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Abstract—To enhance the coverage and transmission reliabil-
ity, repetitions adopted by Narrowband Internet of Things (NB-
IoT) allow repeating transmissions several times. However, this
results in a waste of radio resources when the signal strength
is high. In addition, in low signal quality, the selection of a
higher modulation and coding scheme (MCS) level leads to a
huge packet loss in the network. Moreover, the number of
physical resource blocks (PRBs) per-user needs to be chosen
dynamically, such that the utilization of radio resources can
be improved on per-user basis. Therefore, in NB-IoT systems,
dynamic adaptation of repetitions, MCS, and radio resources,
known as auto link-configuration, is crucial. Accordingly, in this
paper, we propose SmartCon which is a Generative Adversarial
Network (GAN)-based deep learning approach for auto link-
configuration during uplink or downlink scheduling, such that
the packet loss rate is significantly reduced in NB-IoT networks.
For the training purpose of the GAN, we use a Multi-Armed
Bandit (MAB)-based reinforcement learning mechanism that
intelligently tunes its output depending on the present network
condition. The performance of SmartCon is thoroughly evaluated
through simulations where it is shown to significantly improve the
performance of NB-IoT systems compared to baseline schemes.

Index Terms—NB-IoT; link-configuration; modulation and
coding scheme; repetitions; physical resource block

I. INTRODUCTION

The number of Internet of Things (IoT) [1] devices is con-

stantly increasing in the fifth-generation (5G) and beyond 5G

(B5G) of mobile telecommunications. To meet the demands

described by the IoT specifications, the Third Generation

Partnership Project (3GPP) has presented a new radio access

technology, known as Narrowband Internet of Things (NB-

IoT) [2], [3]. NB-IoT can provide an improved coverage

compared to Long-Term Evolution (LTE) networks, massive

device connectivity, ultra-low device complexity or costs, and

low power consumption [4]. Specifically, NB-IoT is a variant

of LTE, designed for IoT frameworks. Like LTE, the NB-IoT

technology is based on orthogonal frequency-division multiple

access (OFDMA), with a system bandwidth of 180 kHz which

is equal to one physical resource block (PRB) in 4G LTE

transmissions. Given this low channel bandwidth, NB-IoT
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Fig. 1. An illustration of repetition

specifically focuses on indoor coverage, and data transmission

with a higher latency [2], [3]. Dynamic adjustment to different

radio conditions can be performed by configuring the modula-

tion and coding scheme (MCS) value, which is defined as the

combination of a type of modulation and coding rate used for a

given PRB [5], [6]. The MCS is a key feature which is used to

set the data rate of a transmission in a wireless connection [6].

In NB-IoT, the MCS value is between 0 and 12, with a variable

Transport Block Size (TBS) [5], [7]. The MCS also specifies

how many bits can be transferred per resource element (RE)

which is the smallest modulation structure in LTE [3].

In order to achieve coverage enhancement and improve

transmit reliability in NB-IoT, the concept of repetitions

is used in the data and control signal transmissions [8],

[9]. Repetitions imply repeating the transmission several

times [6]. The repetition for the uplink and downlink trans-

missions can be selected from {1, 2, 4, 8, 16, 32, 64, 128} and

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}, respectively,

where the selected number denotes the number of repeti-

tion of the same transmission block [6]. Fig. 1 illustrates a

repetition of 4 in NB-IoT with both Narrowband Physical

Uplink Shared Channel (NPUSCH) and Narrowband Physical

Downlink Control Channel (NPDCCH) transmission blocks,

where the content of each of these blocks is repeated 4
times during a single transmission. The time gap between

the NPDCCH and NPUSCH repetitions is defined by the

downlink control information (DCI). It specifies a scheduling

index that permits a device to collect data during downlink

scheduling [10].

Since the transmission reliability is enhanced by the use

of repetitions, it should be enabled when the signal strength

is poor [11]. On the other hand, the MCS level needs to

be choosen dynamically based on the signal strength [12].

When the channel conditions are poor, the selection of a high

MCS value results in a higher packet loss rate (PLR), and

consequently the system throughput is reduced. Moreover, the

rapid changes in channel conditions lead to high fluctuations

in the PLR in NB-IoT networks [12], [13]. Therefore, during
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scheduling, both MCS and repetitions play a crucial role in

the packet transmission such that the best suited data rate,

coverage and a low PLR can be achieved based on the

present channel condition. Moreover, NB-IoT systems use

radio resource blocks reserved by LTE systems [14], and

thus appropriate utilization of radio resources is especially

demanded for NB-IoT. Therefore, an adaptive selection of the

number of PRBs per-user is also required in NB-IoT.

Therefore, during uplink or downlink scheduling, a dynamic

adaptation, known as auto link-configuration, is required for

MCS levels, repetitions, and per-user PRB in NB-IoT systems.

Therefore, we can represent the auto link-configuration in NB-

IoT as a three dimensional problem – (i) selection of MCS

values, (ii) determination of the repetitions, and (iii) selection

of the number of PRBs per-user.

A. State-of-the-Art

An effective approach for small data transmission in NB-

IoT is proposed in [15], without the consideration of the

connection setup process related to radio resource control.

However, this work does not focus on the adaptation of MCS

and repetition number. Authors in [16] model the random

access traffic in NB-IoT by considering the arrival of processes

and their services, where the network delay is analyzed based

on random latency bounds. The work [17] discusses the

primary challenges of providing a stable connectivity to a

huge number of machine-type communication (MTC) devices

in NB-IoT networks. In [18], the proposed uplink scheduler for

NB-IoT frameworks is a basic threshold-based approach with

user equipment (UE) specific requirements, which is mainly

suitable for homogeneous traffic. Details and the uplink and

downlink transmission channels’ performance are discussed

in [19] with a focus on the design approaches in NB-IoT. Yu et

al. [12] propose an uplink scheduling mechanism for NB-IoT,

where the uplink link adaptation, including the determination

of the MCS value and repetition number, is performed based

on the present channel condition. However, this work does not

consider downlink scheduling and it uses a threshold-based

mechanism for the MCS and repetitions selection in NB-IoT

systems.

In the direction of resource management, the work [14]

designs a mechanism for resource allocation in NB-IoT, by

focusing only on the rate maximization. Manne et al. [20]

explain NPDCCH physical layer procedures with the tech-

nique of search space decoding, where a resource mapping

scheme is discussed for NPDCCH by utilizing uplink reference

signals. The heuristic algorithm proposed in [21] discusses

a downlink scheduling mechanism in NB-IoT. In this work,

the objective is to efficiently use radio resources in order to

support massive connections in the network. In the scheme

discussed in [22], narrowband physical downlink shared chan-

nel (NPDSCH) subframes are assigned continuously in the

radio resource scheduling until a device gets a maximum

number of subframes, such that the allocated resources can

satisfy the data transmission requirement. The work [11] deals

with the enhancement of radio resource utilization for NB-

IoT by minimizing the consumption of radio resources during

downlink transmission. However, the dynamic adaptation of

MCS and repetition number are not addressed in this work.

Considering the power efficiency of NB-IoT systems, the

authors in [23] discuss resource allocation during uplink trans-

mission and analyze the trade-off between power, latency, and

rate. The work [24] specifically studies the radio resource allo-

cation with scheduling and computation offloading by focusing

on the minimization of the power consumption and average

delay in NB-IoT based systems. Although a scheduling is

discussed in [25] by considering different coverage classes,

latency, and power consumption in NB-IoT, the proposed

mechanism does not dynamically adapt the MCS and repe-

tition number during the scheduling. Considering the network

slicing in 5G communications, the work [26] addresses the

issue of dynamic allocation of resources for different services

over a common physical infrastructure. Accordingly, the au-

thors in [26] propose a demand-aware approach for resource

allocation in network slicing by combining deep distributional

reinforcement learning and GAN.

Therefore, the existing works do not deal with the challenge

of intelligent selection of MCS values, repetition numbers,

and resources in both uplink and downlink scheduling in

NB-IoT. Moreover, the aforesaid parameters have trade-offs,

namely when the signal strength is low, the MCS level and

number of PRBs need to be decreased but repetitions should

be increased. In addition, the selection of these parameters

should dynamically cope with different network conditions,

considering the constraints (bandwith, delay, PLR, etc.) of NB-

IoT devices and without any prior knowledge of the wireless

environment. Consequently, by considering the trade-offs in

the MCS, repetitions, and PRB, an online learning based smart

technique is required to learn the environment and accordingly,

automatically adapt these parameters in parallel.

B. Our Approach

In this paper, we propose SmartCon which is an intelligent

adaptation of MCS, repetitions, and PRB during uplink or

downlink scheduling, such that the packet loss rate is sig-

nificantly reduced in NB-IoT networks. In this direction, we

design a Generative Adversarial Network (GAN) [27] model

that uses a deep learning approach to dynamically generate

the best suited values for the aforesaid parameters for future

scheduling. The proposed GAN considers the variation of

signal strength and noise of the channel inputs. In SmartCon,

the temporal point process (TPP) specifies the sequence of

time instances of future scheduling (uplink or downlink)

associated with the best possible MCS levels, the number of

repetitions, and PRBs. To train the GAN, we use a Multi-

Armed Bandit (MAB) based reinforcement learning mechanism

that dynamically tunes its output depending on the impact of

the environment. To the best of our knowledge, SmartCon is

the first work that considers intelligently adapting MCS and

repetitions, along with radio resources in NB-IoT systems.

Reason for applying MAB for generating the training

dataset: The MAB is a reinforcement learning mechanism,

where a learning agent opts for a single option (known as

arm) from a set of available options which have unknown
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characteristics at the initial stage. Based on its choice, a certain

reward is received by the agent. The agent always tries to

maximize the cumulative reward. In order to generate the

training dataset in our proposed mechanism, each combination

of the MCS, repetitions, and PRBs can be considered as an

arm in the MAB. Therefore, to dynamically select values of

the MCS, repetitions, and PRBs, the agent needs to select

an arm based on the present channel condition such that the

packet loss rate will be minimized. Thus, at any time instance,

the arm and the associated channel condition can be considered

as a state. Therefore, the MAB is a suitable learning model

to populate a dataset containing the information related to

the intelligent selection of the MCS, repetitions, and PRBs,

considering the signal strength of the channel. Consequently,

the generated dataset can be used to efficiently train the GAN

to dynamically generate the best MCS, repetitions, and PRB

values. Moreover, the proposed MAB-based reinforcement

learning mechanism helps overcome the lack of diversity in the

generated samples in the GAN. The dataset generated by the

MAB-based scheme contains values of the MCS, repetitions,

and PRBs, which are dynamically selected considering differ-

ent signal strengths. Thus, in the dataset, the diversity of the

samples is maintained by the variation of the channel condition

and dynamic adaptation of the aforementioned parameters.

Therefore, at the time of the training of the GAN, the generator

can generate samples by following the dynamics of the training

dataset, and as a consequence, the lack of diversity in the

generated samples is overcome.

C. Contribution of this work

By exploiting online learning, the proposed model can

provide an intelligent and unique NB-IoT framework for 5G

and B5G networks. The main contributions of this work are

summarized as follows:

1) We design a GAN-based online learning model for auto

link-configuration in NB-IoT. The model generates the

real dynamics of the best possible MCS values, repetition

numbers, and PRBs. Such dynamic adaptation targets to

provide a low packet loss in the network.

2) To generate the training dataset, we design a MAB-based

reinforcement learning mechanism. It dynamically selects

the aforesaid parameters by considering the present chan-

nel condition. As a result, a dataset is generated, that

contains dynamic adaptation of MCS, repetitions, and

PRB, that minimize the packet loss rate in the network.

The dataset is then used to train the GAN model.

3) For a thorough performance analysis, we implement

a prototype of SmartCon in an NB-IoT compati-

ble module of network simulator (NS) version NS-3

i.e., ns-3-dev-NB-IOT [28], by extending the LTE

medium access control (MAC) [2] module. The results

show that SmartCon significantly improves the perfor-

mance of NB-IoT systems compared to baselines.

D. Organization of this paper

The remainder of this paper is organized as follows. Sec-

tion II discusses the formulation of the TPP-based model

to govern the propsoed GAN in SmartCon. The details of

the proposed GAN model are described in Section III. The

MAB-based mechanism used to generate the training dataset

is discussed in Section IV. In Section V, the implementation

details of SmartCon are presented along with details on the

training mechanism. We analyze the performance of SmartCon

in Section VI, and Section VII concludes this paper.

II. TPP-BASED MODEL FORMULATION

In this section, we present the formulation of the TPP-based

model that governs the propsoed GAN in SmartCon.

A. Time Series Modeling by Temporal Point Process

A TPP is a stochastic process that contains isolated events

at different time-stamps. Formally, a TPP is associated with a

series of time-stamps Tt = {tl < t|l ∈ Z
+}. Here, Tt denotes

a set of occurrences of events which happened before time

t. In the context of scheduling in NB-IoT, we define Tk(t)
for eNB k as the sequence of time instances of scheduling

packet transmission (uplink or downlink) associated with the

best possible MCS levels, repetition numbers, and the number

of PRBs, based on the present channel condition, i.e., Tk(t) =
{tl < t|eNB k performs scheduling at time tl}. Thus, Tk(t) is

also called the history of scheduling conducted by eNB k until

time t. In addition, Tk(t) can also be expressed as a counting

process defined by Nk(t) ∈ {0} ∪ Z
+, which keeps counting

the number of scheduling operations in eNB k during [0, t). If

u(t−tl) is a Heaviside step function, Nk(t) can be represented

as Nk(t) =
∑

tl∈Tk(t)
u(t− tl).

Given the history Tk(t) of scheduling events until time t,
we specify the dynamics of the counting process Nk(t) using

λk(t) which captures the conditional probability of scheduling

events associated with MCS levels, repetitions, and PRBs, in

an infinitesimal time span [t, t + dt). Let dNk(t) denote the

number of such scheduling operations that are initiated by

eNB k in the time interval [t, t + dt), and dNk(t) be equal

to 1. Thus, we have P(dNk(t) = 1|Tk(t)) = λk(t)dt. We

consider that scheduling occurrences are independent since the

scheduling is influenced by the demand of packet transmission.

Thus, we have P(dNk(t) = n|Tk(t)) = O(dt) → 0 ∀n >

2. Therefore, scheduling operations are asynchronous. So,

dNk(t) can be 0 or 1, where λk(t) needs to be considered

when a scheduling occurs. Thus, we have

E[dN(t)|Tk(t)] = 1.λk(t)dt+ 0.(1− λk(t)dt) = λk(t)dt

i.e. E[dN (t)|Tk(t)] =
∫ T

0

λk(t)dt. (1)

Hence, λk(t) also defines the average rate (intensity) of events

which are occurring in an infinitesimal interval of time span

[t, t + dt). So, λk(t) is also known as conditional intensity

function, which may depend on Tk(t). It is noted that λk(t)
denotes the stochastic or random dynamics of Nk(t).
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B. Why Do We Need to Learn λk(t) Instead of Applying a

Parameterized Model?

Parameterized distributions, such as Hawkes process, Pois-

son process, cannot capture the effects of various latent factors,

such as the variation of signal strength and noise, on the real

distribution of λk(t). For instance, the channel condition can

affect the rate of packet transmission, while an inappropriate

selection of MCS and repetition number can increase the

packet loss rate and delay after scheduling. Therefore, by

introducing such factors in the distribution of λk(t), we learn

the impact of the latent factors during scheduling. Next, we

describe the proposed GAN.

C. The Reason of Applying GAN

Considering the present channel condition, the packet loss

rate and delay in the network depend on the MCS, repetitions,

and PRBs selection. In our proposed model, the conditional

intensity function λk(t) represents the distributions of the

stochastic time-stamps of traffic scheduling associated with

the adaptive MCS, repetitions, and PRBs. In this context, we

need to capture the effects of various latent factors (noise,

interference, etc.) on the distribution of λk(t) to learn the

impact of the latent factors during scheduling. Since the GAN

can generate the real dynamics by learning the patterns of

data in the input dataset, the distribution of λk(t) can be

smartly modeled using the GAN. Consequently the stochastic

time-stamps of traffic scheduling associated with the adaptive

values of the aforementioned parameters can be intelligently

generated.

III. SMARTCON: MODELING WITH GAN

The GAN module finds the distribution of λk(t) by using

the generative and discriminator modules, as shown in Fig. 2.

A. Generative Module

Let K be the set of all eNBs available in the network. For

an eNB k ∈ K, time-stamps of scheduling with MCS levels,

repetition numbers, and PRBs are governed by the intensity

function λk(t), where this conditional intensity function gen-

erally depends on the past scheduling operations conducted by

eNB k. We define λk(t) as

λk(t) = Υ(Tk(t); ηk(t), αk(t), γk(t), δk(t)). (2)

Here, Υ is an arbitrary nonlinear function which is modeled

by a recurrent neural network (RNN), where the hidden layers

help form recursive units which create an inbuilt memory.

ηk(t) is a seed variable or the noise prior, which is a usual

input in deep generative models to capture the dynamics of

the environment where the model is run. Specifically, in the

proposed GAN, ηk(t) introduces a variation of signal strength

and noise. Along with ηk(t), the proposed generative module

is provided with three more sources of randomness – αk(t),
γk(t), and δk(t). These sources of randomness regulate the

dynamics of transmission of the traffic components. All the

random sources (ηk(t), αk(t), γk(t), and δk(t)) are instanti-

ated only at the time-stamp where a packet is transmitted by

the eNB. These random sources are defined as follows:

Fig. 2. Generator and discriminator modules in SmartCon

1) αk(t): αk ∈ {0, 1} is a random variable that identifies

the scheduling status of a packet at time t in eNB k.

When a packet is scheduled for an uplink or downlink

transmission, the status is ON (αk(t) = 1); otherwise,

the status is OFF (αk(t) = 0).

2) γk(t): When the scheduling status is ON for eNB k (i.e.,

αk(t) = 1), the number of PRBs used to transmit the

packets scheduled at t is determined by γk(t). More

specifically, γk(t) ∈ [0, 1] stores normalized values of

the number of PRBs at time t in eNB k.

3) δk(t): This parameter is a pair of normalized values of

MCS and repetition number, which are associated with

the scheduling of a packet at time t in eNB k. The value

of δk(t) is defined when the scheduling status is ON i.e.,

αk(t) = 1.

In the RNN, recursive units help create an inbuilt memory, and

thus the impacts of the past transmissions on the present trans-

mission can be captured correctly. The proposed GAN uses

one RNN (RNNk) per eNB k. RNNk considers the previous

time-stamps (tl ∈ Tk(t)) of scheduling packet transmissions

associated with MCS levels, repetitions, and radio resources as

inputs and generates the conditional intensity function λk(t)
for the scheduling events of the next packets. In this context,

the hidden states of RNNk embed the history Tk(t) into the

vectors h
k
l which are determined recursively by utilizing the

previous information h
k
l−1 and the signals acquired from the

present input. For eNB k, such h
k
• are fixed low dimensional

representations of the history of scheduled packets associated

with a MCS, repetition number, and number of PRBs. Fig. 2

illustrates different parameters used in the generator, along

with the discriminator module. In the generator, the RNN has

three layers as follows.

1) Input layer: The activation of the input layer occurs

when a packet is transmitted. Specifically, at the l-th trans-

mission time (tl), the input layer considers the previous states

h
k
l−1 as input and produces the random signals ηk(tl), αk(tl),

γk(tl), and δk(tl), which are fed into the next layer (the hidden

layer). Particularly, at time-stamp l > 1, the input layer creates

the aforesaid random signals as follows.

• Definition of ηk(tl): At time-stamp tl, a Poisson distri-

bution is used to generate the noise prior, i.e., ηk(tl) ∼
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Poisson(µ), where µ > 0 is average number of oc-

curences of events per interval.

• Definition of αk(tl): The random variable, αk(tl), which

decides whether packet scheduling is ON/OFF is sampled

from a Bernoulli distribution. The mean of this distribu-

tion is represented by a logistic function of the preceding

hidden state h
k
l−1. That is,

αk(tl) = Bernoulli(ξk(tl)), (3)

where ξp(tl) = σ(wT
αh

k
l−1). Here, h

k
l−1 is the output

of the hidden layer, which represents the state of the

RNN at time-stamp tl−1. When h
k
0 = 0, αk(tl) =

Bernoulli(1/2).
• Definition of γk(tl): The density function of γk(tl)

depends on the noise ηk(tl), and thus γk(tl) is defined

using a standard normal distribution, as follows.

γk(tl) =
1√
2π

exp
(

− (ηk(tl))
2

2

)

(4)

• Definition of δk(tl): In eNB k, at time-stamp tl, let

mk(tl) and rk(tl) be random variables that represent the

MCS and repetition number, respectively. Since the selec-

tion of MCS values and repetition numbers is influenced

by ηk(tl), mk(tl) and rk(tl) are defined as

P(mk(tl)|αk(tl) = 1) =
βexp(−βηk(tl))

1− exp(−β)
, (5)

P(rk(tl)|αk(tl) = 1) = βexp(−βηk(tl)). (6)

Eqns. (5) and (6) indicate that mk(tl) and rk(tl) follow

exponential distributions and take values between [0, 1].
Eqns. (5) and (6) allow us to generate random variables

that follow the exponential distribution and depend on

another random variable. Since ηk(t) introduces a vari-

ation in signal strength and noise, the MCS mk(tl) and

repetition number rk(tl) depend on ηk(t), and therefore

mk(tl) and rk(tl) are calculated using Eqns. (5) and (6).

In this context, we consider exponential distributions for

mk(tl) and rk(tl) because their impacts on the network

performance are significantly influenced by the variation

of signal strength and noise. In Eqns. (5) and (6), a

difference is added to the denominator to impose a

variation between the values of mk(tl) and rk(tl). The

MCS and repetition number are selected when a packet is

scheduled, and therefore values of the MCS and repetition

number are defined when αk(tl) = 1. The functional

forms of Eqns. (5) and (6) are borrowed from [29]. In

Eqns. (5) and (6), β > 0. Since δk(tl) is a pair of

values, we define δk(tl) as δk(tl) = {mk(tl), rk(tl)}.
When αk(tl) = 0, scheduling is not performed. Thus,

δk(tl) = 0 is deterministic when αk(tl) = 0. Therefore,

we have

P(δk(tl)|αk(tl) = 0) = Dirac delta(δk(tl)). (7)

The functional form of Eqn. (7) is borrowed from [29].

2) Hidden layer: The input time-stamps tl and the random

signals produced in the previous layer are used to create the

next state h
k
l based on the present hidden state h

k
l−1. The

definition of hk
l is

h
k
l = Ωg

(

W 1h
k
l−1 +W 2αk(tl)

(

γk(tl) + δk(tl)
)

+

W 3

(

1− αk(tl)
)

tlηk(tl) + bh

)

. (8)

Here, Ωg is an activation function, and W 1, W 2, W 3 and

bh are trainable parameters. Ωg uses the Rectified Linear Unit

(ReLU) activation function, which requires less computations

than other activation functions. To overcome the vanishing

gradient problem, we use the Rectified Linear Unit (ReLU) as

the activation function in the hidden layers [30]. The ReLU

does not cause a small derivative. When the value of the

input variable is greater than 0, the gradient of the ReLU is

1, and zero otherwise. Therefore, multiplying a set of ReLU

derivatives in the backpropagation equations results in 0 or 1,

and consequently, there is no ‘vanishing’ of the gradient.

Note that the proposed model is stateful, which is a key

distinguishing characteristic. Normalized values of the number

of PRBs, MCS and repetition number need to be considered

when a packet is scheduled for uplink or downlink transmis-

sion, i.e., the value of αk(tl) is 1. Thus, in Eqn. (8), γk(tl)
and δk(tl) are multiplied by αk(tl), along with the trainable

parameter W 2. When packet scheduling is not performed, the

MCS and repetition number are not required, and therefore

only the noise value is considered with the time instant. This

scenario is represented by the term W 3

(

1 − αk(tl)
)

tlηk(tl),
with the trainable parameter W 3.

3) Output layer: Based on the hidden states, the output

layer generates the conditional intensity λk(t) as

λk(t) = exp(Wg
T
h
k
l + cg(t− tl) + bg). (9)

Here, tl < t and λk(t) samples the next time-stamp

by applying Ogata’s thinning algorithm [31]. Let θG =
{W 1,W 2,W 3, bh,Wg, cg, bg} be trainable parameters used

in the generative model. Under the generative framework, the

log-likelihood of λk(t) can be defined as

logL(λk|θG) =
|H(T )|
∑

j=1

logλk(tl)−
∫ T

0

λk(t)dt. (10)

B. Discriminative Module

In general, let α∗k(tl), γ∗k(tl), and δ∗k(tl) be the values

fed into the discriminator, which may be fake or real. The

discriminative unit takes a series F of fake data generated

by the generative module and a series R of real (observed)

values for F . Specifically, we represent F and R as F =
(αf

k(tl), γ
f
k (tl), δ

f
k (tl)) and R = (αr

k(tl), γ
r
k(tl), δ

r
k(tl)). We

design the discriminator using an RNN whose hidden layer

for eNB k at time tl is defined in what follows.

Φk
l

(

α∗k(tl), γ
∗
k(tl), δ

∗
k(tl)

)

= Ωd

(

W 4Φ
k
l−1 +W 5

(

α∗k(tl)+

α∗k(tl)γ
∗
k(tl)δ

∗
k(tl)

)

+ bd

)

(11)
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At each time tl, the hidden layer of the discriminative model

outputs Φk
l , which defines the probability of correctness of

α∗k(tl), γ∗k(tl), and δ∗k(tl), i.e., if they belong to R. In

Eqn. (11), Ωd is the sigmoid activation function. From (11),

it is noted that γ∗k(tl) and δ∗k(tl) have no effect when α∗k(tl)
is zero. This protects against noise in the input data, where

γ∗k(tl) and δ∗k(tl) are non-zero while α∗k(tl) is zero. Assume

that θD = {W 4,W 5, bd} are the trainable parameters for the

discriminator. In case of real sequence R, the log-likelihood

of the discriminator (expected value of logDθD ) is defined as

ER,θD [logDθD ] =

|R|
∑

j=1

logΦk
l

(

αr
k(tl), γ

r
k(tl), δ

r
k(tl)

)

. (12)

For a fake sequence (F ), the log-likelihood of the discrimina-

tor is

ER,θG,θD [log(1−DθD)] =

|F |
∑

j=1

log
(

1− Φk
l

(

αf
k(tl),

γf
k (tl), δ

f
k (tl)

)

)

. (13)

Now, in SmartCon, the loss function of the proposed GAN

model is defined as

min
θG

max
θD

− logL(λk|θG) + ER,θD [logDθD ]+

ER,θG,θD [log(1−DθD)]. (14)

Therefore, SmartCon maximizes the log-likelihood of the

conditional intensity λk and optimizes the adversarial objective

for generating the labels (α∗k(tl), γ
∗
k(tl), and δ∗k(tl)). At a time,

only one data sample is processed in the stochastic gradient

descent (SGD), and thus the SGD is computationally fast. In

addition, since the SGD causes more frequent updates to the

parameters, it has faster convergence for larger datasets [32].

Therefore, the SGD is used to solve the optimization problem

in Eqn. (14).

C. Learning with GAN

Once the GAN model can generate the real labels’ dynamics

(α∗k(tl), γ∗k(tl), and δ∗k(tl)), SmartCon performs the predic-

tions described in what follows.

• Based on α∗k(tl), the eNB predicts the probability of

packet scheduling at time tl.
• Based on γ∗k(tl), the required number of PRBs for the

scheduling is chosen.

• Based on δ∗k(tl), eNB k selects the best possible MCS

level and repetition number for the scheduling at tl.

In particular, the GAN does not belong to the traditional

reinforcement learning model. However, considering a rein-

forcement learning approach, the proposed GAN has three

states – (i) the generation of αf
k(tl), γ

f
k (tl), and δfk (tl)), by the

generator, (ii) the generation of λk(t) by the generator, and (iii)

the differentiation between the fake and real values of αk(tl),
γk(tl), and δk(tl)), by the discriminator. The optimization

function in Eqn. (14) can be considered as the reward. The

action space can be defined as a set of actions that transfer

the data produced in a state to another state of the GAN.

IV. TRAINING DATASET GENERATION

In this section, we present our MAB-based [33] dynamic

selection of MCS, repetitions, and radio resources, in order

to prepare the training dataset. Specifically, the ǫ-greedy

algorithm which is a variant of MAB mechanism is used in

our proposed mechanism.

A. ǫ-greedy Algorithm

We use ǫ-greedy policy [34] as a MAB mechanism to

dynamically select the MCS and repetition number given the

present signal-to-interference-plus-noise ratio (SINR) value of

the channel. The ǫ-greedy mechanism uses a parameter ǫ as

exploration probability. At time instant t, ǫt is defined as

ǫt = min(1, cK/d2t). Here, K is the total number of arms

used in the bandit problem. The parameter c ≥ 0 is a small

integer. The parameter d specifies the difference between the

expected rewards of the best and second best arms. Here, the

best arm denotes the arm that has provided the maximum

average reward so far. The ǫ-greedy policy is described by

two phases listed below.

• Exploration: In the exploration phase, we randomly

choose an arm from the available set of arms. The

probability of exploration is defined by ǫ.
• Exploitation: In the exploitation phase, we choose the

arm associated with the maximum average reward so far.

In this case, (1−ǫ) defines the probability of exploitation.

In [35], it is described that after n number of plays, the

probability of choosing a suboptimal arm is upper bounded

by O(c/d2n), where n ≥ cK/d2.

B. Exploiting MAB for Dynamic Selection of MCS and Repe-

tition Number

Let M be the set of available MCS values, R the set

of available repetition numbers, and P the set of num-

ber of PRBs available in NB-IoT systems. Let M =
{M1,M2,M3, ...,Mp}, R = {R1, R2, R3, ..., Rq}, and P =
{P1, P2, P3, ..., Pu}, where p > 0, q > 0, and u > 0 are the

counts of the available MCS values, repetitions, and PRBs,

respectively. In our MAB model, the selection of MCS levels,

repetitions, and number of PRBs is the arm and we refer

to it as MCS-Repetition-PRB (M-R-P) configuartion. Let A
be the arm, and therefore the arm with ath MCS value, bth

repetition number, and cth number of PRBs can be represented

as Aabc = {Ma, Rb, Pc}, where 1 ≤ a ≤ p, 1 ≤ b ≤ q and

1 ≤ c ≤ u. Thus, K specifies the total count of Aabc. In the

dynamic selection of MCS values, repetitions, and PRBs, the

objective is to minimize the packet loss rate after scheduling.

Thus, in our MAB model, the reward is the inverse of the PLR

and let D denote PLR.

1) Statistic table: We use a statistic table, denoted by S =
{S,A,D}, in order to store information regarding the selected

M-R-P configuration for the present SINR of the channel. S

also stores the PLR observed against the values of aforesaid

selected parameters. S denotes the SINR of the channel.
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Algorithm 1 MAB-based Selection of MCS Levels, Repeti-

tions and PRBs
1: Start

2: Initial stage: Calculate the present SINR St of the channel and select the M-R-P

configuration randomly from the set of available configurations. After a time period

td, compute the packet loss rate.

3: Experience stage: At time t, calculate the present Si.

4: Calculate ǫt by using ǫt = min(1, cK/d2t).

5: Let ζ ← Random(0,1).

6: if ζ ≤ ǫt then

7: if St ∈ [(St −∆), (St + ∆)] in S
S ⊂ S then

8: Choose M-R-P configurationAt from S
S such thatAt provides the lowest

PLR (i.e. D) in S
S .

9: else

10: Select M-R-P configuration At from S such that At provides the lowest

PLR in S.

11: end if

12: else

13: Choose an M-R-P configuration at random from the available set of M-R-P

configurations.

14: end if

15: D is calculated.

16: S is updated with S, A, and D.

17: End

2) Execution of the MAB Approach: In Algorithm 1, there

are two stages – (1) initial stage, and (2) experience stage.

Descriptions of these two stages are given in what follows.

(1) Initial stage: The learning agent L calculates the SINR

of the channel and selects the M-R-P configuration randomly

from the set of available configurations. After a time period of

td, L calculates the PLR and computes the reward accordingly.

Therefore, the initial stage helps the agent populate S to start

the experience stage.

(2) Experience stage: The description of the exploitation is

as follows.

Exploitation: At time t, let the SINR be St and the exploita-

tion be executed with probability (1 − ǫt). We consider two

scenarios as follows.

1) Case-1 (Consideration of a subset of S:) This case allows

the exploitation of past knowledge to select the best M-

R-P configuration for the present SINR. In this context,

a small value ∆ > 0 is chosen to define the range of

the SINR in S, where the present SINR is found. Hence,

specifically, Case-1 can be defined as follows. If St ∈
[(St−∆), (St+∆)] in S

S ⊂ S, the M-R-P configuration

At is chosen from S
S such that At provides the lowest

PLR in the set SS .

2) Case-2 (Consideration of the entire S:) The second case

uses the best past experience without considering the

present SINR since it is not found in the range of the

SINR defined by ∆ in S. Particularly, Case-2 is defined

as follows. If St /∈ [(St −∆), (St +∆)] in S, the M-R-P

configuration At is chosen from the entire S such that At

provides the lowest PLR in S.

Exploration: An M-R-P configuration is selected randomly

with probability ǫt from the M-R-P configuration.

V. IMPLEMENTATION AND TRAINING DETAILS

We implement SmartCon in ns-3-dev-NB-IOT [28]

with one eNB, where the number of UEs is varied from 10
to 100. The NB-IoT module belongs to LTE Cat NB1, where

the downlink and uplink peak data rates are 26 kbps and 66
kbps, respectively. Both uplink and downlink transmissions are

TABLE I
SIMULATION PARAMETERS

Parameter Value

Frequency Band DL: 925 MHz, UL: 880 MHz

Default Transmission Mode 0 (Single-input-single-output (SISO))

Path loss model FriisSpectrumPropagationLossModel

Fading model TraceFadingLossModel

Propagation model Okumura-Hata (Open area), Hybrid build-

ing(Urban)

NoiseFigure of UE 5 dB

NoiseFigure of eNB 9 dB

Downlink peak data rate 26 kbps

Uplink peak data rate 66 kbps

Propagation delay model Constant speed propagation delay model

Bit error rate (BER) 0.03
UE scheduler type PfFfMacScheduler

Packet Size 100 bytes

Mobility model Random direction 2d mobility model

(“Bounds: Rectangle (-100, 100, -100,

100)”, “Speed: ConstantRandomVariable

[Constant=3.0]”, “Pause: ConstantRan-

domVariable [Constant=0.4]”)

System bandwidth 180 kHz

TxPower of UE 23 dBm

TxPower of eNB 46 dBm

Cell radius 1.5 km

Transmission mode Multi-Tone

Receiver Chains 1 SISO

Number of Antennas 1
Duplex Mode Half duplex

considered. The NB-IoT module in NS-3 includes numerous

features, such as radio resource control (RRC), radio link

control (RLC), packet scheduling, physical layer error model,

inter-cell interference coordination, dynamic spectrum access,

etc. [5], [14]. We have used these aspects in the implemen-

tation of our proposed mechanism. We vary the levels of the

interference in order to analyze the performance of SmartCon

in different channel conditions. We consider both UDP and

TCP packets with a ratio of 80% and 20%, respectively. We

use proportional fair scheduling to schedule the packets. The

UEs are placed following a Poisson distribution centered at

the eNB’s position. To set the MCS, TBS, PRB, and code rate

for a channel condition, we have applied the standard tables

defined by the 3GPP standard [3]. Unless stated otherwise, we

set the number of UEs to 100. The SINR is chosen randomly

between 5dB–25dB. Details on the simulation setup are given

in Table I.

A. Baseline Mechanisms

We have considered NANIS [11] and NBLA [12] as base-

lines along with the standard scheduling approach in NB-

IoT. NANIS addresses the adaptation problem of the time

interval between two consecutive NPDCCHs. NBLA is a

threshold-based approach, where an uplink link adaptation

is performed with the determination of the MCS value and

repetition number. The standard approach is basically a First-

In First-Out (FIFO) mechanism with a static MCS value

and no repetition number. Here, we set the MCS to 6.

We also compare the performance of SmartCon with GAN-

powered deep distributional Q network (GAN-DDQN) to add

a comparison with a mechanism that combines the GAN

and reinforcement learning. However, the GAN-DDQN is a

dynamic allocation mechanism of network slicing resources

in 5G communications.
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Fig. 3. SmartCon implementation modules in ns-3-dev-NB-IOT

B. Implementation of SmartCon

We have implemented SmartCon by extending the LTE

MAC [2] module of ns-3-dev-NB-IOT, as shown in Fig. 3.

The OnOffApplication is used to generate the traffic. The

MAC layer functionalities of the eNB are implemented by the

class LteEnbMac and PfFfMacScheduler implements

the proportional fair scheduler to perform scheduling of

UEs. In LteEnbMac, there are five interfaces for handling

subframe, control information, packet scheduling (uplink and

downlink), MCS assignment, and PRB allocation, imple-

mented by a subframe block, control block, scheduler block,

LteAmc, and LteFfrAlgorithm, respectively. Specifi-

cally, LteFfrAlgorithm is the base class that allocates

PRBs and subframes for the transmission of data using a

frequency reuse algorithm. We implement SmartCon as an

extension to the LteEnbMac. The LteEnbPhy interface

reports the SINR of the channel to LteEnbMac, where the

SINR is utilized by SmartCon. It uses the subframe block,

LteAmc, and LteFfrAlgorithm interfaces to assign sub-

frames with PRBs, MCS, and repetition numbers.

C. Implementation of Repetitions

Whenever repetition is applied, the successive repetitions

of the packets are aggregated at the eNB. We have modified

the functionality of the physical layer to incorporate the

aggregation of all the repetitions.

D. Training Environment Setup

For the training setup, the network has three eNBs and each

cell has 50 UEs randomly located inside a cell. We randomly

choose the run time for each simulation instance between 100-

500 seconds. The number for runs of each simulation instance

is also selected randomly between 60-120, and both downlink

and uplink transmissions are considered in every simulation

instance. The SINR value is selected randomly between 20dB-

45dB and the per-frame SINR is reported by the LteEnbMac

interface. The collected data includes the time-stamped packet

scheduling (uplink and downlink) events, SINR of the channel,

the selected MCS and repetition number, the number of PRBs

used for the transmission, and the packet loss rate. The total

size of the dataset is close to 2 GB.

E. Training of the Model

To generate the data for the dataset, we use the following

information – (i) uplink and downlink scheduling time-stamps,

(ii) SINR of the channel, (iii) MCS and repetition number

selected for data transmission, (iv) number of PRBs used for

the transmission, and (v) average packet loss rate after the

transmission. All this data is represented as a time series. The

training dataset contains information related to the scheduling

events, and the selection of the PRBs, MCS, and repetitions.

In the dataset, the first parameter identifies the scheduling

status of a packet. When a packet is scheduled for an uplink

or downlink transmission, the status is ON; otherwise, the

status is OFF. When the scheduling status is ON, the number

of PRBs used to transmit the packets is determined by the

second parameter. The third parameter is the pair of MCS and

repetition numbers, which are associated with the scheduling

of packets, and thus the third parameter is defined when the

scheduling status is ON.

In particular, the dataset used to train the GAN contains

αr
k(tl), γ

r
k(tl), and δrk(tl). Since γr

k(tl) stores the normalized

value of the number of PRBs and δrk(tl) represents the normal-

ized values of the MCS and repetition number, we need to nor-

malize the number of PRBs, MCS value, and repetition num-

ber between [0, 1]. For instance, the MCS value is normalized

between [0, 1] using (x−MCSmin)/(MCSmax−MCSmin).
In this case, x is considered as the MCS value selected at

any time instant. Here, MCSmin and MCSmax denote the

minimum and maximum MCS values in NB-IoT, respectively,

where MCSmin = 0 and MCSmax = 12.

After generating the training dataset, the GAN is trained,

tested, and validated using 60%, 20%, and 20% of the dataset,

respectively. We have applied a 10-fold cross-validation tech-

nique with randomly chosen validation sets to evaluate the

predictive model. In case of the convergence of the GAN,

the losses of the discriminator and generator become quite

stable after approximately 2200 epochs. After evaluating the

predictive model, all the eNBs are loaded with the trained

model. Then, the MAB model is again run to collect the same

aforesaid information which is used to retrain the GAN model.

F. Prediction Performance

To calculate the accuracy of the predictions of the GAN

model, we measure the Mean Absolute Percentage Error

(MAPE) [36]. MAPE is a continual-time metric that computes

the mean absolute deviation between the actual values and

the predicted values of the number of PRBs, MCS, repetition

number, and probability of scheduling, up to the present time-

stamp. We compute the average MAPE value (MAPEavg) of

these parameters. We have observed that, for the test data, the

MAPEavg of the GAN model is 5.21% which signifies that

the error of the trained model is quite low.
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G. Model Size Optimization

Table II summarizes the observations including the model

size and MAPE values (MAPEavg values) for different training

data sizes. From this table, it is noted that 60% of the data

from the collected dataset provides a MAPEavg value of 5.83%
with a trained model size of 47.3 MB. This MAPEavg is

quite acceptable and is associated with a low trained model

size (47.3 MB). Therefore, we select 60% of the data from

the collected dataset to choose our optimal model size. This

trained model is loaded in the eNB for online prediction during

the execution of SmartCon.

TABLE II
MODEL SIZE AND MAPEavg FOR DIFFERENT TRAINING DATA SIZES

Training data size 30% 40% 50% 60% 70% 80%

MAPEavg 23.8% 11.4% 8.56% 5.83% 5.34% 4.97%

Model size (MB) 36.2 41.6 44.8 47.3 76.1 129.5

H. Model Retraining

Whenever a packet loss occurs, SmartCon finds out the

correlation between the average packet loss rates in the past

execution of duration (window) ρ and the pre-loaded training

sample chosen randomly. If this correlation is low, SmartCon

sends a signal to the eNB, which signifies that a new sample

dataset has been prepared over a window ρ. In the implemen-

tation, ρ is set to 1 minute, and the new dataset’s size should

be of 2 GB in order to update the trained model.

I. The Core Module

The core functionality of SmartCon is to emulate the GAN

model on the basis of Ogata’s thinning algorithm [31]. We run

SmartCon once in each window ρ.

VI. PERFORMANCE ANALYSIS

We run each simulation instance for 500 seconds, where the

results are shown as an average of 100 runs of each simula-

tion instance. Every simulation instance is a combination of

downlink and uplink transmissions.

A. Analysis of Throughput

In SmartCon, the generated dynamics lead to the adaptive

selection of PRB, MCS, and repetitions in future scheduling.

This learning-based adaptability helps tune the aforesaid pa-

rameters based on the present channel condition, such that
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the average throughput is significantly enhanced. For instance,

a higher number of repetitions is chosen when the channel

condition is poor so that the transmitted data can reach the

destination. Since NBLA is based on threshold-based scheme

to adapt the MCS and repetitions, the adaptation is not as

efficient as our proposed online learning mechanism. Whereas,

since NANIS and the standard approaches do not dynamically

deal with the selection of MCS and repetitions, values of these

parameters cannot be adaptively tuned in different channel

conditions. Therefore, the average throughput is significantly

lower in the baselines compared to SmartCon. Fig. 4(a)

indicates that, SmartCon has approximately 18, 2.2, and 3
times higher average throughputs than the standard, NANIS,

and NBLA schemes, respectively.

B. Analysis of Packet Loss Rate

In the generated dataset, the MCS, number of PRBs, and

repetition number are chosen to minimize the packet loss rate.

In this regard, the application of the best possible value of

MCS plays a key role, where a low MCS level should be

chosen when the channel condition is poor. Otherwise, the

packet loss rate increases. Fig. 4(b) shows that SmartCon has

a significantly lower PLR than other baseline mechanisms.

When the number of UEs is 50, the average PLR in SmartCon

is approximately 59%, 52%, and 33% lower than the standard,

NANIS, and NBLA approaches, respectively. However, as the

number of UEs increases in the network, the adaptability of

NANIS and NBLA decreases, as illustrated in Fig. 4(b).

C. Analysis of Packet Delay

In SmartCon, the unnecessary use of repetitions in a trans-

mission helps reduce the time for a packet to reach its desti-

nation. Based on the present channel condition, the selection

of the best MCS value provides the best possible data rate,

and consequently the transmission delay is decreased. From

Fig. 5(a), it can be noted that SmartCon has approximately

56%, 58%, and 21% lower average packet delay than the

standard, NANIS, and NBLA schemes, respectively. Fig. 5(b)

illustrates the cumulative distribution function (CDF) of the

average packet delay, where the distribution in SmartCon is

concentrated in the 0.1−0.25s range. NBLA provides a higher

distribution of average delay (0.1 − 0.35s) than SmartCon,

as shown in Fig. 5(b). Whereas, the other baselines have

significantly higher average delay CDF (up to 0.4s).
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D. Analysis of the Number of Consumed Subframes

In the proposed mechanism, the learning is based on the

training with a large number of UEs, where the number of

sufficient subframes is dynamically adjusted to minimize the

PLR. Therefore, based on the training, SmartCon becomes

intelligent to appropriately select the number of subframes in

different network scenarios having different number of UEs.

As a result, from Fig. 6(a), it can be observed that SmartCon

has a consumption of subframes approximately 35%, 9%, and

26% lower than the standard, NANIS, and NBLA schemes,

respectively.

E. Analysis of Computational Time

In SmartCon, after the training phase, the GAN model

simply generates the future dynamics for a UE in the execution

phase, which does not depend on any database or set of

computations as required in NANIS and NBLA. Therefore,

SmartCon has a lower computational time (Fig. 6(b)). When

the number of UEs is 100, SmartCon requires approximately

11%, and 4% lower computational time than NANIS, and

NBLA, respectively. Meanwhile, when the number of UEs is

50, in SmartCon, the computational time is approximately 16%
lower than NANIS.

F. Analysis of Selection of MCS Levels

Since a higher MCS value increases the PLR in case of low

signal strength, the tendency of SmartCon is to decrease the

MCS level as the signal strength of the channel deteriorates

and vice versa, as illustrated in Figs. 7 and 8(a). In our baseline

mechanisms, only NBLA adapts the MCS and repetitions, and

therefore we consider only NBLA in the analysis of MCS
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and (b) Consumed resources under low signal strength (SINR=5dB)

selection. Table III presents a comparative analysis of the

probability density function (PDF) of the MCS selection in

SmartCon and NBLA.

TABLE III
ANALYSIS OF THE PDF OF MCS SELECTION WITH RESPECT TO NBLA

MCS Level SINR = 5 dB SINR = 10 dB SINR = 20 dB

PDF of MCS=0 21.31% higher 40% lower 21.43% lower

PDF of MCS=6 36.84 lower 10.71% higher 4% lower

PDF of MCS=12 10% lower 41.67% higher 16.67% higher

G. Analysis of Consumed Resources under Variable Packet

Sizes

In SmartCon, since the adaptation is performed based on

an intelligent prediction considering the present channel condi-

tion, the best possible number of resources are chosen dynam-

ically. From Figs. 8(b) and 9, it is noted that, when the packet

size is 500 bytes for an SINR of 20 dB, SmartCon consumes

approximately 1.8, 1.11, and 1.32 times less resources than

the standard, NANIS, and NBLA mechanisms, respectively.

In case of low signal strength (SINR=5dB), the resource

consumption in SmartCon are 1.23, 1.12, and 1.16 times lower

than the standard, NANIS, and NBLA, respectively.

H. Selection of the MCS and Repetitions by SmartCon

Fig. 10 shows the adaptation of the MCS and repetitions

in SmartCon, considering the present channel condition. We

capture the values of the MCS and repetition numbers selected

for the SINR values of the channel. Since we consider several

measurements of the aforementioned parameters against the

SINR values, we denote such measurements as ‘SINR occur-

rences’. In Fig. 10, the results are shown in three SINR buckets
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Fig. 11. (a) Average throughput and (b) Average PLR

to demonstrate the impacts of the low, medium, and high

signal strength. From Fig. 10(a), it is noted that, higher MCS

values are selected for the high SINR values, whereas the MCS

level decreases as the signal strength deteriorates. Similarly, to

efficiently use the repetition mechanism, the repetition number

needs to be increased as the SINR of the channel increases, as

illustrated in Fig. 10(b), where it is noted that lower repetition

numbers are chosen when the SINR values decrease.

I. Performance Comparison with GAN-DDQN

Fig. 11 shows the performance improvement of SmartCon

over GAN-DDQN considering the average throughput and

packet loss rate (PLR). In particular, GAN-DDQN performs

dynamic allocation of radio resources considering network

slicing in 5G networks. However, SmartCon intelligently se-

lects the MCS values and repetitions, along with the dynamic

adaptation of radio resources. Therefore, in SmartCon, the suit-

able data rate can be set according to the present channel con-

dition, and consequently the average throughput is improved in

SmartCon. Fig. 11(a) shows that SmartCon has approximately

an average throughput 5.3 times higher than the GAN-DDQN.

The GAN-DDQN does not specifically handle the reduction

of the packet loss in the network, whereas the proposed GAN

is trained with a dataset that is intelligently generated by

minimizing the average PLR. As a result, SmartCon provides

a significantly lower average PLR than the GAN-DDQN. For

instance, when the number of UEs is 50, the average PLR in

SmartCon is approximately 52% lower than in GAN-DDQN,

as shown in Fig. 11(b).

VII. CONCLUSION

The proposed GAN models the stochastic time-stamps of

traffic scheduling associated with adaptive MCS values, repe-

titions, and number of PRBs. To generate the training dataset

for the GAN, we use a MAB-based reinforcement learning

mechanism to adapt the MCS, repetitions, and radio resources

by considering the present channel condition. The detailed

simulation analysis demonstrates that SmartCon significantly

boosts the performance of NB-IoT networks. The possible

limitation of SmartCon is that periodic re-training is required

for adjustments under changing network conditions, which led

us to apply an active learning approach. However, SmartCon

provides an important step towards the use of deep generative

architecture for the optimization of 5G and B5G networks.

The future direction of this work can be an intelligent

adaptation of the NPDCCH period length along with dynamic

adaptation of the MCS, repetitions, and PRBs. The NPDCCH

period is defined as the time interval between two successive

NPDCCH, where the eNB should allocate the radio resources

for the UEs to receive data. The NPDCCH period signifi-

cantly affects the utilization of the radio resources in NB-

IoT networks, and therefore it is required to smartly handle

the NPDCCH period when we dynamically adapt the MCS,

repetitions, and PRBs.
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