improvement in outlier detection.

and outlier detection degrades. Since this shared block extracts
features and does not make a decision, the more learning ca-
pacity it has, the better the results. Although feature extractor 1
performs about 1% better, as a design choice, we use feature
extractor 2 for the rest of this work because of its smaller
network size. For the remaining of this work, we use OvA 3,
having the common feature processing architecture.

B. Architecture Description

The architectures for Disc, DClass, and OpMx consist of
Feature Extractor 2 followed by a feature processing block
and a decision block with 1 sigmoid, |A|+1 softmax, and |A|
softmax respectively. Disc was provided with a larger feature
processing network having an additional Dense network with
100 neurons after the flattening to be comparable in size to
the other networks. The autoencoder architecture is shown in
Fig. 8. It consists of encoder with a bottleneck consisting of 32
samples followed by a decoder which reconstructs the signal.

The number of trainable parameters of each network is
shown in Table III. The network sizes of OvA, DClass, and
OpMx scale with |A|1. AutoEncoder and Disc have a fixed
number of parameters for any value of |A|. Notice that OvA
and OpMx have an identical number of parameters while
DClass differs by only an additional 81 parameter.

1In our previous work [26], since we repeated the feature processing block
for OvA, the network size increased with |A | at a much higher rate
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Op 256×2
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Fig. 8. The architecture of the autoencoder.

From an architecture perspective, Disc, OvA, OpMx, and
DClass are very similar. They share the same feature extractor
and feature processing blocks, which constitute most of their
neural network. The difference between these methods come
from the type of activation function, data labeling, and post
processing performed. These differences lead to conceptual
differences in the approach as we have discussed, leading to
different characteristics as we summarized in Table I, and will
lead to significantly different performance.

TABLE III
NETWORK SIZE

Net # of trainable prams.

OvA 98944 + 81 |A |
Disc 127,605

DClass 99,025 + 81 |A |
AutoEnc 109,362

OpMx 98944 + 81 |A |

VIII. EVALUATION PROCEDURE

In this section, we describe the evaluation procedures used
through out this work. We discuss the evaluation metrics used,
steps to avoid the dependence on the specific division of the
dataset to different sets (A, K, O), and the way we evaluate
how the approach generalizes across time.

As stated earlier, for many of these networks, there is
a threshold which defines the trade-off between detection
and false alarm. This tradeof is typically represented by a
Receiver Operating Characteristic (ROC) curve. To compactly
visualize the results, we consider the area under the ROC curve
(AUC), which measures performance in a manner independent
of threshold [54]. Still, when the network is deployed, we
have to choose a threshold. Given a specific threshold-set
as discussed in Appendix A, we calculate the accuracy of
correctly identifying outliers over a balanced test set, such
that random guessing would yield a 50% accuracy. In that
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Fig. 9. Box plot of the outlier detection accuracy of OvA is shown for
several realizations of the sets. For each set realization, a network is trained
for 10 repetitions. The center line represents the median, the box represents
the first and third quartiles, and the whiskers represent the range, except for
outlier points which are represented as circles.

case, the accuracy is the average of the performance on
the authorized samples given by 1 − PFA , and the outliers
given by PD . Classification accuracy results included for the
authorized samples are evaluated for a balanced version of
the test set having the same number of the samples from
each authorized transmitter, where any trivial or random guess
would yield an accuracy of 1/|A|%. Note that as stated earlier,
not all methods have an adjustable threshold (as summarized
in Table I) and hence won’t have a corresponding AUC result.

Unlike with classification, where typically all transmitters
available are used, outlier detection involves dividing the
transmitters into sets of authorized transmitters, outliers, and
possibly known outliers. Since RF fingerprints are random,
some transmitters are more similar than others, and a compre-
hensive evaluation cannot be done using only one realization of
the sets. This adds another source of variability to our results,
besides the inherent randomness in training neural networks.
To demonstrate this, we train OvA using 10 authorized nodes
and evaluate it using 63 outlier nodes picked randomly from
the 163 transmitters. Ten random realizations of these sets are
compared and for each we train 10 repetitions. The results
are shown as a box plot in Fig. 9, from which we can
see up to 9% difference in the median due to the different
realizations of the sets. This is more significant than the
difference between the first and third quartiles due to training
randomness which did not exceed 3%. Based on these findings,
our evaluation considers multiple realization of the sets while
only considering one repetition.

As for assessing the ability of our network to generalize
through time, we create two test sets: a same-day test set which
was captured on the same days as the training set and the
different-day test set, which was captured on a different day
than the training data.

Based on the previous considerations, we describe our
evaluation procedure. For certain values of |A|, |K |, and |O|,
we randomly partition the dataset to A, K, and O to form
10 realizations of {A,K,O}. All approaches are evaluated
using the same 10 realizations and the results are shown in
terms of mean and standard deviation. For the training data
and the same-day test data, we use only samples from the

captures made on the first four days, while the last day capture
is entirely left for different day testing.

Given a realization of A, K, and O, for training and
validation, we use 70% of the samples belonging to A, and
all the samples belonging K, from the same day data. The
combination of this data is split into 80% for training and
20% for validation. The same day test set contains all samples
from O and the remaining 30% of A. For different realizations
of the sets, the dataset can get highly imbalanced. To avoid
degenerate solutions, where the network always predicts the
class with the majority of samples, the training loss is weighted
based on class frequency. As for the different day test set, it
is obtained by combining all samples from A and O from the
last day capture.

The training used 10 epochs using the ADAM optimizer
with a learning rate of 0.001. The weights corresponding to
the epoch which produced the lowest validation loss are kept.
Data was first normalized, then augmented by adding noise
with a variance of 0.01 and applying a uniform random phase
shift. Cross-Entropy was used as the loss function for Disc,
DClass, OvA, and OpMx with classes weighted depending on
the number of samples of each class. AutoEnc used MSE loss.

IX. TRANSMITTER SET SIZES EVALUATION

In this section, we explore the effect of changing the size
of the required authorized set A, and evaluate the effect of
having a known outlier set K and its size on the ability of
the network to distinguish authorized signals from outliers.
Throughout this Section, we used |O| = 63 for the evaluation.

A. Authorized set

We start the evaluation by considering no known outliers,
i.e, |K | = 0. We want to know how large the set A has to
be for good outlier detection and what performance can be
achieved thereof. Results are shown for AUC and accuracy
in Fig. 10a and Fig. 10c for the same-day test. For OvA, we
see that as we increase the number of authorized nodes, the
average AUC increases and its standard deviation decreases,
showing less dependence on the set realization. The accuracy,
shown in Fig. 10c, follows the same trend, and we are able
to achieve accuracies above 90% on the average when |A| is
more than 20. The reason behind this pattern is that as |A|
increases, each binary classifier has more signals from other
transmitters, helping it learn better its designated transmitter
without memorizing others, leading to better generalization.
This interpretation is supported by the observation that the
improvement in accuracy is due to the decrease in PD for the
same PFA as shown in Fig. 11b and Fig. 11a, respectively.

As for autoencoders, the trend seems to be reversed in
Fig. 10a and Fig. 10c. As |A| increases, both the accuracy and
AUC decrease. Autoencoders generate a compressed represen-
tation of their input by memorizing their distribution. For small
|A|, this is the distribution of the authorized transmitters. As
|A| increases, they learn the distribution of signals in general,
independent of the transmitter. Hence, they reconstruct signals
for unknown transmitters with low MSE and fail to detect
them. This is verified by looking at the decreasing PD curve
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Fig. 10. Average outlier detection performance of several approaches as we change |A |. Error bars represent the standard deviation for different realizations
of the sets.
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Fig. 11. Average outlier detection performance of several approaches as we change |A |. Error bars are omitted for clarity. Solid lines represent same days
test, and dashed line represent different day test.

for AutoEnc in Fig. 11b, while PFA is almost constant in
Fig. 11a. This trend coincides with our visualization in Fig. 1b.

For OpMx, the accuracy increases until |A| = 20 and then
slightly decreases. This fluctuation is mostly attributed to PFA,
as shown in Fig. 11a. The results of OpMx depend on the value
of the activation vectors (AV) with respect to tail distributions
and the uncertainty threshold ε . The key is understanding
that the modified activations v′ calculated using (3) reduces
the AV of the top α classes. After calculating the output
z = softmax(v′), the maximum zi = max{z} is thresholded
using ε . For small |A|, classification for authorized is highly
confident, leading to AV belonging to the tails of other

classes, pushing zi below ε , and leading to false alarms. As
|A| becomes larger, this confidence decreases, leading to an
improvement in PFA. However, the similarity between AVs of
different classes decreases, pushing them to the tail of other
distributions as |A| increases beyond a certain point, leading
to an increase in PFA.

In comparison, we see that for small |A|, namely |A| =
3, AutoEnc gives the highest accuracy on average because
it is able to capture the distributions of small number of
transmitters. At |A| = 5, all methods are equally as good.
As |A| increases, OvA gives the best performance because
each branch uses all the data to learn its transmitter without
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Fig. 12. Average outlier detection performance of several approaches as we change |K |. Error bars represent the standard deviation for different realizations
of the sets.
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Fig. 13. Average outlier detection performance of several approaches as we change |K |. Error bars are omitted for clarity. Solid lines represent same days
test, and dashed line represent different day test.

memorizing the other transmitters.
In Fig. 10d, we plot the accuracy for a different day test.

The plots follows the same trends, but the accuracy of OvA
and OpMx drop by about 15% while AutoEnc drops by only
5%. The reason behind this drop is clearer by inspecting the
PFA and PD separately shown as dashed lines in Fig. 11.
From Fig 11b, we see that the performance in detecting the
new transmitters is almost unaffected. The drop in accuracy
is a result of the failure to identify authorized transmitters
as shown in the PFA curves in Fig 11a. This is reasonable
since any change on unseen transmitters should not have
any effect, unlike changes in the learned transmitters. For
OvA, we see that as we increase |A|, PFA increases, since
identifying transmitters from data captures on different days
becomes even more challenging as we increase the number
of transmitters. The smaller gap on different day test using
AutoEnc is explained by the encoders ability to learn more
general features of the signal compared to OvA and OpMx,
which leads to an overall smaller drop in accuracy, which also
causes the lower PD .

B. Known set

We expect that seeing more known outliers would help
the network differentiate the authorized transmitters from the
outliers. To show this, we evaluate the performance of the
approaches that support having K as input, as a function

of |K | given |A| = 10. The accuracy curves are shown in
Fig. 12a. As stated earlier, at |K | = 0, DClass and Disc don’t
have any outlier samples for training and predict everything
as authorized. From Fig. 12a, we see that the accuracy of all
methods improve as we increase the number of known outliers.
We also note that OvA is performing noticeably better than
the others. This can be understood by realizing that in OvA,
each binary classifier sees more samples to reject, the known
outliers and the samples from other authorized transmitters.
Thus, it is able to isolate its class better. DClass and Disc,
on the other hand, only learn to reject samples from K. This
is further supported by looking at the curves for PFA and
PD shown in Fig. 13a and Fig. 13b, where we see that the
accuracy improvement is due to the probability of detection.
DClass slightly outperforms Disc because the labels of A
help it extract better features compared to Disc. So it can be
concluded that even if we are not interested in classifying
among the nodes in A, including these labels in training
improves the outlier detection performance. Fig. 12b shows
the accuracy curves when using the data from a different day
for testing. Again, we see the same trend from the previous
section, both AUC and accuracy drop by about 15% for all
methods due to the degradation of PFA.
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Fig. 14. Average outlier detection performance against the number of training days. Error bars represent the standard deviation for different set realizations.

X. DATASET TRAINING DAYS EVALUATION

In this section, we evaluate the effect of the dataset construc-
tion on the ability of the proposed approaches to generalize
over time. While developing methods to counter temporal
variation in RF fingerprints is not the main focus of the
paper, we study its effect on transmitter authorization. For
our evaluation, we only consider the OvA architecture with
|A| = 10 and |K | = 0. We built four datasets, where dataset i
contains the data captures on dates prior to and including day
i. The network was trained according to the same procedures
discussed earlier and the results are shown in Fig. 14. From
Fig. 14a, we see that as the number of days included in
training increases, PFA decreases. On the other hand, PD

is almost unaffected. The larger improvement from 1 day
capture to two day captures is explained by the fact that the
capture on day 1 was two months earlier than the remaining
captures. During this long period, the transmitter fingerprints
changed more significantly. The remaining captures were done
on consecutive days, during which fingerprints had less severe
changes, and hence smaller improvements to PFA. Hence,
a simple way to improve the robustness against temporal
variation is to collect data from the authorized transmitters
over an extended period of time. Still, more sophisticated
approaches are needed to close the gap between same day
and different day testing.

XI. SUMMARY

The results we obtained can be summarized as follows.
Regarding the dataset: It is better to label the authorized
transmitters even if we are not interested in classifying among
them, as it enables us to use openset methods (OvA, OpMx,
DClass) which outperform the anomaly detection methods
(Disc, AutoEnc) in many cases. Furthermore, the data for
authorized transmitters should ideally be collected over a span
of multiple days; as we have demonstrated, the drop in outlier
detection accuracy is due to misclassification of authorized
signals, i.e PFA, and can be reduced by collecting the data
over multiple days.

Regarding the approach: The dataset structure; whether it
is labeled or not, and the sizes of A and K, determines which
approaches are feasible or are better. If we have no data from

OvA, AutoEnc,
OpMx

OvA, Disc,
DClass

OvA
AutoEnc OpMx

DiscOvA

DClass

labelled
&

Exists

labelled

YesNo

YesNoYesNo

Fig. 15. A tree diagram summarizing the feasible architectures as a function
of the dataset. The networks are ordered so that the one yielding the better
performance comes first.

known outliers and no labels, our only option is AutoEnc.
Without known outliers and with the availability of labels, for
|A| ≤ 5, ignoring the labels and using AutoEnc is a better
choice driven by its superior performance for small |A|; if
|A| > 5, OvA gives the best performance. If we have a pre-
trained classifier, then OpMx is the best option. If we have
K, we can use OvA, Disc, and DClass. Without labels, we
are limited to Disc. If we have labels, OvA is typically better
than DClass with tunable thresholds. This is summarized in
Fig. 15.

Regarding the network architecture: We have shown that if
we have labeled data, the performance on classifying the trans-
mitters does not necessarily correlate with the performance
on outlier detection. A known outlier set is recommended to
optimize the architecture.

Eventually, if we are able to collect the data as we wish
(having labels, data for authorized transmitters captured over
multiple days, and with data for known outliers) the best
approach is OvA. When using 10 authorized transmitters and
50 known outliers, it yielded an outlier detection accuracy of
98% on the same day test set and 80% on the different day
test set.
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XII. CONCLUSION

In this paper, we have considered the problem of transmitter
authorization using RF fingerprints captured from raw IQ
samples. Since this problem has been scarcely investigated
in the wireless domain, we performed a comprehensive eval-
uation of the most prominent machine learning approaches
from the openset recognition and the anomaly detection liter-
ature, as applied to our problem definition. The dependence
of the evaluation results on the choice of transmitters was
demonstrated and a simple strategy was proposed to reduce it.
We have also shown that the performance of a given neural
network model on closed set classification is not an indicator
of its performance in outlier detection, indicating the need for
architectures specifically designed for this problem. Also, we
demonstrated that minor change in network architecture and
data labeling can lead to a significantly different approaches.
Using a known outlier set was proposed and was shown to
improve the outlier detection accuracy. While classification
based OvA gives the highest accuracy in most cases, it is
outperformed by reconstruction based AutoEnc for small num-
ber of authorized. This opens the door for hybrid approaches
combining classification and reconstruction. We also pointed
out that the temporal variation of fingerprints is an open
problem for transmitter authorization.

APPENDIX A
PARAMETER SELECTION

For each approach, we describe how the ROC curve is
calculated. We also state how a specific threshold is chosen
to calculate the outlier detection accuracy along with choices
of hyperparameters. Since the evaluation is to be done over
multiple realizations, manual tuning is not possible and we
provide a systematic way to set these values.

1) Discriminator (Disc): In Disc, we only have one thresh-
old to make a decision. Ideally, we want the threshold to
be as low as possible without falsely rejecting authorized
transmitters. This can be done by adapting the threshold to
tightly fit the predictions of authorized signals in the training
set. We follow the approach proposed in [47], where the
predicted output of the sigmoid for the correctly classified
authorized training samples z̄0 (having labels equal to 0) is
concatenated with its negative −z̄0 (to make the distribution
symmetric around zero) and fit to a Gaussian distribution
having mean 0. The standard deviation σ of these samples is
calculated and a threshold of 3σ would allow the majority of
authorized transmitters to be accepted. To deal with degenerate
cases having large standard deviation, the threshold is set to
γ = min(0.5, 3σ) in practice. As for obtaining the ROC curve,
the value of γ is scanned from 0 to 1.

2) One Vs All (OvA): OvA has |A| thresholds given by
γγγ. While it is possible to use one common threshold, we use
multiple thresholds designed according to the same method
of Gaussian fitting used in Disc to calculate the accuracy as
it yields better results. As for obtaining the ROC curve, to
be able to obtain a full ROC curve, we consider one single
threshold γ scanned from 0 to 1 such that γγγ = γ1.

3) OpenMax (OpMx): As for the parameters, the tail size
used to calculate the Weibull distribution is τ = 10, α =
min(b|A|/3c , 5), and ε was chosen to be the 95% quantile
of the maximum activation in the training data. These values
were either adapted from [48] or obtained empirically.

4) AutoEncoder (AutoEnc): : We chose γ to be the 90%
quantile of the mean squared error of the training data. The
ROC curves are obtained by scanning the value of γ from 0
to the max MSE.
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