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Abstract

In this paper, intelligent reflecting surface (IRS) is introduced to enhance the network performance

of cognitive radio (CR) systems. Specifically, we investigate robust beamforming design based on both

bounded channel state information (CSI) error model and statistical CSI error model for primary user

(PU)-related channels in IRS-aided CR systems. We jointly optimize the transmit precoding (TPC)

at the secondary user (SU) transmitter (ST) and phase shifts at the IRS to minimize the ST’s total

transmit power subject to the quality of service of SUs, the limited interference imposed on the PU

and unit-modulus of the reflective beamforming. The successive convex approximation (SCA) method,

Schur’s complement, General sign-definiteness principle, inverse Chi-square distribution and penalty

convex-concave procedure are invoked for dealing with these intricate constraints. The non-convex

optimization problems are transformed into several convex subproblems and efficient algorithms are

proposed. Simulation results verify the efficiency of the proposed algorithms and reveal the impacts of

CSI uncertainties on ST’s minimum transmit power and feasibility rate of the optimization problems.
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Simulation results also show that the number of transmit antennas at the ST and the number of phase

shifts at the IRS should be carefully chosen to balance the channel realization feasibility rate and the

total transmit power.

Index Terms

Reconfigurable intelligent surface, intelligent reflecting surface, robust beamforming design, cogni-

tive radio, imperfect channel state information.

I. INTRODUCTION

As a revolutionary technique, intelligent reflecting surface (IRS) has received extensive at-

tention from both academia and industry since it can enhance both the spectral and energy

efficiency of the wireless communication systems through a preprogrammed controller [1]–[4].

IRS is equipped with a large number of elements made of special materials and functioned by

adjusting the reflecting coefficients (i.e., phase or amplitude) of the incident radio-frequency

(RF) wave and reflecting it passively. The signals reflected by IRS can be added with other

signal paths either to increase the signal strength at the desired receiver, or to mitigate the

co-channel interference at the unintended users. The existing contributions have demonstrated

benefits brought by introducing an IRS into wireless communication systems. For instance, some

certain performance metrics such as channel capacity [2], [3], [5]–[9], physical layer security

rate [10]–[13], transmission latency and total transmit power [14], [15] are efficiently enhanced

by jointly optimizing the active transmit precoding (TPC) at the base station (BS) and the passive

beamforming at the IRS.

Another effective technology to enhance spectrum efficiency is cognitive radio (CR) [16]–[21].

In CR systems, the primary user (PU) is defined as a spectrum-licensed user who always has

high priority to access the spectrum, while the secondary user (SU) is normally unlicensed

but can be allowed to share the spectrum without causing harmful interference to the PU.

However, the challenge of CR systems is that the performance improvements for the PU and

the SU are conflicting [17], [18], [20]–[22]. In specific, increasing the transmit power at the

SU’s BS to enhance the signal strength will generate increased interference towards the PU.

Fortunately, this bottleneck can be addressed by introducing an IRS into a CR system thanks

to the IRS’s reconfiguration function that can help enhance the desired signal strength of the
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SU and mitigate the co-channel interference to the PU through jointly optimizing the TPC and

passive beamforming [23]–[25].

However, the above papers [23]–[25] studied the transmission design based on perfect chan-

nel state information (CSI), which are challenging to realize in practice. The reason is that

the channels between SUs and PUs are more difficult to estimate due to the uncooperative

relationship between them. The channel estimation error is inevitable. For some users or devices

which require strict quality of service (QoS) requirements, it is imperative to study the robust

beamforming design for the IRS-aided CR systems to guarantee each user’s QoS under arbitrary

channel estimation error. In IRS-aided CR system, the sensed channels related to the PU can

be divided into two branches. The first one is the direct channel spanning from the SU’s BS to

the PU (BS-PU). The second one consists of two IRS-related channels spanning from the SU’s

BS to the IRS (BS-IRS) and the IRS to the PU (IRS-PU). In fact, in general IRS-aided systems

without CR, there were some contributions on the robust beamforming design based on the

assumption that only the channel from the IRS to the user (IRS-user) was imperfectly estimated

[7], [15], [26]. However, it is very challenging to estimate the BS-IRS channel and IRS-user

channel independently since the IRS is passive and can neither send nor receive pilot symbols.

Installing some active elements at the IRS will increase an undesired burden of the IRS due

to the increased hardware and extra power cost. Additionally, the extra information exchange

overhead is required to feed back from the IRS to the BS. Therefore, another approach to

design the robust beamforming is based on the assumption that the two IRS-related channels are

regarded as a cascaded BS-IRS-user channel, which is the product of the BS-IRS channel and

the IRS-user channel. It is more cost-effective to estimate the cascaded BS-IRS-user channel

since no active RF chains are required at the IRS. It has been verified that considering cascaded

BS-IRS-user channel is sufficient for the beamforming design [27]–[30]. Based on the cascaded

channel, there are some contributions on robust beamforming design in IRS-aided systems [31].

In [31], a framework of robust transmission beamforming was proposed based on imperfect

cascaded IRS-related channels at the transmitter. The worst-case and outage probability robust

beamforming designs were provided by minimizing the total transmit power. However, the above

robust beamforming designs are not applicable for the CR network since the architecture and

optimization problem of IRS-aided CR systems are completely different from traditional CR

systems.

To the best of our knowledge, only a few contributions studied transmission beamforming
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design based on imperfect PU-related channels for IRS-aided CR systems [32], [33]. The authors

in [32] studied the robust beamforming design under bounded CSI uncertainty of PU-related

channels in IRS-aided full-duplex CR systems with the aim of maximizing the system sum

rate of SUs. However, they considered the imperfect IRS-PU channel instead of the imperfect

cascaded BS-IRS-PU channel. In [33], the cascaded BS-IRS-PU channel was first considered to

be imperfect with the assumption of the bounded CSI error model, based on which the authors

proposed a robust beamforming design to maximize the single user’s data rate. The simulation

results therein showed that the SU’s achievable rate is significantly improved in an IRS-aided

multi-input single-output (MISO) CR system compared with a CR system without IRS. However,

the above mentioned contributions that targeted at maximizing the capacity cannot guarantee the

quality of service (QoS) requirements of each SU, which cannot be applied in some emerging

applications with stringent QoS requirements such as video conferencing, autonomous vehicles,

etc.

Against the above background, in this paper, we investigate robust beamforming design

aiming at minimizing the total transmit power of SUs subject to each SU’s QoS requirement

and the interference limit imposed on the PU. The imperfect PU-related cascaded channel is

considered to avoid the requirement of additional RF chains at the IRS. In contrast to the rate

maximization problem in [32] and [33], the power minimization problem may be infeasible due

to the conflicting constraints of SU’s QoS requirements and PU’s limited interference imposed

by the SU. Different from [32] and [33] where only the bounded CSI error model is considered,

in this paper, we additionally consider another type of CSI error, i.e., statistical CSI error, which

is closely relevant to the channel estimation error. Specifically, the contributions of this paper

can be summarized as follows:

• The robust beamforming design under both the bounded and statistical CSI error models

are studied for the IRS-aided CR system. The TPC matrix at the SU transmitter (ST)

and the reflective element diagonalized (RED) matrix of the IRS are jointly optimized

to minimize the total transmit power at the ST subject to the unit-modulus constraint of

reflective elements, the QoS requirement of each SU receiver (SR) and the interference limit

imposed on the PU receiver (PR). The power minimization problem may be infeasible due to

the conflicting constraints of SU’s QoS requirements and PU’s limited interference imposed

by the SU. This motivate us to check the feasibility of optimization problems and analyze

the feasibility for each channel realization. The block coordinate descent (BCD) algorithm
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is employed to alternately optimize the TPC matrix and the RED matrix. Meanwhile, the

feasibility checking for optimization problems is analyzed.

• For the bounded CSI error model, we consider the worst-case transmission beamforming

design, where the channel error is characterized by two separated PU-related channels.

In order to deal with these tricky constraints, we develop artful mathematical derivations.

The successive convex approximation (SCA) method, Schur’s complement, General sign-

definiteness principle and penalty CCP method are adopted to transform the non-convex

problems into second-order cone programming (SOCP) problems. This scheme is named as

SCD scheme since which is based on the separating cascaded channel and direct channel.

• For the statistical CSI error model, the CSI error follows the circularly symmetric complex

Gaussian (CSCG) distribution. This scheme named as STA also aims to minimize the

total transmit power at the ST. The inverse Chi-square distribution is used to simplify the

probabilistic constraint of the interference limit imposed on the PR. Finally, the problem for

optimizing TPC matrix is transformed into an SDP problem and the problem for optimizing

RED matrix is transformed into an SOCP problem.

• Some important results are obtained. With the assistance of the IRS, the number of phase

shifts should be carefully chosen to obtain a tradeoff between the total minimum transmit

power and the feasibility rate of the optimization problem. Moreover, improving the uncer-

tainty level of the PU-related channels can reduce the ST’s total transmit power, while a

high uncertainty level will lead to a low probability for finding the optimal beamforming.

The remainder of this paper is organized as follows. Section II describes the system model and

gives the problem formulation. Section III provides the SCD robust design based on bounded

error model. The STA robust design based on statistical error model is provided in Section IV.

The feasibility checking problems are analyzed in Section V. Section VI extends one PR scenario

to multiple PRs scenario. Section VII shows the simulation results. Finally, we conclude this

paper in Section VIII.

Notations: The symbols such as A and a are complex-valued matrix and vector, respectively.

C and Ca×b are complex value set and space of a × b complex-valued matrix, respectively.

diag{·} is diagonalization operation. E[·] represents mathematical expectation. A∗, AT and AH

mean the conjugate, transpose and Hermitian of A. CN (0, σ) is the CSCG distribution with zero

mean and variance σ. | · |, ‖ · ‖2 and ‖ · ‖F represent modulo, Euclidean norm and Frobenius

norm operations, respectively. Ia is the a × a unitary matrix. vec(A), Tr(A) and Re(A) mean
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TABLE I

EXPLANATIONS OF ABBREVIATIONS.

Abbreviations Explanations Abbreviations Explanations

TPC Transmit precoding RED Reflective element diagonalize

ST Secondary user’s transmitter SR Secondary user’s receiver

PR Primary user’s receiver BCD Block coordinate descent

SCD Separating cascaded channel and direct channel SDP Semi-definite programming

CCP Convex-concave procedure STA Statistical CSI error

IT Interference temperature SOCP Second-order cone programming

k

Fig. 1. IRS-aided CR.

vectorization, trace and extracting the real part of A, respectively. There are lots of abbreviations

in this paper. For the sake of readability, these abbreviations are listed in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Signal Transmission Model

In order to improve the performance of SUs, an IRS is deployed in the CR system shown in

Fig. 1 where we consider the downlink MISO transmission. The system consists of one IRS,

one PR, one ST and K SRs, where the superimposed signals of K SUs are transmitted from the

ST. The ST is equipped with Mt transmit antennas and the PR (or each SR) is equipped with a

single receive antenna. Each SR will receive the encoded signals via the IRS or directly from the

ST and then decode its own signal. Similarly, the PR will also receive the interference signals

via the IRS or from the ST directly. The IRS which is equipped with N reflective elements can

receive the transmitted signals and passively reflect them without additional RF electric circuit.
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Each reflective element is denoted by φn = ejθn, n ∈ N = {1, 2, · · · , N}1, where j is the

imaginary unit, θn ∈ [0, 2π] is the phase shift of the nth element and thus φn has unit modulus,

i.e., |φn| = 1. Φ = diag{φ1, φ2, · · · , φN} is the RED matrix. By appropriately tuning the phase

shifts of the reflective elements of the IRS, the interference imposed on the PR can be mitigated

whereas the useful signal received at the SR can be strengthened [23]. Denote the channels

ST-IRS, ST-PR and ST-SR k (SR k is the kth SR, k ∈ K = {1, 2, · · · , K}) by F ∈ CN×Mt ,

gd ∈ CMt×1 and hd,k ∈ CMt×1, respectively. The reflective channels IRS-PR and IRS-SR k are

denoted by gr ∈ CN×1 and hr,k ∈ CN×1, respectively. Note that the channels gd and gr are

related to the PR. The PR-related channels gd and gr are imperfectly estimated, since the CSI of

the PR-related channels, including those from the ST to the IRS and from the IRS to the PRs, is

usually more difficult to acquire than that of SR-related channels due to the lack of cooperation

between licensed users and unlicensed users in CR systems [34]. In this paper, we assumed that

the underlay spectrum access scheme is adopted. Based on that, practical energy detection is

assumed to be used for spectrum sensing individually by SRs. To alleviate the hidden terminal

problem, cooperative spectrum sensing is proposed in which measurements of multiple spectrum

sensors are combined to make a final decision on the existence of a primary signal.

The desired signal of SR k is denoted by sk ∈ C satisfying E[sks
∗
k] = 1 and E[sis

∗
j ] =

0(i 6= j), which has a corresponding TPC vector wk ∈ C
Mt×1. The TPC matrix is denoted

by W = [w1,w2, · · · ,wK ] ∈ CMt×K . Then, the transmit signal from the ST can be written

as x =
∑K

k=1wksk. The received signal at SR k is yk = (hH
d,k + hH

r,kΦF)x + nsk , where

nsk ∼ CN (0, σ2
sk
) is the equivalent noise which captures the joint effect of the thermal noise

and the received interference from the primary transmitters [32], [34]. The received interference

signal at the PR is given by yp = (gH
d +gH

r ΦF)x+np, where np ∼ CN (0, σ2
p). Hence, the signal

to interference plus noise ratio (SINR) of SR k is

SINRk =
|(hH

d,k + hH
r,kΦF)wk|2

‖(hH
d,k + hH

r,kΦF)W−k‖22 + σ2
sk

=
|(hH

d,k + φHdiag(hH
r,k)F)wk|2

‖(hH
d,k + φHdiag(hH

r,k)F)W−k‖22 + σ2
sk

, (1)

where φ = [φ1, φ2, · · · , φN ]
T, and W−k = [w1, · · · ,wk−1,wk+1, · · · ,wK ].

The interference temperature (IT) imposed on the PR from the ST is

IT = ‖(gH
d + gH

r ΦF)W‖22 = ‖(gH
d + φHGr)W‖22 = ‖φ̃

H
GW‖22, (2)

1Here, the amplitude is set to 1 which is usually given to maximize the signal reflection strength.
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where Gr = diag(gH
r )F ∈ C

N×Mt is regarded as the cascaded ST-IRS-PR channel, G =
[
GH

r gd

]H ∈ C(N+1)×Mt is an equivalent combined channel integrating gd and Gr, and φ̃ =

[φ1, φ2, · · · , φN , 1]
T ∈ C(N+1)×1.

B. Channel Uncertainty Models

The channel uncertainty is caused by the imperfect estimation of the PR-related channels.

If the direct channel gd and the cascaded ST-IRS-PR channel Gr are separately estimated, the

channels can be modeled as

gd = ĝd +△gd,Gr = Ĝr +△Gr, (3)

where ĝd and Ĝr are estimated CSIs for the direct channel gd and cascaded channel Gr,

respectively.△gd and△Gr are corresponding CSI errors. If we substitute the channel estimations

of (3) into the equivalent combined channel, i.e., G, then we have

G = Ĝ+△G, (4)

where Ĝ =
[
ĜH

r ĝd

]H
is regarded as the estimated combined CSI at the ST,△G =

[
△GH

r △gd

]H

is regarded as the combined CSI error matrix. In this paper, two different types of error models

are investigated to describe the above CSI errors.

1) Bounded CSI Error Model: In this model, the CSI errors of the direct channel and cascaded

channel are assumed to be bounded in the region as follows:

‖△gd‖2 ≤ ǫd, ‖△Gr‖F ≤ ǫr, (5)

where ǫd and ǫr are the radii of the bounded regions of CSI errors.

2) Statistical CSI Error Model: In this model, the CSI error vectors of △Gr and △gd are

assumed to follow the CSCG distributions with zero mean and covariance matrices of Σgr and

Σgd , i.e.,

△gd ∼ CN (0,Σgd), vec(△Gr) ∼ CN (0,Σgr), (6)

where Σgd ∈ CMt×Mt and Σgr ∈ CNMt×NMt are positive semidefinite matrices. In addition, △gd

is independent of vec(△Gr). According to the relationship of △G =
[
△GH

r △gd

]H
, it can be

verified that △G also follows the CSCG distribution with zero mean and covariance matrix of

Σ, i.e.,

vec(△G) ∼ CN (0,Σ), (7)
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where Σ =


 Σgr 0

0 Σgd


. That means the model of (6) is equivalent to that of (7). We will

only focus on the latter one in this paper when we consider the statistical CSI error model.

The robust beamforming design will be first investigated under SCD scheme based on the

bounded CSI error model shown in (5). It is regarded as the worst-case beamforming to guarantee

the SINR and the IT requirements for any channel quality. Then we will investigate the robust

beamforming design under STA scheme based on the statistical CSI error model shown in (7).

This type of robust beamforming is designed to guarantee the outage probability requirement of

the PU’s transmission.

III. SCD ROBUST DESIGN BASED ON BOUNDED ERROR MODEL

In this section, we investigate the SCD robust designing scheme based on the error model

‖△gd‖2 ≤ ǫd and ‖△Gr‖F ≤ ǫr. The original main problem is firstly transformed into a

deterministic problem by considering the worst-case IT constraint.

A. Optimization Problem for SCD Scheme

The problem with the aim of minimizing the ST’s total transmit power by optimizing the TPC

matrix W and the RED matrix Φ can be formulated as

P1 min
W,Φ

‖W‖2F (8a)

s.t.
|(hH

d,k + φHdiag(hH
r,k)F)wk|2

‖(hH
d,k + φHdiag(hH

r,k)F)W−k‖22 + σ2
sk

≥ γk, ∀k ∈ K, (8b)

‖(gH
d + φHGr)W‖22 ≤ Γ, ‖△gd‖2 ≤ ǫd, ‖△Gr‖F ≤ ǫr, (8c)

|φn| = 1, ∀n ∈ N . (8d)

In this problem, the error of the direct channel ST-PR and the error of the cascaded channel

ST-BS-IRS are separately considered. The SINR constraint (8b) is non-convex. Fortunatelly, we

can find its successive convex approximation (SCA) version. Then, the real challenge is the

bounded CSI error model of PU-related channels which makes the problem more complicated.

In this section, we will employ Schur’s complement and the General sign-definiteness principle

to deal with the bounded CSI error.
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By applying the Schur’s complement lemma [35], the IT inequality constraint (8c) can be

rewritten as the following matrix inequality

 Γ bH

b I


 � 0, (9)

where b =
[
(gH

d + φHGr)W
]H

. By substituting gd = ĝd +△gd and Gr = Ĝr +△Gr into (9),

we have 
 Γ b̂H

b̂ I


 �−


 0

WH


△GH

r [ φ 0 ]−


 φH

0


△Gr[ 0 W ]

−


 0

WH


 [ △gd 0 ]−


 △gH

d

0


 [ 0 W ],

(10)

where b̂ = [(ĝH
d + φHĜr)W]H.

Lemma 1: (General sign-definiteness principle) For a given set of matrices {Z,Ui,Vi, i =

1, · · · , P}, where Z is Hermitian matrix, the following inequality

Z �
P∑

i=1

(UH
i XiVi +VH

i X
H
i Ui), ‖Xi‖ ≤ ǫi, ∀i, (11)

holds if and only if there exist real values ρi ≥ 0, ∀i such that



Z−∑P
i=1 ρiV

H
i Vi −ǫ1UH

1 · · · −ǫPUH
P

−ǫ1U1 ρ1I · · · 0
...

...
. . .

...

−ǫPUP 0 · · · ρP I



� 0. (12)

Proof: Please refer to [36]. �

By comparing (11) with (10), we set the following equalities

Z =


 Γ b̂H

b̂ I


 , P = 2, ǫ1 = ǫr, ǫ2 = ǫd,U

H
1 = UH

2 = −


 0

WH


 ,

X1 = △GH
r ,X2 = △gd,V1 = [ φ 0 ],V2 = [ 1 0 ].

According to Lemma 1, the equivalent form of the worst-case IT constraint (10) is



Γ− ρ1N − ρ2 b̂H 01×Mt
01×Mt

b̂ IK ǫrW
H ǫdW

H

0Mt×1 ǫrW ρ1IMt
0

0Mt×1 ǫdW 0 ρ2IMt



� 0. (13)
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Therefore, problem P1 can be reformulated as

P1′ min
W,Φ,ρ={ρ1,ρ2}

‖W‖2F s.t. (8b), (13), (8d),ρ ≥ 0. (14)

Since W and Φ are coupled in problem P1′, the BCD method is used to alternately optimize

W and Φ.

B. Optimizing W with Fixed Φ for SCD Scheme

For convenience, we firstly deal with SINR constraint (8b) when Φ is fixed. Then we apply

the convex optimization approach to solve this subproblem.

1) Dealing with SINR constraint (8b): After denoting ĥH
Φ,k = hH

d,k + φHdiag(hH
r,k)F and

ĤΦ,k = ĥΦ,kĥ
H
Φ,k, we have

|(hH
d,k + φHdiag(hH

r,k)F)wk|2 = wH
k ĤΦ,kwk, (15)

∥∥(hH
d,k + φHdiag(hH

r,k)F)W−k

∥∥2
2
= ĥH

Φ,kW−kW
H
−kĥΦ,k =

K∑

j 6=k

wH
j ĤΦ,kwj. (16)

By substituting (15) and (16) into (8b), we can rewrite the SINR constraint (8b) as

wH
k ĤΦ,kwk∑K

j 6=k w
H
j ĤΦ,kwj + σ2

sk

≥ γk, ∀k ∈ K, (17)

which is non-convex constraint. By using the first-order Taylor inequality, wH
k ĤΦ,kwk can be

lower bounded linearly by 2Re{w(t)H

k ĤΦ,kwk}−w(t)H

k ĤΦ,kw
(t)
k , where w

(t)
k is the optimal value

of the TPC at the tth iteration. Then we can construct an SCA version of SINR constraint as

2Re(w
(t)H

k ĤΦ,kwk)− γk

K∑

j 6=k

wH
j ĤΦ,kwj ≥ γ̃k, (18)

where γ̃k = w
(t)H

k ĤΦ,kw
(t)
k + γkσ

2
sk

.

2) Subproblem to Optimize W: When RED matrix is fixed, the SINR constraint (8b) can be

replaced by (18), then the subproblem for optimizing W is given by

P1.1 min
{wk},ρ

K∑

k=1

wH
k wk s.t. (18), (13),ρ ≥ 0. (19)

IT constraint (13) is a linear matrix inequality (LMI) when Φ is fixed. This problem is an SOCP

problem with respect to {wk, ∀k}, ρ1 and ρ2, which can be solved by using CVX.
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C. Optimizing Φ with Fixed W for SCD Scheme

When TPC matrix W is given, the subproblem degenerates into a feasibility-check problem.

We firstly transform the non-convex SINR constraint into a convex form. Then we reformulate

the optimization problem to find the optimal Φ.

1) Dealing with SINR constraint (8b): Denoting Hr,k = diag(hH
r,k)F, the constraint (8b) can

be rewritten as

φHΩkφ− γkφ
HΩ−kφ + 2Re{ωH

kφ}+ ωk ≥ γkσ
2
sk
, ∀k ∈ K, (20)

where

Ωk = Hr,kwkw
H
k H

H
r,k, ωk = hH

d,kwkw
H
k hd,k−γkhH

d,k

∑K
j 6=k(wjw

H
j )hd,k,Ω−k = Hr,k

∑K
j 6=k(wjw

H
j )H

H
r,k,

and ωk = Hr,kwkw
H
k hd,k − γkHr,k

∑K
j 6=k(wjw

H
j )hd,k. As a constraint, (20) is still non-covex.

By using the first-order Taylor inequality, φHΩkφ can be lower bounded linearly by 2Re{φ(t)HΩkφ}−
φ(t)HΩkφ

(t). We can construct an SCA version of SINR constraint (20), which is given by

γkφ
HΩ−kφ− 2Re{(ωH

k + φ(t)HΩk)φ} ≤ γk, (21)

where φ(t) is solution of the tth iteration and γk = ωk − φ(t)HΩkφ
(t) − γkσ

2
sk

.

2) Subproblem to Optimize Φ: When W is fixed, the SINR constraint can be approximated

by (21). To deal with this feasibility-check problem, the slack variables ϕ = [ϕ1, ϕ2, · · · , ϕK ] are

introduced to tighten the SINR constraints (20). Then the quadratic inequality (21) is modified

as

γkφ
HΩ−kφ− 2Re{(ωH

k + φ(t)HΩk)φ} ≤ γk − ϕk, ∀k ∈ K. (22)

Therefore, for the feasibility-check problem, both the SINR constraint given by (22) and the

IT constraint given by (13) are convex. Then the subproblem can be reformulated as

P1.2 max
φ,ϕ

K∑

k=1

ϕk s.t. (22), (13), (8d),ϕ ≥ 0. (23)

The only non-convexity of problem P1.2 is from the unit-modulus constraint of φ in (8d). Then

we adopt the penalty CCP method to deal with this non-convex constraint [31]. According to

the penalty CCP principle, the non-convex constraint (8d) can be first equivalently transformed
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Fig. 2. The key steps and methologies involved in SCD scheme.

into 1 ≤ |φn|2 ≤ 1. The non-convex part can be linearized by |φ(t)
n |2− 2Re(φ∗

nφ
(t)
n ) ≤ −1. Then,

we can reformulate Problem P1.2 as

P1.2 1 : max
φ,ϕ,τ

K∑

k=1

ϕk − κ
2N∑

n=1

τn (24a)

s.t. (22), (13),ϕ ≥ 0, τ ≥ 0. (24b)

|φ(t)
n |2 − 2Re(φ∗

nφ
(t)
n ) ≤ τn − 1, ∀n ∈ N , (24c)

|φn|2 ≤ 1 + τN+n, ∀n ∈ N , (24d)

where τ = [τ1, · · · , τ2N ]T are the slack variables. κ is the penalty multiplier to scale the

penalty item
∑2N

n=1 τn which can control the feasibility of φ combining with adjustable κ. This

subproblem is an SOCP problem which can be solved by using CVX.

For the convenience of understanding, a flow chart is provided in Fig. 2 to summarize the key

steps of the whole optimization processing for SCD scheme.

D. Overall Algorithm for SCD Scheme

1) Convergence analysis: The overall algorithm for the SCD scheme is provided in Algorithm

1.

The initialization value of w
(0)
k and φ(0) can be obtained from the optimal solution of feasibility

checking problem which will be discussed in Section V. In the iteration for updating κ, we set

a sufficiently low value l1 to check whether ‖τ‖1 < l1, which is one condition to stop the
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Algorithm 1 Optimizing W and Φ for SCD

1: Initialize w
(0)
k and φ(0) in feasible region for ∀k ∈ K, set maximum iteration number tmax,

target convergence accuracy ζ , lκ > 1, κmax and t = 0.

2: Repeat

3: Update w
(t+1)
k by solving problem P1.1; n = 0, φ(n) = φ(t);

4: Repeat

5: Update φ(n+1) by solving problem P1.2 1;

6: κ(n+1) = max{lκκ(n), κmax};
7: Until ‖τ‖1 ≤ l1 and ‖φ(n+1) − φ(n)‖1 ≤ l2;

8: φ(t+1) = φ(n+1);

9: Calculate ‖W(t+1)‖2F from (8a) in problem P1;

10: Until t > tmax or
‖W(t+1)‖2F−‖W(t)‖2F

‖W(t+1)‖2F
< ζ .

iteration. ‖τ‖1 < l1 satisfies the constraint (8d) in (23). Another iteration stopping condition

is ‖φ(n+1) − φ(n)‖1 ≤ l2, where l2 is a low value. It can be verified that the sequences of

the objective function value produced by Algorithm 1 are guaranteed to converge. For the

first subproblem optimizing W, we show that the solution sequence {W(t+1), t = 1, 2, · · · }
is feasible and the objective function value sequence {f(W(t)) = ‖W(t)‖2F, t = 1, 2, · · · }
is monotonically decreasing. Define the functions g(wk) , wH

k ĤΦ,kwk and g(wk|w(t)
k ) ,

−w(t)H

k ĤΦ,kw
(t)
k + 2Re{w(t)H

k ĤΦ,kwk}. Assume that W(t+1) is a feasible solution of problem

P1.1, and thus W(t+1) satisfies the constraints (18) and (13). By substituting W(t+1) into (18),

we have
g(w

(t+1)
k

|w
(t)
k

)
∑K

j 6=k w
(t+1)H

j ĤΦ,kw
(t+1)
j +σ2

sk

≥ γk, ∀k. According to the first-order Taylor inequality, we

have g(w
(t+1)
k |w(t)

k ) ≤ g(w
(t+1)
k ). Thus,

g(w
(t+1)
k

)
∑K

j 6=k w
(t+1)H

j ĤΦ,kw
(t+1)
j +σ2

sk

≥ γk holds, which means that

the sequence {W(t+1), t = 1, 2, · · · } satisfies the constraint (17) that is the SINR constraint (8b).

As W(t+1) is the globally optimal solution of problem P1.1, f(W(t+1)) ≤ f(W(t)) holds. Thus,

the objective function value sequence {f(W(t)), t = 1, 2, · · · } is guaranteed to converge. For the

second subproblem of optimizing Φ, the convergence can be easily verified by using the same

analysis approach.

2) Complexity analysis: Since the proposed Algorithm 1 involves SOC, LMI and linear

constraints which can be solved by a standard interior point method, the general expression
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of the computational complexity of which is given by

O((
∑

J

Jjbj + 2I)0.5n(n2 + n
∑

J

Jjb
2
j +

∑

J

Jjb
3
j + n

∑

I

Iia
2
i )), (25)

where we ignore the complexity of linear constraints, n is the number of variables, Ii is the

number of SOC constraints with the size of ai and
∑

Ii = I , Jj is the number of LMI constraints

with size of bj and
∑

Jj = J . Based on the above general expression, the complexity for solving

problem P1.1 is oscd
w

= O((2Mt + 3K + 1)0.5MtK(MtK
2 + MtK(2Mt + K + 1)2 + (2Mt +

K+1)3+K2M3
t )), the complexity of problem P1.2 is oscd

Φ
= O(log(1/min{l1, l2})(2N+3K+

1)0.5N(N(K + 1)2 + N(K + 1)3 + KN3 + 2N2)). Thus, the overall complexity for solving

problem P1 is oscd
w

+ oscd
Φ

.

IV. STA ROBUST DESIGN BASED ON STATISTICAL ERROR MODEL

In this section, we optimize the robust beamforming based on statistical CSI error model where

the uncertain CSI △G satisfies the distribution as shown in (7), i.e., vec(△G) ∼ CN (0,Σ). This

statistical characteristic is implied in a probabilistic constraint. We first transform the probabilistic

model into a tractable form by Chi-square distribution method.

A. Optimization Problem for STA Scheme

The power minimization problem considering statistical CSI error can be formulated as

P2 : min
W,Φ

‖W‖2F (26a)

s.t.
|(hH

d,k + φHdiag(hH
r,k)F)wk|2

‖(hH
d,k + φHdiag(hH

r,k)F)W−k‖22 + σ2
sk

≥ γk, ∀k ∈ K, (26b)

Pr

{∥∥∥(φ̃H
Ĝ+ φ̃

H△G)W
∥∥∥
2

2
≤ Γ

}
≥ 1− β, vec(△G) ∼ CN (0,Σ), (26c)

|φn| = 1, ∀n ∈ N , (26d)

where 0 ≤ β ≤ 1 is the outage probability when the IT imposed on the PR exceeds the threshold.

The real challenge to solve this optimization problem is the statistical CSI error model of (26c)

since the SINR constraint (26b) and the unit-modulus constraint (26d) of the phase shifts at the

IRS can be handled in the same way as in problem P1. Hence, in this section, we will first

reformulate the probability constraint by using Chi-square distribution derivation method. The

related result is shown in Proposition 1.
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Firstly, we reformulate the IT inequality constraint. According to the triangle inequality

‖(φ̃H
Ĝ+ φ̃

H△G)W‖22 ≤ ‖φ̃
H
ĜW‖22 + ‖φ̃

H△GW‖22, the following probabilistic relationship

holds

Pr{‖(φ̃H
Ĝ+ φ̃

H△G)W‖22 ≤ Γ} ≥ Pr{‖φ̃H
ĜW‖22 + ‖φ̃

H△GW‖22 ≤ Γ}. (27)

Thus, the IT inequality constraint can be approximated by

Pr{‖φ̃H△GW‖22 ≤ Γ− ‖φ̃H
ĜW‖22} ≥ 1− β. (28)

Based on the above analysis, the following proposition can be obtained.

Proposition 1: Assume that vec(△G) ∈ C(N+1)Mt×1 is a complex Gaussian vector satisfying

vec(△G) ∼ CN (0,Σ) as in (7). The sufficient condition for the probabilistic constraint (28) to

hold is that

ϑF−1
2(N+1)Mt

(1− β)‖W‖2F + ‖φ̃
H
ĜW‖22 ≤ Γ, (29)

where ϑ = (N + 1)λmax(Σ), λmax(·) is the maximum eigenvalue and F−1
n (·) is the inverse

Chi-square cumulative distribution function with n degrees of freedom.

Proof: Please see Appendix A. �

Note that when β = 0, the constraint in (26c) means the worst-case for the statistical error

model. If β = 1, the constraint in (26c) can be removed because the probability constraint is

always satisfied. In this case, the PR cannot be protected.

By replacing the IT constraint (26c) with (29), problem P2 is reformulated as

P2′ : min
W,Φ

‖W‖2F s.t. (26b), (29), (26d). (30)

This problem is also intractable to solve because W and Φ are coupled in (26b) and (29). The

BCD algorithm is adopted to optimize these two variables alternately.

B. Optimizing W with Fixed Φ for STA Scheme

When Φ is fixed, the IT constraint (29) can be rewritten as

K∑

k=1

wH
k (ϑF

−1
2(N+1)Mt

(1− β)I+ G̃φ̃)wk ≤ Γ. (31)

The inequality constraint (17) in SCD scheme can be directly used to replace the SINR constraint

(26b). Then the problem for optimizing W is reformulated as

P2.1 : min
{wk}

K∑

k=1

wH
k wk s.t. (17), (31). (32)
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The SINR constraint (17) is non-convex. We can use SDR approach to solve this problem.

Specifically, define Sk = wkw
H
k , ∀k ∈ K with the constraints that rank(Sk) = 1, ∀k ∈ K. Then,

problem P2.1 can be reformulated as

P2.1 1 : min
{Sk�0}k∈K

K∑

k=1

tr(Sk) (33a)

s.t. tr(SkĤΦ,k) ≥ γk

(
K∑

j 6=k

tr(SjĤΦ,k) + σ2
sk

)
, ∀k ∈ K, (33b)

K∑

k=1

tr
(
Sk

(
ϑF−1

2(N+1)Mt
(1− β)I+ G̃φ̃

))
≤ Γ. (33c)

rank(Sk) = 1, ∀k ∈ K. (33d)

However, problem P2.1 1 is still non-convex due to the rank-one constraint. We further relax

this rank-one constraint and obtain the following optimization problem:

P2.1 2 : min
{Sk�0}k∈K

K∑

k=1

tr(Sk) s.t. (33b), (33c) (34)

Obviously, problem P2.1 2 is an SDP problem, which is convex and can be effectively solved

by using the standard tools such as CVX.

In general, the optimal solution obtained from SDP problem may not satisfy the rank-one

constraints. Fortunately, for problem P2.1 2, we can prove that the relaxation of the non-convex

constraints is tight. Denote the optimal solution of P2.1 2 as S⋆
k, ∀k ∈ K, we have the following

theorem.

Theorem 1: The optimal solution obtained from the SDP problem P2.1 2 is guaranteed to

satisfy the rank-one constraints, i.e., rank(S⋆
k) = 1, ∀k ∈ K.

Proof: Please see Appendix B. �

Since the rank of Sk, ∀k ∈ K are equal to one, we can use the simple singular value

decomposition operation to obtain the optimal beam-vector of problem P2.1.

C. Optimizing Φ with Fixed W for STA SCheme

When W is fixed, this subproblem degenerates into a feasibility-check problem. The SINR

constraint (21) can be directly used to replace (26b). The IT constraint (29) can be rewritten as

K∑

k=1

φ̃
H
Ĝwkw

H
k Ĝ

Hφ̃ ≤ Γ− ϑF−1
2(N+1)Mt

(1− β) ‖W‖2F . (35)
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Fig. 3. The key steps and methologies involved in STA scheme.

Let X ,
∑K

k=1 Ĝwkw
H
k Ĝ

H which is a Hermitian matrix. Extract the first N rows and N columns

elements of X as a sub-matrix B. Denote the vector consisting of elements in the (N + 1)th

column from the first row to the N th row of X by b. Denote the vector consisting of elements in

the (N +1)th row from the first column to the N th column of X by c and denote the (N +1)th

row and (N + 1)th column element by bN+1. Thus, we have

K∑

k=1

φ̃
H
Ĝwkw

H
k Ĝ

Hφ̃ = φHBφ+ 2Re{bHφ}+ bN+1. (36)

Finally, the IT constraint (35) is reformulated as

φHBφ+ 2Re{bHφ} ≤ Γ− ϑF−1
2(N+1)Mt

(1− β) ‖W‖2F − bN+1. (37)

By introducing the slack variables to the SINR constraint like the method used in problem

P1.2, the subproblem is

P2.2 : max
φ,ϕ

K∑

k=1

ϕk s.t. (22), (37), (26d),ϕ ≥ 0. (38)

Problem P2.2 can be solved by using the same method with P1.2, here we omit it for simplicity.

For the convenience of understanding, a flow chart is provided in Fig. 3 to summarize the key

steps of the whole optimization processing for STA scheme.

D. Overall Algorithm for STA Scheme

The overall algorithm for solving problem P2 is given in Algorithm 2. The initialization value

of w
(0)
k and φ(0) can be obtained from the optimal solution of feasibility checking problem which
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Algorithm 2 Optimizing W and Φ for STA

1: Initialize w
(0)
k and φ(0) in feasible region for ∀k ∈ K, set maximum iteration number tmax,

target convergence accuracy ζ and t = 0.

2: Repeat

3: Calculate w
(t+1)
k by solving problem P2.1;

4: Calculate φ(t+1) by solving problem P2.2;

5: Calculate ‖W(t+1)‖2F from (26a) in problem P2;

6: Until t > tmax or
‖W(t+1)‖2F−‖W(t)‖2F

‖W(t+1)‖2F
< ζ .

will be discussed in Section V. Since the proposed Algorithm 2 involving SOC, LMI and linear

constraints can be solved by a standard interior point method, the general expression of the com-

putational complexity of which can be given as the equation (25). Based on that, the complexity of

problem P2.1 is osta
w

= O((K + 1)0.5(K(K + 1)2M4.5
t +K3M3.5

t )) +O(M3
t ) where the second

term O(M3
t ) is produced by singular value decomposition operation of matrix solution. The

complexity of problem P2.2 is osta
Φ

= O(log(1/min{l1, l2})
√
2(K+N+1)0.5[(K+1)N4+2N3]).

Then the overall complexity of problem P2 is osta
w

+ osta
Φ

. It can be also easily verified that the

sequences of the objective function value produced by Algorithm 2 are guaranteed to converge.

V. FEASIBILITY CHECKING FOR PROBLEMS P1 AND P2

Due to the conflicting SINR and IT constraints, problems P1 and P2 may be infeasible for

SCD scheme and STA scheme, respectively. Hence, we have to first check whether problems

P1 and P2 are feasible or not. To this end, we construct the following two feasibility checking

problems.

A. Feasibility Checking for Problem P1

By minimizing the interference imposed on the PU, we can construct the feasibility checking

problem for SCD scheme as

P1 : min
W,Φ,α

α (39a)

s.t. ‖(gH
d + φHGr)W‖22 ≤ αΓ, ‖△gd‖2 ≤ ǫd, ‖△Gr‖F ≤ ǫr, (39b)

(8b), (8d) (39c)
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where α is an additional variable introduced to act as the indicators of the feasibility of problem

P1. If the optimal solution of α is smaller or equal to one, we claim the main problem is feasible.

Otherwise, the main problem P1 is declared to be infeasible. By applying Schur’s complement

and Lemma 1, the IT constraint (39b) of problem P1 can be transformed into the following

LMI 


αΓ− ρ1N − ρ2 b̂H 01×Mt
01×Mt

b̂ IK ǫrW
H ǫdW

H

0Mt×1 ǫrW ρ1IMt
0

0Mt×1 ǫdW 0 ρ2IMt



� 0. (40)

Problem P1 can be reformulated as

P1′ : min
W,Φ,ρ,α

α s.t. (8b), (40), (8d),ρ ≥ 0. (41)

Since W and Φ are coupled, the BCD approach is used again to alternately solve this problem.

Based on this idea, we present an iterative algorithm with two main steps.

In the first step, the TPC matrix W is optimized with fixed RED matrix Φ. Then the alternative

problem becomes

P1.1 : min
W,ρ,α

α s.t. (18), (40),ρ ≥ 0. (42)

Problem P1.1 is an SOCP problem which is convex and can be effectively solved by using

CVX. The optimal solution α obtained from this problem can be used to check the feasibility.

In the second step, the RED matrix is optimized when the TPC matrix, ρ and α are given.

Then the alternative problem becomes

P1.2 : max
Φ,ϕ

K∑

k=1

ϕk s.t. (22), (40), (8d),ϕ ≥ 0. (43)

where ϕ = [ϕ1, ϕ2, · · · , ϕK ] are slack variables introduced into the SINR constraint. This

problem is non-convex due to the unit-modulus constraint (8d). Then we adopt the penalty CCP

method to deal with this non-convex constraint. Problem P1.2 is transformed into an SOCP

problem. The problem transformation process is similar to problem P1.2. Here we omit it for

simplicity.

The feasibility checking algorithm for the main problem P1 is formally described in Algorithm

3.
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Algorithm 3 Feasibility Checking Algorithm for Problem P1
1: Initialize W(0), Φ(0), tmax and set t = 1.

2: Given RED matrix Φ(t−1), update TPC matrix by solving problem P1.1. Denote the solution

by α⋆, W⋆. Update W(t) = W⋆, α(t) = α⋆.

3: If α(t) ≤ 1, declare the main problem P1 is feasible and output these feasible W(t) for the

initialization of the main problem P1, and terminate. If α(t) ≥ 1 and t ≥ tmax, declare the

main problem P1 is infeasible and terminate. Otherwise, continue.

4: Given TPC matrix W(t), update RED matrix by solving problem P1.2. Denote the solution

by Φ⋆. Update Φ(t) = Φ⋆.

5: Let t← t + 1 and go to step 2.

B. Feasibility Checking for Problem P2

If we set an outage probability β, the objective function can be regarded as the interference

imposed on the PU which causes communication interruption of PU with probability β where the

uncertain CSI △G satisfies the distribution of vec(△G) ∼ CN (0,Σ). According to Propositon

1, the objective function can be given by ϑF−1
2(N+1)Mt

(1 − β)‖W‖2F + ‖φ̃H
ĜW‖22. Hence, the

feasibility checking problem for the main problem P2 is

P2 : min
W,Φ

ϑF−1
2(N+1)Mt

(1− β)‖W‖2F + ‖φ̃H
ĜW‖22 (44a)

s.t. (26b), (26d). (44b)

where (26b) is SINR constraint and (26d) is unit-modulus constraint of phase shift at the IRS.

The feasibility can be checked by judging the optimal objective value. If the optimal objective

value is lower than IT threshold Γ, problem P2 is feasible. Otherwise, it is infeasible. Since W

and Φ are coupled, we have to alternately solve this problem. We present the iterative algorithm

with two main steps.

In the first step, TPC matrix is optimized with fixed RED matrix. When Φ is fixed, the

objective function (44a) can be rewritten as
∑K

k=1w
H
k (ϑF

−1
2(N+1)Mt

(1−β)I+ G̃φ̃)wk. The SINR

constraints can be replaced by (17). Then we can give the TPC matrix optimization problem by

P2.1 : min
W

K∑

k=1

wH
k (ϑF

−1
2(N+1)Mt

(1− β)I+ G̃φ̃)wk s.t. (17). (45a)
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This problem can be solved by using the same SDR approach with problem P2.1. After defining

Sk = wkw
H
k , ∀k ∈ K with the constraints that rank(Sk) = 1, ∀k ∈ K, problem P2.1 can be

transformed into

P2.1 1 : min
{Sk�0}k∈K

K∑

k=1

tr
(
Sk

(
ϑF−1

2(N+1)Mt
(1− β)I+ G̃φ̃

))
(46a)

s.t. tr(SkĤΦ,k) ≥ γk

(
K∑

j 6=k

tr(SjĤΦ,k) + σ2
sk

)
, ∀k ∈ K, (46b)

rank(Sk) = 1, ∀k ∈ K. (46c)

We further relax this rank-one constraint and obtain an SDP optimization problem, which can

be effectively solved by CVX. The solution of the SDP problem can be guaranteed to satisfy

the rank-one constraints.

In the second step, RED matrix is optimized with fixed TPC matrix. When W is given, the

RED matrix optimization problem is given by

P2.2 : min
φ

φHBφ+ 2Re{bHφ}+ ϑF−1
2(N+1)Mt

(1− β) ‖W‖2F + bN+1 (47a)

s.t. γkφ
HΩ−kφ− 2Re{(ωH

k + φ(t)HΩk)φ} ≤ γk − ϕk, ∀k ∈ K, (47b)

|φn| = 1, ∀n ∈ N , (47c)

where B, φ and bN+1 in objective function is obtained from (37). This optimization problem

can be solved by using the same method with problem P1.2 where the penalty CCP method

is used to deal with unit-modulus constraint. The problem can be transformed into an SOCP

problem solved by CVX.

The feasibility checking algorithm for the main problem P2 is formally described in Algorithm

4.

VI. EXTENSION TO MULTIPLE PRS SCENARIO

In this section, we extend one PR scenario to multiple PRs scenario. Assume that L PRs

randomly locate in a cell region in the IRS-aided CR system. The other assumptions remain the

same as in Fig. 1. The system parameters correspond to the lth PR (l ∈ L = {1, 2, · · · , L}) are

direct channel gd,l, reflect channel gr,l and IT threshold requirement Γl. By using gd,l, gr,l and

Γl in IT expressions and channel uncertainty model, we can rewrite the optimization problem

for the multiple PRs scenario.
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Algorithm 4 Feasibility Checking Algorithm for Problem P2
1: Initialize W(0), Φ(0), tmax and set t = 1.

2: Given RED matrix Φ(t−1), update TPC matrix by solving problem P2.1. Denote the solution

by W⋆. Update W(t) = W⋆.

3: Given TPC matrix W(t), update RED matrix by solving problem P2.2. Denote the solution

by Φ⋆. Update Φ(t) = Φ⋆. Calculate the optimal value of objective function for problem P2
and denote it as f ⋆

4: If f ⋆ ≤ Γ, declare the main problem P2 is feasible and output these feasible W(t) and Φ(t)

for the initialization of the main problem P2, and terminate. If f ⋆ ≥ Γ and t ≥ tmax, declare

the main problem P2 is infeasible and terminate. Otherwise, continue.

5: Let t← t + 1 and go to step 2.

Firstly, the IT imposed on PR l from the ST is given by

ITl = ‖φ̃
H
GlW‖22, (48)

where Gl = [GH
r,l gd,l]

H ∈ C(N+1)×Mt , for ∀l ∈ L, is an equivalent combined channel. Gr,l =

diag(gH
r,l)F ∈ CN×Mt is regarded as the cascaded ST-IRS-PR l channel.

Secondly, for the bounded CSI error model, the radii of the bounded regions of CSI errors for

direct channel gd,l and cascaded channel Gr,l can be denoted by ǫd,l and ǫr,l, respectively, for

∀l. Then, the radius of the bounded region of CSI error for the combined channel Gl is denoted

by ǫl. For the statistical CSI error model, the distribution assumption in Eq. (6) is rewritten as

△gd,l ∼ CN (0,Σgd,l) vec(△Gr,l) ∼ CN (0,Σgr,l), (49)

where Σgd,l and Σgr,l are covariance matrices for ∀l ∈ L. Thus, the CSCG distribution for △Gl

is given by

vec(△Gl) ∼ CN (0,Σl), ∀l ∈ L, (50)

where Σl =


 Σgr,l 0

0 Σgd,l


 , ∀l ∈ L.

Based on the above assumptions, for the optimization problems of SCD and STA schemes,

only the IT constraints need to be modified into multi-PRs form. Hence, constraint (8c) in SCD

optimization problem is rewritten as

‖(gH
d,l + φHGr,l)W‖22 ≤ Γl, ‖△gd,l‖2 ≤ ǫd,l, ‖△Gr,l‖F ≤ ǫr,l. (51)
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Fig. 4. The simulated scenario of IRS-aided CR.

Constraint (26c) in STA optimization problem is rewritten as

Pr

{∥∥∥(φ̃H
Ĝl + φ̃

H△Gl)W
∥∥∥
2

2
≤ Γl

}
≥ 1− βl, vec(△Gl) ∼ CN (0,Σl), ∀l ∈ L. (52)

where βl is outage probability due to secondary interference for PR l. The methods and mathe-

matical derivations in single-PR optimization problems are applicable in multi-PRs optimization

problems. Here, we omit it for simplicity. In simulation results, we will provide the impacts of

number of PRs on system performance.

VII. SIMULATION RESULTS

In this section, we firstly provide simulation results of one PR scenario to study the impacts

of parameters on the robust beamforming design in the IRS-aided MISO CR system. Then we

expand the simulation to multiple PRs scenario. The simulation scenario is shown in Fig. 4

where the PR, ST and IRS are located at the same horizontal line with locations given by (0 m,

0 m), (300 m, 0) and (300 m, 30 m), respectively. There are K = 2 SRs randomly distributed

in the region of a cell. The channel models are assumed to include large-scale fading and small-

scale fading. Denote the large-scale path loss in dB by PL = PL0 − 10α log10(
d
d0
), where α

is the path loss exponent and d is the transmission distance. The small-scale fading follows

Rayleigh distribution. The minimum data rate requirement for SU is assumed to be the same at

rk = r, ∀k ∈ K. The main parameters are collected in Table II.

The CSI error vectors ∆gd and vec(∆Gr) are assumed to be correlated for the STA scheme.

The covariance matrices of Σgr and Σgd are defined as Σ
1/2
gr = σgrCgr and Σ

1/2
gd = σgdCgd .

Cgr ∈ CNMt×NMt and Cgd ∈ CMt×Mt are the correlation matrices, the elements of which

are given by [Cgr ]m,n, [Cgd]m,n = c
|m−n|
η and cη is set as 0.9. To make the relative amount

of correlated CSI errors comparable with the case of uncorrelated CSI errors, we assume that

σ2
gr = δ2gr

∥∥∥vec(Ĝr)
∥∥∥
2

2

[
‖INMt‖F
‖C2

gr‖F

]
and σ2

gd
= δ2gd ‖(ĝd)‖22

[
‖IMt‖F
‖C2

gd
‖
F

]
. δgd ∈ [0, 1) and δgr ∈ [0, 1)

represent the channel uncertainty levels which measure the relative amount of CSI uncertainties,

here we set δgd = δgr = δg. The radii of the uncertainty regions are set as ǫd =

√
σ2
gd

2
F−1
2Mt

(1− β)
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TABLE II

SIMULATION PARAMETERS.

Parameter Value

PR location (0 m, 0 m)

IRS location (300 m, 30 m)

ST location (300 m, 0 m)

SR’s cell location (600 m, 0 m)

Cell radius 20 m

Pass loss PL0
= 30 dB

Reference distance d0 = 1 m

Path loss exponents of the IRS-related links αIRS = 2.2

Path loss exponent of the ST-PR link or the ST-SR link αSTU = 3.75 [23], [31], [32]

Outage probability β = 0.05

Noise power density −174 dBm/Hz

and ǫr =

√
σ2
gr

2
F−1
2NMt

(1− β), respectively. According to [37], this bounded CSI error model

provides a fair comparison between the performance of the worst-case robust design and the

outage constrained robust design.

A. The Convergence and Complexity of Algorithms
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Fig. 5. The performance comparison of different initializa-

tions, with r = 0.5, Mt = 4, Γ = −60 dBm, β = 0.05 and

δg = 0.05.
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Fig. 6. Transmit power versus target accuracy, with r = 1,

Mt = 4, Γ = −90 dBm, β = 0.05 and δg = 0.05.
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Fig. 7. Transmit power versus the number of iterations, with

r = 2, Mt = 4, Γ = −90 dBm, β = 0.05 and δg = 0.05.

5 10 15 20 25 30
Number of phase shifts N

15

20

25

30

35

40

C
P

U
 r

un
tim

e 
(s

ec
)

SCD, M
t
=4

STA, M
t
=4

SCD, M
t
=6

STA, M
t
=6

Fig. 8. CPU runtime versus N , with r = 1, Γ = −70 dBm,

β = 0.05 and δg = 0.05.

0.5 1 1.5 2 2.5 3
Required rate of SU (bit/s)

10

12

14

16

18

20

22

24

26

28

T
ra

ns
m

it 
po

w
er

 (
dB

m
)

SCD,M
t
=4

STA,M
t
=4

SCD,M
t
=6

STA,M
t
=6

Fig. 9. Transmit power versus minimum required bit rate of

SU, with N = 6, Γ = −80 dBm, β = 0.05 and δg = 0.2.
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Fig. 10. Comparison with benchmarks with r = 2, Mt = 6,

Γ = −80 dBm, β = 0.05 and δg = 0.1.

Consider the fact of the nonconvexity of problems P1 and P2, different initial points may

result in different locally optimal solutions obtained by our proposed algorithms. By testing

30 randomly channel realizations, Fig. 5 illustrates the impact of the initializations on the

performance of the proposed algorithms. The initializations of W and Φ for SCD.alg and STA.alg

are determined by our proposed feasibility checking problems. SCD.alg-Exh and STA.alg-Exh

refers to the best initial point of 1000 random initial points for each channel realization. It can be

seen that the minimum transmit power obtained by SCD.alg (STA.alg) is almost the same as that
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of SCD.alg-Exh (STA.alg-Exh), which implies that the initial point obtained from the feasibility

checking problem is a good option for the initialization. According to the target convergence

criteria
‖W(t+1)‖2F−‖W(t)‖2F

‖W(t+1)‖2F
< ζ which is set in Algorithm 1 and Algorithm 2, Fig. 6 shows that

the higher the requirement of convergence accuracy, the smaller the optimal target value. The

x-axis values from −4 to −1 represent the accuracy from 10−4 to 10−1 which means that the

accuracy requirement decreases. Given the convergence accuracy ζ = 10−4, Fig. 7 shows that

both the proposed algorithms can converge within six iterations. Compared with STA algorithm,

the SCD algorithm always converges at a higher transmit power when the number of phase shifts

ranges from 5 to 15. Moreover, from Fig. 9, we can find that the transmit power increases with

SUs’ data rate requirements and the SCD algorithm yields a higher transmit power than STA

algorithm when each SU’s data rate is in a high value range for different numbers of the transmit

antennas. This is due to the fact that the SCD scheme is the worst-case optimization which is

more conservative than the statistical optimization and requires more transmit power to ensure

that each SU’s target rate requirement for the worst-case CSI error realization can be satisfied

by the achievable rate.

For the computational complexity, Fig. 8 shows the average CPU running time versus the

number of phase shifts N for both proposed algorithms when r = 1, Γ = −70 dBm, β = 0.05

and δg = 0.05. The results are obtained by using a computer with a 1.99 GHz i7-8550U CPU

and 8 GB RAM. The STA algorithm requires much less CPU running time than that required by

the SCD algorithm. This is due to fact that there are some large-dimensional LMIs that increase

the computational complexity of the SCD algorithm. With the increase of the number of N , all

the algorithms need more running time to obtain the optimal solutions. Fig. 7, Fig. 8 and Fig. 9

indicate that the STA algorithm outperforms the SCD algorithm both in terms of optimal value

and computational complexity.

B. Compared with Other Benchmarks

Fig. 10 compares the SCD and STA schemes with three benchmark schemes, named as NoIRS-

STA, RandPhase-STA and Prephase-STA. For the NoIRS-STA scheme, there is no IRS deployed

in the system that can be regarded as the traditional CR system. For the RandPhase-STA scheme,

the phase of each reflection element is randomly and uniformly generated between 0 and 2π for

each subproblem of optimizing RED matrix. For the Prephase-STA scheme, all modulus values

of the phase shifts are fixed to be one. In the above three benchmark schemes, TPC matrix is
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Fig. 11. Feasibility rate and minimum transmit power versus channel uncertainty level δg .

optimized by the same method as used in Algorithm 2. Our proposed SCD and STA schemes

outperform these three benchmark schemes. The NoIRS scheme is the worst one that verifies the

benefit brought by introducing the IRS into CR systems. The Prephase and RandPhase schemes

without phase shifts optimization have almost the same performance and are worse than SCD

and STA schemes.

C. Feasibility and Objective Evaluations

Fig. 11 shows the feasibility rate and minimum transmit power versus the channel uncertainty

level with various numbers of transmit antennas when r = 2, N = 6, Γ = −80 dBm and

β = 0.05. The feasibility rate is defined as the ratio of the number of feasible channel to the

total number of channel generations, where the feasible channel means there exists a solution

for the optimization problem under this channel generation. From Fig. 11(a), we can find that

the feasibility rate decreases with the increase of both δg and the number of transmit antennas

Mt. With the increase of δg, the feasibility rate with large Mt will reduce to zero more rapidly

than that with small Mt. From Fig. 11(b), the minimum transmit power will decrease with

the increase of Mt, which is due to the following two reasons. The first one is that large Mt

improves the degrees of freedom which can be exploited to optimize the active beamforming

at the ST. The second is that the PU-related channels become worse with the increase of Mt

and the IT imposed on PR becomes lower. The same results hold for δg. With the increase of

channel uncertainty, the PU-related channels become worse and more signal power is allocated
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Fig. 12. Feasibility rate and minimum transmit power versus N .

to SUs, then the transmit power of ST can be reduced. Comparing Fig. 11(b) with Fig. 11(a), we

can know that the values of the number of the transmit antennas and channel uncertainty level

should be limited to achieve a good tradeoff between the feasibility rate and the ST’s minimum

transmit power in IRS-aided CR networks.

Note that, in Fig. 11(b), the blue solid line of STA doesn’t complete the transmit power when

Mt = 10. This is due to the fact that the corresponding feasibility rate shown in Fig. 11(a)

becomes zero when the observation point in x axis is 0.2.

Fig. 12 shows the feasibility rate and the minimum transmit power versus the number of

phase shifts N for various values of IT threshold Γ when r = 2, Mt = 6, β = 0.05, δg = 0.1.

From Fig. 12(a), it is observed that both the feasibility rates of the SCD algorithm and the STA

algorithm decrease with the increase of N . This is due to the fact that the cascaded ST-IRS-PR

channel estimation error increases with N . Another phenomenon is that the feasibility rates of

both the SCD and the STA algorithms decrease with Γ. The decrease of Γ means the feasible

space about IT limitation requirement shrinks. Fig. 12(b) shows the minimum transmit power

versus N for various values of Γ. The ST’s minimum transmit power decreases with the increase

of N . This is due to the fact that increasing N can enhance the reflective beamforming gain

by optimizing the phase shift matrix. However, increasing N can also increase the PU-related

channel estimation error, which will reduce the feasibility rate. Hence, the number of phase

shifts should be carefully chosen especially when the IT threshold is lower than −80 dBm. An

extreme case can be found that when Γ = −90 dBm, the optimization problem is not feasible
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Fig. 13. Feasibility rate and minimum transmit power versus L.

at almost all range of phase shifts from 5 to 30. This results in no yield of minimum transmit

power.

D. Multi-PR Scenario Evaluations

Fig. 13 shows the feasibility rate and the minimum transmit power versus the number of PRs

L for various values of channel uncertainty level δg when r = 2, Mt = 4, β = 0.05, N = 6.

The PRs are randomly located in a cell region centered at origin with radius 200 m and other

scenario settings remain unchanged as shown in Fig. 4. For PR l, ∀l ∈ L, we set δgd,l = δgr,l = δg

and Γl = −80 dBm. From Fig. 13(a), it is observed that both the feasibility rates of the SCD

algorithm and the STA algorithm decrease with the increase of the number of PRs and channel

uncertainty level. This is due to the fact that the feasibility region shrinks with the increase of the

number of constraints brought by increasing L and δg. Fig. 13(b) shows the minimum transmit

power versus L for various values of δg. For the same scheme, with the increase of δg, the

PU-related channels become worse and more signal power is allocated to SUs, then the transmit

power of ST can be reduced. The ST’s minimum transmit power decreases with the increase of

L. The reason can be explained as follows. With the increase of the number of PRs, the number

of PRs that are close to the ST will increase as well. In order to guarantee interference constraint

imposed on PRs, the transmit power of ST should be reduced.
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Fig. 14. Impacts of PR and IRS locations on minimum transmit power.

E. Evaluations of Locations of PR and IRS

By moving PR from the original location (0 m, 0 m) to (150 m, 0 m) or IRS from (0 m, 30

m) to (600 m, 30 m) along the x-axis, respectively, we investigate the impact of PR location

or IRS location on the performance of the network in Fig. 14, where we set r = 1, Mt = 4,

β = 0.05, Γ = −70 dBm and δg = 0.05. Fig. 14 indicates that when PR is closer to ST, the

minimum transmit power is smaller. This is because that the closer the PR is to the ST, the greater

the possibility of the ST interfering with the PR. The ST has to decrease the transmit power.

However, this will result in reducing the number of SUs allowed to access the channel. This is

illustrated by the black line in first sub-figure where the optimization problem has solution only

when the location of PR is less than 150 m. Another result indicated by the second sub-figure is

that the location of IRS can affect the minimum transmit power of ST. When the IRS is deployed

near the SU (ST or SR), the transmit power can be lowest. This result can guide us where to

deploy the IRS in IRS-aided CR systems.

VIII. CONCLUSION

In this paper, we have investigated two types of CSI error models for the PU-related channels

in IRS-aided CR networks. Two schemes, i.e., SCD and STA were proposed to jointly optimize

the TPC matrix and phase shift matrix. Simulation results show that if the estimated CSI error

of the PU-related channel is large, the optimization problem has a higher probability to be

infeasible. Even though the CSI error is small, the number of transmit antennas at the ST and
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the number of phase shifts of the IRS should be carefully chosen to balance the feasibility

rate of the optimization problem and the total minimum transmit power. In order to achieve a

certain feasibility rate for the SUs, the admissible access control scheme will be another research

direction in our future work.

APPENDIX A

PROOF OF PROPOSITION 1

For the complex matrix △G where the vector vec(△G) is a Gaussian distribution vector,

vec(△G) can be normalized as vec(△G) = Σ
1
2 t, where the vector follows the distribution of

t ∼ CN (0, I).

As

∥∥∥φ̃H△GW

∥∥∥
2

2
≤ λmax(Σ)

∥∥∥φ̃H
∥∥∥
2

2
‖W‖2F ‖t‖

2
2, the sufficient condition that the probability

constraint in (28) holds is

Pr

{
(N + 1)λmax(Σ) ‖W‖2F ‖t‖22 ≤ Γ−

∥∥∥φ̃H
ĜW

∥∥∥
2

2

}
≥ 1− β

⇔Pr
{
‖t‖22 ≤ Γ̃

}
≥ 1− β,

(53)

where Γ̃ =
Γ−

∥∥∥φ̃H
ĜW

∥∥∥
2

2

(N+1)λmax(Σ)‖W‖2F
.

Since t follows a zero-mean complex Gaussian distribution, ‖t‖22 satisfies the chi-square

distribution with 2(N + 1)Mt degrees of freedom, i.e., ‖t‖22 ∼ χ2
2(N+1)Mt

. We define the

cumulative distribution function F2(N+1)Mt
(Γ̃) = Pr

{
‖t‖22 ≤ Γ̃

}
and the inverse cumulative

distribution function F−1
2(N+1)Mt

(·). Then we have

Pr
{
‖t‖22 ≤ Γ̃

}
≥ 1− β ⇔F−1

2(N+1)Mt
(1− β) ≤ Γ̃. (54)

By substituting Γ̃ into (54), we obtain the result in (29). In practice, the inverse function of the

central chi-square cumulative distribution function can be evaluated directly or be stored in a

lookup table in practical implementation. The proof is completed.

APPENDIX B

PROOF OF THEOREM 1

Denote the collection of {Sk, ∀k ∈ K} as S and define λ = [λk, ∀k ∈ K] and µ as the

non-negative Lagrangian multipliers associated with SINR constraints (33b) and IT constraint
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(33c), respectively. Then, the Lagrangian function of problem P2.1 2 is

L(S,λ, µ) =
∑

k∈K

tr(Sk) +
∑

k∈K

λk

(
γk

(
∑

j 6=k,j∈K

tr(SjĤφ,k) + σ2
sk

)
− tr(SkĤφ,k)

)

+ µ

(
K∑

k=1

tr
(
Sk

(
ϑF−1

2(N+1)Mt
(1− β)I+ G̃φ̃

))
− Γ

)
−
∑

k∈K

tr(SkZk),

(55)

where {Zk � 0, ∀k ∈ K} denote the dual variable matrices associated with the semi-definite

constraints on {Sk, ∀k ∈ K}.
As problem P2.1 2 is a convex optimization problem, its globally optimal solution must

satisfy its first-order optimality condition as:

∂L(S,λ, µ)
∂Sk

= IMt
− λkĤφ,k + µ

(
G̃φ̃ + ϑF−1

2(N+1)Mt
(1− β)IMt

)
− Zk = 0, ∀k ∈ K. (56)

Then, Zk can be represented as Zk = D− λkH̃φ,k, where D is given by

D =
(
µϑF−1

2(N+1)Mt
(1− β) + 1

)
IMt

+ µG̃φ̃. (57)

According to the Karush-Kuhn-Tucker (KKT) condition, we have

λk

[
γk

(
∑

j 6=k,j∈K

tr(SjĤφ,k) + σ2
sk

)
− tr(SkĤφ,k)

]
= 0, ∀k ∈ K, (58)

SkZk = 0, ∀k ∈ K. (59)

Before proving the theorem, we first give the following lemma.

Lemma 2: The optimal Lagrangian dual multipliers {λk, ∀k} are positive, i.e., λk > 0, ∀k.
Proof :This can be proved by using contradiction. Denote the optimal solution of problem

P2.1 2 as {S⋆
k, ∀k} and the corresponding Lagrangian multipliers as {λ⋆

k, µ, ∀k}. Assume there

exists one λ⋆
l that is zero. Then, according to KKT conditions in (58), we have

γl

(
∑

j 6=l,j∈K

tr(S⋆
jĤφ,l) + σ2

sl

)
< tr(S⋆

l Ĥφ,l). (60)

Then, we can find a new precoding matrix So
l = ρS⋆

l with 0 < ρ < 1 such that

γl

(
∑

j 6=l,j∈K

tr(So
jĤφ,l) + σ2

sl

)
≤ tr(So

l Ĥφ,l) (61)

holds. Then, we find a new feasible solution {S⋆
k, k 6= l, ∀k,So

l } that yields a lower objective

value than that of {S⋆
k, ∀k}, which contradicts that {S⋆

k, ∀k} is the optimal solution. �

The first term of D in (57) is an identity matrix multiplied by a constant. In addition, G̃φ̃

is positive definite matrix and the Lagrange multiplier µ is nonnegtive value. As a result, D is
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positve definite matrix with rank(D) = Mt. Since rank(Zk) ≥ rank(D) − rank(λkĤφ,k), we

obtain rank(Zk) ≥Mt−1, where we use the fact that rank(λkĤφ,k) = 1 since ĤΦ,k = ĥΦ,kĥ
H
Φ,k

and λk is positive according to Lemma 2. Furthermore, according to (59), we have rank(Sk) ≤
Mt − rank(Zk). Then, we have rank(Sk) ≤ 1. Obviously, the optimal precoder Sk is not zero

matrix with zero-rank. Hence, the optimal precoder Sk has rank one. The proof is completed.
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