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Abstract—Deep learning methods achieve great success in
many areas due to their powerful feature extraction capabilities
and end-to-end training mechanism, and recently they are also
introduced for radio signal modulation classification. In this
paper, we propose a novel deep learning framework called SigNet,
where a signal-to-matrix (S2M) operator is adopted to convert
the original signal into a square matrix first and is co-trained
with a follow-up CNN architecture for classification. This model
is further accelerated by integrating 1D convolution operators,
leading to the upgraded model SigNet2.0. The simulations on two
signal datasets show that both SigNet and SigNet2.0 outperform
a number of well-known baselines. More interestingly, our
proposed models behave extremely well in small-sample learning
when only a small training dataset is provided. They can achieve
a relatively high accuracy even when 1% training data are kept,
while other baseline models may lose their effectiveness much
more quickly as the datasets get smaller. Such result suggests
that SigNet/SigNet2.0 could be extremely useful in the situations
where labeled signal data are difficult to obtain. The visualization
of the output features of our models demonstrates that our model
can well divide different modulation types of signals in the feature
hyper-space.

Index Terms—Deep learning, Modulation recognition, Convo-
lutional neural network.

I. INTRODUCTION

QUICK and accurate classification of radio signals has
become an important issue in intelligent signal process-

ing, due to the wide usage of radio technology in numerous
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fields. In the open electromagnetic space, there are various
radio signal classification tasks according to different stan-
dards and applications, such as modulation recognition [38],
Aircraft Communications Addressing and Reporting System
(ACARS) signal classification [5], [40], technology recogni-
tion [3], [26] etc. With the massive use of mobile devices
and the development of 5G technology [9], the demand for
limited electromagnetic spectrum resources in modern society
is growing rapidly, which increases the difficulty of managing
radio signals in open electromagnetic space. Improving the
accuracy of modulation recognition can quickly manage the
effective range of electromagnetic spectrum, and ensure the
safety and reliability of communication system [37]. Radio
signal classification and modulation recognition have drawn
the attention of many researchers. Recently, Kulin et al. [12],
Mendis et al. [16], Dobre [7] and Zheng et al. [39] have
proposed their respective radio signal recognition methods.

Signal classification has generally been accomplished by
feature extraction and classification. Feature extraction fo-
cuses on extracting the important characteristics from the
target signals, such as instantaneous amplitude, frequency and
phase, constellation diagram, higher-order moment, and time-
frequency diagram etc., which then are fed into machine learn-
ing methods for classification. For example, Walenczykowska
et al. [29] used wavelet transform and neural network for
modulation identification. Li et al. [13] mapped the signal to
a high-dimensional feature space by using wavelet transform
and then used Support Vector Machine (SVM) to automati-
cally recognize multiple types of digitally modulated signals.
Triantafyllakis et al. [27] adopted random forest algorithm to
identify pulse-time-frequency image characteristics of intra-
pulse modulation. Vučić et al. [28] introduced a theory based
on cyclic stationary signal classification method. While Ab-
delmutalab et al. [1] used high order cumulants as features to
classify M-PSK and M-QAM signals. Most of these methods
require extensive expertise and meanwhile may be lack of high
precision, which greatly limit their application, especially in
complex scenes.

Recently, with the successful application of deep learning
in image classification [33], [34], textural analysis [6], speech
recognition [24], and graph mining [4], [35], deep neural
networks are also becoming a preferable way for signal
classification. Deep learning models, especially Convolutional
Neural Networks (CNNs), can automatically extract features
from various datasets based on task goals, which have been
proved to be significantly superior to manual feature extraction
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in many situations. Due to their powerful feature learning
capabilities, CNNs are widely applied for signal classification.
For instance, O’Shea et al. [21] adopted VGG architecture
principals to design a 1D-CNN model, making it suitable
for small radio signal classification tasks; meanwhile they
also adopted a 1 × 1 convolutional layer for ResNet unit
input, achieving comparable results. O’Shea et al. [19] also
used a narrow 2D-CNN for radio modulation recognition by
simply considering both in-phase (I) and quadrature (Q) signal
sequences in the time domain at the same time. A more
complex model in their paper was called CNN2, based on
which Liu et al. [14] and West et al. [31] designed their
own deep learning models for the respective signal modulation
classification tasks. Using such kind of 1D convolution and
narrow 2D convolution, Xu et al. [32] proposed a multi-
channel CNN, named MCLDNN, to do modulation classi-
fication with different convolution features. However, these
existing models have extremely simple structures and may not
take advantage of the deep architecture of neural networks
to deal with more complex scenes. And for narrow 2D CNN
technique (using a narrow width input), it may not adequately
utilize the power of CNNs, since when the pooling layers
or stride > 1, feature maps in hidden layers will shrink to
one-dimensional vectors soon, and thus they can only extract
features in this one direction.

An alternative way is to preprocess the signals, so as to
change them into matrices, which are then fed into CNNs
to get classification results. For instance, Peng et al. [23]
proposed a modulation classification algorithm based on the
signal constellation diagram and deep learning models. Zeng
et al. [36] transformed signals into spectrogram images as the
input of CNN. There are also some related algorithms in the
area of time series analysis. For example, Wang et al. [30]
proposed a novel framework for encoding time series, where
the Gramian Angular Fields (GAF) and Markov Transition
Fields (MTF) are used to convert time series into different
types of images. However, these conversion methods are based
on specific mathematical formulas, like some specific feature
transformation (transform the original data to a more complex
but specific space), and thus are lack of flexibility and may
lose some useful features.

On the other hand, radio signals are also a kind of time-
series, therefore, instead of losing their time information in
CNNs, long short term memory (LSTM) [8] can be a good
candidate to capture the time related features of signals. In
fact, LSTM has been adopted in multiple signal fields [17],
[41]. For instance, O’Shea et al. [18] applied deep recurrent
neural networks (RNN) for end-to-end radio traffic sequence
recognition. Yildirim et al. [41] proposed a deep bidirectional
LSTM network for wavelet sequences and realized electro-
cardiogram signal classification. Mostayed et al. [17] used
a bidirectional LSTM network to detect pathologies in ECG
signals. Rajendran et al. [25] adopted an LSTM based model
for modulation classification in a distributed wireless spectrum
sensing network. Huang et al. [11] did three kinds of signal
data augmentations and evaluated them through an LSTM
model. LSTM models are able to capture the time information
due to its gate structure and memory cells and thus are

considered to be more suitable for signal classification, leading
to higher accuracy in general. However, they are always time-
consuming and are also difficult to train especially for long
signals in complex tasks.

To fully utilize the powerful feature extraction capability
of CNNs and meanwhile overcome the shortage of above
methods, in this paper, we first focus on transforming signal
to a two-dimensional matrix as input so as to make it easy
for CNN to extract features. In particular, we design a flexible
deep learning framework SigNet based on sliding trainable
operators which are used to adaptively extract the characteris-
tics of signals. Since different operators can capture the signal
properties in different aspects and scales and further automat-
ically transfer a signal into different matrices, integration of
which by typical CNN architecture thus can largely improve
the classification performance. Moreover, to further accelerate
the training of SigNet, we replace some of the 2D convolution
operators by 1D convolution operators, and propose SigNet2.0.
Interestingly, SigNet2.0 is not only faster than SigNet, but may
also have slightly higher classification accuracy, indicating its
outstanding performance in practice. The main contributions
of this paper are as follows.

1) We develop SigNet as a novel deep learning framework
for signal classification by introducing a sliding square
operator S2M, with which the input signal can be
automatically transformed into a square feature matrix.
This S2M is trainable by connecting to a CNN structure
and can adaptively extract important features, avoiding
tedious preprocessing of the original signals.

2) We accelerate SigNet by integrating 1D and 2D convo-
lution operators, and propose SigNet2.0. This upgraded
model reduces the complexity of signals through 1D
convolution operators and then converts the simplified
signals into feature matrices through S2M, thereby im-
proving both classification accuracy and efficiency.

3) We perform comprehensive simulations on two signal
datasets, and validate the outstanding performance of
our models. Specifically, SigNet performs significantly
better than other models, and is close to the latest model
MCLDNN on RML2016.10a dataset (The accuracy of
SigNet on the entire test set is 61.35%, while that of
MCLDNN is 61.16%). And for dataset Sig2019-12,
SigNet performs significantly better than all the other
models, especilly when the SNR is below 0dB. (The
accuracy of SigNet on the entire test set is 72.69%, while
the second best model MCLDNN is 67.52%), SigNet2.0
performs even better on two datasets (achieving the
accuracy of 62.30% and 72.87%, respectively). The
visualizations of the output features for various models
shows that our proposed models have a strong ability to
distinguish features of modulation categories.

4) We find that SigNet and SigNet2.0 perform extremely
well in small-sample learning. Both of them keep a
relatively high accuracy when using a much smaller
training dataset, while other methods may lose their
effectiveness quickly. This phenomenon suggests that
our proposed models could be more practical since
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labeling signals are always expensive.

The rest of paper is organized as follows. In Sec. II, we
present the details of our technique and the principal and
advantages. After that, we show the simulation setup and
results with analysis and discussion in Sec. III. And we further
visualize the model output features in Sec. IV to explain how
SigNet and SigNet2.0 behave better than other models. Finally,
we conclude the paper and give possible directions for the
future work in Sec. V.

II. METHOD

In this section, we introduce our method in detail. Specifi-
cally, for the IQ signal, we first design a series of parameter-
trainable matrix operations, transform them into matrices, and
then classify them with some typical deep learning model.
The overall framework of SigNet is shown in Fig. 1. We
mainly focus on the trainable signal-to-matrix method and the
work-flow of the entire framework. Finally, based on our basic
model SigNet, we also introduce the accelerated version, i.e.,
SigNet2.0, by integrating 1D and 2D convolution operators,
whose structure is shown in Fig. 2.

A. S2M operator

The received radio signal can be seen as a function of time,
it is usually represented by its in-phase and the quadrature
(IQ) components as

x(t) = xI(t) + jxQ(t). (1)

The real and imaginary parts of x(t) represent the I and Q
components, respectively. Usually, the signal is sampled at a
certain frequency, and the length of each signal sample is fixed
to form a dataset.

For an IQ signal sample, we first treat I channel and Q
channel separately, and transfer them into matrices by using
different signal-to-matrix (denoted by S2M briefly) operators.
Specifically, to facilitate the implementation of the algorithm,
an IQ signal can be represented by:

I = [i1, i2, i3, ..., iN ], (2)
Q = [q1, q2, q3, ..., qN ], (3)

where N is the signal length of each channel. Without loss
of any generalization, here we focus on I channel, and the
operation for Q channel is exactly the same as I channel.
Firstly, we use a sliding window to sample the signal of I
channel, where the length of the window, denoted by k, is
adjustable. By the sliding window, we get a slice of signal
with length k. The window moves from [i1, i2, ..., ik] to the
end of the signal [iN−k+1, iN−k+2, ..., iN ], with the default
stride set to h = 1. From the start to the end, putting all the
slices together, we thus get a slice matrix as follows:

SI =


i1 i2 · · · ik
i2 i3 · · · ik+1

...
...

. . .
...

iN−k+1 iN−k+2 · · · iN

 , (4)

with the matrix size (N−k+1)×k, meaning there are totally
N − k + 1 slices of length k.

Now, we define a filter FI as our trainable operator, which
is represented by a square matrix:

FI =


α11 α12 · · · α1k

α21 α22 · · · α2k

...
...

. . .
...

αk1 αk2 · · · αkk

 , (5)

with the matrix size k × k. The values of elements in FI

are randomly set by standard Gaussian distribution initially,
and can be update by optimization algorithms in the training
process of the whole deep learning framework.

Based on the slicing matrix SI and the filter FI , we can
transform a signal of I channel into a feature matrix by

MI = SI · FI · ST
I , (6)

with the matrix size (N − k + 1)× (N − k + 1).
Note that the elements in matrix MI can be considered as a

kind of dot product of two signal slices at different positions
with the operator FI :

mI(h, l) = [ih, ih+1, · · · , ih+k]·FI ·[il, il+1, · · · , il+k]
T
, (7)

where mI(h, l) represents the element of matrix MI at
position (h, l). Since dot product of two vectors generally
represents the correlation between them, feature matrix MI

can capture the local auto-correlation of the signal under
appropriate transformation, to certain extent.

Similarly, we can get the feature matrix of the Q-channel
signal:

MQ = SQ · FQ · ST
Q, (8)

where SQ, FQ represent the signal slice matrix and filter ma-
trix of the Q-channel signal, denoted as follows, respectively.

SQ =


q1 q2 · · · qk
q2 q3 · · · qk+1

...
...

. . .
...

qN−k+1 qN−k+2 · · · qN

 , (9)

FQ =


β11 β12 · · · β1k
β21 β22 · · · β2k

...
...

. . .
...

βk1 βk2 · · · βkk

 (10)

In this way, we convert the IQ signal into two matrices MI

and MQ, which can be summarized as Algorithm 1.

B. Work-flow of SigNet

Through S2M operator, we can get two feature matrices MI

and MQ corresponding to I and Q channels, respectively. Then,
to do signal classification, we concatenate the two matrices in
the channel dimension to form a two-channel image, which is
then fed into a CNN for training and classification, as shown
in Fig 1. Here, the CNN structure could be any typical one,
such as Alexnet, VGG and ResNet etc.

The training of the overall deep learning framework can
be divided into two parts: the first is training for the signal
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Fig. 1. The framework of SigNet. A signal-to-matrix operation S2M is implemented by matrix multiplication of signal slices and trainable filters and then a
typical CNN (ResNet50) is used for classification. They are trained together by neural network optimization algorithms.

Algorithm 1 S2M operation
Input: IQ signal: I = [i1, i2, ..., iN ], Q = [q1, q2, ..., qN ];

Parameters: filter size k.
Output: Matrices MI and MQ.

1: Get slice matrices SI and SQ by Eq. (4) and Eq. (9),
respectively.

2: Get trainable filters FI and FQ:
If initialization: FI ∼ N (0, 1), FQ ∼ N (0, 1);
If training: FI = FI−η∇L(FI), FQ = FQ−η∇L(FQ),
where L is the classification loss of entire deep learning
framework, and η is the learning rate.

3: Obtain the feature matrices:
MI = SI · FI · ST

I ;
MQ = SQ · FQ · ST

Q.
4: Return MI , MQ.

filters (FI and FQ) and the second is training for CNN. The
filter training is to find better matrix representations of signals,
and the CNN training is to find higher feature representations
from these matrices. Note that the whole framework is end-to-
end, while the filters and CNN can be either trained together
or alternately. Also, we can set different training parameters
for them, such as different learning rate or different weight
decay proposals. In this paper, for convenience, we train them
together with the same training parameters.

In this way, we can make full use of the capacity of
CNN in processing images (or matrices) without destroy the
inherent structure of the signals. Simulation results confirm
the performance of our method.

C. Principal and advantages

The core of SigNet is to develop a new operator for signal
processing, which can be adaptively trained when naturally
integrated into the framework of CNN. And the motivation of
using a sliding window and a trainable filter to transfer 1D
signal into 2D matrix is that we believe, with the end-to-end
training, the trained operator can better convert the signal into
a two-dimensional representation. Just as the automatic image
classification of CNN has surpassed the image classification of

artificially designed features, an automatic image representa-
tion of signal may be better than deterministic signal-analysis-
based and specific-mathematical-formulas-based approaches.

Signals are typical time series, with the key information
to distinguish each other hidden in the correlation between
segments. The information at each point is simple, while that
of the whole signal is complex. We thus first get continuous
slices of signal by a sliding window with length k, denoted by
xh, h = 1, 2, · · · , xN−k+1, with xh = [ih, ih+1, · · · , ih+k−1]
for I channel and xh = [qh, qh+1, · · · , qh+k−1] for Q channel;
then we calculate the correlation between each pair of them
after a linear mapping function g(xh) = G · xh′, with G the
square matrix with size k, to get the feature matrix:

mhl = g(xh)
Tg(xl) = xhG

TGx′l, (11)

which will be equivalent to Eq. (7) when we simply set FI =
GTG. Interestingly, when FI or G is set to identity matrix,
we will get

mhl = xhx
′
l, (12)

which degenerates to Gram matrix and characterizes the cor-
relation between two slices of the signal at different positions.

In this sense, the feature matrix of S2M is actually a
transformed correlation matrix of all the signal slices (or
namely a transformed local auto-correlation matrix for the
whole signal). Note that, in a previous work [30], Wang et al.
used the Gramian Angular Fields to convert time series into
different types of images for signal classification. The main
difference is that we don’t use the Angular Field to transfer
the values to some angles, instead, we use a trainable filter to
transform the representational space of signal slices first and
then calculate their inner products. The obtained feature matrix
could be considered as a generalized version of Gram matrix
based on signal slices. And SigNet thus has the following
advantages: First, through training with the CNN, a more
suitable representational space can be automatically found for
classification; Second, the original Gram matrix is a symmetric
matrix, which is big but of huge information redundancy. By
breaking such symmetry, more information could be utilized,
since it could be different for exchanging two slices when
multiply by a transformation matrix between them.
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Fig. 2. One kind of structure of SigNet2.0, which is based on ResNet50. We try to use 1D convolution to replace some of the 2D convolution of SigNet to
accelerate the model. Here we choose replacing 1D convolution with 2D convolution on stage1 and stage2, for it’s highest classification accuracy.

Compared with those methods that directly utilize signals,
such as reshape, narrow 2D-CNN and 1D-CNN, our SigNet
makes full use of feature extraction capabilities of CNNs
without destroying the structural information of original sig-
nals, leading to the fluent learning of the whole framework.
SigNet is such a flexible framework, one can adjust the size of
filter to find the information-unit on a longer or shorter slice,
and change the stride to reduce the input size when signal
is especially long. We will continue to explore these hyper-
parameter sensitivities and researchers can also adjust them
according to their own tasks to get a better performance.

D. Acceleration and upgrade by integrating 1D convolution

SigNet converts the original signal sequence into a matrix,
which can enrich the hidden features of the signal. However,
this conversion greatly increases the size of the input data,
and the model will occupy a lot of computing resources,
especially for a long input sequence. On the other hand,
1D-CNN is naturally adopted to classify signals, which has
the following advantages: Firstly, it directly uses the signal
sequence without destroying its inherent structure; Secondly,
it is fast and effective. O’Shea et al. [21] designed a 1D-CNN
model and made it suitable for small radio signal classification
tasks. Therefore, here, we consider to integrate 1D-CNN into
our framework so as the accelerate and upgrade our model.

We try to use 1D convolution operators to replace some
of the 2D convolution of SigNet to accelerate the framework,
and the specific number of replacement layers depends on the
structure of the CNN. As shown in Fig. 2, for example, we use
ResNet50 [10] as the basic CNN structure for classification,
which consists of 5 stages each with a convolution block and
several identity blocks, each convolution block has 3 convo-
lution layers and each identity block also has 3 convolution
layers. For the original SigNet, the signal sequence will be
converted into a matrix first by S2M and then input into
ResNet50 for classification, but now we consider to use 1D
convolution first to reduce the length of the signal sequence
and thus reduce the size of the transformed matrix. Begin
from the input layer, we replace some of 2D convolutional
layers of ResNet50 with 1D convolutional layers (we repalced

stage1 and stage2, actually), these 1D convolution structure
can be seen as the part of 1D ResNet50, it will output the
feature sequence of the input signal, which is much shorter
than the input signal but could contain most of the useful
information. Then, an S2M operation will be deployed to
convert the feature sequence to a matrix and the rest of the
structure of ResNet50 will do the final classification. We
name the upgraded model SigNet2.0 which mixes the 1D
structure and 2D structure of the CNN for signal classification.
Simulation results show that SigNet2.0.0 can greatly improve
the efficiency of model training without loss of classification
accuracy. Impressively, when the ratio of 1D structure and
2D structure is set appropriately, it can even improve the
classification accuracy of the model to a certain extent.

III. SIMULATIONS

In this section, we perform the simulations to validate the
effectiveness of our models. All the deep learning models are
trained on NVIDIA Tesla V100-PCIE.

A. Modulation dataset

We evaluate our methods on the following two datasets for
signal modulation classification.
• RML2016.10a This dataset is public for signal modu-

lation classification [19], [20]. It uses GNU Radio [2]
to synthesize IQ signal samples. The dataset contains
11 modulation categories consisting of BPSK, QPSK,
8PSK, 16QAM, 64QAM, BFSK, CPFSK, and PAM4 for
digital modulations, and WB-FM, AM-SSB, and AM-
DSB for analog modulations. The signal to noise ratio
(SNR) ranges from -20dB to 18dB, the length of each
sample is 128, and the total size of the dataset is 220,000.
We divide the dataset into training set, validation set and
test set according to the ratio of 6:2:2, the size of training
set is 132000 (600 samples per modulation type of each
SNR), the size of validation set and test set are both
44000 (200 samples per modulation type of each SNR).

• Sig2019-12 This dataset contains longer signals simulated
by ourselves. The simulation considers several nonideal
effects of a real communication system, including carrier
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phase, pulse shaping, frequency offsets and noise. It
contains 12 modulation categories consisting of BPSK,
QPSK, 8PSK, OQPSK, 2FSK, 4FSK, 8FSK, 16QAM,
32QAM, 64QAM, 4PAM, and 8PAM. The original data
is generated in a random manner, so as to guarantee equal
probability of transmitted symbols. The pulse shaping
filter is a raised cosine filter, and the roll-off factor
is a random value within the range 0.2 to 0.7. The
phase offset is randomly selected within the range −π
to π, and the carrier frequency offset (normalized to
the sampling frequency) is randomly selected within the
range -0.1 to 0.1. The SNR of each modulation type is
evenly distributed from -20dB to 30dB. Each data sample
contains 64 symbols, and the oversampling rate is 8, so
the number of sampling points for each sample is 512.
The total size of the dataset is 468000 (1500 samples per
modulation type of each SNR), and we divide dataset into
training set, validation set and test set according to the
ratio of 6:2:2, just the same as the division strategy of
RML2016.10a dataset.

In the following signal modulation classification tasks, all
simulations are based on these two datasets, for RML2016.10a,
because all examples were scaled to unit energy [20], we use
the raw data as input; for Sig2019-12, we use the maximum-
minimum normalization to normalize each sample, which can
be formulated as x′i = (xi − min)/(max − min) × 2 − 1,
where xi is the original value of each sampling point in a
signal channel (I or Q), max and min are the maximum and
minimum values of the sampling points in a signal channel, re-
spectively. Without special instructions, we use entire training
set for training, entire validation set for validation and entire
test set for testing.

B. Models’ setup and baselines

To do signal classification, we set our SigNet with 2 filters
of shape 3×3 and 1 stride in S2M operation, so it can transfer
an IQ signal to a 2-channel matrix, each 128-length signal
will be converted into a 126× 126× 2 image and each 512-
length signal will be converted into a 510 × 510 × 2 image.
Such image then will be imported into a default ResNet50 [10]
model implemented by Pytorch [22].

There are several kinds of baselines to be compared so as
to validate the effectiveness of our models. The first kind
is to directly transfer the signal as 2D input, specifically,
we reshape each signal sample into a square matrix, a 128
(or 512) length IQ signal can be concatenated into a 256
(1024) length sequence, and then it can be further reshaped
as a 16 × 16 (or 32 × 32) matrix, which is then fed into
the ResNet50. In the field of time-series analysis, there are
also methods to convert a time-series to a matrix first using
some theories, such as GAF and MTF, and then connect to
typical CNN models to get classification results. The brief
introduction of these methods are provided in Sec. II, and
there is also a method that uses signal constellation diagram
and deep learning models for classification [23]. Here we use
these methods as the second kind of baselines which mainly
use some specific mathematical method to convert signal to

matrix. There are also several existing researches that using
deep learning methods to do signal classification, such as
narrow 2D-CNN [19], 1D-ResNet [21], MCLDNN [32], and
LSTM [25]. We use them as the third kind of baselines. We
re-implemented the above-mentioned methods in the same
programming environment based on Python3, implemented
all the deep learning models for simulation based on the
deep learning framework Pytorch, and performed simulations
based on our datasets division. For dataset RML2016.10a, the
architecture description of these models are shown in Table I,
the layers of the model from input to output are described in
order. And for dataset SigNet2019-12, there is no changes but
the number of output neurons will be 12.

TABLE I
ARCHITECTURE DESCRIPTION OF DIFFERENT MODELS FOR

RML2016.10A DATASET.

Models Architecture description

1D-ResNet
6 ResidualStack each contains 5 Conv1D

of kernel size 3 and pool size 2, Dense(128),
Dropout(0.3), Dense(11)

2D-CNN
Conv2D(256x1x3), ReLU, Dropout(0.5),

Conv2D(80x2x3), ReLU, Dropout(0.5), Dense(256),
ReLU, Dropout(0.5), Dense(11), softmax(11)

LSTM LSTM(128), LSTM(64), Dense(11)

MCLDNN

Conv1D(50x7) concats with (Conv1D(100x7),
Conv1D(50x7)), ReLU, Conv1D(100x5),
LSTM(128), LSTM(128), Dense(128),

Dropout(0.5), Dense(128), Dropout(0.5),
Dense(11)

SigNet S2M with a typical 2D ResNet50
SigNet2.0 S2M with a 1D-2D Fusion ResNet50

For each model training, firstly, we set an epoch number
to ensure the model’s testing accuracy reaches convergence
after training. Then, after each epoch of training, the model
will be validated on the validation set. Finally, the epoch of
training with the highest validation accuracy will be the last
epoch of training. We select all the models with the highest
validation accuracy, save them and use them for testing and
performance comparison. We use a warm-up cosine annealing
strategy for learning rate decay with an Adam optimizer, and
for each model, we used the initial learning rate 0.001 and
0.1 for RML2016.10a and Sig2019-12 datasets, respectively,
to ensure that it can be effectively trained. We set batch size
of 128 and 32 for each model with RML2016.10a dataset and
Sig2019-12 dataset, respectively.

C. Effectiveness of S2M operator

We first compare the classification results obtained by
SigNet with those obtained by the first and second kinds
of baselines, by simply reshaping input (Reshape) or us-
ing specific mathematical input conversion (GAF, MTF, and
constellation diagram), to validate the effectiveness of our
trainable S2M operator.

We train the models by using the whole training set, and
then give the classification accuracy on test samples of each
SNR. The results are shown in Fig. 3, where we can see that,
on both datasets, SigNet has a higher accuracy than the others.
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Some signal conversion methods, such as GAF and MTF,
perform quite differently on different datasets, which may
suggest that these methods lack good generalization ability.
All of these indicate that trainable S2M operators can indeed
match better with CNN classifier, i.e., it can adaptively capture
the better features of signals for classification.

D. Comparison with other deep learning models

In this part, we compare SigNet with several state-of-
the-art deep learning models applying in signal modulation
classification. In particular, we choose three CNN models,
narrow 2D-CNN [19], 1D-ResNet [21] and MCLDNN [32],
and a 2-layer LSTM model [25] as the baselines. The first three
are the most advanced CNN models for signal modulation
classification, while the last one is a commonly used sequence
deep learning model. The results are shown in Fig. 4, as we can
see, for dataset RML2016.10a, SigNet performs significantly
better than other models, except the state-of-the-art model
MCLDNN, the performance of these two models is very close
(the accuracy of SigNet on the entire test set is 61.35%, while
that of MCLDNN is 61.16%). And for dataset Sig2019-12,
SigNet performs significantly better than all the other models,
especilly when the SNR is below 0dB (the accuracy of SigNet
on the entire test set is 72.69%, while the second best model
MCLDNN is 67.52%). These results indicate that our model
has a better generalization than MCLDNN and has a stable
performance on more datasets.

To compare the classification performance of these models
more comprehensively, we visualize the confusion matrices of
the entire test sets in Fig. 5, for the two datasets RML2016.10a
and Sig2019-12, respectively. As we can see, on the dataset
RML2016.10a, 1D-ResNet is more likely to misclassify the
modulation category WBFM as AM-DSB; both 1D-ResNet
and 2D-CNN are more likely to confuse QAM64 and QAM16,
while it seems that both LSTM and SigNet are able to
reduce such confusion to certain extent. All the models may
misclassify WBFM as AM-SSB or AM-DSB and misclassify
all modulation categories as AM-SSB. On the dataset Sig2019-
12, 2D-CNN behaves the worst in many categories, especially
for 2FSK and 4FSK, while the others perform well. The
diagonal of SigNet and MCLDNN’s confusion matrices are
more distinct than the others, especially for OQPSK, 2FSK,
4FSK and 8FSK. LSTM seems close to SigNet, but the latter
has a much higher training efficiency, i.e., comparing with
LSTM, SigNet saves 49.58% and 32.40% training time on the
two datasets RML2016.10a and Sig2019-12, respectively.

E. The performance of SigNet2.0

To further accelerate our model, we replace some of the 2D-
convolutional layers with 1D-convolutional layers, and found
that it can slightly increase the classification accuracy when the
ratio of 1D-convolutional layers and 2D-convolutional layers
is set appropriately. We tried to replace different numbers
of 2D-convolutional layers with 1D-convolutional layers and
tested the accuracy on the same dataset. For the ResNet50,
we found that when the 2D-convolutional layers of stage1 and
stage2 were replaced with 1D-convolutional layers (as shown

in Fig. 2), the model has the highest accuracy with a certain
acceleration effect, and we call this model SigNet2.0. Com-
paring with SigNet, SigNet2.0 improves 0.95% and 0.18%
accuracy, meanwhile saving 30.65% and 12.46% training time,
on RML2016.10a and Sig2019-12 datasets, respectively.

We conducted a comprehensive evaluation and comparison
of the models mentioned above, including model classification
performance, training time and parameter quantity, as shown in
TABLE II. We also used the machine learning toolkit sklearn
to draw the ROC curves of all methods on the multi-class
classification results and calculate the AUC value, as shown in
Fig. 6. We can see that some models, such as 1D-ResNet and
2D-CNN, are fast but of relatively low classification accuracy;
MCLDNN also has a sightly lower accuracy than SigNet on
the RML2016.10a dataset, although it is lighter and more
efficient. On Sig2019-12 dataset, it performs much poorer
than our SigNet, indicating that our method has the better
generalization ability when the data sample becomes longer.

Among these methods, GAF, MTF and Constellation have
the same amount of trained parameters, but they show great
difference in training time. The first reason is that the input size
of Constellation is smaller than GAF and MTF and another
reason is that, for GAF and MTF, due to the storage space
limitation, we use an end-to-end framework to include the
processing of signal samples to matrix and subsequent CNN-
based classification in one framework, while for Constellation,
we first use the counting method to directly convert the entire
datasets into density matrices, and then input them into CNNs
for classification. So, for the training time measurement, there
are two training time measurements for different models. For
GAF and MTF, because the processed training set requires
huge storage space, we choose to perform preprocessing
together with subsequent CNN training, so their training
time includes the time of preprocessing and subsequent CNN
training. For other models, the training time only includes
the training time of the model parameters. Since the training
time of GAF and MTF also includes the time of converting
signals into matrices, they are more time-consuming than other
methods, but their training time is only listed as a reference
and is not used for comparison with that of other methods.
In general, GAF and MTF methods are not flexible enough
in implementation, and the accuracy is worse than that of
SigNet. Compared with other models, our SigNet model has
more parameters, since it is based on ResNet50, which has
a total of 50 convolutional layers. However, our model can
be trained efficiently due to the residual structure. Among
all the methods, SigNet2.0 performs the best in classification
performance, obtaining the state-of-the-art results, reaching a
good balance between accuracy and efficiency.

F. Learning with small samples
There are always real situations that we cannot get enough

signal samples with labels. In reality, collecting labels for
signals may be more expensive than for images, since they
are relatively abstract and thus need a large amount of expert
labors. To validate the effectiveness of our method in such
situations, we also compare SigNet/SigNet2.0 with other state-
of-the-art deep learning models by using only a small fraction
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Fig. 3. The comparison results of SigNet/SigNet2.0 and other signal-to-matrix methods. All the methods do the signal classification by converting signal to
matrix first and then using a typical ResNet50 for classification.

Fig. 4. The comparison results of SigNet/SigNet2.0 and other deep learning models.

TABLE II
THE PERFORMANCES OF ALL THE MODELS WE USED.

Dataset Method Accuracy F1 Score Recall Training Time Parameter quantity

RML2016.10a

GAF 49.43% 0.5154 0.4943 3h18m 23.53M
MTF 48.17% 0.5162 0.4818 2h52m 23.53M

Constellation 44.92% 0.4507 0.4493 21m 23.53M
1D-ResNet 57.74% 0.5930 0.5774 26m 0.1M
2D-CNN 54.02% 0.5504 0.5402 21m 2.71M
LSTM 57.20% 0.5877 0.5720 1h56m 0.2M

MCLDNN 61.16% 0.6335 0.6117 53m 0.37M
SigNet 61.35% 0.6354 0.6135 62m 23.53M

SigNet2.0 62.30% 0.6487 0.6226 43m 23.52M

Sig2019-12

GAF 67.31% 0.6714 0.6732 33h24m 23.53M
MTF 65.21% 0.6561 0.6521 43h52m 23.53M

Constellation 41.78% 0.4193 0.4178 1h15m 23.53M
1D-ResNet 64.47% 0.6427 0.6447 50m 0.13M
2D-CNN 41.95% 0.4201 0.4196 1h15m 10.57M
LSTM 66.90% 0.6675 0.6682 19h49m 0.2M

MCLDNN 67.52% 0.6731 0.6738 1h42m 0.37M
SigNet 72.69% 0.7230 0.7228 15h23m 23.53M

SigNet2.0 72.87% 0.7265 0.7228 13h28m 23.52M
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Fig. 5. The confusion matrices of five deep learning models, including 1D-ResNet, 2D-CNN, LSTM, MCLDNN and SigNet, on RML2016.10a (top) and
Sig2019-12 (bottom).

Fig. 6. The ROC curves and AUC values of all methods in RML2016.10a
test set (top) and Sig2019-12 test set (bottom).

η of training set. In particular, for RML2016.10a, we vary
η from 1/600 to 80/600 (about 0.167% to 13.333%), which
means that in the least case, each modulation category’s each
level of SNR only has one sample participates in training,
similarly, for Sig2019-12, the η is from 1/900 to 100/900
(about 0.111% to 11.111%), the classification results are show
in Fig. 7.

We find that, in general, our SigNet and SigNet2.0 can keep
relatively high accuracy when a small fraction of training set
is adopted: e.g., they achieve 56.94% and 56.63%, respec-
tively for RML2016.10a, and achieve 67.67% and 68.10%,
respectively for Sig2019-12 when less than 15% training set
is adopted; and these numbers are 36.35% and 41.47% for
RML2016.10a, and 44.49% and 44.88% for Sig2019-12 even
when about 1% training set is adopted. By comparison, the
accuracy of the other deep learning models drops very quickly
as the training set gets smaller. Both MCLDNN and LSTM use
the features of sequential neural networks (part of the features
used by MCLDNN is based on LSTM), which may be the
reason for their poor performance in small sample learning on
Sig2019-12. Such results are quite impressive by considering
that these three models have comparable results when the full
training set is adopted. More remarkably, for RML2016.10a,
when each modulation category’s each level of SNR only has
one sample participates in training, SigNet and SigNet2.0 still
have the accuracy above 20% for the both datasets, much
higher than the other three models. These results suggest that
our SigNet and SigNet2.0 have powerful feature extraction
capacity and could be very useful in the situations where the
labeled data are difficult to obtain.

G. A brief ablation study of SigNet

We also conducted a brief ablation study of SigNet’s hyper-
parameters, including batch size, filter size of S2M and
optimizer. Since we use the learning rate decay strategy of
warm-up cosine annealing, the ablation study of learning rate
has not been taken. The results are shown in Table III. For
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Fig. 7. The comparison results of our proposed SigNet/SigNet2.0 and those deep learning models as baselines on small sample learning.

dataset RML2016.10a, when the batch size is set to 128, the
accuracy of the model is the highest, and when the filter size
changes within a certain range (3, 5, 7, 9), the accuracy is
almost unaffected. For dataset Sig2019-12, within a certain
range, batch size (32, 64, 128) and filter size (3, 5, 7) have
little effect on the accuracy of the model.

TABLE III
A BRIEF ABLATION STUDY OF SIGNET WITH TEST ACCURACY.

Dataset BatchSize FilterSize Optimizer Accuracy
RML2016.10a 32 3x3 Adam 60.60%
RML2016.10a 64 3x3 Adam 60.29%
RML2016.10a 128 3x3 Adam 61.35%
RML2016.10a 256 3x3 Adam 59.53%
RML2016.10a 128 3x3 SGD 61.44%
RML2016.10a 128 3x3 Adagrad 60.99%
RML2016.10a 128 3x3 Adadelta 60.98%
RML2016.10a 128 5x5 Adam 60.83%
RML2016.10a 128 7x7 Adam 61.18%
RML2016.10a 128 9x9 Adam 61.20%

Sig2019-12 32 3x3 Adam 72.69%
Sig2019-12 64 3x3 Adam 72.14%
Sig2019-12 128 3x3 Adam 71.93%
Sig2019-12 32 3x3 SGD 69.13%
Sig2019-12 32 3x3 Adagrad 70.12%
Sig2019-12 32 3x3 Adadelta 70.01%
Sig2019-12 32 5x5 Adam 72.20%
Sig2019-12 32 7x7 Adam 72.58%
Sig2019-12 32 9x9 Adam 71.98%

What’s more, we also studied the impact of using different
ResNet structures on the performance of our framework. We
use the hyperparameter settings described in Section III-B
and replace the subsequent ResNet50 structure of S2M with
ResNet18, ResNet34 and ResNet101 respectively, and the
classification accuracy is shown in Table IV. We can see
that in general, the changes in the ResNet structure do not
have much impact on the classification performance of the
SigNet framework. For RML2016.10a, ResNet50 is better than
other structures, and for Sig2019-12, the simpler structure
ResNet34 performs better than others. And no matter which

ResNet structure is used with S2M, the signal classification
performance is much better than other frameworks that use
ResNet, such as GAF, MTF, etc.

TABLE IV
A BRIEF ABLATION STUDY OF SIGNET WITH TEST ACCURACY.

Dataset Architecture Accuracy Parameter
quantity

RML2016.10a S2M+ResNet18 60.38% 11.17M
RML2016.10a S2M+ResNet34 60.48% 21.28M
RML2016.10a S2M+ResNet50 61.35% 23.52M
RML2016.10a S2M+ResNet101 60.85% 42.52M

Sig2019-12 S2M+ResNet18 72.13% 11.17M
Sig2019-12 S2M+ResNet34 72.52% 21.28M
Sig2019-12 S2M+ResNet50 72.14% 23.52M
Sig2019-12 S2M+ResNet101 72.26% 42.52M

IV. EXPLANATORY VISUALIZATION OF MODELS

In this section, we will visualize the output features of the
six deep learning models proposed by other literature, to see
how these models distinguish signals of different modulations.

In particular, we use t-SNE (t-distributed Stochastic Neigh-
bor Embedding) [15] to map the output features extracted by
the trained model into a two-dimensional space for visual-
ization. Specifically, we first remove the last softmax layer
of the trained deep learning models, and then input the test
dataset to obtain the corresponding output features. After that,
we use the t-SNE technique to reduce the dimension of the
output features for visualization. For the t-SNE technique, the
number of iterations is set to 300, the learning rate is 1000,
the perplexity is 30, and the momentum changes from 0.5 to
0.8.

We compare SigNet/SigNet2.0 with other deep learning
modulation classification models through the output feature
visualization. Since the entire test set is too large and compli-
cated for visualization, we only select the data with maximum
SNR (18dB for RML2016.10a and 30dB for Sig2019-12), as
shown in Fig. 8. Note that we also display the classification
results by placing confusion matrices on the left side.
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Fig. 8. The visualization of test samples of the maximum SNR in the two datasets, i.e., 18dB for RML2016.10a (left) and 30dB for Sig2019-12 (right), by
using the six deep learning models, including 1D-ResNet, 2D-CNN, LSTM, MCLDNN, SigNet, and SigNet2.0 (from top to bottom).

As we can see, the classification results are well reflected in
the visualization of the output features. When two categories
of data are misclassified with each other by a model, the
corresponding data points in t-SNE visualization will also
overlap, e.g., the data points of WBFM and AM-DSB in
RML2016.10a. It can be observed that the signals of different

modulation categories have much clearer boundaries by adopt-
ing SigNet/SigNet2.0 and MCLDNN than those by adopting
1D-ResNet, 2D-CNN or LSTM, leading to their much higher
classification accuracy, which is consistent with the results
presented in TABLE II.
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V. CONCLUSION

In this paper, we proposed a deep learning framework for
signal modulation classification, namely SigNet, which first
uses a trainable S2M operator to convert the original signal to
a square matrix and then use a typical CNN for classification.
Moreover, we integrate 1D convolution operators into SigNet,
so as to propose SigNet2.0 to further improve the classification
accuracy and efficiency. Comprehensive simulation results
validate the outstanding performance of our models. Quite
impressively, both SigNet and SigNet2.0 give comparable ac-
curacy even when very small training set is adopted, showing
their strong feature extraction capacity. Such results indicate
that our framework could be especially useful in the situations
where labeled signals are difficult to obtain.

In the future, we may try other CNN architectures to further
improve the performance of SigNet. Moreover, we will also
apply our framework to other kinds of signal datasets to
validate its effectiveness in more general cases. We will also
consider that single channel sample may contain multiple
modulations and further adjust our model to single-input
multiple-output to adapt to such a more complex but practical
situation.
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