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Abstract—In this paper, we consider a distributed reinforce-
ment learning setting where agents are communicating with a
central entity in a shared environment to maximize a global
reward. A main challenge in this setting is that the randomness
of the wireless channel perturbs each agent’s model update while
multiple agents’ updates may cause interference when communi-
cating under limited bandwidth. To address this issue, we propose
a novel distributed reinforcement learning algorithm based on the
alternating direction method of multipliers (ADMM) and “over
air aggregation” using analog transmission scheme, referred to
as A-RLADMM. Our algorithm incorporates the wireless chan-
nel into the formulation of the ADMM method, which enables
agents to transmit each element of their updated models over
the same channel using analog communication. Numerical exper-
iments on a multi-agent collaborative navigation task show that
our proposed algorithm significantly outperforms the digital com-
munication baseline of A-RLADMM (D-RLADMM), the lazily
aggregated policy gradient (RL-LAPG), as well as the analog and
the digital communication versions of the vanilla FL, (A-FRL)
and (D-FRL) respectively.

Index Terms—Reinforcement learning, ADMM, analog com-
munications, distributed optimization, policy gradient.

I. INTRODUCTION

OWING to the strict and stringent requirements for 5G and
beyond applications such as industry 4.0, network edge

intelligence is of paramount importance [1]. One key challenge
in these applications is how to optimize distributed systems
where different entities (agents) communicate wirelessly in the
same environment and share limited communication resources
(e.g., limited bandwidth). The unique characteristics of multi-
agent systems is that agents do not evolve alone in the
environment and must take into account other agents who
also perceive and act in the environment. Generally speak-
ing, we can distinguish three scenarios: (i) fully cooperative
where agents work together to maximize a common long-term
return, (ii) fully competitive where the return of agents typi-
cally amounts to zero, and (iii) a combination of both where
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the environment includes both cooperative and competitive
agents. In this work, we focus on the fully cooperative setting,
which represents a great portion of the Multi-agent rein-
forcement learning (MARL) settings where multiple agents
interact in a shared environment and collaborate towards
maximizing their rewards. MARL entails sequential decision
making procedures, where agents take different actions over
sequences of time in a stochastic environment. In contrast to
supervised learning where data distribution is stationary, the
distribution used to sample data in the RL setting depends
on time-varying policy parameters, which introduces non-
stationarity and makes the problem more challenging. Many
MARL algorithms were proposed to solve real-world problems
such as spectrum sharing [2], 360 degree video streaming [3],
multi-player gaming [4], and robot navigation [5].

A. Related Works

1) Distributed Reinforcement Learning (DRL): The exis-
tence of a central parameter server (PS) capable of collecting
information such as joint actions, rewards, and observations,
as well as designing policies for all agents has been assumed
in several works [6]–[9] when studying DRL. In DRL, one
potential solution is centralized learning where at every step,
each agent sends its raw data to a PS [10]. Upon receiving
the data from all the agents, the PS calculates a global action
and broadcasts it to the agents. In the context of cooperative
learning, a centralized learning scheme significantly simpli-
fies the analysis, enabling the use of tools developed for the
single-agent RL case. However, when agents send the raw
data to the PS, privacy is violated. Such information could be
used by a malicious server/agent to infer some of the system’s
properties. Moreover, computing the global action at the PS
introduces a high computation complexity. To ensure privacy,
the work in [11] presents a new learning setting, namely feder-
ated learning (FL), whose goal is to allow learning of a global
model using a distributed learning approach. At every training
iteration, each agent performs one or a few local computations
and uploads its model to the PS that aggregates the outputs of
all the agents, performs a global computation, and produces a
global model that is downloaded by all the agents. By alternat-
ing between local operation and global operation, eventually
all the agents converge to a unique global model. FL preserves
privacy since the raw data never leaves its origin. Moreover,
the PS only performs model aggregation and the high com-
plexity of computations is offloaded to the agents. However,
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the frequent communication exchanges of information between
the PS and the agents lead to a considerable overhead that turns
to be the major bottleneck of the system performance in many
RL scenarios. In [12], the authors propose a fully decentralized
federated RL framework algorithm to solve a sequential clini-
cal treatment problem. The work provides guarantees over the
privacy of electronic medical records (EMRs) with the help of
additively homomorphic encryption. However, the encrypted
information is exchanged between the nodes through private
authenticated channels which requires huge communication
resources as the number of nodes increases. Hence, there is a
need for communication-efficient RL algorithms.

2) Communication-Efficient MARL: Recently, several
works investigated the communication-efficiency aspect in
the context of MARL, aiming to reduce the number of
communication rounds between the PS and the agents. The
work in [13] proposes a federated reinforcement learning
(FRL) architecture that aims to decrease the personalization
time of multiple agents to their environment. The authors
in [6] propose a communication-efficient algorithm that lazily
aggregates the policy gradients by skipping some agents
in some of the communication rounds while achieving the
same convergence rate as policy gradient. In [14], the authors
propose a randomized communication-efficient multi-agent
actor-critic algorithm for DRL problem when a network of
agents cooperate, using only communication with their local
neighbors, to maximize a global average reward under the
assumption of strongly connected graphs. The authors in [15]
present a hierarchical distributed algorithm that reduces
communication cost by differentiating the roles of the agents
during the evaluation process. By doing so, they were able to
choose various mixing matrices different from the often used
doubly stochastic one in order to save communication by
allowing unidirectional information exchange among agents.
The authors show that their proposed algorithm achieves
the same order of convergence rate as the state-of-the-art
methods.

3) Communication Design of DRL: However, similar to
any distributed system, DRL system suffers from interference
caused by simultaneous transmission of different agents. To
mitigate this problem, orthogonal channel allocation through
digital transmission is used. Nonetheless, this approach is not
communication-efficient and is not scalable since the num-
ber of required communication channels grows linearly with
respect to the number of agents. In addition to that, when
the agents upload their models, there is a chance for eaves-
droppers or even the honest but curious PS to reconstruct the
models if their trajectory is distinguishable, thus privacy can
be violated by inferring training data. We note that the aggre-
gation operation at the PS side only requires the sum of the
local models without the need for separate individual models,
which motivates the use of analog over-the-air schemes.

As opposed to digital transmission where streams of bits
are sent, analog signals represent different elements by their
amplitudes. The ith element of the update is transmitted over a
shared channel among all the agents. This drastically reduces
the amount of required bandwidth, thereby improving com-
munication efficiency. At the PS side, the received signal is

perturbed by the channel, and the models are hidden behind
the channel perturbations, thus lowering the chances of privacy
infringement. However, the convergence towards the global
model depends on the channels perturbations and fading. To
overcome this, most of the work in analog schemes suggest to
solve the problem by inverting the channel before transmitting
the signal [16]–[20]. This limits the transmissions only for the
channels that are greater than a certain threshold. However,
this leads to another problem due to the power limitations at
the agents’ side and the effect of the heuristic choice of the
threshold υ on the convergence. Moreover, if one agent has a
good channel gain, its model updates will be unfolded to the
PS, which leads to data exposure. Therefore, there is a need
for a non channel-inversion algorithm to protect the privacy of
the agents, to account for the power limitations at the agents’
side, and to take into account the channel perturbations and
their effect on the convergence.

B. Our Contributions

The major contributions of this work are summarized as
follows.

• We propose A-RLADMM, a distributed and
communication-efficient RL approach based on over
the air aggregation and alternating direction method
of multipliers (ADMM) [21], [22] that provides fast
convergence and efficient use of the communication
resources.

• A-RLADMM is an extension of the work in [23] to
the MARL collaborative setting. However, A-RLADMM
accounts for more challenges in terms of deployment in
real-world decentralized RL setting.

• A-RLADMM allows the agents to transmit their updates
without channel inversion and prevents the channel per-
turbations from affecting the convergence by integrating
the effects of the channel in the algorithm update process.

• Simulations results show that our proposed algorithm sig-
nificantly outperforms the digital communication version
of A-RLADMM (D-RLADMM), the lazily aggregated
policy gradient (RL-LAPG), the digital communication
version of vanilla FL (D-FRL) as well as the analog
version of FL (A-FRL) since it significantly reduces the
number of communication uploads.

The remainder of this paper is organized as follows: we
start by describing the DRL setting in Section II. We then
provide in Section III a brief description of the idea of
the Analog Federated ADMM (A-FADMM). In Section IV,
we present our proposed framework, Analog Reinforcement
Learning ADMM (A-RLADMM). In Section IV, we describe
our simulation setting and numerical results for a navigation
task. Finally, the paper ends with a summary of the main
results.

II. DISTRIBUTED REINFORCEMENT LEARNING

In this section we briefly describe the key aspects of the
proposed DRL problem and policy gradient methods.
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A. Problem Statement

Consider a set N = {1, . . . ,N } of N distributed agents
communicating with a PS. To model the sequential decision-
making process that characterizes the multi-agent collaborative
RL, Markov decision process (MDP) [24] defines a suitable
mathematical structure where the actions are performed by the
agents. Similar to the single-agent RL setting, the sextuple
(S,A,P, γ, ν, {�n}n∈N ) describes the DRL problem under
the MDP umbrella [25] such that:

• S is the state space that is shared by all agents.
• A =

∏N
i=1Ai is the joint action space where {Ai}Ni=1

are the local actions spaces.
• P denotes the transition kernels space with the mapping
S × A → Δ(S), where Δ(S) denotes the distribution
over space S .

• γ ∈ (0, 1) is the discounting factor.
• ν is the initial state distribution at time t = 0.
• �n : S ×A → R is the loss associated with agent n.

In addition to the sextuple (S,A,P, γ, ν, {�n}n∈N ), we have
the joint stochastic policy given by π = (π1, . . . ,πN ) where
πn : S → Δ(An ) is the local policy for agent n that describes
the conditional distribution of all the actions given the current
state s for agent n. The policy πn encodes the behavior of the
agent n: in a state st ∈ S , the agent will choose the action
πn(st ) ∈ An , which causes the system to transition to a state
st+1. Taking into account the case in which the time is discrete
in an infinite horizon, a policy π generates a trajectory T :=
{s0, a0, s1, a1, s2, a2, . . .} with st ∈ S and at ∈ A. In the
multi-agent collaborative RL setting, we aim to minimize the
infinite-horizon discounted long-term loss aggregated over all
agents, formally expressed as:

min
π

N∑

n=1

fn (π) with fn (π) = ET ∼P(.|π)

[ ∞∑

t=0

γt �n (st , at )

]

,

(1)

Note that the expectation is taken over a random trajectory
T generated given the policy π . A trajectory T is generated
according to the following transition probability

P(T |π) = P(s0, a0, s1, a1, s2, a2, . . . , |π)

= ν(s0)
∞∏

t=0

π(at |st )P(st+1|st , at ), (2)

where ν(s0) is the initial state probability and P(st+1|st , at )
is the transition probability of st+1 given the current state st
when taking the action at .

B. Policy Parametrization

In continuous state and action spaces, tabular RL approaches
are no longer tractable, and the intended solver typically
involves function approximation to alleviate the complexity.
Hence, to overcome the difficulty of learning a function, pol-
icy gradient (PG) method [26], [27] was proposed. PG finds
the policy that maximizes the system reward by searching
in a restricted class of parametrized policies, i.e., policies
parametrized by a parameter θ . A commonly used policy is

the Gaussian policy which can be described as follows [28]

π(·|s; θ) = N (μ(s; θ),Σ(s; θ)), (3)

where μ and Σ are the mean and the covariance matrix,
respectively.

A policy π parametrized by θ ∈ R
d is denoted as π(·|s; θ),

or simply π(θ). Hence, the problem in (1) can be rewritten in
the parametrized form as follows

min
θ

N∑

n=1

fn (θ) with fn (θ) = ET ∼P(·|θ)

[ ∞∑

t=0

γt �n (st , at )

]

,

(4)

where we assume each function fn (·) to be Ln -smooth. The
smoothness assumption is standard when studying many non-
convex optimization algorithms. In the remainder of the paper,
we assume that the local function fn is differentiable. Note that
even if fn is nondifferentiable but continuous, we could still
replace the gradient ∇fn by one of the subgradients ∂fn , and
the derivations still hold. To search for the best policy, the
problem in (4) can be solved in an iterative manner. However,
in practical distributed systems, each fn needs to be handled
by a single agent. This motivates the introduction of a global
consensus formulation where the objective function becomes
separable across the agents.

Before we describe our distributed consensus algorithm for
multi-agent collaborative reinforcement learning over analog
transmission which is extended from A-FADMM [23], we
will briefly highlight the key steps of A-FADMM which was
proposed for the supervised learning setting.

III. ANALOG FEDERATED ADMM (A-FADMM)

In this section, we briefly highlight the key aspects of
A-FADMM. Unlike in digital transmission, analog schemes
adopt the notion that all the agents transmit the ith ele-
ment of their updates using the ith sub-carrier. Therefore, the
aggregated updates from the agents are assigned the same
channel.

A. Static and Noise Free Channel

Under static and noise free communication channel,
A-FADMM problem is formulated as

min
Θ,{θn}Nn=1

N∑

n=1

fn (θn) (5)

s.t. hn,iθn,i = hn,iΘi , ∀n, i (6)

where Θi and θn,i are the ith elements of the global model
Θ at the PS and the local model θn at agent n side, respec-
tively, and hn,i is the wireless channel coefficient of agent
n at subcarrier i. Note that, the only difference compared to
the standard ADMM formulation [29]–[31] is introducing the
channel in the constraint (6). Introducing the channel does
not change the optimal solution of the problem. However,
it integrates the channel into the updating steps of the pri-
mal and dual variables. Therefore, it allows aggregating the
channel perturbed signals of all agents/workers and avoid
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channel inversion which leads to several issues [16]–[19]. The
Augmented Lagrangian of (5)-(6) is formulated as follows

Lρ
(
Θ, {θn}Nn=1,λ

)

=

N∑

n=1

fn (θn ) +

d∑

i=1

N∑

n=1

λ∗n,ihn,i (θn,i −Θi )

+
ρ

2

d∑

i=1

N∑

n=1

∣
∣hn,i

∣
∣2
(
θn,i −Θi

)2
, (7)

where λ∗n,i is the complex conjugate of the dual variable λn,i ,
d is the size of the model, and ρ is the constant that controls
the mismatch between the ith element of the local model θn,i
and the global model Θi for agent n. At iteration k + 1,
every agent n updates its primal variable θk+1

n,i by minimizing

Lρ(Θk , θn ,λ
k ). Thus, θk+1

n,i should satisfy

∇i fn
(
θ
k+1
n

)
+ λ

k
n,i

∗
hn,i + ρ

∣∣hn,i
∣∣2(θ

k+1
n,i −Θk

i

)
= 0, (8)

where ∇i fn (·) is the ith element in the gradient of fn (·).
Next, the PS collects the primal variables of the agents and
updates the ith element of global model Θk+1

i by minimizing
Lρ(Θ, θk+1

n ,λk ). Setting the derivative of Lρ(Θ, θk+1
n ,λk )

equal to zero results in the following update rule

Θk+1
i =

1∑N
n=1

∣∣hn,i
∣∣2

N∑
n=1

(∣∣hn,i
∣∣2θk+1

n,i + λ
k
n,i

∗
hn,i/ρ

)
. (9)

For the PS to solve (9), in the uplink, every agent n transmits
hn,i

∗θk+1
n,i +λkn,i

∗
/ρ for the ith element of its update to the PS

for a duration of T seconds where hn,i
∗ the complex conjugate

of hn,i . Finally, every agent n locally updates the ith element
of its dual variable λk+1

n,i using

λk+1
n,i = λkn,i + ρhn,i

(
θk+1
n,i −Θk+1

i

)
. (10)

B. Time-Varying and Noisy Channels

In the uplink, every agent n transmits hk+1
n,i

∗
θk+1
n,i +λkn,i

∗
/ρ

for the ith element of its update to the PS for a dura-
tion of T̄ seconds. At the receiving side, the PS receives∑N

n=1(|hk+1
n,i |2θ

k+1
n,i +λkn,i

∗
hk+1
n,i /ρ)+z k+1

i (t) for every sec-

ond t ∈ [0, T̄ ], where z k+1
i (t) ∼ CN (0,N0). Applying the

matched filter, the received signals are integrated during T̄
seconds, divided by T̄ , and sampled at t = T̄ . This results in∑N

n=1(|hk+1
n,i |2θ

k+1
n,i +λkn,i

∗
hk+1
n,i /ρ)+ẑ k+1

i with the reduced

noise ẑ k+1
i ∼ CN (0,N0/T̄ ).

Correspondingly, the global model Θk+1
i is updated as

follows

Θk+1
i =

∑N
n=1

(∣∣∣hk+1
n,i

∣∣∣
2
θk+1
n,i + λkn,i

∗
hk+1
n,i /ρ+ Re{ẑk+1

i }
)

∑N
n=1

∣∣∣hk+1
n,i

∣∣∣
2

,

(11)

where Re{·} denotes the real part of a complex number.
In the downlink, every agent n receives the update from the

PS as hk+1
n,i Θk+1

i + ẑ k+1
n,i . The received signal is multiplied

by hk+1
n,i

∗
and |hk+1

n,i |2Θ
k+1
i + hk+1

n,i

∗
ẑ k+1
n,i is used to fit into

the primal update

∇i fn

(
θk+1
n

)
+ λkn,i

∗
hk+1
n,i + ρ

∣
∣
∣hk+1

n,i

∣
∣
∣
2(

θk+1
n,i −Θk

i

)

−ρRe
{
hk+1
n,i

∗
ẑ k+1
n,i

}
= 0. (12)

The dual variable is updated follows as

λk+1
n,i = λkn,i + ρhk+1

n,i (θk+1
n,i −Θk+1

i )− ρẑ k+1
n,i . (13)

IV. A-RLADMM FRAMEWORK

In this section, we describe the extension of A-FADMM to
solve the distributed collaborative multi-agent RL problem. We
recall the problem in (1) and we recast it in a global consensus
formulation.

min
Π,{πn}Nn=1

N∑

n=1

fn (πn ) (14)

s.t. πn = Π, ∀n (15)

where Π is the global policy. Restricting our search over a
class of parametrized policies, and considering over air aggre-
gation and analog communication, the formulation in (14)-(15)
can be rewritten in parametrized from as

min
Θ,{θn}Nn=1

N∑

n=1

fn (θn ) (16)

s.t. hn,iθn,i = hn,iΘi , ∀n, i . (17)

The augmented Lagrangian of problem (16)-(17) is the same
as (7).

However, in contrast to supervised learning, policy gradi-
ent method is used to solve the local problem at each agent.
We first describe the algorithm under the assumption that
the hk+1

n,i = hkn,i ∀k , and later in the section we relax this
assumption. The detailed steps are as follows.

At the outer iteration k + 1, given the global model param-
eter Θk , agent n initializes a local variable φn,i to θkn , i.e.,
φ0
n = θkn , then at the local iteration j + 1, one PG iteration

is performed

φ
j+1
n,i = φ

j
n,i − α

[
∇i fn

(
φ
j
n

)
+ λ

k
n,i

∗
hk+1
n,i + ρ

∣∣∣hk+1
n,i

∣∣∣
2

(
φ
j
n,i −Θk

i

)
− ρRe

{
hk+1
n,i

∗
ẑk+1
n,i

}]
, (18)

where φ
j+1
n,i is the ith element of the primal variable of agent

n computed after k global iterations and j + 1 local iterations,
and α is the learning rate. After J iterations, we set θk+1

n =
φJ
n .
Given the objective function for agent n

fn (φ
j
n) = ET ∼P(.|φj

n )

[ ∞∑

t=0

γt �n (st , an,t )

]

, (19)

the gradient is computed as follows

∇i fn
(
φj
n

)
= ∇i

(∫

τ
P
(
T |φj

n

)
[ ∞∑

t=0

γt�n(st , an,t)

]

dτ

)
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=

(∫

τ
∇i P

(
T |φj

n

)
[ ∞∑

t=0

γt�n(st , an,t)

]

dτ

)

. (20)

Using the log-trick, we can write

∇i P

(
T |φj

n

)
= P

(
T |φj

n

)
∇i logP

(
T |φj

n

)
. (21)

Substituting (21) in (20) we get

∇i fn
(
φj
n

)
=

(∫

τ
P
(
τ |φj

n

)
∇i log

(
P
(
T |φj

n

))
[ ∞∑

t=0

γt �n (st , an,t )

]

dτ

)

=

(∫

τ
P
(
T |φj

n

)
[ ∞∑

t=0

∇i log
(
P
(
T |φj

n

))
γt �n (st , an,t )

]

dτ

)

= ET ∼P

(
·|φj

n

)
[ ∞∑

t=0

∇i log
(
P
(
T |φj

n

))
γt �n (st , an,t )

]

.

(22)

We recall the probability of generating a random trajec-
tory T as

P

(
T |φj

n

)
= P

(
s0, an,0, s1, an,1, s2, an,2, . . . , |φj

n

)

= ν(s0)

∞∏

t=0

π
(
an,t |st ,φj

n

)
P
(
st+1|st , an,t

)
. (23)

Taking the logarithm and differentiating with respect to the ith

element, we get

∇i log
(
P

(
T |φj

n

))
=

∞∑

t=0

∇i log
(
π
(
an,t |st ,φj

n

))
, (24)

where we have used the fact that ∇i log(ν(s0)) = 0 and
∇i log(P(st+1|st , an,t )) = 0. Substituting (24) in (22), we
get (25), shown at the bottom of the page.

Since the true dynamics of the MDP model may not
be known, or the expectation in (25) is difficult to com-
pute, the average is used as an unbiased estimate of the
expected value. This estimate is computed using M batch
trajectories that run over T time slots each. Hence, we
get (26), shown at the bottom of the page, where T :=
{smn,0, amn,0, smn,1, amn,1, . . . , smn,T , amn,T , . . .} is the mth T-slot
episode (trajectory) generated at agent n.

When hk+1
n,i �= hkn,i ∀k , we perform a preliminary phase in

order to cope with the channel changes and guarantee con-
vergence of both the primal and dual variables. First, we
obtain the dual variable λ̄

k
n,i using (12) given the previous

update θkn,i . Next, we update the global variable Θ̄k
i using both

θkn,i and λ̄
k
n,i . After the preliminary phase is complete, every

agent solves the local problem and updates θk+1
n,i using (18).

Equivalent to the A-FADMM update steps presented above,
the global model Θk+1

i is updated as follows:

Θk+1
i =

∑N
n=1

(∣
∣
∣hk+1

n,i

∣
∣
∣
2
θk+1
n,i +

(
λ̄
k
n,i

)∗
hk+1
n,i /ρ+ Re

{
ẑ k+1
i

})

∑N
n=1

∣
∣
∣hk+1

n,i

∣
∣
∣
2

.

(27)

The dual variable are then updated as

λk+1
n,i = λ̄

k
n,i + ρhk+1

n,i

(
θk+1
n,i −Θk+1

i

)
− ρẑ k+1

n,i . (28)

Finally, in order to account for the maximum power bud-
get P, every agent n needs to calculates its power factor ωn
such that (ωk+1

n )2
∑d

i=1 |hk+1
n,i

∗
θk+1
n,i + (λ̄kn,i )

∗/ρ|2 = P .

After sending ωn to the PS, the latter decides ωk+1 =
min {ωk+1

1 , ωk+1
2 , . . . , ωk+1

N } that is broadcasted to all the

agents. After that, every agent transmits ωk+1(hk+1
n,i

∗
θk+1
n,i +

(λ̄kn,i )
∗/ρ) and the obtained updates at the PS are

∑N
n=1(|hk+1

n,i |2θ
k+1
n,i +(λ̄kn,i )

∗hk+1
n,i /ρ)+ẑ k+1

i /ωk+1 after the

division by ωk+1. We note that the exchange of power fac-
tors ωk+1

n and ωk+1 can be performed across separate control
channels due to its negligible communication overhead [32].
The algorithm pseudocode is detailed in Algorithm 1.

V. NUMERICAL EVALUATION

To validate the performance of our algorithm presented in
Section IV, we consider a multi-agent navigation task which
we will describe in details. All the experiments were conducted
using Python 3.6 on an Intel i5 CPU, 8 GB, 2.20 GHz, DDR3
RAM. In our simulation, we consider the local policy of every
agent πn (θn ) to be parametrized by a deep neural network
(DNN) that consists of three-fully connected layers with 30,
10, and 9 neurons, respectively. Rectified linear unit (ReLu)
activation function is used in the first two layers, while the
output layer is a softmax operator with the 9 neurons corre-
sponding to the agents’ movement actions, as described later in
this section. As a consequence, the number of model elements
is d = 750.

A. Problem Set-Up

As illustrated in Fig. 1, we consider a multi-agent collabora-
tive navigation task comprising of a number of moving agents.
We consider a discrete system where a set N = {1, . . . ,N } of
N agents (robots, cars) are moving in a two-dimensional grid
plane and aim to reach their target landmarks (destinations).

At every time step t ∈ {0, 1, 2, . . .}, the position of the
agent n is defined as sn (t) from the location space S and
can be written as the pair sn (t) = 〈sxn (t), s

y
n (t)〉 with

∇i fn

(
φj
n

)
= ET ∼P

(
·|φj

n

)

[ ∞∑

t=0

(
t∑

τ=0

∇i log
(
π
(
an,τ |sτ ,φj

n

))
)

γt �n
(
st , an,t

)
]

(25)

∇̂i fn

(
φj
n

)
=

1

M

M∑

m=1

T∑

t=0

t∑

τ=0

∇i logπ
(
amn,τ |smτ ,φj

n

)
γt fn

(
smt , amn,t

)
(26)



316 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 1, MARCH 2022

Algorithm 1 Analog Reinforcement Learning ADMM
(A-RLADMM)

1: Input: N , fn (θn ), ρ,K , Output: θn ∀n.
2: Initialization: θ

(0)
n ,Θ(0),λ

(0)
n , ∀n .

3: while k ≤ K do
4: PRELIMINARY PART:
5: PS sends hk+1

n,i to all agents across all subcarriers.
6: All agents in parallel:
7: for i = 1, · · · , d do
8: θ̄

k
n,i = θkn,i

9: Find (λ̄kn,i )
∗

from (12) given θ̄
k
n,i .

10: end for
11: Send (hk+1

n,i )
∗
θ̄
k
n,i + (λ̄kn,i )

∗
/ρ, ∀i = 1, · · · , d to PS.

12: Parameter Server:
13: Find Θ̄k+1

i using (27) given θ̄
k
n,i , (λ̄

k
n,i )

∗
.

14: Broadcast Θ̄k+1
i , ∀i = 1, · · · , d to all agents.

15: MAIN PART:
16: All agents in parallel:
17: for i = 1, · · · , d do
18: for j = 1, · · · , J do
19: Find φ

j
n,i using (18).

20: end for
21: θk+1

n,i = φJ
n,i .

22: end for
23: Send (hk+1

n,i )
∗
θk+1
n,i + (λ̄kn,i )

∗
/ρ, ∀i = 1, · · · , d to the

PS.
24: Parameter Server:
25: Find Θk+1

i using (27) given θk+1
n,i , (λ̄kn,i )

∗
.

26: Broadcast Θk+1
i , ∀i = 1, · · · , d to all agents.

27: All agents in parallel:
28: Update λk+1

n,i locally via (28), ∀i = 1, . . . , d .
29: k ← k + 1
30: end while

Fig. 1. Schematic illustration of agents moving in a grid-like plane.

sxn (t) and s
y
n (t) being the vertical and horizontal coordi-

nates, respectively. The landmark of every agent is set at the
position qn (t) = 〈qxn (t), q

y
n (t)〉 with horizontal coordinate

qxn (t) and vertical coordinate q
y
n (t). In order to reach their

landmarks, every agent n at time step t makes a transition
from sn(t) to sn (t + 1) by applying a movement decision
an (t) = 〈axn (t), a

y
n (t)〉 where axn (t) and a

y
n (t) represent the

horizontal and vertical move of the agent, respectively. The
action an (t) is chosen from the set of different movements
which is defined as

A = {〈1, 0〉, 〈1, 1〉, 〈0, 1〉, 〈−1, 1〉, 〈−1, 0〉,
〈−1,−1〉, 〈0,−1〉, 〈1,−1〉, 〈0, 0〉}. (29)

Consequently, we can write

sn(t + 1) = sn(t) + an (t), (30)

After transitioning to position pn(t + 1), agent n receives a
reward Rn (t) that is collected at every time step t until the
end of the training trajectory T (episode), i.e., t = T. In this
MARL setting, we assume that the state is globally observable,
i.e., the locations of other agents are available for every agent.
Accordingly, the goal of every agent n is to arrive at its destina-
tion. This can be done by maximizing the difference between
the current and the next distance to the landmark positions
while avoiding collision with other agents. The state, action,
and reward function for agent n are defined as follows.

• Reward function:

Rn (t) = ‖qn − sn(t)‖2 − ‖qn − sn (t + 1)‖2
+ η1(‖qn−sn (t+1)‖2=0)
− β1(

∑N
m �=n‖sn (t+1)−sm (t+1)‖2=0), (31)

where η is set as the reward when the agent reaches its
landmark position, 1C is the indicator function for the
collision, i.e., 1C = 1 when agents collide, otherwise
1C = 0. The parameter β is the collision penalty and
‖ · ‖2 denotes the �2-norm. Note �n (st , an,t ) = −Rn (t).

• State: The state is assumed to be globally observable,
i.e., the agent n observes the positions of other agents
sm (t) ∀m ∈ N .

• Action: A movement action an (t) ∈ A is a probabil-
ity vector of length An where every element is a global
movement action for all the agents at time step t.

B. Network and Communication Environment

We use N = 6 agents with SNR = 20dB. We consider that
the agents are allocated a total of 270 subcarriers. According
to LTE standards [32], at every 1ms, every subcarriers pro-
vides Wi = 15 KHz of bandwidth. The channel realization
is randomly generated by a Rayleigh fading distribution with
zero mean and unit variance and is coherent during one global
iteration. The rest of the simulation parameters are listed in
Table I.

For A-RLADMM, every agent sends the ith element of
its variables using the ith subcarrier. The number of uploads
required to upload the variables depends solely on the number
of assigned subcarriers, i.e., in our case we have d = 750, thus
A-RLADMM requires

⌈
750
270

⌉
= 3 time slots to upload all the

agents’ variables per global iteration.
Under digital communication, D-RLADMM can alleviate

the effects of the channel fading and noise using adaptive
modulation and coding as addressed next. The PS receives
the signal y(t) = h(t)x (t) + z (t), where x(t) is the trans-
mitted signal x(t), h(t) is the channel gain, and z(t) is the
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TABLE I
SIMULATION PARAMETERS

noise term with z (t) ∼ CN (0,N0W ), W is the bandwidth.
The received signal y(t) can be decoded without error only
if the code rate r(t) is smaller than or equal to the chan-
nel capacity C(t), i.e., r(t) ≤ C (t). Thereafter, following
the Shannon formula, the channel capacity is expressed as

C (t) = Wlog2(1+SNR(t)) where SNR(t) =
P |h(t)|2
N0W

. Since
the SNR is known at the transmitter, we can always adjust
the code rate such that r(t) = C(t) and guarantee error-free
decoding of the received update. In D-RLADMM, the required
number of uploading time slots depends on both the avail-
able bandwidth and the channel gain. Thus, considering that
every element of the update variables consumes 32 bits, we can
define T̂ n as the minimum uploading time T n for the agent n
that satisfies the condition

∫ T n
t=1

∑i=270/N
i=1 rn,i (t)dt ≥ 32d ,

where rn,i (t) = Wi log2(1 + SNRn,i (t)). Consequently,
the required time for uploading all the agent’s updates is
T̂ = max {T̂ 1, T̂ 2, . . . , T̂N }.

C. Baselines

We compare our proposed algorithm with the following
benchmarks.

• D-FRL: The vanilla PG algorithm as illustrated in Fig. 3(a).
The aim is to minimize 1

N

∑N
n=1 fn (Θ) by locally min-

imizing fn (θ) at every agent and globally averaging the
models at the PS. To solve this problem, every agent inter-
acts with the environment and locally computes the gradient
presented in (26) by running M batch episodes. After that,
the model gradients are sent to the PS through orthogonal
channels. Finally, the model gradients are aggregated at
the PS side and the model is updated. This process contin-
ues until reaching the maximum channel uses. We notice
that this baseline is not communication-efficient, since it
requires huge bandwidth resources and it is vulnerable to
model reconstruction attacks.

• A-FRL: As shown in Fig. 3(b), the analog communication
version of D-FRL considers the over-the-air aggregation
scheme. This is motivated by the fact that the PS only
requires the sum of the models rather than the individ-
ual models. Henceforth, every agent n transmits an analog
signal over a shared channel across all agents. After com-
puting the gradients locally at the agents’ side, every
ith element of the gradients is transmitted using the ith

subcarrier. We note that the obtained signal at the PS is

Fig. 2. Communication efficiency (Globally normalized averaged reward
w.r.t number of communication uploads).

perturbed by the channel fading. To mitigate this effect
,we consider the channel inversion technique where every
agent multiplies its signal by the inverse of the chan-
nel gain before transmitting to the PS. Transmission is
allowed only when |hn,i | > υ.

• D-RLADMM: D-RLADMM is the digital communica-
tion version of our proposed algorithm A-RLADMM
which is illustrated in Fig. 3(c). The aim is to minimize
1
N

∑N
n=1 fn (Θ) by making use of the ADMM algorithm.

Using digital transmission, agents are allocated separate
channels in order to upload their updates to the PS. Every
agent n solves a minimization problem in order to update
its primal variable θn , then it sends it to the PS. The global
variable Θ is updated at the PS followed by the dual vari-
able λn which is updated locally. We assume orthogonal
bandwidth allocation, i.e., the total bandwidth is divided
and allocated equally for every agent. We assume that
every element in the model is transmitted using 32 bits.

• RL-LAPG: RL-LAPG is a PG-based method proposed
in [6] named Lazily Aggregated Policy Gradient. It
adaptively skips the policy gradient communication dur-
ing iterations thus reducing the communication over-
head without degradation of the learning performance.
It allows the agents to transmit when the innovation
between the evaluations of the current gradient and the
old gradient is greater than a certain threshold.

• ε-Greedy: The epsilon-greedy policy tackles the
exploration-exploitation tradeoff with RL algorithms. It
takes a greedy action with a probability of (1 − ε) and
a an exploratory action with a probability of ε. This
approach ensures the exploration of the action space. In
our simulations, we consider ε = 0.1.

• x10: Refers to the algorithm x when we use 10 times
more subcarriers (10 times higher bandwidth than the
default choice).

D. Results and Discussion

From Fig. 2, we see that A-RLADMM needs fewer number
of communication uploads compared to the other baselines.
RL-LAPG performs better than D-FRL since it requires less
number of communication rounds to achieve a desirable
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Fig. 3. Schematic illustrations of: (a) digital federated reinforcement learning (FRL), (b) analog FRL with channel inversion, (c) analog-reinforcement
learning ADMM (A-RLADMM) without channel inversion.

Fig. 4. Energy efficiency (maximum reward w.r.t SNR).

learning reward. On the other hand, we notice that A-FRL out-
performs D-FRL. This is due to the fact that, for D-FRL, the
PS requires a bandwidth scheduling algorithm to decide which
agent to schedule on each subcarrier. Hence, splitting the avail-
able bandwidth between the agents results in higher number
of communication uploads. The digital version of RLADMM
(D-RLADMM) performs better than its digital counterparts,
as well as the analog FRL (A-FRL). This observation shows
the slow convergence of the first-order methods as both FRL
and RL-LAPG require much higher number of communication
uploads to reach their highest reward. We notice that ε-Greedy
baseline performs the worst among all the baselines.

Fig. 4 illustrates the maximum attainable globally normal-
ized averaged reward for both analog and digital versions of
RLADMM, as well as D-FRL and RL-LAPG algorithms for
different values of SNR under a constraint imposed on the
maximum number of channel uses. The number of channel
uses at time slot I is CU =

∑I
i=1Di , where Di is the number

of subcarriers at time slot i. We compare both algorithms under
CU1 = 2.16× 105 and CU2 = 2.16× 106 channel uses. We
see that A-RLADMM maintains a robust performance across
the SNR values for both numbers of channel uses. At the low
SNR regime, both D-FRL and RL-LAPG algorithms strug-
gle to converge to the optimal policy and reach the maximum

Fig. 5. Effect of the number of local iterations on the algorithm performance
(Globally normalized averaged reward w.r.t number of communication
uploads).

reward under both choices of the maximum number of chan-
nel uses. This is due to the high requirements in terms of
communication resources. For CU1, D-RLADMM achieves
significantly higher reward compared to D-FRL and RL-LAPG
at large SNR values. The reason is that D-RLADMM requires
less number of time slots to converge. For A-RLADMM, the
performance for both CU1 and CU2 cases is comparable at
low SNR regime due to the fact that the received updates
are very noisy, and increasing the number transmission time
slots failed to improve the averaged reward thus the algorithm
converges to a suboptimal policy.

While D-RLADMM suffers from scarce bandwidth
resources for CU1 case, the performance of D-RLADMM
drastically improves as the maximum number channel uses
is increased. For the high SNR regime, we notice that both
A-RLADMM and D-RLADMM algorithms overcome the
effect of the noise and achieve the maximum globally aver-
aged reward for the CU2 case. In addition to that, for CU2,
all the baselines achieve the maximum reward and converge
to the optimal policy.

To study the sensitivity of the algorithm to the hyper-
parameters, we consider the effects of the number of local
iterations and the number of batch episodes on the obtained
globally averaged reward for our proposed algorithm, which
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Fig. 6. Effect of the number of batch episodes on the algorithm performance
(Globally normalized averaged reward w.r.t number of communication
uploads).

are illustrated in Figs. 5 and 6, respectively. In Fig. 5, the
number of local iterations affects the solution of (18). We
notice that running for low number of iterations (J ∈ {1, 5})
degrades the performance of the algorithm as it requires very
high number of communication uploads to converge. This is
due to the fact that more GD steps leads to closer point to
the local optima. As we increase the number of the local
iterations, we notice an improvement in the performance.
However, this comes at the expense of more computational
time.

Equivalently, Fig. 6 reflects the approximation accuracy
of the gradient expectation in (25) when estimated by the
gradient estimate in (26) using different number of batch
episodes. Using the values M ∈ {1, 5, 15}, we notice that
we get a greater and more stable reward as we run for more
episodes. These results validate the law of large numbers,
as we can get closer to the expected value as we run for
more trials. However, practically, the choice of M is restricted
by the computation time and the nature of the problem
in hand.

VI. CONCLUSION

This paper studies the DRL setting where several agents are
communicating with a parameter server in a shared environ-
ment while also collaborating to maximize a global reward.
To address the issue of wireless channel randomness under
communication-constrained environments, we proposed an
algorithm that embodies the wireless channel into the formula-
tion of the ADMM method using analog transmission scheme,
referred to as A-RLADMM. Experimental results show that
our proposed algorithm significantly outperforms the digital
communication version of A-RLADMM (D-RLADMM) as
well as the analog and the digital communication version of
the vanilla FL, (D-FRL) and (A-FRL) respectively. For future
work, the impact of synchronization among the agents could be
investigated. Moreover, other communication-efficient meth-
ods could be applied such as quantization and sparsification,

especially for scenarios where huge model sizes are
deployed.
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